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Abstract
As they have a vital effect on social decision-
making, AI algorithms should be not only accu-
rate but also fair. Among various algorithms for
fairness AI, learning fair representation (LFR),
whose goal is to find a fair representation with
respect to sensitive variables such as gender and
race, has received much attention. For LFR, the
adversarial training scheme is popularly employed
as is done in the generative adversarial network
type algorithms. The choice of a discriminator,
however, is done heuristically without justifica-
tion. In this paper, we propose a new adversar-
ial training scheme for LFR, where the integral
probability metric (IPM) with a specific paramet-
ric family of discriminators is used. The most
notable result of the proposed LFR algorithm is
its theoretical guarantee about the fairness of the
final prediction model, which has not been consid-
ered yet. That is, we derive theoretical relations
between the fairness of representation and the fair-
ness of the prediction model built on the top of
the representation (i.e., using the representation
as the input). Moreover, by numerical experi-
ments, we show that our proposed LFR algorithm
is computationally lighter and more stable, and
the final prediction model is competitive or supe-
rior to other LFR algorithms using more complex
discriminators.

1. Introduction
Artificial intelligence (AI) has accomplished tremendous
success in various real-world domains. The key of success
of AI is “learning from data”. However, in many cases,
data include historical bias against certain socially sensitive
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groups such as gender, race, religion, etc (Feldman et al.,
2015; Angwin et al., 2016; Kleinberg et al., 2018; Mehrabi
et al., 2019), and trained AI models from such biased data
could also impose bias or unfairness against sensitive groups.
As AI has a wide range of influences on human social life,
issues of transparency and ethics of AI are emerging. There-
fore, designing an AI algorithm which is accurate and fair
simultaneously has become a crucial research topic (Calders
et al., 2009; Feldman et al., 2015; Barocas & Selbst, 2016;
Hardt et al., 2016; Zafar et al., 2017; Donini et al., 2018;
Agarwal et al., 2018; Quadrianto et al., 2019b).

Among various researches related to fair AI, learning fair
representation (LFR) has received much attention recently
(Zemel et al., 2013; Xu et al., 2018; Quadrianto et al., 2019a;
Ruoss et al., 2020; Gitiaux & Rangwala, 2021; Zeng et al.,
2021). Fair representation typically means a feature vector
obtained by transforming the data such that the distributions
of the feature vector for each sensitive group are similar.
Once the fair representation is learned, any prediction mod-
els constructed on the top of the fair representation (i.e.
using the representation as an input vector) are expected to
be fair (Zemel et al., 2013; Madras et al., 2018).

A popular approach for LFR is to use the adversarial train-
ing scheme (Edwards & Storkey, 2016; Madras et al., 2018).
As is done in the generative adversarial network (GAN,
Goodfellow et al. (2014)), the algorithm seeks a representa-
tion that fools the discriminator the best that tries to predict
which sensitive group a given representation belongs. Differ-
ent algorithms to learn the discriminator result in different
algorithms for LFR.

Despite their considerable success, there are still theoret-
ical and practical limitations in the existing learning al-
gorithms for fair representation based on the adversarial
training scheme. First of all, it is not clear how the level of
fairness of the representation affects the level of fairness of
the final prediction model (built on the top of the representa-
tion). This problem is important since the final goal of LFR
is to construct fair prediction models.

In this paper, we consider the adversarial training scheme
based on the integral probability metric (IPM). The IPM,
which includes the Wasserstein distance (Kantorovich &
Rubinstein, 1958; Villani, 2008) as a special case, has been
widely used for learning generative models (e.g. Wasserstein
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GAN, Arjovsky et al. (2017)), but has not been used for fair
representation. An advantage of using the IPM is that we
can control the level of fairness of the final prediction model
by controlling the level of fairness of the representation
relatively easily.

The second problem we study, which is the main contribu-
tion of this paper, is the choice of the class of discriminators.
Deep neural networks (DNNs) are popularly used for the dis-
criminator (Goodfellow et al., 2014; Arjovsky et al., 2017;
Madras et al., 2018; Creager et al., 2019; Ansari et al., 2020),
but the choice of the architecture (the numbers of layers and
nodes at each layer) is decided rather heuristically without
justification. In this paper, we propose a specific parametric
family of discriminators and provide theoretical guarantees
of the fairness of the final prediction models in terms of the
fairness of the representation for large classes of prediction
models.

By applying the IPM with the proposed parametric family
of discriminators, we propose a new learning algorithm for
fair representation abbreviated by the sIPM-LFR (sigmoid
IPM for Learning Fair Representation). Along with the the-
oretical guarantees, the sIPM-LFR has several advantages
over existing LFR algorithms. For example, the sIPM-LFR
is computationally lighter, more stable, and less prone to
bad local minima. Moreover, the final prediction model is
competitive or superior in prediction performance to those
from other LFR algorithms.

This paper is organized as follows. In Section 2, we review
related studies about fairness of AI. The sIPM-LFR algo-
rithm is proposed in Section 3, and the results of theoretical
studies are presented in Section 4. Numerical studies are
conducted in Section 5 and concluding remarks follow in
Section 6.

The main contributions of this work are summarized as
follows.

• We propose a simple but powerful fair representation
learning method by developing a new adversarial train-
ing scheme based on a parametric IPM.

• We give theoretical guarantees about fairness of the
final prediction model in terms of fairness of the repre-
sentation.

• We empirically show that our algorithm is competitive
or even superior to other existing LFR algorithms.

2. Related works
Algorithmic fairness Generally, various concepts of fair
prediction models can be summarized into three categories.
The first category is group fairness which requires that cer-
tain statistics of the prediction model at each sensitive group

are similar (Calders et al., 2009; Barocas & Selbst, 2016).

The second notion of fair prediction models is individual
fairness, which aims at treating similar inputs similarly
(Dwork et al., 2012) regardless of sensitive groups. Various
practical algorithms and their theoretical properties have
been proposed and studied by Yona & Rothblum (2018);
Sharifi-Malvajerdi et al. (2019); Mukherjee et al. (2020a;b).

The third concept of fair prediction models is counterfactual
fairness (Kusner et al., 2017), which can be considered as a
compromise between group fairness and individual fairness.
Simply speaking, counterfactual fairness requires that simi-
lar individuals only from different sensitive groups should
have similar prediction values. The notion of counterfactual
is used to define similar individuals from different sensitive
groups (Wu et al., 2019b; Chiappa, 2019; Garg et al., 2019).

Learning fair representations LFR has a different strat-
egy than the fair AI algorithms mentioned in the previous
subsection. Instead of constructing fair prediction models di-
rectly, LFR first constructs a fair representation such that the
distributions of the representation for each sensitive group
are similar. Then, LFR learns a prediction model on the
top of the representation (i.e. using the fair representation
as an input). LFR has been initially considered by Zemel
et al. (2013), and many advanced algorithms have been de-
veloped (Xu et al., 2018; Creager et al., 2019; Quadrianto
et al., 2019a; Ruoss et al., 2020; Gitiaux & Rangwala, 2021;
Zeng et al., 2021) afterward.

One of the most pivotal learning frameworks of LFR is
the adversarial training scheme (Edwards & Storkey, 2016;
Madras et al., 2018). Those algorithms try to fool a given
discriminator similar to that of GAN does (Goodfellow et al.,
2014). The aim of this paper is to propose a new adversarial
training scheme for LFR which is computationally easier
and has desirable theoretical guarantees.

3. Learning fair representation by use of a
parametric IPM

In this section, we propose a new learning algorithm for
fair representation. In particular, we develop a paramet-
ric IPM to measure the fairness of a given representation
mapping. We first review the population version of the exist-
ing learning algorithms for fair representation and explain
problems when we modify the population version to the
sample version and propose a parametric IPM to resolve the
problems.

3.1. Notations and Preliminaries

Notations Let X ∈ X ⊂ Rd, S ∈ {0, 1}, and Y ∈
{0, 1} be the non-sensitive random input vector, (binary)
sensitive random input variable and (binary) output variable
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whose joint distribution is P. Also let Z := h(X, S) be
the representation of an input vector (X, S) obtained by
an encoding function h : X × {0, 1} → Z ⊂ Rm. Note
that we allow the encoding function depending on both
non-sensitive and sensitive inputs as Madras et al. (2018)
did. Let f : Z → R and fD : Z → X × {0, 1} be
a prediction model and a decoding function, respectively.
For technical simplicity, we assume that Z is bounded and
supz∈Z |f(z)| ≤ F for some constant F > 0.

Fairness for DP Fair representation is closely related to
demographic parity (DP) which is a concept for group fair-
ness. In fact, we will see later that the prediction model
f ◦ h can be fair in view of DP when the representation Z
is fair in a certain sense. Here, we briefly review the notion
of fairness for DP.

Let ϕ be a function from R to R. For a given prediction
model g : X × {0, 1} → R, we say that the level of ϕ-
fairness of g is ϵ if DPϕ(g) < ϵ, where

DPϕ(g) = |E(ϕ◦g(X, S)|S = 0)−E(ϕ◦g(X, S)|S = 1)|.
(1)

Various definitions of DP-fairness are special cases of the
ϕ-fairness. The original DP-fairness uses ϕ(w) = I(w ≥ 0)
(Calders et al., 2009; Barocas & Selbst, 2016), and ϕ(w) =
(w+1)+ is popularly used as a convex surrogate of I(w ≥ 0)
(Wu et al., 2019a; Lohaus et al., 2020). When ϕ(w) = w,
the corresponding fairness measure becomes the mean DP
(MDP, Madras et al. (2018); Chuang & Mroueh (2021)).

3.2. Description of LFR algorithms

The goal of LFR is to find an encoding function h such that

P {h(X, S) ∈ ·|S = 0} ≈ P {h(X, S) ∈ ·|S = 1} . (2)

Once we have the encoding function, we construct a predic-
tion model on the representation space Z. That is, the final
prediction model g is given as g(x, s) = f ◦ h(x, s), where
f is a prediction model from Z to R. Due to (2), we expect
that

P {g(X, S) ∈ ·|S = 0} ≈ P {g(X, S) ∈ ·|S = 1} .

and thus the prediction model is expected to be DP-fair.

The basic algorithm of LFR consists of the following two
steps. The first step is to choose a deviance measure d
between two distributions and a classH of encoding func-
tions and the second step is to find an encoding function
h which minimizes d(Ph0 ,Ph1 ), where Phs is the conditional
distribution of h(X, S) given S = s for s ∈ {0, 1}.

In turn, to define a deviance measure, the adversarial train-
ing scheme is popularly employed. For a given class
of discriminators V and a given classification loss l, one

possible deviance measure is defined as d(Ph0 ,Ph1 ) =
supv∈V E {l(S, v ◦ h(X, S)} . Various classification losses
have been used for learning fair representation: Edwards &
Storkey (2016) uses the cross-entropy loss and Madras et al.
(2018) uses the L1 loss.

The minimizer of d(Ph0 ,Ph1 ), however, is not unique in most
cases. For example, if there exists h such that d(Ph0 ,Ph1 ) =
0, then any encoding function given as ξ◦h for any ξ : Z →
Z also has the zero deviance. Also, an encoder derived as
such might not provide helpful information (e.g., h(·) = 0).

There are two ways to resolve these problems in the adversar-
ial training scheme for LFR - supervised and unsupervised
methods. For the supervised adversarial training scheme,
we choose a set F of prediction models on Z and then learn
h as well as f by minimizing

L(f ◦ h) + λd(Ph0 ,Ph1 ) (3)

in f ∈ F and h ∈ H, where L is a certain classification risk
for Y such as the cross-entropy and λ > 0 is a regularization
parameter.

For the unsupervised adversarial training scheme, we first
choose a setFD of decoding functions fromZ toX×{0, 1},
then we learn the encoding function by minimizing

Lrecon(fD ◦ h) + λd(Ph0 ,Ph1 ), (4)

where Lrecon is a reconstruction error. When the learning
procedure of h finishes, the extracted fair representation are
used to solve various downstream classification tasks. That
is, we do not use the label information Y when we learn
h, which is an advantage of the unsupervised adversarial
training scheme.

When we do not know the population distribution P but we
have data, a standard method of LFR is to replace P by its
empirical counterpart Pn(·) =

∑n
i=1 δ(xi,yi,si)(·)/n, the

empirical distribution, where δa is the Dirac-delta function
and {(xi, yi, si)}ni=1 is a given training dataset.

Regarding optimizing the formulas (3) and (4) in practice,
obtaining the value of d(Ph0 ,Ph1 ) is time-consuming since
we have to find a discriminator maximizing the classifi-
cation loss of S (i.e. supv∈V E {l(S, v ◦ h(X, S)}). To
reduce this computational burden, at each update, we ap-
ply a gradient ascent algorithm to update the parameters in
the discriminator few times, e.g. five times, as is done by
Goodfellow et al. (2014).

The aim of this paper is to propose a novel measure for
d(Ph0 ,Ph1 ) used in (3) and (4), which we will describe in
the subsequent sections. For details of the corresponding
learning algorithm, see Section B.3.
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3.3. Learning fair representation with IPM

In this paper, we consider the integral probability metric
(IPM) as the deviance measure for LFR. For a given class
V of discriminators from Z to R, the IPM dV(P0,P1) for
given two probability measures P0 and P1 is defined as

dV(P0,P1) = sup
v∈V

∣∣∣∣∫ v(z)(dP0(z)− dP1(z))

∣∣∣∣ .
When V includes all Lipschitz functions1, then the IPM
becomes the well known Wasserstein norm (Kantorovich &
Rubinstein, 1958). Even if it is popularly used in various
applications of AI including the generative model learning,
the IPM has not been studied deeply for LFR.

An obvious advantage of the IPM compared to the other
deviance measures is that the level of the IPM is directly
related to the level of DP-fairness of the final prediction
model. That is, suppose that a given encoding function h
satisfies dV(Ph0 ,Ph1 ) < ϵ, then any prediction model given
as f ◦ h automatically satisfies the level of ϕ-fairness less ϵ,
as long as ϕ◦f belongs to V. For example, suppose that V is
the set of Lipschitz continuous functions. If ϕ is a Lipschitz
function with the Lipschitz constant less than or equal to
1, then ϕ ◦ f belongs to V whenever f ∈ V. Examples of
ϕ with the bounded Lipschitz constant are ϕ(w) = w and
ϕ(w) = (w + 1)+.

3.4. The sigmoid IPM: A parametric IPM for fair
representation

We need to set in advance the function spaces forH,F , and
FD as well as V to make the minimization of the regular-
ized empirical risk in (3) or (4) be possible. There are many
well known and popularly used models for H (e.g. DNN
and ConvNet), F (e.g. linear, DNN, and Kernel machine
(Cortes & Vapnik, 1995)), and FD (e.g. DNN and DeCon-
vNet (Noh et al., 2015)). In contrast, the choice of V is
typically done heuristically. DNNs are popularly used for
V (Arjovsky et al., 2017), but the choice of the architecture
(the numbers of layers and nodes at each layer) is decided
without justification. In this subsection, we focus on the
choice of V and propose a specific parametric family with
theoretical justifications in view of DP-fairness.

Suppose thatH andF are given. That is, the final prediction
model is given as f ◦ h, where f ∈ F and h ∈ H. Also,
the fairness function ϕ is given. Our mission is to choose V
such that the level of ϕ-fairness of the final prediction model
can be controlled by controlling the dV(Ph0 ,Ph1 ). This is an
important task for the unsupervised LFR since the label Y
is not available when fair representation is learned.

1A given function v on Z is a Lipschitz function with the
Lipschitz constant L if |v(z1) − v(z2)| ≤ L∥z1 − z2∥ for all
z1, z2 ∈ Z, where ∥ · ∥ is certain norm defined on Z.

To be more specific, we derive a non-decreasing function
ρ : R+ → R+ such that

sup
f∈F

DPϕ(f ◦ h) ≤ ρ
{
dV(Ph0 ,Ph1 )

}
.

That is, we can control the ϕ-fairness of any f ◦ h by con-
trolling the dV of h.

A naive choice of V would be that ϕ◦f ∈ V for all f ∈ F , in
which case ρ(ϵ) = ϵ. Such a choice, however, is not possible
for the unsupervised LFR since the prediction model space
F is selected after learning the fair representation. One may
choose a very large V so that ϕ ◦ F ⊂ V for most classes of
F . Such a choice, however, would make the computational
cost unnecessarily large and increase the variance of the
learned model due to too many parameters in V to degrade
performance.

We explore an opposite direction: to seek a class of V that
is small but controls the level of ϕ-fairness easily. In this
paper, we propose a specific parametric family for V and
show that the ϕ-fairness of f ◦ h can be controlled nicely by
dV of h for fairly large classes of F .

In fact, using the parametric IPM is not new. Ansari et al.
(2020) considers Vchar = {exp(it⊤x) : t ∈ Rm} in
the GAN algorithm. This class of functions are related
to the characteristic function and it is easy to see that
dVchar

(P0,P1) = 0 if and only if P0(·) ≡ P1(·). How-
ever, it is not clear what happens when dVchar

(P0,P1) < ϵ.
That is, not much is known about which quantities of P0

and P1 are similar. McCullagh (1994) noticed that dVchar

would not be a useful metric between probability measures.

The parametric family we propose in this paper is

Vsig = {σ(θ⊤x+ µ) : θ ∈ Rm, µ ∈ R}, (5)

where σ(z) = (1 + exp(z))−1 is the sigmoid function. It
is surprising to see that the IPM with this simple Vsig can
control the level of ϕ-fairness of f ◦ h for diverse classes
of F , whose results are rigorously stated in the following
section.

Before going further, we give a basic property of the IPM
with Vsig, whose proof is stated in Appendix A.

Proposition 3.1. For two probability measures P0 and P1,
dVsig

(P0,P1) = 0 if and only if P0(·) ≡ P1(·).

4. Theoretical studies of the IPM with Vsig
One may concern that the final prediction model f ◦h would
not be fair because the class Vsig of discriminators is too
small. In this section, we show that the IPM with Vsig can
control the level of ϕ-fairness of f ◦h for quite large classes
of F even if Vsig is small.
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We start with the DP-fairness of the perfectly fair represen-
tation, which is a direct corollary of Proposition 3.1. We
defer the proofs of all the following theorems to Appendix
A.

Theorem 4.1. If dVsig
(Ph0 ,Ph1 ) = 0, then the ϕ-fairness of

any prediction model f ◦ h is always 0.

It is not realizable to get a perfectly fair representation in
practice. Instead, we learn an encoding function whose IPM
value is close to 0. In the next two subsections, we quantify
how small the level of ϕ-fairness of f ◦ h when the dVsig of
h is small for various classes F of f.

For technical simplicity, we only consider ϕ being a poly-
nomial function (i.e. ϕ(w) = wk). Note that reasonably
smooth functions can be approximated by linear combi-
nations of low order polynomial functions. Hereafter, we
denote ϕk(w) = wk.

4.1. DP-fairness when F is well approximated by a
shallow neural network

There is much literature about classes of functions that are
well approximated by shallow neural networks with the sig-
moid activation function (Barron, 1993; Yukich et al., 1995).
In this section, we show that the level of DP-fairness of such
functions can be controlled by the level of the sigmoid IPM.

We consider the class Fa,C of functions considered by Bar-
ron (1993); Yukich et al. (1995):

Fa,C =

{
f :

∫
|f̃(w)|dw ≤ a,

∫
∥w∥1|f̃(w)|dw ≤ C

}
for positive constants a and C, where f̃(w) =∫
e−iw

⊤zf(z)dz.

It is known that any function in Fa,C can be approximated
closely by a single-layered shallow neural network with a
finite number of hidden nodes (Yukich et al., 1995). Using
this proposition, we have the following theorem, whose
proof is deferred to Appendix A.

Theorem 4.2. There exists a constant ck > 0 such that

sup
f∈Fa,C

DPϕk
(f ◦ h) ≤ ck

{
dVsig

(Ph0 ,Ph1 )
}1/3

. (6)

Theorem 4.2 implies that we can control the level of ϕ-
fairness of the final prediction model f ◦ h only by making
the dVsig

of the encoding function h sufficiently small. The
exponent term 1/3 on the right hand side of (6) suggests
that a smaller value of dVsig

of the encoding function h is
needed to control the level of ϕ-fairness of f. This is a price
we pay for using a simpler class of discriminators.

The exponent 1/3 in the right-hand side of (6) may not be
tight. We can improve this exponent by assuming more

on Fa,C . The main message of Theorem 4.2 is that the
ϕ-fairness is controlled when shallow neural networks ap-
proximate the final prediction model well. However, in the
subsequent subsection, we give an interesting example in
that the sigmoid IPM amply controls the ϕ-fairness for a
class of functions which is not well approximated by shallow
neural networks.

4.2. DP-fairness for f being infinitely differentiable

In general, the encoding function is a complicated mapping
(e.g. DNNs) from the input space to the representation space
and thus it is reasonable to expect that the prediction model
from the representation space to the output is a simple func-
tion such as linear models or sufficiently smooth functions
(e.g. the reproducing kernel Hilbert space (RKHS) with
a smooth kernel). Otherwise, the final prediction model
would be overly complicated. For such nice prediction mod-
els, we can show that the adversarial training scheme with
the sigmoid IPM can control the level of ϕ-fairness of the
final prediction model more tightly.

Let FC∞,B be the set of infinite times differentiable func-
tions given as

FC∞,B =
{
f : Z → R : ∀r ∈ Nm0 ,

||Drf ||∞ ≤
√
r!B|r|1

}
for some constant B > 0, where |r|1 =

∑m
j=1 rj and

D is the derivative operator, that is, for a vector r =

(r1, · · · , rm), Drf := ∂|r|1f
∂z

r1
1 ···∂zr11

. The specific bound
√
r!B|r|1 for the sup norm of the derivatives is used for
FC∞,B to include some RKHS with smooth kernels (e.g.
radial basis function (RBF) kernel). The following theorem
proves that the level of ϕ-fairness has the same order of the
sigmoid IPM for any f in FC∞,B .

Theorem 4.3. There exists a constant ck > 0 such that

sup
f∈FC∞,B

DPϕk
(f ◦ h) ≤ ckdVsig

(Ph0 ,Ph1 ). (7)

Theorem 4.3 indicates that controlling the sigmoid IPM
value of the representation h is equivalent to controlling the
ϕ-fairness (up to a constant) of f ◦h whenever f ∈ FC∞,B .
This result justifies the sufficiency of the sigmoid IPM for
LFR.

Note that the function class FC∞,B is large enough to in-
clude certain function spaces popularly used as the class of
prediction models in modern machine learning algorithms.
The RKHS with the RBF kernel is such an example, which
is stated in the following proposition.

Proposition 4.4. Let kγ : Rm × Rm → R be the RBF
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Figure 1. Supervised LFR: Pareto-front lines between the levels
of DP-fairness and acc on the test data of (top) Adult, (middle)
COMPAS, and (bottom) Health. For the fairness measure, (left)
∆DP and (right) ∆MDP are considered.

kernel with the width γ defined as

kγ(z, z
′) = exp

(
−∥z− z′∥22

γ2

)
and (Hγ(Z), || · ||Hγ(Z)) be the RKHS corresponding to kγ .
Define Fkγ ,B = {f ∈ Hγ(Z) : ||f ||Hγ(Z) ≤ B} for B >
0. Then, there exists a B′ > 0 such that Fkγ ,B ⊂ FC∞,B′ .

4.3. Extension to other fairness measures

The parametric IPM for DP can be easily extended to
other group fairness measures such as the equal opportunity
(EOpp) or equalized odds (EO). Let Phs,y be the distribution
of Z|S = s, Y = y for s ∈ {0, 1} and y ∈ {0, 1}. For a
given function ϕ and a prediction function f , the fairness
levels of EOpp and EO are defined as

EOppϕ(f) = |EZ∼Ph
0,0

[ϕ ◦ f(Z)]− EZ∼Ph
1,0

[ϕ ◦ f(Z)]|

and

EOϕ(f) =
∑

y∈{0,1}

|EZ∼Ph
0,y

[ϕ◦f(Z)]−EZ∼Ph
1,y

[ϕ◦f(Z)]|.

Note that the main result of the previous section is to
characterize the relationship between dVsig (P0,P1) and
|EZ∼P0 [ϕ ◦ f(Z)] − EZ∼P1 [ϕ ◦ f(Z)]| for given two dis-
tributions P0 and P1. We can derive similar theoretical re-
sults for EOpp and EO simply by letting Ps to Phs,y. If we
let Ps = Phs,0, we would obtain the connection between
dVsig

(Ph0,0,Ph1,0) and EOppϕ(f). Similarly, we could ob-
tain the connection between

∑
y∈{0,1} dVsig

(Ph0,y,Ph1,y) and
EOϕ(f). For learning f and h for EOpp and EO, we
minimize (3) and (4) after replacing dVsig

(Ph0 ,Ph1 ) with
dVsig

(Ph0,0,Ph1,0) and
∑
y∈{0,1} dVsig

(Ph0,y,Ph1,y), respec-
tively.

5. Experiments
This section empirically shows that LFR using the sigmoid
IPM (sIPM-LFR) performs well by analyzing supervised
and unsupervised LFR tasks. Among these two tasks, we
focus more on the latter because it is the case where fair
representations is more important. We show that the sIPM-
LFR yields better and more stable performances than other
baselines. For unsupervised LFR, in particular, the repre-
sentations generated by our method usually give improved
prediction accuracies for various downstream tasks.

We also do several ablation studies for the sIPM-LFR algo-
rithm, where the results for the stability issue are reported
in the main manuscript, and the others are presented in Ap-
pendix E. We here inform that we obtain the results of the
baseline algorithms of LFR by our own experiments (i.e. not
copied from the related literature) and report the averaged
results from five random implementations.

5.1. Experimental setup

Datasets We analyze three benchmark datasets - 1) Adult
(Dua & Graff, 2017), 2) COMPAS 2, and 3) Health 3, which
are analyzed in Zemel et al. (2013); Edwards & Storkey
(2016); Madras et al. (2018); Ruoss et al. (2020) for LFR.

Adult contains personal information of over 40,000 individ-
uals from the 1994 US Census. The label indicates whether
each person’s income is over 50K$ or not, and the sensitive
variable is gender information.

COMPAS contains criminal information of over 5,000 in-
dividuals from Florida. The label is whether each person
commits recidivism within two years, and the sensitive vari-
able is race information.

Health contains hospitalization records and insurance claims
of over 60,000 patients. The label is the binary Charlson
index that estimates the death risk in the future ten years,

2https://github.com/propublica/compas-analysis
3https://foreverdata.org/1015/index.html
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Figure 2. Unsupervised LFR: Pareto-front lines between ∆DP and acc on the test data of (top) Adult, (middle) COMPAS, and (bottom)
Health. The results of the five prediction models are given: (left to right) linear, RBF-SVM, 1-LeakyReLU-NN, 1-Sigmoid-NN, and
2-Sigmoid-NN.

and the sensitive variable is the binarized age information
with a threshold of 70. Health also has tens of auxiliary
binary labels, called the primary condition group (PCG)
labels, indicating patients’ insurance claim to the specific
medical conditions, which can be utilized to conduct further
downstream classification tasks. In our experiments, five
auxiliary labels that are commonly used in related literature
are analyzed.

We split the whole data into training and test data randomly,
except for Adult which already consists of training and
test data. We split the training data once more into two
parts of the ratio 80% and 20%, each of which is used for
training and validation, respectively. See Appendix B for
more detailed descriptions of the datasets including their
pre-processing procedures.

Architectures We set up the architecture construction
scheme similar to other works for LFR (Edwards & Storkey,
2016; Madras et al., 2018). The architecture of the en-
coder is fixed to a single-layered neural network with the
LeakyReLU activation and we consider the value of m
as 60, 8, and 40 for Adult, COMPAS, and Health, respec-
tively. Regarding the prediction model f , while only single-
layered neural network with the LeakyReLU activation (1-
LeakyReLU-NN) is used for the supervised LFR, we take
four more prediction models into account for unsupervised
LFR. That is, we consider five prediction models in total: (i)
linear, (ii) SVM with RBF kernel, (iii) 1-LeakyReLU-NN,

(iv) 1-Sigmoid-NN, and (v) 2-Sigmoid-NN, where the last
two models stand for single-layered and two-layered neural
networks with the sigmoid activation, respectively.

Implementation details We refer to other related studies
(Edwards & Storkey, 2016; Madras et al., 2018) for overall
implementation options. To solve the supervised LFR, we
train the encoder h and classifier f by applying the stochas-
tic gradient descent step to the objective function (3) for 400
training epochs, and the best networks are chosen based on
the value of the difference between accuracy and level of
DP-fairness, i.e., acc−∆DP, on validation data.

For the unsupervised LFR, we first minimize the formula
(4) to optimize the encoder and decoder for 300 training
epochs. From the encoder-decoder pairs obtained at each
epoch, we select the best one with the minimum validation
loss. Afterward, for given label information Y, we train
and select the best downstream classifier by minimizing the
standard cross-entropy loss for 100 epochs while freezing
the encoder.

Following what Xu et al. (2020) did, for all cases, we apply
the Adadelta (Zeiler, 2012) optimizer with a learning rate of
2.0 and a mini-batch size of 512. More detailed descriptions
including our pseudo algorithm are in Appendix B.

Evaluation metric We assess the trade-off between the
prediction accuracy (acc) and level of DP-fairness which
are summarized by Pareto-front graphs and tables. For
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Table 1. Unsupervised LFR: acc and ∆DP for downstream classi-
fication tasks on five PCG labels in Health. We use the RBF-SVM
for the prediction model.

Target label Unfair LAFTR sIPM-LFR ✓

MSC2A3 acc 0.665 0.642 0.646
∆DP 0.110 0.103 0.055

METAB3 acc 0.669 0.662 0.664
∆DP 0.093 0.091 0.084

ARTHSPIN acc 0.695 0.690 0.692
∆DP 0.062 0.047 0.036

NEUMENT acc 0.759 0.730 0.728
∆DP 0.302 0.170 0.138

RESPR4 acc 0.730 0.727 0.727
∆DP 0.011 0.009 0.003

the fairness measure, we mainly deal with the original DP
denoted by ∆DP and also consider other variants such as
MDP denoted by ∆MDP. See Appendix C for formulas of
the other fairness measures we consider.

Figure 3. (Upper) Pareto-front lines between ∆DP and acc with
various learning options. (Lower) Scatter plot with standard error
bar of ∆DP and acc with various λ. Each horizontal and vertical
bars present the standard errors for ∆DP and acc, respectively.
All results are from Adult test dataset.

5.2. Supervised learning case

We first evaluate our method in supervised LFR tasks and
compare with other baselines including one LFR approach
of Madras et al. (2018) (i.e., LAFTR) and two non-LFR ap-
proaches in Chuang & Mroueh (2021). Figure 1 presents the
Pareto-front trade-off graphs between the level of fairness
(∆DP and ∆MDP) and acc on each test data. See Appendix

D.1 for the results of other fairness measures.

We can clearly see that the proposed sIPM-LFR is compared
favorably to the LAFTR even though a much simpler class
of discriminators is used. The results amply confirm our
theoretical results that the sigmoid IPM is sufficient for
learning representations that are fair and good for prediction
simultaneously.

It is also interesting to see that the sIPM-LFR is competitive
to the two non-LFR algorithms which learn a fair prediction
model without learning a representation. That is, the learned
fair representation does not lose much information about
the label. That is, the sIPM-LFR successively learns a good
fair representation.

5.3. Unsupervised learning case

We show that the unsupervised sIPM-LFR provides fair
representations of high quality that suit various subsequent
downstream supervised tasks. As mentioned in Section
5.1, we first train an encoder by minimizing the objective
function (4) without label information of Y, and then train
the prediction model with label information while freezing
the encoder.

Figure 2 shows the Pareto-front lines between acc and
∆DP of various prediction models on the three datasets. See
Appendix D for the Pareto-front results for other fairness
measures.

From the results, we can conclude that the sIPM-LFR is
desirable to learn fair representations applicable better to
various downstream tasks. In particular, for COMPAS the
sIPM-LFR consistently gives superior results with large mar-
gins for all of the 5 prediction models. The superiority of the
sIPM-LFR regardless of the final prediction model supports
our theoretical results that the sigmoid IPM can control the
level of fairness well for a large class of prediction models.

We conduct further downstream classification tasks on
Health using five auxiliary PCG labels, whose results are
summarized in Table 1. We measure the level of DP-fairness
while fixing the accuracies at certain levels. It is obvious
that the sIPM-LFR consistently achieves lower levels of
DP-fairness than the other baselines do, again confirming
the superiority of our method.

We also conduct experiments about visualization of the
representation distributions and downstream classification
with artificial labels. We report the results in Appendix D.

Experiments with additional datasets Recently, there
have been some concerns about the validity of widely-used
benchmark datasets in the fair AI domain (Ding et al., 2021;
Bao et al., 2021). To answer this concern, we evaluate
the sIPM-LFR on two additional datasets: ACSIncome and
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Toxicity. ACSIncome is a pre-processed version of Adult,
and Toxicity is a language dataset containing a large num-
ber of Wikipedia comments with ratings of toxicity. For
Toxicity, we generate the embedding vectors obtained by
the BERT (Devlin et al., 2019) and regard them as input
vectors. For the detailed descriptions of those datasets and
implementations, see Appendix D.2.

Table 2 shows that for a fixed prediction performance, the
sIPM-LFR achieves lower levels of DP-fairness with large
margins on the both datasets. We present more results for
various λ values and various prediction models in Appendix
D.2.

Table 2. Unsupervised LFR: acc and ∆DP for downstream classi-
fication tasks on ASSIncome and Toxicity. We use the 1-Sigmoid-
NN for the prediction model.

Data (1-Sigmoid-NN) Unfair LAFTR sIPM-LFR ✓

ACSIncome acc 0.716 0.694 0.695
∆DP 0.135 0.027 0.017

Toxicity acc 0.802 0.790 0.790
∆DP 0.042 0.021 0.013

5.4. Stability issue

Compared to other adversarial LFR approaches, the learn-
ing procedure of the sIPM-LFR is numerically more stable.
We demonstrate this advantage with two additional experi-
ments, whose results are summarized in Figure 3. The two
plots at the first row of Figure 3 are the Pareto-front lines
of the sIPM-LFR and LFATR for two optimizers and two
learning rates on Adult. It is noticeable that the results of
the LAFTR are quite different for different learning rates
when the optimizer Adam is used. In contrast, the results
of the sIPM-LFR are stable. This stability would be partly
because the sIPM-LFR is simpler and thus less vulnerable
to bad local minima.

The two plots at the second row are the scatter plots of (∆DP,
acc) for various values of the regularization parameters
for Adult. There are many bad solutions observed for the
LAFTR while the results for the sIPM-LFR vary smoothly.
These results confirm again that the sIPM-LFR is easier to
learn good fair representation.

6. Conclusion
In this paper, we devised a simple but powerful LFR method
based on the sigmoid IPM called the sIPM-LFR. We proved
that the sIPM-LFR can control the level of DP-fairness
for a large class of prediction models by controlling the
fairness of the representation measured by the proposed
parametric IPM. We demonstrated that our learning method
is competitive or better than other baselines, especially for
unsupervised learning tasks, and is also numerically stable.

We note that any bounded, increasing, and measurable func-
tion instead of the sigmoid can be used and similar theo-
retical results can be derived. We focused on the sigmoid
IPM in this paper because the sigmoid is popularly used in
machine learning societies.

There are various directions for future works. Theoretically,
the level of DP-fairness for diverse classes of functions
other than the RKHS with the RBF kernel would be worth
pursuing. Also, it would be interesting to investigate other
parametric IPMs which have similar properties to the sig-
moid IPM.

It would also be interesting to apply the parametric IPM
to other AI tasks, such as the generation of tabular data.
Unlike image data, it is presumable that tabular data have a
relatively smooth distribution. In this case, we conjecture
that the parametric IPM would be enough to measure the
similarity of two tabular data, which we will pursue in the
near future.
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Appendix
Appendix A provides the rigorous proofs of theoretical results in Sections 3 and 4. Also, we include an additional theoretical
result that the sigmoid IPM can ensure more general types of DP-fairness if the prediction model is simple. The formulas of
various fairness measures we consider are listed in Appendix C, and the detailed settings for the experiments are explained
in Appendix B. The results of additional experiments are presented in Appendix D.

A. Theoretical proofs
A.1. Proofs of Proposition 3.1, Theorem 4.1, and Theorem 4.2

In this subsection, we let Z0 and Z1 are random vectors following the distributions Ph0 and Ph1 , respectively. We start with
the following lemma which plays a key role in the other proofs.

Lemma A.1. For any ϵ > 0, there exists c > 0 not depending on ϵ such that for any two probability measures P0 and P1

defined on Rm,

dVsig (P0,P1) < ϵ

implies

sup
a∈Rm

sup
t∈R

∣∣P (a⊤U0 ≤ t
)
−P

(
a⊤U1 ≤ t

)∣∣ <cϵ.
where U0 and U1 are random vectors following the distributions P0 and P1, respectively.

Proof. Fix ϵ > 0 and a ∈ Rm. We first consider the value of t ∈ R that the random variables a⊤U0 and a⊤U1 do not have
a point mass at t. Then, there exists a small δ with 0 < δ < min( 1

log(1/ϵ) ,
1

log(1/10) ) such that

P
(
a⊤U0 ∈ [t− δ, t+ δ]

)
< ϵ

P
(
a⊤U1 ∈ [t− δ, t+ δ]

)
< ϵ

(A.1)

hold. By the definition of dVsig
(P0,P1) < ϵ, we have∣∣∣∣E [σ(a⊤U0 − t

δ2

)]
− E

[
σ

(
a⊤U1 − t

δ2

)]∣∣∣∣ < ϵ. (A.2)

On the other hand, for any z ∈ R, the following inequality holds:

1

1 + e−
1
δ

· I (z > t+ δ) ≤ σ
(
z − t
δ2

)
≤ 1− 1

1 + e−
1
δ

· I (z ≤ t− δ) .

Thus for s = 0, 1 we have

1

1 + e−
1
δ

P
(
a⊤Us > t+ δ

)
≤ E

[
σ

(
a⊤Us − t

δ2

)]
≤ 1− 1

1 + e−
1
δ

P
(
a⊤Us ≤ t− δ

)
. (A.3)

Also, from (A.1), we can bound the difference of the upper and lower bounds in (A.3):

1− 1

1 + e−
1
δ

{
P
(
a⊤Us ≤ t− δ

)
+P

(
a⊤Us > t+ δ

)}
≤ 1− 1

1 + e−
1
δ

(1− ϵ)

≤ 1− 1− ϵ
1 + ϵ

≤ 2ϵ.

(A.4)

In turn, from (A.3) and (A.4), we have∣∣∣∣E [σ(a⊤Us − t
δ2

)]
−
(
1− 1

1 + e−
1
δ

P
(
a⊤Us ≤ t− δ

))∣∣∣∣ ≤ 2ϵ. (A.5)
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Therefore, by (A.1), (A.2), and (A.5), we obtain the following inequality:

1

1 + e−
1
δ

∣∣P (a⊤U0 ≤ t
)
−P

(
a⊤U1 ≤ t

)∣∣ = ∣∣∣∣(1− 1

1 + e−
1
δ

P
(
a⊤U0 ≤ t

))
−
(
1− 1

1 + e−
1
δ

P
(
a⊤U1 ≤ t

))∣∣∣∣
≤ 1

1 + e−
1
δ

∑
s∈{0,1}

P
(
a⊤Us ∈ [t− δ, t]

)
+

∑
s∈{0,1}

∣∣∣∣E [σ(a⊤Us − t
δ2

)]
−
(
1− 1

1 + e−
1
δ

P
(
a⊤Us ≤ t− δ

))∣∣∣∣
+

∣∣∣∣E [σ(a⊤U0 − t
δ2

)]
− E

[
σ

(
a⊤U1 − t

δ2

)]∣∣∣∣
≤ 2ϵ

1 + e−
1
δ

+ 5ϵ,

which completes the proof.

For the case where either a⊤U0 or a⊤U1 has a point mass at t, we can construct a sequence {tj}∞j=1 such that 1) tj ↓ t and
2) neither a⊤U0 nor a⊤U1 has a point mass at {tj}∞j=1. As P

(
a⊤Us ≤ ·

)
is right-continuous, the following holds:

lim
j→∞

∣∣P (a⊤U0 ≤ tj
)
−P

(
a⊤U1 ≤ tj

)∣∣ = ∣∣P (a⊤U0 ≤ t
)
−P

(
a⊤U1 ≤ t

)∣∣ < cϵ,

and the proof is done. □

Proof of Proposition 3.1 Let U0 and U1 are two random vectors whose distributions are P0 and P1, respectively.

( =⇒ ) From dVsig (P0,P1) = 0, we have

sup
a∈Rm

sup
t

∣∣P (a⊤U0 ≤ t
)
−P

(
a⊤U1 ≤ t

)∣∣ = 0

by Lemma A.1. Hence we have a⊤U0
d
= a⊤U1 holds for all a ∈ Rm, which implies P0 ≡ P1 due to the uniqueness of the

characteristic function.

(⇐= ) It is trivial since for any v ∈ Vsig , we have
∫
v(u)(dP0(u)− dP1(u)) = 0. □

Proof of Theorem 4.1 The proof is trivial by Proposition 3.1.

Proof of Theorem 4.2 Let

FNNn,B =
{
f(z) =

n∑
k=1

vkσ(a
⊤
k z+ bk) + v0 : v0 ∈ R, |vk| ≤ B,ak ∈ Rm, bk ∈ R, k = 1, . . . , n

}
,

for n ∈ N and B > 0. Since Z is bounded, there exists M > 0 such that Z ⊂ [−M,M ]d. By Theorem 2.2 of Yukich et al.
(1995), for any f ∈ Fa,C and n ∈ N, there exist ak ∈ Rm, bk ∈ R, |vk| ≤ B for k ∈ {1, . . . , n} and v0 ∈ R such that

sup
z∈Z

∣∣∣∣∣f(z)−
n∑
k=1

vkσ(a
⊤
k z+ bk)− v0

∣∣∣∣∣ ≤ C ′
√
n

for some constant C ′ > 0. Thus, we have∣∣∣∣∣
∫ (

f(z)−
n∑
k=1

vkσ(a
⊤
k z+ bk)− v0

)
dPh0 (z)

∣∣∣∣∣ ≤ C ′
√
n
.
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A similar bound holds for Ph1 . Hence, by Proposition 3.1,∣∣∣∣∫ f(z)(dPh0 (z)− dPh1 (z))
∣∣∣∣ ≤ n∑

k=1

∣∣∣∣∫ (vkσ(a
⊤
k z+ bk) + v0)(dPh0 (z)− dPh1 (z))

∣∣∣∣+ 2
C ′
√
n

≤nBdVsig
(Ph0 ,Ph1 ) + 2

C ′
√
n

≤C ′′dVsig
(Ph0 ,Ph1 )1/3

holds for some constant C ′′ > 0 if we let n = ⌈ 1
dVsig

(Ph
0 ,Ph

1 )
2/3 ⌉, and thus the proof for k = 1 is complete with c1 = C ′′.

For k > 1, note that fk ∈ FaK ,kak−1C if f ∈ Fa,C (see p 940 of (Barron, 1993)) and thus the proof can be done similarly.
□

A.2. Proof of Theorem 4.3

To prove Theorem 4.3, we need the following three Lemmas A.2, A.3, and A.4.

Lemma A.2. For ∀r1, r2 ∈ N, let r := r1 + r2 and λi := −1 + 2i
r for i = 0, 1, . . . , r. Then there exists a vector

(β0, β1, . . . , βr) ∈ Rr+1 such that
r∑
i=0

βi(x+ λiy)
r = xr1yr2 (A.6)

and
r∑
i=0

|βi| < er (A.7)

for all x, y ∈ R.

Proof. We first find a closed form solution of (β0, β1, . . . , βr) of (A.6) and then show that it satisfies (A.7). Note that if a
vector (β0, β1, . . . , βr) ∈ Rr+1 satisfies

r∑
i=0

βiλ
k
i = 0 for k ∈ {0, 1, . . . , r} \ {r2}

and

r∑
i=0

βiλ
r2
i =

1(
r
r2

) ,
then it is a solution of (A.6). Let V be the Vandermonde matrix defined as

V =


1 1 . . . 1
λ0 λ1 . . . λr

. . . . . .
. . . . . .

λr0 λr1 . . . λrr

 .

Using the Vandermonde matrix, the above two equations can be re-formulated as

V × (β0, β1, . . . , βr)
⊤ =

1(
r
r2

)er2+1,
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where er2+1 ∈ Rr+1 is the vector whose (r2 + 1)-th element is 1 and the rests are 0. Then by Man (2017), it is known that
V −1 can be expressed as the product of two matrices W and A, where the matrices W and A are given as

W =


λ0

r∏
j ̸=0(λ0−λj)

λ0
r−1∏

j ̸=0(λ0−λj)
. . . 1∏

j ̸=0(λ0−λj)

λ1
r∏

j ̸=1(λ1−λj)
λ1

r−1∏
j ̸=1(λ1−λj)

. . . 1∏
j ̸=1(λ1−λj)

...
...

. . .
...

λr
r∏

j ̸=r(λr−λj)
λr

r−1∏
j ̸=r(λr−λj)

. . . 1∏
j ̸=r(λr−λj)

 and A =


a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

ar ar−1 ar−2 · · · a0

 ,

where a0 = 1, a1 = −
∑
λj , a2 =

∑
j<l λjλl, a3 = −

∑
j<l<s λjλlλs, . . . , and ar+1 = (−1)r+1

∏r
j=0 λj . Since

(β0, β1, . . . , βr)
⊤ =

1(
r
r2

)V −1er2+1 =
1(
r
r2

)WAer2+1 =
1(
r
r2

)W (0, . . . , 0, a0, a1, . . . , ar1)
⊤,

we obtain the closed form solution βi, i = 0, 1, . . . , r of (A.6) given as

βi =
1(

r
r2

)∏
j ̸=i (λi − λj)

(
λr1i +

r1∑
l=1

(−1)lλr1−li

∑
k1<···<kl

λk1 . . . λkl

)
. (A.8)

Now we are going to show that the vector (β0, β1, . . . , βr) of (A.8) satisfies (A.7). The numerator of βi in (A.8) can be
rewritten as

λrii +

r1∑
l=1

(−1)lλr1−li

∑
k1<···<kl

λk1 . . . λkl =λ
ri
i +

r1∑
l=1

(−1)lλr1−li

∑
k1<···<kl

{k1,...,kl}̸∋i

λk1 . . . λkl

+

r1∑
l=1

(−1)lλr1−li λi
∑

k1<···<kl−1
{k1,...,kl−1}̸∋i

λk1 . . . λkl−1

= λrii +

r1∑
l=1

(−1)lλr1−li

∑
k1<···<kl

{k1,...,kl}̸∋i

λk1 . . . λkl

− λr1i + (−1)
r1−1∑
l=1

(−1)lλr1−li λi
∑

k1<···<kl
{k1,...,kl}̸∋i

λk1 . . . λkl

= (−1)r1
∑

k1<···<kr1
{k1,...,kr1

}̸∋i

λk1 . . . λkr1 .

Thus, βi is given as

βi =
(−1)r1(

r
r2

) ( ∑
k1<···<kr1

{k1,...,kr1}̸∋i

λk1 . . . λkr1

)/(∏
j ̸=i

(λi − λj)
)
.

Finally, we can find the lower bound of |
∏
j ̸=i (λi − λj) | given as

|
∏
j ̸=i

(λi − λj) | ≥

{
( r2 )!(

r
2 )!/(

r
2 )
r, if r is even

( r+1
2 )!( r−1

2 )!/( r2 )
r, if r is odd

> (r + 1)e−r.

The second inequality is derived by the inequality from the Stirling’s approximation, that is,

n! >
√
2πn

(n
e

)n
e

1
12n+1 >

√
2πn

(n
e

)n
.
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Therefore, we finally obtain
r∑
i=0

|βi| <
er

(r + 1)
(
r
r2

) r∑
i=0

∑
k1<···<kr1

{k1,...,kr1
}̸∋i

|λk1 . . . λkr1 |

<
er

(r + 1)
(
r
r2

) r∑
i=0

∑
k1<···<kr1

{k1,...,kr1}̸∋i

1r1

=
er

(r + 1)
(
r
r2

) (r + 1)

(
r

r2

)
= er,

and the proof is done. □

Lemma A.3. For ∀u ∈ N and ∀r1, r2, . . . , ru ∈ N, let r = r1 + · · ·+ ru. Then there exist a real-valued sequence {βi}∞i=0

and a 2-dimensional array {λij}i∈N0,j∈{1,...,u} each of whose elements is bounded by [−1, 1] such that

∑
i

βi( u∑
j=1

λijzj)
r

 = zr11 z
r2
2 . . . zruu and

∑
i

|βi| ≤ e(u−1)r.

holds for all z1, . . . , zu ∈ R.

Proof. We prove the lemma with the mathematical induction. The statement is obvious for u = 1, and we have shown in
Lemma A.2 that the statement also holds for u = 2. Suppose that the statement holds for some u = N − 1 ∈ N, and we will
prove the statement is also valid when N . For given r1, r2, . . . , rN−1 ∈ N, let r = r1 + · · ·+ rN−1. By the assumption,
there exist β′

0, β
′
1, · · · ∈ R and λ′ij ∈ [−1, 1] for i ∈ N0 and j ∈ {1, . . . , N − 1} such that

∑
i

β′
i(

N−1∑
j=1

λ′ijzj)
r

 = zr11 z
r2
2 . . . z

rN−1

N−1 and
∑
i

|β′
i| < e(N−2)r.

Note that by Lemma A.2, for any rN ∈ N there exist β′′
0 , β

′′
1 , . . . , β

′′
r+rN ∈ R with

∑r+rN
k=0 |β′′

k | < er+rN and λ′′k ∈ [−1, 1]
for k ∈ {0, 1, . . . , (r + rN )} such that

zr11 z
r2
2 . . . z

rN−1

N−1 z
rN
N =

∑
i

β′
i(

N−1∑
j=1

λ′ijzj)
rzrNN


=
∑
i

β′
i

r+rN∑
k=0

β′′
k (

N−1∑
j=1

λ′ijzj + λ′′kzN )r+rN


=
∑
i

r+rN∑
k=0

β′
iβ

′′
k (

N−1∑
j=1

λ′ijzj + λ′′kzN )r+rN

 .

Also, we can check that
∑
i |
∑r+rN
k=0 β′

iβ
′′
k | < e(N−1)(r+rN ) holds. Thus, the statement holds for N if we set βi =∑r+rN

k=1 β′
iβ

′′
k , for i ∈ N0 and {λij}i∈N0,j∈{1,...,N} accordingly. □

Lemma A.4. Suppose that dVsig (Ph0 ,Ph1 ) < ϵ for a given ϵ > 0. Then for am-dimensional index r := (r1, . . . , rm)⊤ ∈ Nm0 ,
there exist c1, c2 > 0 not depending on ϵ and r such that

|E(Zr
0)−E(Zr

1)| < c1c
|r|1
2 ϵ

holds where Z0 and Z1 are random vectors following the distributions Ph0 and Ph1 , respectively.
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Proof. Since Z is bounded, there exists M > 0 such that Z ⊂ [−M,M ]m. By Lemma A.3, there exist a real-valued
sequence {βi}∞i=0 and a 2-dimensional array {λij}i∈N0,j∈{1,...,m} that each element is bounded by [−1, 1] such that

∑
i

βi( m∑
j=1

λijzj)
|r|1

 = zr11 z
r2
2 . . . zrmm and

∑
i

|βi| ≤ e(m−1)|r|1

hold for all z ∈ Z . Thus, we have

|E(Zr
0)−E(Zr

1)| ≤
∑
i

|βi|

∣∣∣∣∣∣E
(

m∑
j=1

λijZ0j)
|r|1

−E
(

m∑
j=1

λijZ1j)
|r|1

∣∣∣∣∣∣
≤e(m−1)|r|1 sup

|a|∞≤1

∣∣∣E((a⊤Z0)
|r|1
)
−E

(
(a⊤Z1)

|r|1
)∣∣∣ .

In addition, since the function s(·) := (·)|r|1/(|r|1(mM)|r|1−1) is 1-Lipschitz on [−mM,mM ], we have

sup
|a|∞≤1

∣∣∣E((a⊤Z0)
|r|1
)
−E

(
(a⊤Z1)

|r|1
)∣∣∣ ≤ |r|1(mM)|r|1−1 sup

|a|∞≤1

∫
t∈R

∣∣P (a⊤Z0 ≤ t
)
−P

(
a⊤Z1 ≤ t

)∣∣ dt
by the property of the Wasserstein metric (Gibbs & Su, 2002). Now, by Lemma A.1, there exist c1, c2 > 0 such that

|E(Zr
0)−E(Zr

1)| ≤c1c2|r|1ϵ,

and the proof is done.

□

Proof of Theorem 4.3 By using Taylor’s expansion, we can write

ϕk(f(z)) = f(z)k =
∑
j∈Nm

0

aj,k
j!

zj ,

where j = (j1, . . . , jm) ∈ Nm0 and aj,k = Dj(fk)|z=0. For a given j, we are going to inductively show that

|aj,k| ≤
√
j!(kB)|j|1 (A.9)

for all k ∈ N. The case when k = 1 is trivial due to the definition of FC∞,B . Suppose the equation (A.9) holds when
k = N − 1 ≥ 1 for some N. Then, for k = N,

f(z)N = f(z)N−1f(z) =

∑
l∈Nm

0

al,N−1

l!
zl

 ∑
m∈Nm

0

am,1

m!
zm

 .

Thus, the absolute value of the zj’s coefficient for f(z)N satisfies∣∣∣∣∣∣
∑

h∈Nm
0 ,h≤j

ah,k−1

h!

aj−h,1

(j − h)!

∣∣∣∣∣∣ ≤
∑

h∈Nm
0 ,h≤j

√
h!((k − 1)B)|h|1

h!

√
(j − h)!B|j−h|1

(j − h)!

=
B|j|1
√
j!

j1∑
h1=0

· · ·
jm∑

hm=0

(√(
j1
h1

)
(k − 1)h1

)
· · ·

(√(
jm
hm

)
(k − 1)hm

)

=
B|j|1
√
j!

(
j1∑

h1=0

√(
j1
h1

)
(k − 1)h1

)
· · ·

(
jm∑

hm=0

√(
jm
hm

)
(k − 1)hm

)

≤B
|j|1
√
j!

(
j1∑

h1=0

(
j1
h1

)
(k − 1)h1

)
· · ·

(
jm∑

hm=0

(
jm
hm

)
(k − 1)hm

)

=

√
j!(kB)|j|1

j!
,
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which implies that (A.9) holds for all j ∈ Nm0 and k ∈ N. Thus, we have∣∣∣∣∫ f(z)k(dPh0 (z)− dPh1 (z))
∣∣∣∣ ≤ ∑

j∈Nm
0

∣∣∣∣aj,kj!
∣∣∣∣ ∣∣∣∣∫ zj(dPh0 (z)− dPh1 (z))

∣∣∣∣
≤C2dVsig

(Ph0 ,Ph1 )
∑
j∈Nm

0

∣∣∣∣ (C1kB)|j|1√
j!

∣∣∣∣
≤C22

mmax(1, C1kB)dVsig
(Ph0 ,Ph1 )

∑
j∈Nm

0

∣∣∣∣ (C1kB)2|j|1

j!

∣∣∣∣
=C22

mmax(1, C1kB)dVsig (Ph0 ,Ph1 ) exp((C1kB)2)

for some C1, C2 > 0, where the second and third inequalities are due to Lemma A.4 and
√
j! > (⌊j/2⌋)!, respectively,

which completes the proof. □

A.3. Proof of Proposition 4.4

Proof of Proposition 4.4 The proof is a slight modification of the proof of Theorem 4.48 in Steinwart & Christmann
(2008). Let Vγ : L2(Z)→ Hγ(Z) be the metric surjection defined by

Vγg(z) =
2m/2

γm/2πm/4

∫
Rm

e−2γ−2∥z−y∥2
2g(y)dy

for g ∈ L2 (Rm) and z ∈ Z. Then for a fixed f ∈ Hγ(Z), there exists a g ∈ L2 (Rm) such that Vγg = f and
∥g∥L2(Rm) ≤ 2∥f∥Hγ(Z).

For r ∈ Nm0 and z ∈ Z , we have

|Drf(z)| = 2m/2

γm/2πm/4

∣∣∣∣Dr

∫
Rm

e−2γ−2∥z−y∥2
2g(y)dy

∣∣∣∣
≤ 2m/2

γm/2πm/4

∫
Rm

∣∣∣Dre−2γ−2∥z−y∥2
2g(y)

∣∣∣ dy
≤ 2m/2

γm/2πm/4
∥g∥L2(Rm)

√∫
Rm

(
Dre−2γ−2∥z−y∥2

2

)2
dy, (A.10)

where the last inequality holds by Hölder’s inequality.

Now, recall that for r ∈ N0, the r-th Hermite polynomial is defined by

hr(t) = (−1)ret
2 dr

dtr
e−t

2

, t ∈ R, (A.11)

which has the following property ∫ ∞

−∞
hr1(t)hr2(t)e

−t2dt = 2r1r1!
√
πδr1,r2 , (A.12)

where δr1,r2 := I(r1 = r2) is the Kronecker symbol. By (A.11), we have

dr

dtr
e−2γ−2(t−s)2 =

(
−
√
2γ−1

)r
e−2γ−2(t−s)2hr

(√
2γ−1(t− s)

)
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and hence ∫
R

∣∣∣∣ drdtr e−2γ−2(t−s)2
∣∣∣∣2 ds = (2γ−2

)r ∫
R
e−4γ−2(t−s)2h2r

(√
2γ−1(t− s)

)
ds

=
(
2γ−2

)r ∫
R
e−4γ−2s2h2r

(√
2γ−1s

)
ds

=
(√

2γ−1
)2r−1

∫
R
e−2s2h2r(s)ds

≤
√
π22r−1/2r!γ1−2r, (A.13)

where the last inequality holds by (A.12).

Since e−2γ−2∥z−y∥2
2 =

∏m
i=1 e

−2γ−2(zi−yi)2 holds, (A.10) and (A.13) imply

|Drf(z)| ≤ 2m/2+1

γm/2πm/4
∥f∥Hγ(Z)

√
πm/222|r|1−m/2r!γm−2|r|1 ,

and thus the main statement holds if we let

B′ =
2

γ
max

(
1,

2m/2+1B

γm/2πm/4

√
πm/22−m/2γm

)
.

□

A.4. About linear prediction models

For the prediction model f being linear, the sigmoid IPM can eusure the level of more general DP-fairness. In fact, the
original DP fairness of a prediction model can be controlled by the sigmoid IPM, which is stated in the following theorem.

Theorem A.5 (Linear classifier). Suppose F = {f : f(z) = a⊤z+ b : a ∈ Rm, b ∈ R}. Then if dVsig
(Ph0 ,Ph1 ) < ϵ for a

given ϵ > 0, there exists a constant c > 0 such that

sup
f∈F

sup
τ∈R
|E(I(f(Z0) > τ))−E(I(f(Z1) > τ))| < cϵ (A.14)

holds.

Proof of Theorem A.5. For a given f(z) = b+ a⊤z and τ , we have

I(f(z) > τ) = I(a⊤z > τ − b).

Thus, by applying Lemma A.1, the proof is done. □
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B. Experimental setup details
B.1. Dataset pre-processing

For Adult and COMPAS, we follow the standard pre-processing procedures conducted by Xu et al. (2020). As for Adult,
three variables, education, age, and race, are transformed to categorical variables. Specifically, we split the education
variable into three categories (< 6, 6 ≤ and ≤ 12, < 12) and we binarize the age variable with a threshold of 70. The
categorical values for race are repartitioned into two categories, white or non-white. And we change all of the categorical
variables to dummy variables.

And for COMPAS, we remove abnormal observations with the pre-specified criterion (days b screening arrest is between -30
and 30, is recid is not -1, c charge degree is not “O”, and score text is not “N/A”). Like Adult, we replace all the categorical
variables to dummy variables.

Regarding Health, we pre-process the data as is done in https://github.com/truongkhanhduy95/
Heritage-Health-Prize.

We summarize the information of three pre-processed datasets in Table B.1.

Table B.1. Descriptions of Adult, COMPAS, and Health after pre-processing.

Dataset Input dimension (d) Representation dimension (m) Sample size (train / val. / test)

Adult 112 60 24130 / 6032 / 15060
COMPAS 10 8 3457 / 864 / 1851
Health 78 40 42861 / 14286 / 14287

B.2. Implementation details

The adversarial network is updated two times per each update of the encoder and prediction model (or decoder). All
the reported results in our paper are achieved by considering various values of λ. We also standardize input vectors for
unsupervised LFR because the reconstruction error is well-matched with standardized input vectors rather than raw inputs.
For implementation of other baselines, we refer to the publicly available source codes. We re-implement LAFTR with
the Pytorch version of LAFTR in https://github.com/VectorInstitute/laftr. And for Fair-Mixup and
Fair-Reg, we use the official source codes of Fair-Mixup in https://github.com/chingyaoc/fair-mixup.

B.3. Pseudo-code of the sIPM-LFR algorithm

In this subsection, we provide the sIPM-LFR algorithm in Algorithm 1. For unsupervised LFR, we first train the encoder and
solve the downstream tasks while fixing the encoder. The Pytorch implemention of the sIPM-LFR is publicly available in
https://github.com/kwkimonline/sIPM-LFR.

https://github.com/truongkhanhduy95/Heritage-Health-Prize
https://github.com/truongkhanhduy95/Heritage-Health-Prize
https://github.com/VectorInstitute/laftr
https://github.com/chingyaoc/fair-mixup
https://github.com/kwkimonline/sIPM-LFR
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Algorithm 1 Algorithm of the sIPM-LFR.
Require: : mode ∈ {unsup, sup} : the learning setup.
Require: η: parameter of the encoder h, ω: parameter of the decoder (if mode == unsup) or prediction function (if mode

== sup).
Require: ψ = [θ, µ] : parameter of the sigmoid discriminator.
Require: λ : regularization parameter. (lr, lradv) : two learning rates. (T, Tadv): two update numbers. nmb : mini-batch size.

1: for i = 1, · · · , T do
2: Sample a batch (xi, yi, si)

nmb
i=1 from the training dataset.

3: if mode == unsup then
4: Lunsup(η, ω) =

1
nmb

∑nmb
i=1 ||xi − fω(hη(xi))||2 # Compute the reconstruction loss.

5: else
6: Lsup(η, ω) =

1
nmb

∑nmb
i=1 cross-entropy(yi, fω(hη(xi)) # Compute the cross-entropy loss.

7: end if

8: Lfair(η, ψ) =
∣∣∣ 1∑nmb

i=1 I(si=0)

∑
i:si=0 σ(θ

⊤hη(xi) + µ)− 1∑nmb
i=1 I(si=1)

∑
i:si=1 σ(θ

⊤hη(xi) + µ)
∣∣∣

# Compute the fair loss.
9: L(η, ω, ψ) = Lmode(η, ω) + λLfair(η, ψ) # Compute the total loss.

10: for t = 1, · · · , Tadv do
11: ψ ← ψ + lradv · ∇ψL(η, ω, ψ) # Update ψ for Tadv times.
12: end for
13: η ← η − lr · ∇ηL(η, ω, ψ)

ω ← ω − lr · ∇ωL(η, ω, ψ) # Update η and ω.
14: end for

Return η and ω

C. Fairness measures
For given a encoder h, a prediction model f , and a threshold τ ∈ R, let Ŷτ = I(f ◦ h(X, S) > τ) be the predicted label of
a random input vector (X, S). In this paper, we consider four types of DP-fairness measures - 1) original DP, 2) mean DP, 3)
strong DP, and 4) variance of DP. The precise formulas of these fairness measures are provided in Table C.1.

Table C.1. Formulas of the four DP-fairness measures.

Fairness measure Formula

∆DP |P(Ŷ0 = 1|S = 0)−P(Ŷ0 = 1|S = 1)|
∆MDP |E (f ◦ h(X, S)|S = 0)−E (f ◦ h(X, S)|S = 1)|

∆SDP Eτ (|P(Ŷτ = 1|S = 0)−P(Ŷτ = 1|S = 1)|)
∆VDP |Var (f ◦ h(X, S)|S = 0)−Var (f ◦ h(X, S)|S = 1)|
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D. Additional experiments
D.1. Supervised LFR

We draw the Pareto-front lines between ∆SDP and acc in Figure D.1.

Figure D.1. Supervised LFR: Pareto-front lines between ∆SDP and acc on the test data of (left) Adult, (center) COMPAS, and (right)
Health.

D.2. Unsupervised LFR

Additional datasets Recently, there have been some discussions on the validity of widely-used datasets for fair AI (Ding
et al., 2021; Bao et al., 2021). Furthermore, the three tabular datasets analyzed in the main paper have relatively small
dimensions. Under this background, we assess the sIPM-LFR on two additional datasets: ACSIncome Toxicity.

• ACSIncome (Ding et al., 2021): This dataset is a pre-processed version of Adult dataset. Differing from Adult,
ACSIncome only includes individuals above the age of 16, with working hours of at least 1hour/week in the past year,
and with income of at least $100. We perform the sIPM-LFR for unsupervised LFR compared to the LAFTR on
ACSIncome dataset and provide the results in Figure D.2.

• Toxicity 4: This dataset is a language dataset (English) containing a large number of Wikipedia comments with
ratings of toxicity. For input vectors, we use the extracted representations from the encoder of a pre-trained BERT
(BERT-base-uncased) (Devlin et al., 2019) provided by huggingface5. For class labels, we annotate labels 1 if the
toxicity rating is over 0.5 and 0 otherwise. We use the encoder network with two hidden layers and the four classifiers
used in Figure 2 except the 2-Sigmoid-NN. We do not use the 2-Sigmoid-NN due to its gradient vanishing problem. We
perform the sIPM-LFR for unsupervised LFR compared to the LAFTR on Toxicity dataset and provide the Pareto-front
lines in Figure D.3.

As can be seen in Figures D.2 and D.3, we observe similar results to those in Figure 2 for the two additional datasets in that
the sIPM-LFR is better than the LAFTR in most cases.

Trade-offs between {∆MDP,∆SDP,∆VDP} and acc. We provide the Pareto-front lines (Figure D.4, D.5, and D.6) for
more measures of fairness: ∆MDP,∆SDP,∆VDP. We confirm that the results are similar to Figure 2.

Visualization of learned representations Figure D.7 visualizes the representation distributions for each sensitive group
derived by the sIPM-LFR with various regularization parameters. We can observe that the larger λ becomes, the more fair
the encoded representation is. That is, we can control the fairness of representation (and thus fairness of the final prediction
model) nicely by choosing λ accordingly.

Simulation for Adult with artificial Y We verify our method’s superiority on unsupervised learning by an additional
downstream classification task with artificial labels. We consider Adult and the artificial labels are generated as follows. We
first train the encoder h and decoder fD only with the reconstruction loss. And we draw an m-dimensional random vector γ

4https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
5https://huggingface.co/bert-base-uncased
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Figure D.2. Unsupervised LFR: Pareto-front lines between {∆DP,∆MDP,∆SDP,∆VDP} and acc on the test data of ACSIncome. (left
to right) We consider the five prediction models: linear, RBF-SVM, 1-LeakyReLU-NN, 1-Sigmoid-NN, and 2-Sigmoid-NN.

fromN (0m, 2Im) and fix it until the label generation process ends. Then, for each input sample (x, s), we sample a random
vector ϵ ∼ N (0m, 2Im) and generate its artificial label as I(γ⊤h(x, s) + ϵ). We analyze Adult with the artificial labels by
comparing our method and the LAFTR, whose results are depicted in Figure D.8. We utilize the linear prediction model and
consider three DP-fairness measures, ∆DP,∆MDP,∆SDP. Figure D.8 shows that our method achieves consistently better
trade-off results between the accuracy and DP measures.

E. Ablation studies
This section provides additional ablation experiments that are not included in the main manuscript.

Computation time We conduct learning-time comparisons for the sIPM-LFR and LAFTR. As can be seen in Table E.1,
sIPM-LFR requires about 20% less computation times compared to the LAFTR.

Varying the dimension of the representation We analyze the effect of varying the representation’s dimension m. For
each dataset, we consider two values of m, and compare their performances with the Pareto-front lines. As shown in Figure
E.1, our method is more insensitive to the selection of m compared to the LAFTR.

sIPM-LFR vs. MMD-LFR We compare the sIPM-LFR to the FVAE (Louizos et al., 2015) which is one of the MMD-
based LFR methods. Theoretically, the MMD regularization in the FVAE is also a kind of IPM that utilizes a unit ball in an
RKHS as V (the class of discriminators). We can easily show that Theorem 4.3 and Proposition 4.4 imply that the MMD
with the Gaussian kernel is upper bounded by the sIPM. That is, by controlling the parametric IPM, we expect that the
MMD will be also reduced.
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Figure D.3. Unsupervised LFR: Pareto-front lines between {∆DP,∆MDP,∆SDP,∆VDP} and acc on the test data of Toxicity. (left to
right) We consider the four prediction models: linear, RBF-SVM, 1-LeakyReLU-NN, and 1-Sigmoid-NN.

An obvious practical advantage of the sIPM-LFR over the FVAE would be computational simplicity. We conduct an
experiment to compare the stability and performance between the sIPM-LFR and FVAE. Figure E.2 depicts the scatter
points with standard errors for ∆DP and acc for 1-Sigmoid-NN on Adult dataset. We can check that the sIPM-LFR is more
stable as well as superior compared to the FVAE, which again validates the superiority of our method.

Table E.1. Training time comparisons between the sIPM-LFR and LAFTR. We report each method’s mean and standard values with five
random implementations.

Dataset Method Computation Time (s.e.)

Adult sIPM-LFR ✓ 100.00% (0.80%)
LAFTR 117.48% (0.33%)

COMPAS sIPM-LFR ✓ 100.00% (3.23%)
LAFTR 121.13% (1.77%)

Health sIPM-LFR ✓ 100.00% (0.91%)
LAFTR 117.81% (0.53%)
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Figure D.4. Unsupervised LFR: Pareto-front lines between {∆MDP,∆SDP,∆VDP} and acc on the test data of Adult. (left to right) We
consider the five prediction models: linear, RBF-SVM, 1-LeakyReLU-NN, 1-Sigmoid-NN, and 2-Sigmoid-NN.

Figure D.5. Unsupervised LFR: Pareto-front lines between {∆MDP,∆SDP,∆VDP} and acc on the test data of COMPAS. (left to right)
We consider the five prediction models: linear, RBF-SVM, 1-LeakyReLU-NN, 1-Sigmoid-NN, and 2-Sigmoid-NN.
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Figure D.6. Unsupervised LFR: Pareto-front lines between {∆MDP,∆SDP,∆VDP} and acc on the test data of Health. (left to right) We
consider the five prediction models: linear, RBF-SVM, 1-LeakyReLU-NN, 1-Sigmoid-NN, and 2-Sigmoid-NN.

Figure D.7. Unsupervised LFR: tSNE visualization of the learned fair representation for (upper) Adult and (lower) COMPAS with various
values of λ.
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Figure D.8. Unsupervised LFR: Pareto-front lines of {∆DP,∆MDP,∆SDP} (x-axis) vs. acc (y-axis) on Adult with the artificial label.

Figure E.1. Unsupervised LFR: Pareto-front lines between ∆DP (x-axis) and acc (y-axis) with different values of the representation
dimension. We analyze three datasets: (left) Adult, (center) COMPAS, and (right) Health. We utilize the 1-LeakyReLU-NN as the
prediction model.

Figure E.2. Scatter plot with standard error bar of ∆DP and acc with various λ. Each horizontal and vertical bars present the standard
errors for ∆DP and acc, respectively. All results are from Adult test dataset.


