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Abstract
A critical challenge of federated learning is data
heterogeneity and imbalance across clients, which
leads to inconsistency between local networks and
unstable convergence of global models. To alle-
viate the limitations, we propose a novel archi-
tectural regularization technique that constructs
multiple auxiliary branches in each local model by
grafting local and global subnetworks at several
different levels and that learns the representations
of the main pathway in the local model congru-
ent to the auxiliary hybrid pathways via online
knowledge distillation. The proposed technique is
effective to robustify the global model even in the
non-iid setting and is applicable to various fed-
erated learning frameworks conveniently without
incurring extra communication costs. We perform
comprehensive empirical studies and demonstrate
remarkable performance gains in terms of accu-
racy and efficiency compared to existing methods.
The source code is available in our project page1.

1. Introduction
Training deep neural networks typically relies on central-
ized algorithms, where computing resources and training
data are located within a single server. Recently, to deal
with large-scale models and/or distributed data, the learning
frameworks based on multiple remote machines become
widespread in machine learning research and development.
Federated learning (McMahan et al., 2017) is a unique dis-
tributed learning framework that takes advantage of com-
puting resources and training data in clients, typically edge
devices, which is helpful to secure data privacy but often
suffers from insufficient computing power, low communica-
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Figure 1. Illustration of the local network for the proposed multi-
level branched regularization framework. BL and BG denote
network blocks extracted from local and global networks, respec-
tively, and their superscripts indicate block indices. qL and qH
indicate softmax outputs of the main pathway and hybrid path-
ways, respectively. Solid and dashed gray lines represent forward
and backpropagation flows, respectively. For training, the stan-
dard cross-entropy losses are applied to all branches and the KL-
divergence losses between the main pathway and the rest of the
pathways are employed for regularization. Note that we update the
parameters in the main pathway only, which are illustrated in sky
blue color in this figure.

tion bandwidth, and extra battery consumption. As practical
solutions to handle the challenges, each edge device often
runs a small number of iterations and minimizes the com-
munication rounds with the central server.

FedAvg (McMahan et al., 2017), the standard optimization
method of federated learning, maintains the global model
in the server by aggregating the local models trained inde-
pendently in multiple clients. Each client utilizes its own
dataset to update the local model instead of sharing the data
with the server or other clients, sends the locally optimized
model to the server for aggregation, and downloads the up-
dated global model for the next stage. FedAvg works well
when the individual datasets of the clients are iid and the
participation rate of the clients is high, but it struggles with
low convergence speed otherwise. This is because, when
the data distributions of individual clients are different from

http://cvlab.snu.ac.kr/research/FedMLB
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the global distribution, local updates are prone to drift and
increase divergence with respect to the global model (Zhao
et al., 2018; Karimireddy et al., 2020).

Our goal is to make each client preserve the latest global
representations and prevent model drift caused by indepen-
dent local updates. Meanwhile, we make the server learn
client-specific knowledge by a simple aggregation of local
networks and achieve a high-performance model well-suited
for all clients, eventually. To mitigate the discrepancy be-
tween the local models updated by heterogeneous datasets,
we propose a novel architectural regularization technique
via knowledge distillation that grafts the local and global
subnetworks and constructs multi-level branches. The aux-
iliary branches reduce the deviation of the representations
in the local models from the feature space of the global
model. To this end, a participating client first modularizes
the downloaded global network into multiple blocks. The
client trains the main pathway of the local model with the
parameters corresponding to the global subnetworks fixed,
while the output representations of the hybrid pathways are
made similar to those in the main pathway using additional
regularization terms based on knowledge distillation. Our
regularization approach is unique compared to the meth-
ods based on the standard knowledge distillation because
it constrains the representations of the main pathway in
the local model using the on-the-fly outputs of the hybrid
pathways. This idea is motivated by a recent knowledge
distillation approach that aims to learn a student-friendly
teacher network (Park et al., 2021). Figure 1 illustrates our
main idea.

The main contributions of this work are as follows:

• We propose a simple but effective regularization tech-
nique to reduce the drift problem of a local model, via
online knowledge distillation between the main path-
way and the multiple hybrid pathways reflecting the
global representations partially.

• Our approach is robust to typical challenges of fed-
erated learning including data heterogeneity and low
client participation rate, and is applicable to various
federated learning frameworks.

• The proposed method requires no additional commu-
nication cost and spends no extra memory to store
the history of local or global states and the auxiliary
information.

• We demonstrate through extensive experiments that
our architectural regularization technique improves ac-
curacy and convergence speed consistently compared
to the state-of-the-art federated learning algorithms.

The organization of this paper is as follows. We first dis-
cuss existing work related to the optimization in federated

learning and review the basic concept with a simple solu-
tion in Section 2 and 3, respectively. Section 4 describes
the proposed federated learning framework, and Section 5
demonstrates the effectiveness of the proposed approach via
extensive experiments. Finally, we conclude this paper in
Section 6.

2. Related Work
Federated learning (McMahan et al., 2017) is a distributed
learning framework with the characteristics such as non-
iid client data, data privacy requirement, massive distribu-
tion, and partial participation. Although FedAvg provides
a practical solution for the issues, it still suffers from the
heterogeneity of data across clients (Zhao et al., 2018). On
the theoretical side, there exist several works that derive
convergence rates with respect to the data heterogeneity (Li
et al., 2020a; Wang et al., 2019; Khaled et al., 2019; Li et al.,
2020b; Hsieh et al., 2020; Wang et al., 2020).

To alleviate the limitations of FedAvg, the local model up-
dates are often regularized to prevent a large deviation from
the global model. FedProx (Li et al., 2020a) imposes a
quadratic penalty over the distance between the server and
client parameters while SCAFFOLD (Karimireddy et al.,
2020) and FedDANE (Li et al., 2019) employ a form of vari-
ance reduction techniques such as control variates. On the
other hand, FedPD (Zhang et al., 2020) and FedDyn (Acar
et al., 2021) penalize each client’s risk objective dynami-
cally based on its local gradient. Some approaches adopt a
trick motivated by data augmentation (Yoon et al., 2021), or
contrastive learning (Li et al., 2021) to ensure the similar-
ity of the representations between the downloaded global
model and local networks. However, these methods typi-
cally rely on unrealistic or impractical assumptions such as
high participation rates, additional communication costs, or
extra memory requirements in clients.

Meanwhile, the server-side optimization techniques have
been discussed actively for the acceleration of the conver-
gence. For example, FedAvgM (Hsu et al., 2019) adds a mo-
mentum term to speed up training, and FedADAM (Reddi
et al., 2021) adopts an adaptive gradient-descent method.
Our approach and these aggregation-based methods are or-
thogonal, so combining them together can yield additional
performance gains.

There is another line of research that utilizes knowledge dis-
tillation to tackle data heterogeneity issue in federated learn-
ing. The algorithms in this category perform knowledge dis-
tillation either in the server or clients. As client distillation
methods, FD (Seo et al., 2020) shares the representations
between clients for knowledge distillation with their ensem-
ble features while FedLS-NTD (Lee et al., 2021) transfers
the knowledge of the global model to local networks ex-
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cept the activations for ground-truth labels. FedGKD (Yao
et al., 2021) employs representations from the ensemble
of the historical global models to refine local models, and
FedGen (Zhu et al., 2021) learns a global generator to ag-
gregate the local information and distill global knowledge
to clients. For the distillation in the server, FedDF (Lin
et al., 2020) utilizes the averaged representations of local
models on proxy data for aggregation. However, these meth-
ods require additional communication overhead (Yao et al.,
2021; Zhu et al., 2021) or auxiliary data (Seo et al., 2020;
Lin et al., 2020). In particular, as discussed in (Wang et al.,
2021), federated learning algorithms are sensitive to the
communication cost and the use of globally-shared auxil-
iary data should be cautiously performed. To the contrary,
our approach incurs no additional communication cost and
has no requirement of auxiliary data. The proposed algo-
rithm belongs to the method for local optimization based on
knowledge distillation.

3. Preliminaries
This section briefly discusses the concept and procedure of
the basic federated learning algorithm.

3.1. Problem setting and notations

Given N clients, the goal of the federated learning is to
learn a global model θ that minimizes the average losses of
all clients as follows:

argmin
θ

[
L(θ) = 1

N

N∑
i=1

Li(θ)

]
, (1)

where Li(θ) = E(x,y)∼Di
[Li(x, y; θ)] is the loss in the ith

client given by the expected loss over all instances in the
client, denoted by Di. Note that clients may have heteroge-
neous data distributions and exchanges of training data are
strictly prohibited due to privacy issues.

3.2. FedAvg algorithm

FedAvg (McMahan et al., 2017) is a standard solution of
federated learning, where the server simply aggregates all
the participating client models to obtain the global model.
Specifically, in the tth communication round, a central server
first sends a global model θt−1 to each of the clients. Each
client sets its initial parameter θti,0 to θt−1, i.e., θi,0 = θt−1,
performs K steps of the gradient descent optimization to
minimize its local loss, and then returns the resultant model
parametrized by θti,K to the server. An updated global model
for the next round training is obtained by averaging all the
participating local models in the current communication
round. The local loss of FedAvg at the kth local iteration
(k = 1, . . . ,K) is defined by

Li(θti,k) = E(x,y)∼Di
[Li(x, y; θti,k)], (2)

where the cross-entropy loss is typically used for Li.

Multiple local updates in FedAvg before the aggregation
step in the server decreases the communication cost for train-
ing apparently. However, in practice, it typically leads to the
so-called client drift issue (Karimireddy et al., 2020), where
the individual client updates are prone to be inconsistent due
to overfitting on local client data. This phenomenon inhibits
FedAvg from converging to the optimum of the average loss
over all clients.

4. Proposed Algorithm: FedMLB
This section describes the details of our approach for fed-
erated learning with multi-level branched regularization,
referred to as FedMLB, which exploits the representations
of multiple hybrid pathways.

4.1. Overview

The main objective of FedMLB is to prevent the representa-
tions of the local model from being deviated too much by
local updates while accommodating new knowledge from
each client with heterogeneous datasets through independent
local updates. We achieve this goal via indirect layer-wise
online knowledge distillation using the architecture illus-
trated in Figure 1.

Although there exist several regularization approaches based
on knowledge distillation for federated learning (Lee et al.,
2021; Yao et al., 2021; Zhu et al., 2021), FedMLB is unique
in the sense that it constructs multiple hybrid pathways com-
bining the subnetworks of local and global models at various
levels and learns the representations of the local model sim-
ilar to those of the hybrid pathways. Note that the proposed
approach performs knowledge distillation using on-the-fly
targets given by the hybrid pathways although the subnet-
works of the global model remain fixed. The regularization
using the multiple auxiliary branches plays a critical role
to make the individual blocks of the local network aligned
well to the matching subnetworks of the global model. Con-
sequently, local updates in each client allow the local model
to be less deviated from the global counterpart, and such
a regularization also reduces the variations of the models
collected from multiple clients. We describe the details of
the proposed algorithm next.

4.2. Multi-level hybrid branching

To perform the proposed regularization, we first divide the
network into M exclusive blocks, which are based on the
depths and the feature map sizes of the architecture. Let
{BmL }Mm=1 and {BmG }Mm=1 be the sets of blocks in a local
model and the global network, respectively. The main path-
way consists of local blocks B1:M

L and we create multiple
hybrid pathways by augmenting a subnetwork in the global
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Algorithm 1 FedMLB

Input: # of clients N , # of communication rounds T ,
# of local iterations K, initial server model θ0

for each round t = 1, . . . , T do
Sample a subset of clients St ⊆ {1, . . . , N}.
Server sends θt−1 to each of all clients i ∈ St.
for each i ∈ St, in parallel do
θti,0 ← θt−1

for k = 1, . . . ,K do
for each (x, y) in a batch do
qL(x; τ)← softmax

(
fL(x;θti,k−1)

τ

)
qmH (x; τ)← softmax

(
fm
H (x;θti,m,k−1)

τ

)
,

m = 1, . . . ,M − 1
end for
L(θti,k−1)← LL + λ1 · LCE

H + λ2 · LKL
H

θti,k ← θti,k−1 − η∇L
end for
Client sends θti,K back to the server

end for
In server:
θt = 1

|St|
∑
i∈St

θti,K
end for

model Bm+1:M
G to a local subnetwork B1:m

L . Depending on
branching locations, from 1 to M − 1, several different hy-
brid pathways, denoted by {B1:m

L , Bm+1:M
G }m∈{1,...,M−1},

are constructed in parallel as illustrated in Figure 1.

The constructed network by multi-level hybrid branching
has M pathways altogether for predictions, which includes
one main pathway andM−1 hybrid pathways. The softmax
output of the main pathway, qL(x; τ), is given by

qL(x; θ, τ) = softmax
(
fL(x; θ)

τ

)
, (3)

where x is the input of the network, θ is the model param-
eters, τ is the temperature of the softmax function, and
fL(·; ·) denotes the logit of the main pathway. Similarly, the
softmax output of the hybrid pathway stemming from BmL
is given by

qmH (x; θm, τ) = softmax
(
fmH (x; θm)

τ

)
, (4)

where fmH (·; ·) and θm denote the logit and the model pa-
rameter of the mth hybrid pathway, respectively.

4.3. Knowledge distillation

Our goal is to learn the representation of the main pathway
similar to those of the hybrid pathways by using knowledge
distillation. To this end, we employ two different kinds of

loss terms; one is the cross-entropy loss and the other is the
knowledge distillation loss.

The cross-entropy loss of the main pathway is given by

LL = CrossEntropy(qL, y), (5)

while the overall cross-entropy loss of the hybrid pathways
is defined as

LCE
H =

1

M − 1

M−1∑
m=1

CrossEntropy(qmH , y). (6)

On the other hand, we encourage the representations of
individual hybrid pathways to be similar to the main branch
of the local network and employ the following knowledge
distillation loss additionally:

LKL
H =

1

M − 1

M−1∑
m=1

KL(q̃mH , q̃L), (7)

where KL(·, ·) denotes the Kullback-Leibler (KL) diver-
gence between two normalized vectors, and q̃ is the
temperature-scaled softmax output using the hyperparame-
ter τ̃ .

The total loss function of the proposed method is given by

L = LL + λ1 · LCE
H + λ2 · LKL

H , (8)

where λ1 and λ2 are hyperparameters that determine the
weights of individual terms.

The local model is optimized by backpropagation based on
the loss function in (8). Note that we update the model
parameters in the main pathway while the blocks from the
global network in the hybrid pathways remain unchanged
during the local updates.

4.4. Learning procedure

Our federated learning follows the standard protocol and
starts from local updates in clients. Each client first builds
a model with either pretrained or randomized parameters
and updates the parameters for a small number of iterations
using local data. The updated models are sent to the server,
and the server aggregates the models by a simple model
averaging. Since the communication between the server
and the clients is not stable, only a small fraction of clients
typically participate in each round of the training procedure.
Finally, the server broadcasts the new model given by model
averaging and initiates a new round. Note that FedMLB is
a client-side optimization approach and there is no special
operation in the server. Algorithm 1 describes the detailed
learning procedure of FedMLB.
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Table 1. Comparisons between FedMLB and the baselines on CIFAR-100 and Tiny-ImageNet for two different federated learning settings.
For (a) moderate-scale experiments, the number of clients and the participation rate are set to 100 and 5%, respectively, while (b)
large-scale experiments have 500 clients with 2% participation rate. The accuracy at the target round and the number of communication
rounds to reach the target test accuracy are based on the exponential moving average with the momentum parameter 0.9. The arrows
indicate whether the higher (↑) or the lower (↓) is better.

(a) Moderate-scale with Dir(0.3): 100 clients, 5% participation

Method
CIFAR-100 Tiny-ImageNet

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 47% 53% 500R 1000R 38% 42%

FedAvg (McMahan et al., 2017) 41.88 47.83 924 1000+ 33.94 35.42 1000+ 1000+
FedMLB 47.39 54.58 488 783 37.20 40.16 539 1000+
FedAvgM (Hsu et al., 2019) 46.98 53.24 515 936 36.10 38.36 794 1000+
FedAvgM + FedMLB 53.02 58.97 349 499 40.93 43.52 380 642
FedADAM (Reddi et al., 2021) 47.07 54.19 499 947 36.98 40.60 647 1000+
FedADAM + FedMLB 48.59 58.23 472 645 35.81 42.90 552 873
FedDyn (Acar et al., 2021) 48.38 55.78 425 735 37.35 41.17 573 1000+
FedDyn + FedMLB 57.33 61.81 299 377 43.05 46.55 324 446

(b) Large-scale with Dir(0.3): 500 clients, 2% participation

Method
CIFAR-100 Tiny-ImageNet

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 36% 40% 500R 1000R 26% 32%

FedAvg (McMahan et al., 2017) 29.87 37.48 858 1000+ 23.63 29.48 645 1000+
FedMLB 32.03 42.61 642 800 28.39 33.67 429 710
FedAvgM (Hsu et al., 2019) 31.80 40.54 724 955 26.75 33.26 457 836
FedAvgM + FedMLB 36.21 47.75 496 636 32.00 37.53 307 500
FedADAM (Reddi et al., 2021) 36.07 47.04 480 653 29.65 35.91 345 642
FedADAM + FedMLB 38.28 52.68 442 527 32.14 39.54 311 524
FedDyn (Acar et al., 2021) 31.58 41.02 691 927 24.35 29.54 595 1000+
FedDyn + FedMLB 36.50 49.65 478 611 30.77 37.68 384 541

4.5. Discussion

FedMLB maintains the knowledge in the global model while
accommodating new information from the client datasets
in each communication round. This objective is similar to
that of continual learning, and knowledge distillation (KD)
is widely used to this end. However, vanilla KD-based
methods (Lee et al., 2021; Yao et al., 2021) matches the rep-
resentations at the logit level, which derives model updates
primarily at deeper layers while the parameters in the lower
layers are less affected. This issue can be alleviated by us-
ing the layer-wise KD techniques (Romero et al., 2015), but
the independent supervisions at multiple layers may lead
to inconsistent and restrictive updates of model parameters.
Contrary to these two options, the proposed approach con-
structs separate pathways using the static network blocks
of the global model and updates the representations in each
block of the local model to induce the proper outputs of
the network. At the same time, FedMLB effectively dis-
tributes the workload of the network across multiple blocks
for adapting to the local data, which is helpful for main-
taining the representations of the global model during local
iterations.

Compared to the federated learning techniques that handle
client heterogeneity by employing global gradient infor-
mation for the local update, the proposed algorithm has
the following major advantages. First, FedMLB does not
require any additional communication overhead such as
global gradient information (Karimireddy et al., 2020; Xu
et al., 2021). Note that the increase in communication cost
challenges many realistic federated learning applications
involving clients with limited network bandwidths. Also,
unlike (Karimireddy et al., 2020; Acar et al., 2021; Li et al.,
2021; Yao et al., 2021), the clients are not supposed to
store their local states or historical information of the model,
which is particularly desirable for the low-rate participation
situations in federated learning.

Meanwhile, FedMLB incurs a moderate increase of compu-
tational cost due to the backpropagation through the addi-
tional branches. However, it achieves impressive accuracy
with fewer communication rounds compared to the base-
lines. The performance of FedMLB is particularly good
with a relatively large number of local iterations, which is
helpful for reducing the number of communication rounds
even further to achieve the target accuracy.
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Figure 2. The convergence plots of FedMLB and other federated
learning baselines on CIFAR-100. The + symbol indicates the
incorporation of FedMLB. The number of clients, the participation
rate, and the symmetric Dirichlet parameter are set to 100, 5%, and
0.3, respectively.

5. Experiments
This section demonstrates the effectiveness of FedMLB by
incorporating it into various baseline algorithms for feder-
ated learning.

5.1. Experimental setup

Datasets and baselines We conduct a set of experiments
on the CIFAR-100 and Tiny-ImageNet (Le & Yang, 2015)
datasets. To simulate non-iid data, we sample examples with
heterogeneous label ratios using symmetric Dirichlet distri-
butions parametrized by two different concentration parame-
ters {0.3, 0.6}, following (Hsu et al., 2019). We maintain the
training dataset sizes balanced, so each client holds the same
number of examples. For comprehensive evaluation, we em-
ploy several state-of-the-art federated learning techniques
including FedAvg (McMahan et al., 2017), FedAvgM (Hsu
et al., 2019), FedADAM (Reddi et al., 2021), and Fed-
Dyn (Acar et al., 2021). We also compare with existing
regularization-based approaches such as FedProx (Li et al.,
2020a), FedLS-NTD (Lee et al., 2021), and FedGKD (Yao
et al., 2021). We choose a ResNet-18 (He et al., 2016) as
the backbone network for all benchmarks, but replace the
batch normalization with group normalization as suggested
in (Hsieh et al., 2020).

Evaluation metrics To evaluate generalization perfor-
mance of each algorithm, we use the whole test set in the
CIFAR-100 (Krizhevsky et al., 2009) and Tiny-ImageNet
datasets. Since both convergence speed as well as final
performance are important metrics for federated learning
as discussed in (Al-Shedivat et al., 2021), we measure the
performance attained at two specific rounds and the num-
ber of required rounds to achieve the desired levels of the
target accuracy. For the methods that fail to accomplish
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Figure 3. The convergence plots of FedMLB and other local opti-
mization techniques on CIFAR-100. The number of clients, the
participation rate, and the symmetric Dirichlet parameter are set to
100, 5%, and 0.3, respectively.

the target accuracy within the maximum communication
rounds, we append a + sign to the number indicating the
communication round.

Implementation details We use PyTorch (Paszke et al.,
2019) to implement the proposed method and other base-
lines. FedMLB divides its backbone network, ResNet-18,
into six blocks based on the depths of its layers and fea-
ture map sizes; each of conv1, conv2 x, conv3 x, conv4 x,
conv5 x, and fc layers constitutes a single block. Follow-
ing (Acar et al., 2021; Xu et al., 2021), we adopt the SGD
optimizer for local updates with the learning rate of 0.1 for
all benchmarks, except for the FedADAM whose learning
rate is set to 0.01. We apply the exponential decay to the
local learning rate with the parameter of 0.998. There is no
momentum in the local SGD but the weight decay with a
factor of 0.001 is employed to prevent overfitting. We also
perform gradient clipping to stabilize the algorithms. The
number of local training epochs is set to 5, and the batch
size is determined to make the total number of iterations for
local updates 50 for all experiments unless specified other-
wise. The global learning rate is 1 for all methods except
for FedADAM with 0.01. We list the details of the hyperpa-
rameters specific to FedMLB and the baseline algorithms in
Appendix A.

5.2. Main results

FedMLB with server-side optimization techniques We
first present the performance of the proposed approach,
FedMLB, on CIFAR-100 and Tiny-ImageNet based on four
federated learning baselines that perform server-side opti-
mizations. Our experiments have been performed on two
different settings; one is with moderate-scale, which in-
volves 100 devices with 5% participation rate per round,
and the other is with a large number of clients, 500 with
2% participation rate. Note that the number of clients in
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Table 2. Comparison between FedMLB and the baselines based on other local objectives on CIFAR-100 with two different federated
learning settings. The accuracy at the target round and the number of communication rounds to reach the target test accuracy are based on
the exponential moving average with the momentum parameter 0.9.

Method
Dir(0.3), 100 clients, 5% Dir(0.3), 500 clients , 2%

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 40% 48% 500R 1000R 30% 36%

FedAvg (McMahan et al., 2017) 41.88 47.83 428 1000+ 29.87 37.48 504 858
FedAvg + KD (Hinton et al., 2014) 42.99 49.17 389 842 29.83 37.65 505 859
FedAvg + FitNet (Romero et al., 2015) 42.04 47.67 419 1000+ 29.92 37.63 503 860
FedProx (Li et al., 2020a) 42.03 47.93 419 1000+ 29.28 36.16 533 966
FedLS-NTD (Lee et al., 2021) 43.22 49.29 386 825 28.66 35.99 546 1000+
FedGKD (Yao et al., 2021) 42.28 47.96 397 1000+ 29.27 37.25 530 896
FedMLB (ours) 47.39 54.58 339 523 32.03 42.61 446 642

Table 3. Effect of more local iterations, K = 100 and 200, for FedMLB and the baselines with other local objectives on CIFAR-100 with
100 clients and 5% participation rate. The accuracy at the target round and the number of communication rounds to reach the target test
accuracy are based on the exponential moving average with the momentum parameter 0.9.

Method
K = 100 (Dir(0.3), 100 clients, 5%) K = 200 (Dir(0.3), 100 clients, 5%)
Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 40% 48% 500R 1000R 40% 48%

FedAvg (McMahan et al., 2017) 41.92 48.15 398 987 41.45 49.25 433 897
FedAvg + KD (Hinton et al., 2014) 42.58 49.15 385 905 42.84 51.48 381 751
FedAvg + FitNet (Romero et al., 2015) 39.48 45.80 531 1000+ 37.17 43.97 651 1000+
FedProx (Li et al., 2020a) 42.01 48.17 391 992 41.30 48.67 458 959
FedLS-NTD (Lee et al., 2021) 41.34 47.09 423 1000+ 39.82 46.72 508 1000+
FedGKD (Yao et al., 2021) 42.04 46.79 387 1000+ 42.26 48.85 387 889
FedMLB (ours) 52.53 58.52 223 359 53.12 58.91 183 325

the large-scale setting is 5 times more than the moderate-
scale experiment, which reduces the number of examples
per client by 80%. Table 1 demonstrates that FedMLB
improves accuracy and convergence speed by significant
margins consistently on all the four baselines for most cases.
Figure 2 also illustrates the effectiveness of FedMLB when
it is combined with the four baseline methods. Note that
the overall performance in the large-scale setting is lower
than the case with a moderate number of clients. This is
because, as the number of training data per client decreases,
each client has even more distinct properties and is prone to
drift. Nevertheless, we observe that FedMLB outperforms
the baseline methods consistently on all benchmarks.

Comparisons with other local objectives To understand
the effectiveness of FedMLB compared to other local op-
timization techniques, we compare our objective with the
following two baselines: 1) employing the vanilla knowl-
edge distillation for regularization (FedAvg + KD) (Hinton
et al., 2014)), and 2) adopting knowledge distillation on
block-wise features between the local and global model
(FedAvg + FitNet (Romero et al., 2015)).

Table 2 illustrates the outstanding performance of our multi-
level branched regularization using online knowledge dis-
tillation on CIFAR-100, and Figure 3 visualizes the con-
vergence curves of all compared algorithms with different

local objectives. One noticeable result is that the baseline
methods with knowledge distillation only achieve marginal
gains or sometimes degrade accuracy. This is partly be-
cause the predictions of the downloaded global model are
not fully-trustworthy during training, especially in early
communication rounds. Therefore, merely simulating the
outputs of the global model is suboptimal and hampers the
learning process at the local model. In this respect, FedMLB
is more robust to heterogeneous characteristics of clients
and more flexible to learn the new knowledge in local mod-
els. Note that, FedGKD requires 1.5 times communication
costs compared to other methods since the server transmits
the historical global model along with the latest model for
server-to-client communication.

5.3. Effect of more local iterations

The increase of local iterations under a heterogeneous en-
vironment is beneficial because we can reduce the number
of communication rounds between the server and clients.
Table 3 presents the results of FedMLB and the baselines
with more local iterations, i.e., K ∈ {100, 200}, on CIFAR-
100. The results demonstrate that FedMLB outperforms the
compared methods by significant margins. An interesting
observation is that the baseline methods fail to benefit from
additional iterations. This is because the increase of local
iterations is prone to result in more divergence across mul-
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Table 4. Ablation study results from two different compositions of the hybrid pathways on CIFAR-100 in two federated learning settings.
The accuracy at the target round and the number of communication rounds to reach the target test accuracy are based on the exponential
moving average with the momentum parameter 0.9.

Method
Dir(0.3), 100 clients, 5% Dir(0.3), 500 clients, 2%

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 40% 48% 500R 1000R 30% 36%

FedAvg (McMahan et al., 2017) 41.88 47.83 428 1000+ 29.87 37.48 504 858
FedMLBG→L 42.41 47.40 386 1000+ 28.53 35.46 571 1000+
FedMLBL→G (ours) 47.39 54.58 339 523 32.03 42.61 446 642

Table 5. Accuracy after 1K rounds of FedMLB with various con-
figurations of the hybrid pathways on CIFAR-100 in the moderate-
scale setting. The symmetric Dirichlet parameter is set to 0.3.

Hybrid pathway index Acc.1 2 3 4 5
X X X X X 54.58
X X X X 55.18
X X X 55.03
X X 54.16
X 50.79

X 48.45
X X 46.78

X X X 51.73
X X X X 52.65

Table 6. Effect of the number of hybrid pathways employed for
FedMLB on CIFAR-100 in the moderate-scale setting. The av-
erage accuracy and the standard deviation are computed over all
possible combinations with the same number of hybrid pathways.
We measure the accuracy after 1K rounds, where the symmetric
Dirichlet parameter is set to 0.3 for non-iid sampling.
Number of pathways 1 2 3 4 5

Average accuracy 47.89 51.86 52.89 53.69 54.58
Standard deviation 3.99 2.45 1.78 1.43 -

tiple client models and eventually leads to degradation of
performance. In contrast, FedMLB consistently improves
its accuracy and convergence speed substantially compared
to the results with 50 iterations shown in Table 2. Although
the accuracies with 100 and 200 iterations are similar, the
numbers of required iterations to achieve 40% and 48% are
noticeably smaller with 200 iterations. These results imply
that FedMLB handles the client drift issue effectively.

5.4. Analysis of auxiliary branches

Effectiveness of local-to-global pathways Each hybrid
pathway in FedMLB is composed of a set of local blocks
followed by a global subnetwork. To show the effectiveness
of the current design of the hybrid pathways, we evaluate the
performance of the opposite architecture design, the local
model with multi-level global-to-local pathways. As in the
original version of FedMLB, the newly considered model
denoted by FedMLBG→L also updates the parameters in
the local blocks only. Table 4 presents that the knowledge

Table 7. Sensitivity of FedMLB to the weights of the two regular-
ization loss terms with respect to the accuracy after 1K round on
CIFAR-100 in the moderate-scale setting. The symmetric Dirichlet
parameter is set to 0.3.

HH
HHHλ1

λ2 0 1 2 3

0 47.83 53.27 54.51 54.21
1 52.10 54.58 55.52 56.32
2 52.37 53.05 54.28 54.16
3 49.54 53.00 54.34 53.57

Table 8. Sensitivity of FedMLB to τ ′ with respect to the accuracy
after 1K rounds on CIFAR-100 in the moderate-scale setting with
two different values of the symmetric Dirichlet parameter.

τ ′ 0.75 1 1.5 2 3 5
Dir(0.3) 53.90 54.58 53.87 53.98 53.60 53.68
Dir(0.6) 56.10 56.70 56.72 56.87 54.98 54.02

distillation with the hybrid pathways stemming from local
blocks to global ones outperforms the opposite composi-
tion method. The reason is that FedMLBG→L constrains
the output of each local blocks excessively and reduces the
flexibility of the main pathway in the local network signifi-
cantly. Although the new strategy is helpful for preserving
the knowledge in the global model, it interferes learning
new knowledge.

Effect of multi-level branches FedMLB employs the fea-
tures from multi-level auxiliary branches to compute the
cross-entropy loss LCE

H and KL-divergence loss LKL
H . Ta-

ble 5 illustrates that the pathways grafted from the lower
layers are generally more helpful for accuracy gains. Also,
according to Table 6, the accuracy of FedMLB generally
improves as we increase the number of pathways.

5.5. Effect of hyperparameters in FedMLB

Ablation study for loss function To show the effective-
ness of the cross-entropy loss of the hybrid pathways LCE

H

and the KL-divergence loss LKL
H , we conduct the compre-

hensive experiments by varying λ1 and λ2 in (8), which
controls the weight of each of the two loss terms. Table 7
shows that both of the loss terms contribute to performance
gains while the KL-divergence loss is more critical than the
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Figure 4. Performance of algorithms by varying their local compu-
tational costs controlled by the number of local iterations while
maintaining the total communication costs. Accuracies are mea-
sured after 1K rounds on CIFAR-100 using ResNet18.

cross-entropy loss in the hybrid pathways. Note that we set
λ1 = λ2 = 1 in our experiment.

Softmax function temperature in knowledge distillation
The temperature parameter τ ′ in (7) controls the smoothness
of the softmax function output for KL divergence loss, LKL

H .
Table 8 presents that the performance of FedMLB is consis-
tent with respect to the variations of τ ′ in the two different
values of the symmetric Dirichlet parameter.

5.6. Local computation overheads

While FedMLB requires additional computation compared
to the baselines under the same number of local epochs, its
benefit outweighs its cost as illustrated in Figure 4. FedMLB
outperforms other methods at the same computational cost
and the gap gets more significant as they have more local
iterations. An important observation from Figure 4 is that
FedLS-NTD and FedGKD are inconsistent with the num-
ber of local iterations compared to FedMLB and FedAVG.
Also, note that the performance of FedMLB improves sub-
stantially with more iterations, which is effective for reduc-
ing the communication cost, which is critical in federated
learning. Also, Table 5 presents that removing a couple of
pathways from deeper layers sometimes improves accuracy,
which means there still exists room for optimization in terms
of computational cost.

5.7. Experiments with other backbone models

To confirm the generality of FedMLB with respect to back-
bone networks, we conduct experiments with additional ar-
chitectures, which include VGG-9 (Simonyan & Zisserman,
2015), MobileNet (Sandler et al., 2018), ShuffleNet (Zhang
et al., 2018), and SqueezeNet (Iandola et al., 2016). VGG

Table 9. Results with different CNN backbone architectures on
CIFAR-100.

Architecture Dir(0.3), 100 clients, 5%
FedAvg FedLS-NTD FedGKD FedMLB

VGG-9 47.04 51.37 48.62 54.54
MobileNet 38.52 47.66 47.72 48.34
ShuffleNet 37.04 39.27 38.47 42.29
SqueezeNet 39.86 39.56 42.28 42.71
ResNet-18 47.83 49.29 47.96 54.58

is widely used network without skip connections while Mo-
bileNet, ShuffleNet and SqueezeNet are lightweight net-
works suitable for edge devices. As for implementation,
since these modern deep neural networks are typically mod-
ularized, we typically branch a pathway after a module,
e.g., ResBlock (no branches from the layers enclosed by
a skip connection). Table 9 shows that FedMLB clearly
outperforms other algorithms regardless of the backbone
architectures.

6. Conclusion
We presented a practical solution to improve the perfor-
mance of federated learning, where a large number of clients
with heterogeneous data distributions and limited participa-
tion rates are involved in the learning process. To address
the critical limitations, we proposed a novel regularization
technique via online knowledge distillation. Our approach
employs multi-level hybrid branched networks, which re-
duces the drift of the representations in the local models
from the feature space of the global model. The proposed
federated learning framework has the following two desir-
able properties; it requires no additional communication cost
and spends no extra memory to store the history of local
states. We demonstrated that the proposed approach, re-
ferred to as FedMLB, achieves outstanding performance in
terms of accuracy and efficiency, through a comprehensive
evaluation on multiple standard benchmarks under various
environments.
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A. Implementation Details
For the experiments on CIFAR-100, the number of local
training epochs is 5, and the local learning rate is 0.1 except
for 0.01 in FedADAM. We set the batch sizes of local up-
dates to 50 and 10 for the experiments with 100 and 500
clients, respectively. The parameter for learning rate decay
in each algorithm is set as 0.998. The global learning rate
is 1 except for FedAdam, which adopts 0.01. For the Tiny-
ImageNet experiments, we match the total number of local
iterations with other benchmarks by setting the batch sizes
of local update as 100 for 100 clients and 20 for 500 clients.

There are several hyperparameters specific to each of the ex-
isting algorithms, which are typically determined to achieve
the best performance by referring to the setting in the origi-
nal paper. For example, α in FedDyn is 0.1, τ in FedADAM
is 0.001, and γ in FedGKD is 0.2. We select β in FedAvgM
from {0.4, 0.6, 0.8}, and β in FedProx is from {0.1, 0.01,
0.001}. When incorporating FedMLB into the baselines, we
inherit all their hyperparameter settings. For all experiments
for FedMLB, both λ1 and λ2 are set to 1 while τ ′ is 1.

B. Additional Analysis
B.1. Auxiliary branches

FedMLB employs the features from multi-level auxiliary
branches to compute the cross-entropy loss LCE

H and the
KL-divergence loss LKL

H . Figure 5 illustrates that the use
of all auxiliary branches leads to the best performance and
the proposed multi-level regularization contributes to addi-
tional performance gains. It also implies that the branches
stemming from shallower local blocks are generally more
helpful, which is consistent with the results in Table 6.
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Figure 5. The benefit of each hybrid pathway to accuracy during
training. The number of clients, the participation rate, and the sym-
metric Dirichlet parameter are set to 100, 5% and 0.3, respectively.
The hybrid pathway index follows the notation in Figure 1.

B.2. Level of data heterogeneity

To demonstrate the generality of the proposed approach
on the level of data heterogeneity, we test FedMLB with
two different data partitioning strategies, which include the
method based on a symmetric Dirichlet distribution with
a higher concentration parameter (0.6) and the iid setting.
Tables 10 and 11 verify that incorporating FedMLB into
four different baseline methods improves accuracy and con-
vergence speed with large margins for most cases.

B.3. Convergence

To further analyze the effectiveness of the proposed method,
we investigate the convergence characteristics of several
algorithms including FedMLB in diverse settings, which
are configured by varying the number of clients, the level
of data heterogeneity, and participation rate. The accura-
cies at each round on CIFAR-100 and Tiny-ImageNet are
demonstrated in Figure 6 and 7, respectively. The results
show that FedMLB is indeed helpful for improving accuracy
throughout the training procedure, facilitating convergence.

Figure 8 also illustrates the convergence of FedMLB in com-
parison to other regularization-based methods. We observe
the consistent and non-trivial improvements of FedMLB
over FedAvg during training while other methods only
achieve marginal gains compared to FedAvg or are even
worse, especially in a more challenging condition with a
less participation rate. Furthermore, in Figure 9 we notice
that FedMLB continuously outperforms the baselines large
margins even when we increase the number of local itera-
tions, which is effective for reducing the communication
cost.
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Table 10. Comparisons of FedMLB and the baselines on CIFAR-100 and Tiny-ImageNet for two different federated learning settings,
where the symmetric Dirichlet parameter is 0.6. The accuracy at the target round and the number of communication rounds to reach the
target test accuracy are based on the exponential moving average with the momentum parameter 0.9. The arrows indicate whether higher
(↑) or lower (↓) is better.

(a) Moderate-scale with Dir(0.6): 100 clients, 5% participation

Method
CIFAR-100 Tiny-ImageNet

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 48% 52% 500R 1000R 38% 42%

FedAvg (McMahan et al., 2017) 43.43 48.71 926 1000+ 36.15 37.72 1000+ 1000+
FedMLB 49.36 56.70 465 602 39.34 42.15 441 917
FedAvgM (Hsu et al., 2019) 46.66 52.49 572 937 38.41 40.75 475 1000+
FedAvgM + FedMLB 54.62 60.91 331 417 43.96 46.82 294 401
FedADAM (Reddi et al., 2021) 50.81 56.95 427 569 40.13 42.75 415 813
FedADAM + FedMLB 53.34 61.49 364 467 40.67 44.96 415 610
FedDyn (Acar et al., 2021) 50.51 56.79 427 580 39.39 42.97 423 875
FedDyn + FedMLB 57.51 62.43 298 355 43.35 47.43 294 412

(b) Large-scale with Dir(0.6): 500 clients, 2% participation

Method
CIFAR-100 Tiny-ImageNet

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 36% 44% 500R 1000R 26% 32%

FedAvg (McMahan et al., 2017) 29.36 36.36 966 1000+ 24.48 29.94 600 1000+
FedMLB 33.74 43.53 571 1000+ 28.97 35.08 415 650
FedAvgM (Hsu et al., 2019) 32.44 41.40 680 1000+ 24.65 31.54 575 1000+
FedAvgM + FedMLB 38.35 49.65 421 690 32.33 37.60 308 483
FedADAM (Reddi et al., 2021) 37.33 47.73 463 756 31.40 37.03 286 533
FedADAM + FedMLB 39.57 53.53 402 621 33.71 41.15 292 444
FedDyn (Acar et al., 2021) 31.63 41.58 677 1000+ 26.42 31.80 485 1000+
FedDyn + FedMLB 38.90 52.72 440 639 32.52 38.28 350 712
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Table 11. Comparisons of FedMLB and the baselines on CIFAR-100 and Tiny-ImageNet for two different iid federated learning settings.
The accuracy at the target round and the number of communication rounds to reach the target test accuracy are based on the exponential
moving average with the momentum parameter 0.9. The arrows indicate whether higher (↑) or lower (↓) is better.

(a) Moderate-scale with IID: 100 clients, 5% participation

Method
CIFAR-100 Tiny-ImageNet

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 48% 52% 500R 1000R 38% 42%

FedAvg (McMahan et al., 2017) 43.60 48.01 997 1000+ 37.96 38.92 504 1000+
FedAvg + FedMLB 50.12 56.40 426 584 40.69 42.98 376 640
FedAvgM (Hsu et al., 2019) 47.43 52.83 532 880 39.79 41.34 346 1000+
FedAvgM + FedMLB 55.29 61.16 294 377 44.02 47.03 271 382
FedADAM (Reddi et al., 2021) 54.35 60.35 303 416 43.54 46.12 257 377
FedADAM + FedMLB 57.13 62.58 285 363 44.27 47.36 276 372
FedDyn (Acar et al., 2021) 50.37 56.88 397 592 39.49 42.42 350 848
FedDyn + FedMLB 56.97 61.41 298 366 44.28 46.62 277 361

(b) Large-scale with IID: 500 clients, 2% participation

Method
CIFAR-100 Tiny-ImageNet

Accuracy (%, ↑ ) Rounds (#, ↓) Accuracy (%, ↑) Rounds (#, ↓)
500R 1000R 36% 44% 500R 1000R 26% 32%

FedAvg (McMahan et al., 2017) 29.96 36.93 903 1000+ 23.25 28.92 701 1000+
FedAvg + FedMLB 34.60 44.95 549 935 28.27 35.51 435 689
FedAvgM (Hsu et al., 2019) 32.47 41.04 679 1000+ 27.52 34.08 445 800
FedAvgM + FedMLB 38.60 50.52 418 676 33.51 39.37 281 444
FedADAM (Reddi et al., 2021) 38.32 48.70 430 712 33.30 37.55 252 441
FedADAM + FedMLB 42.48 55.24 338 539 35.34 41.75 250 384
FedDyn (Acar et al., 2021) 35.77 47.34 509 806 24.79 31.75 565 1000+
FedDyn + FedMLB 39.37 53.11 429 619 30.46 37.89 384 540
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(a) Dir(0.3), 100 clients, 5% participation
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(b) Dir(0.3), 500 clients, 2% participation
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(c) Dir(0.6), 100 clients, 5% participation
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(d) Dir(0.6), 500 clients 2% participation
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(e) IID, 100 clients, 5% participation
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(f) IID, 500 clients, 2% participation

Figure 6. The convergence of several federated learning algorithms on CIFAR-100 in various settings. Note that + symbol indicates the
incorporation of FedMLB.
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(a) Dir(0.3), 100 clients, 5% participation
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(b) Dir(0.3), 500 clients, 2% participation
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(c) Dir(0.6), 100 clients, 5% participation
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(d) Dir(0.6), 500 clients, 2% participation
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(e) IID, 100 clients, 5% participation
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(f) IID, 500 clients, 2% participation

Figure 7. The convergence of several federated learning algorithms on Tiny-ImageNet in various settings. Note that + symbol indicates
the incorporation of FedMLB.
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(a) Dir(0.3), 100 clients, 5% participation
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Figure 8. The convergence of FedMLB and other local optimization approaches on CIFAR-100.
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(a) K = 100 (Dir(0.3), 100 clients, 5%)
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(b) K = 200 (Dir(0.3), 100 clients, 5%)

Figure 9. The convergence of FedMLB and other local optimization approaches on CIFAR-100 with two different numbers of local
iterations, K.


