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Abstract
We propose Guided-TTS, a high-quality text-to-
speech (TTS) model that does not require any
transcript of target speaker using classifier guid-
ance. Guided-TTS combines an unconditional
diffusion probabilistic model with a separately
trained phoneme classifier for classifier guidance.
Our unconditional diffusion model learns to gener-
ate speech without any context from untranscribed
speech data. For TTS synthesis, we guide the
generative process of the diffusion model with a
phoneme classifier trained on a large-scale speech
recognition dataset. We present a norm-based scal-
ing method that reduces the pronunciation errors
of classifier guidance in Guided-TTS. We show
that Guided-TTS achieves a performance compa-
rable to that of the state-of-the-art TTS model,
Grad-TTS, without any transcript for LJSpeech.
We further demonstrate that Guided-TTS per-
forms well on diverse datasets including a long-
form untranscribed dataset.

1. Introduction
Neural text-to-speech (TTS) models have been achieved to
generate high-quality human-like speech from given text
(van den Oord et al., 2016; Shen et al., 2018). In general,
TTS models are conditional generative models that encode
text into a hidden representation and generate speech from
the encoded representation. Early TTS models are autore-
gressive generative models that generate high-quality speech
but suffer from a slow synthesis speed due to the sequen-
tial sampling procedure (Shen et al., 2018; Li et al., 2019).
Owing to the development of non-autoregressive genera-
tive models, recent TTS models can generate high-quality
speech with faster inference speed (Ren et al., 2019; 2021;
Kim et al., 2020; Popov et al., 2021). Recently, high-quality
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end-to-end TTS models have been proposed that generate
raw waveforms from text at once (Kim et al., 2021; Weiss
et al., 2021; Chen et al., 2021b).

Despite the high quality and fast inference speed of speech
synthesis, most TTS models can only be trained if the tran-
scribed data of the target speaker are provided. Although
long-form untranscribed data, such as audiobooks or pod-
casts, is available on various websites, it is challenging to
use these speech data as training datasets for existing TTS
models. To utilize these untranscribed data, long-form un-
transcribed speech data has to be segmented into sentences,
and each segmented speech should then be accurately tran-
scribed. Since the existing TTS models directly model the
conditional distribution of speech given text, the direct usage
of untranscribed data remains a challenge.

There have also been approaches using untranscribed speech
to adapt the pre-trained multi-speaker TTS model for few-
shot TTS synthesis (Jia et al., 2018; Yan et al., 2021). These
adaptive TTS models rely heavily on a pre-trained multi-
speaker TTS model, which is challenging to train and re-
quires high-quality multi-speaker TTS datasets. Also, due
to the difficulties of generalization, they underperform in
comparison to high-quality single-speaker TTS models such
as Glow-TTS and Grad-TTS (Kim et al., 2020; Popov et al.,
2021) trained on a large amount of transcribed data.

In this work, we propose Guided-TTS, a high-quality TTS
model that learns to generate speech with an unconditional
DDPM and performs text-to-speech synthesis using classi-
fier guidance. By introducing a phoneme classifier trained
on a large-scale speech recognition dataset, Guided-TTS
does not use any transcript of the target speaker for TTS.
Trained on untranscribed data, our unconditional diffusion
probabilistic model learns to generate mel-spectrograms
without context. As the untranscribed data does not have to
be aligned with the text sequence, we simply use random
chunks of untranscribed speech to train our unconditional
generative model. This allows us to build training datasets
without extra effort in modeling the speech of speakers for
which only long-form untranscribed data is available.

To guide the unconditional DDPM for TTS, we train a frame-
wise phoneme classifier on a large-scale speech recognition
dataset, LibriSpeech, and use the gradient of the classifier
during sampling. Although our unconditional generative
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model is trained without any transcript, Guided-TTS effec-
tively generates mel-spectrograms given the transcript by
guiding the generative process of unconditional DDPM us-
ing the phoneme classifier. As mispronunciation through
guiding error is fatal for the TTS model, we present norm-
based guidance that balances the classifier gradient and the
unconditional score during sampling.

We demonstrate that Guided-TTS matches the performance
of publicly available high-quality TTS models on LJSpeech
without using LJSpeech transcripts. In addition, Guided-
TTS generalizes well for diverse untranscribed datasets, and
even for a long-form unsegmented dataset (Blizzard 2013).
Furthermore, we show that the norm-based guidance sig-
nificantly reduces pronunciation errors, which allows our
proposed model to have a similar level of pronunciation
accuracy as the existing conditional TTS models. We en-
courage readers to listen to samples of Guided-TTS trained
on various untranscribed datasets on our demo page.1

2. Background
2.1. Denoising Diffusion Probablistic Models (DDPM)

and Its Variant

DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020), which
is proposed as a type of probabilistic generative model,
has recently been applied to various domains, such as im-
ages (Dhariwal & Nichol, 2021) and audio (Chen et al.,
2021a; Popov et al., 2021). DDPM first defines a forward
process that gradually corrupts data X0 into random noise
XT across T timesteps. The model learns the reverse pro-
cess, which follows the reverse trajectory of the predefined
forward process to generate data from random noise.

Recently, approaches have been proposed to formulate the
trajectory between data and noise as a continuous stochastic
differential equation (SDE) instead of using a discrete-time
Markov process (Song et al., 2021b). Grad-TTS (Popov
et al., 2021) introduces SDE formulation to TTS, which we
have followed and used. According to the formulation of
Grad-TTS, the forward process that corrupts data X0 into
standard Gaussian noise XT is as follows:

dXt = −
1

2
Xtβtdt+

√
βtdWt, (1)

where βt is a predefined noise schedule, βt = β0 + (βT −
β0)t, and Wt is a Wiener process. Anderson (1982) shows
that the reverse process, which represents the trajectory from
noise XT to X0, can also be formulated in SDE, which is
defined as follows:

dXt = (−1

2
Xt −∇Xt log pt(Xt))βtdt+

√
βtdW̃t, (2)

1Demo : https://bit.ly/3r8vho7

where W̃t is a reverse-time Wiener process. Given the
score, the gradient of log density with respect to data (i.e.,
∇Xt

log pt(Xt)), for t ∈ [0, T ], we can sample data X0

from random noise XT by solving Eq. (2). To generate data,
the DDPM learns to estimate the score using the neural
network sθ parameterized by θ.

To estimate the score, Xt is sampled from the distribution
derived from Eq. (1), given data X0, which is as follows:

Xt|X0 ∼ N (ρ(X0, t), λ(t)), (3)

where ρ(X0, t) = e−
1
2

∫ t
0
βsdsX0, and λ(t) = I −

e−
∫ t
0
βsds. The score can then be derived from Eq. (3);

∇Xt
log pt(Xt|X0) = −λ(t)−1ϵt, where ϵt is the standard

Gaussian noise used to sample Xt given X0 (Popov et al.,
2021). To train the model sθ(Xt, t) for ∀t ∈ [0, T ], the
following loss is used:

L(θ) = EtEX0
Eϵt

[ ∥∥sθ(Xt, t) + λ(t)−1ϵt
∥∥2
2

]
, (4)

which is a L2 loss as in previous works (Ho et al., 2020;
Song et al., 2021b).

Using model sθ(Xt, t), we can generate sample X0 from
noise by solving Eq. (2). Grad-TTS generates data X0 from
XT by setting T = 1 and using a fixed discretization strat-
egy (Song et al., 2021b):

Xt− 1
N

= Xt+
βt

N
(
1

2
Xt+∇Xt log pt(Xt))+

√
βt

N
zt, (5)

where N is the number of steps required to solve SDE,
t ∈ { 1

N , 2
N , ..., 1} and zt is standard Gaussian noise.

2.2. Classifier Guidance

DDPM can be guided to generate samples with the desired
condition without fine-tuning through the introduction of
a classifier. Song et al. (2021b) use unconditional DDPM
to generate class-conditional images by applying a sepa-
rately trained image classifier. For conditional generation,
the classifier pt(y|Xt) is trained to classify noisy data Xt

as condition y.

Discretized SDE for conditional generation can be obtained
by replacing the unconditional score ∇Xt

log pt(Xt) in Eq.
(5) with a conditional score∇Xt

log pt(Xt|y).

Xt− 1
N

= Xt +
βt

N
(
1

2
Xt +∇Xt

log pt(Xt|y)) +
√

βt

N
zt,

(6)

∇Xt log pt(Xt|y) = ∇Xt log pt(Xt) +∇Xt log pt(y|Xt).
(7)

If the unconditional score and classifier gradient for the
target condition are given, the sample X0 with condition y
can be generated using Eq. (6).

https://bit.ly/3r8vho7
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Dhariwal & Nichol (2021) guide not only unconditional
DDPM but also conditional DDPM using a classifier. They
introduce a gradient scale s when guiding the DDPM, which
is multiplied by the classifier gradient (s ·∇Xt

log pt(y|Xt))
to adjust the scale of it. By using s > 1, they gener-
ate higher-fidelity (but less diverse) samples, which con-
tributes to achieving the state-of-the-art performance for
class-conditional image generation.

3. Guided-TTS
In this section, we present Guided-TTS, which aims to build
a high-quality text-to-speech model without any transcript of
the target speaker. Whereas other TTS models directly learn
to generate speech from text, Guided-TTS learns to model
unconditional distribution of speech and generates speech
from text using classifier guidance. For classifier guidance,
we train an unconditional diffusion model on untranscribed
speech data and leverage a phoneme classifier trained on a
large-scale speech recognition dataset. To the best of our
knowledge, Guided-TTS is the first TTS model to generate
speech using an unconditional generative model.

Guided-TTS consists of four modules: unconditional
DDPM, phoneme classifier, duration predictor, and speaker
encoder, as shown in Fig. 1. The unconditional DDPM
learns to generate mel-spectrogram unconditionally, and the
remaining three modules are used for TTS synthesis through
guidance. We describe the unconditional DDPM in Section
3.1, followed by the method of guiding the unconditional
model for TTS in Section 3.2.

3.1. Unconditional DDPM

Our unconditional DDPM models the unconditional distri-
bution of speech PX without any transcript. We use untran-
scribed speech data from a single target speaker S as the
training data for the diffusion model to build a TTS for the
speaker S. Since our diffusion model learns without tran-
script, training samples do not need to be aligned with the
transcripts. Thus, we use random chunks of untranscribed
speech data as training data such that Guided-TTS does not
require speech transcription and sentence-level segmenta-
tion when only the long-form untranscribed data is available
for the target speaker S.

Given a mel-spectrogram X = X0, we define the forward
process as in Eq. (1), which gradually corrupts data into
noise, and approximate the reverse process in Eq. (2), by
estimating the unconditional score∇Xt log p(Xt) for each
timestep t. At each iteration, Xt, t ∈ [0, 1] is sampled from
the mel-spectrogram X0 as in Eq. (3), and the score is es-
timated using the neural network sθ(Xt, t) parameterized
by θ. The training objective of the unconditional model is
given by Eq. (4).

Similar to Grad-TTS (Popov et al., 2021), we regard mel-
spectrogram as a 2D image with a single channel and use
the U-Net architecture (Ronneberger et al., 2015) as sθ. We
use the same sized architecture applied to model 32 × 32
sized images in Ho et al. (2020) to capture long-term depen-
dencies without any text information, whereas Grad-TTS
uses a smaller architecture for the conditional distribution
modeling.

3.2. Text-to-Speech via Classifier Guidance

For TTS synthesis, we introduce a frame-wise phoneme
classifier and use a classifier guidance method to guide un-
conditional DDPM. TTS via classifier guidance decouples
the generative modeling of speech by conditioning text in-
formation. This allows us to leverage a noisy speech recog-
nition dataset as training data for the phoneme classifier,
which is challenging to utilize for training existing TTS
models.

As shown in Fig. 1, in order to generate mel-spectrogram
given text, our duration predictor outputs the duration for
each text token and expands the transcript y to frame-level
phoneme label ŷ. We then sample a random noise XT of
the same length as ŷ from the standard normal distribution,
and we can generate conditional samples with a conditional
score. As in Eq. (8), we can estimate the conditional score
on the left side by adding the two terms on the right side:
the first term is obtained from the unconditional DDPM,
and the second term can be computed using the phoneme
classifier. That is, we build a text-to-speech model with the
unconditional generative model for speech by adding the
gradient of the phoneme classifier during the generative
process.

∇Xt
log p(Xt|ŷ, spk = S) = ∇Xt

log pθ(Xt|spk = S)

+∇Xt
log pϕ(ŷ|Xt, spk = S)

(8)

To guide the unconditional DDPM for any target speaker
S, our phoneme classifier and duration predictor are trained
on a large-scale speech recognition dataset and designed to
be speaker-dependent modules for better generalization to
the unseen speaker S. We provide the speaker embedding
extracted from the pre-trained speaker verification network
as a condition for both modules, as described in Fig. 1. We
describe each module required for guidance below.

Phoneme Classifier The phoneme classifier is a network
trained on a large-scale speech recognition dataset that rec-
ognizes the phoneme corresponding to each frame of the
input mel-spectrogram. To train the frame-wise phoneme
classifier, we align transcript and speech using a forced align-
ment tool, the Montreal Forced Aligner (MFA) (McAuliffe
et al., 2017), and extract the frame-level phoneme label ŷ.
The phoneme classifier is trained to classify the corrupted
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Figure 1: The overall architecture of Guided-TTS. The unconditional DDPM learns to generate speech X0 with untranscribed
data. The other modules, the phoneme classifier, duration predictor, and speaker encoder are for guiding the unconditional
DDPM to generate conditional samples given y.

mel-spectrogram Xt sampled from Eq. (3) as a frame-level
phoneme label ŷ. The training objective of the phoneme
classifier is to minimize the expectation of cross-entropy
between the phoneme label ŷ and output probability with
respect to t ∈ [0, 1].

We use a WaveNet-like architecture (van den Oord et al.,
2016) as a phoneme classifier, and time embedding et,
which is extracted in the same way as in Popov et al. (2021),
is used as a global condition in WaveNet to provide infor-
mation regarding the noise level of the corrupted input Xt

at timestep t. For speaker-dependent classification, we also
use the speaker embedding eS from the speaker encoder as
the global condition.

Duration Predictor The duration predictor is a module
that predicts the duration of each text token for a given text
sequence y. We extract the duration label of each text to-
ken using MFA for the same data on which the phoneme
classifier is trained. The duration predictor is trained to min-
imize L2 loss between the duration label and the estimated
duration in the log-domain, and we round up the estimated
duration during inference. The architecture of the duration
predictor is the same as that of Glow-TTS (Kim et al., 2020)
with the text encoder. We concatenate the text embedding
and speaker embedding eS to predict the speaker-dependent
duration.

Speaker Encoder The speaker encoder encodes the speaker
information from the input mel-spectrogram and outputs the
speaker embedding eS . Similar to Jia et al. (2018), we train
a speaker encoder with GE2E loss (Wan et al., 2018) on
the speaker verification dataset and use the speaker encoder
to condition speaker-dependent modules. We extract the
speaker embedding eS from the clean mel-spectrogram X0

for each training data. For guidance, we average and nor-
malize the speaker embeddings of the untranscribed speech
for the target speaker S to extract eS .

3.2.1. NORM-BASED GUIDANCE

Algorithm 1 Norm-based Guidance

ŷ: frame-wise phoneme label, s: gradient scale, τ : tem-
perature
θ: parameter of unconditional DDPM:, ϕ: parameter of
phoneme classifier
X1 ∼ N (0, τ−1I)
for i = N to 1 do

t← i
N

αt ← ∥∇Xt
log pθ(Xt)∥ / ∥∇Xt

log pϕ(ŷ|Xt)∥
zt ∼ N (0, τ−1I)
µt ← 1

2Xt+∇Xt
log pθ(Xt)+s·αt∇Xt

log pϕ(ŷ|Xt)

Xt− 1
N
← Xt +

βt

N µt +
√

βt

N zt
end for
return X0

Initially, we scaled the gradient of the classifier
∇Xt

log pϕ(ŷ|Xt, spk = S) in Eq. (8) using gradient scale
s (Dhariwal & Nichol, 2021). However, when guiding the
unconditional DDPM with the frame-wise phoneme clas-
sifier, we found that the norm of the unconditional score
suddenly increases near t = 0 (Appendix A.4). That is,
when closer to data X0, the phoneme classifier has little
effect on the generative process of the DDPM. As a matter
of fact, our experiments on generating samples using vari-
ous numbers of gradient scale s resulted in mispronouncing
samples given text for all cases.
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Herein, we propose norm-based guidance to guide the un-
conditional DDPM better in terms of generating speech
conditioned on frame-level phoneme label ŷ. Norm-based
guidance is a method of scaling the norm of the classifier
gradient in proportion to the norm of the score in order to
prevent the effect of the gradient from being insignificant as
the score steeply increases. The ratio between the norm of
the scaled gradient and the norm of the score is defined as
the gradient scale s. By adjusting s, we can determine how
much the classifier gradient contributes to the guidance of
unconditional DDPM. We also use the temperature param-
eter τ when guiding the DDPM. We observe that tuning τ
to a value greater than 1 helps generate high-quality mel-
spectrograms. Detailed analysis on classifier guidance are
in section 5.3.

4. Experiments
Datasets In Guided-TTS, the speaker-dependent phoneme
classifier and duration predictor are trained on LibriSpeech
(Panayotov et al., 2015), which is a large-scale automatic
speech recognition (ASR) dataset with approximately 982
hours of speech uttered by 2,484 speakers with correspond-
ing texts. To extract the speaker embedding eS from each
utterance, we train a speaker encoder on VoxCeleb2 (Chung
et al., 2018), which is a speaker verification dataset that
contains more than 1M utterances of 6112 speakers.

For the comparison case with baselines which make use
of the target speaker transcript data, we use LJSpeech (Ito,
2017), a 24-hour female single speaker dataset consisting
of 13,100 audio clips. For the other case which makes use
of only the untranscribed target speaker speech, we use
LJSpeech, Hi-Fi TTS (Bakhturina et al., 2021), and Bliz-
zard 2013 (King & Karaiskos, 2013). Hi-Fi TTS is a multi-
speaker TTS dataset with 6 females and 4 males, and the
data of each speaker consists of at least 17 hours of speech.
We select three relatively clean speakers among them (two
males (ID: 6097, 9017) and one female (ID: 92)). Bliz-
zard 2013 is a 147 hours-long audiobook containing both
segmented and unsegmented data read by a single female
speaker. We use the unsegmented data of Blizzard 2013,
randomly clipping 5-seconds-long chunks of audio to build
a TTS for long-form untranscribed data.

Training Details We convert text into International Pho-
netic Alphabet (IPA) phoneme sequences using open-source
software (Bernard, 2021). To extract the mel-spectrogram,
we use the same hyperparameters as Glow-TTS (Kim et al.,
2020). All modules are trained using Adam optimizer with
a learning rate of 0.0001. For the unconditional model and
the phoneme classifier, β0 = 0.05 and β1 = 20 are used
for beta schedule. Other details and hyperparameters of
Guided-TTS are described in Appendix A.1.

Evaluation To compare the performance of models with
transcribed data, we use the official implementations and
pre-trained models of Glow-TTS and Grad-TTS.23 For
Glow-TTS, we use a pre-trained model with blank tokens
between phonemes and use τ = 1.5. We use the same hyper-
parameters as the official implementation, τ = 1.5, and the
number of reverse steps N = 50 for Grad-TTS. To compare
model performance in the absence of a transcript, we ex-
tract the transcript using a CTC-based conformer-large ASR
model (Graves et al., 2006; Gulati et al., 2020) from NEMO
toolkit (Kuchaiev et al., 2019), which is pre-trained using
LibriSpeech. We train Grad-TTS using the ASR transcribed
data for 1.7m iterations, which we refer to as Grad-TTS-
ASR. For Guided-TTS, we set τ = 1.5, and the number of
reverse steps N = 50. We observe that the low classifica-
tion accuracy of the phoneme classifier near t = 1 (closer
to random noise) deteriorates the sample quality. Therefore,
we refrain from using the gradient of the classifier at the
initial steps of sampling, setting the gradient scale s to 0.
Afterwards, we linearly increase the gradient scale s to 0.3.
For the vocoder, we use the official implementation and
pre-trained models of HiFi-GAN.4

To show whether Guided-TTS with norm-based guidance
generates the sentences of the given text accurately, we mea-
sure the character error rate (CER) for each model, which
is a metric commonly used in automatic speech recogni-
tion (ASR). To compute the metric, we use the CTC-based
conformer pre-trained with 7,000 hours of speech from the
NEMO toolkit. We generate 5 samples for each sentence in
the test set and measure all CER for all generated samples,
ultimately using the whole average CER for comparison.

5. Results
5.1. Model Comparison

We compare the performances of audio samples by mea-
suring the 5-scale mean opinion score (MOS) on LJSpeech
using Amazon Mechanical Turk. In addition, through CER,
we check whether the generated sample of each model faith-
fully reflects the text. To calculate the CER, we first synthe-
size the speech of a given text for each model and provide it
to the ASR model to extract the text corresponding to the
generated sample. We then measure the CER between the
ground truth text and the text obtained from the ASR model.
For evaluation, we randomly select 50 samples drawn from
the test set of LJSpeech and measure the MOS and CER.

In Table 1, we compare the performance and CER of Guided-
TTS with Glow-TTS and Grad-TTS, which are high-quality
TTS models. While Glow-TTS and Grad-TTS use tran-

2Glow-TTS: https://bit.ly/3kS315K
3Grad-TTS: https://bit.ly/3qTCmcJ
4HiFi-GAN: https://bit.ly/3FxBv5x

https://bit.ly/3kS315K
https://bit.ly/3qTCmcJ
https://bit.ly/3FxBv5x
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Table 1: Mean Opinion Score (MOS) with 95% confidence
intervals of TTS models for LJSpeech. ”GT MEL” repre-
sents the HiFi-GAN result of ground truth mel-spectrogram.

Method LJ Transcript 5-scale MOS CER(%)

GT 4.45 ± 0.05 0.64
GT MEL 4.24 ± 0.07 0.77
GLOW-TTS

√
4.14 ± 0.08 0.66

GRAD-TTS
√

4.25 ± 0.07 1.09
GUIDED-TTS × 4.25 ± 0.08 1.03

scribed data of LJSpeech, Guided-TTS only uses untran-
scribed data of LJSpeech to train unconditional DDPM.
Guided-TTS shows comparable performance to other TTS
models without any transcript of LJSpeech by leveraging
the phoneme classifier trained on LibriSpeech. Guided-TTS
also has a similar CER to that of the conditional TTS models,
which shows that the unconditional DDPM accurately gen-
erates speech from the given transcripts using norm-based
classifier guidance. This demonstrates that our proposed
model enables the building of a high-quality TTS model
without any transcript of the target speaker. Samples of all
models are available on the demo page.5

5.2. Generalization to Diverse Datasets

In the previous section, we showed that Guided-TTS
can synthesize high-quality speech without transcript of
LJSpeech. Since we separate the training of the uncondi-
tional model and the classifier, we are capable of building
TTS models for various untranscribed datasets by combin-
ing the single phoneme classifier to various unconditional
DDPMs trained on untranscribed datasets.

In this section, we assume that only untranscribed speech
is available for each speaker. Since existing TTS models in-
evitably require data with transcripts for training, we extract
transcripts from the various untranscribed datasets using
a pre-trained ASR model in order to train the powerful
baseline, Grad-TTS. We refer to this baseline as Grad-TTS-
ASR. Since Guided-TTS leverages the phoneme classifier
trained on LibriSpeech, the specific ASR model pre-trained
on LibriSpeech is selected to extract transcriptions, making
fair comparison possible. For various datasets, we compare
Guided-TTS with Grad-TTS-ASR. We use 50 randomly
chosen sentences from the test set of each dataset.

The performance of each model on LJSpeech and Hi-Fi TTS
is presented in Table 2. For LJSpeech, both Guided-TTS and
Grad-TTS-ASR achieve comparable performances to Grad-
TTS using transcript. However, for Hi-Fi TTS, Guided-TTS
outperforms Grad-TTS-ASR and exhibits low CER values
for all datasets. This shows that the single phoneme classifier

5Demo : https://bit.ly/3r8vho7

Table 2: Mean Opinion Score (MOS) with 95% confidence
intervals of TTS models for multiple datasets. ”Data” refers
to the untranscribed speech dataset used for each model. For
Blizzard, we use long-form unsegmented data for training.

Data Method 5-scale MOS CER(%)

GT 4.45±0.05 0.64
GT MEL 4.24±0.07 0.77

LJSPEECH GRAD-TTS 4.25±0.07 1.09
GRAD-TTS-ASR 4.23±0.08 1.16
GUIDED-TTS 4.25±0.08 1.03

GT 4.48±0.07 0.09
HI-FI TTS GT MEL 4.27±0.07 0.20
(ID: 92) GRAD-TTS-ASR 4.11±0.08 1.33

GUIDED-TTS 4.20±0.08 0.81

GT 4.50±0.05 0.24
HI-FI TTS GT MEL 4.26±0.07 0.33
(ID: 6097) GRAD-TTS-ASR 4.09±0.08 1.88

GUIDED-TTS 4.16±0.08 0.79

GT 4.45±0.05 0.11
HI-FI TTS GT MEL 4.21±0.07 0.07
(ID: 9017) GRAD-TTS-ASR 3.83±0.09 2.04

GUIDED-TTS 4.04±0.09 0.21

GT 4.44±0.05 0.51
BLIZZARD GT MEL 4.26±0.09 0.48

GUIDED-TTS 4.24±0.09 0.24

of Guided-TTS stably generates the given text for various
datasets. On the other hand, we confirm that the pronuncia-
tion accuracy and sample quality of Grad-TTS-ASR, which
uses the noisy transcript generated by ASR, are not robust
to dataset. Aside from this, we demonstrate that Guided-
TTS can robustly generate out-of-distribution (OoD) text
for several datasets. The results and details of generated
OoD texts are provided in Appendix A.3. We also show the
performance of Guided-TTS trained with random chunks of
unsegmented data of Blizzard 2013, a long-form audiobook
dataset, in Table 2. Guided-TTS generates high-quality sam-
ples without the transcript of Blizzard dataset, just like it
has done with the other datasets. In addition, the low CER
of Guided-TTS indicates that a TTS model of accurate pro-
nunciation can be built even when using randomly cropped
audio without sentence-level segmentation for training.

Based on the results above, we demonstrate that the pro-
posed method enables TTS for untranscribed datasets of
various characteristics (e.g., gender, accent, and prosody).
Samples on various speakers are available on the demo page.

5.3. Analysis

Norm-based Guidance We also compare the proposed
norm-based classifier guidance with the classifier guidance
used in previous works (Song et al., 2021b; Dhariwal &
Nichol, 2021). A model that conducts a conditional gen-

https://bit.ly/3r8vho7
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Figure 2: CER of Guided-TTS with classifier guidance
(Dhariwal & Nichol, 2021) and norm-based guidance ac-
cording to gradient scales.

eration task with classifier guidance occasionally gener-
ates samples of conditions other than the target condition
(Song et al., 2021b). Similarly, we observe that Guided-
TTS with the classifier guidance method produces mispro-
nounced samples given text. To show the effect of norm-
based guidance and adjustment of the gradient scale, we
measure the CER of Guided-TTS for LJSpeech according to
the gradient scale s. We explore the gradient scale s within
[0.5, 1.0, ..., 5.0] for classifier guidance (Dhariwal & Nichol,
2021), and [0.1, 0.2, ..., 1.0] for norm-based guidance.

Fig. 2 presents the CER of Guided-TTS with the classifier
guidance (Dhariwal & Nichol, 2021) and the proposed norm-
based classifier guidance. As shown in Fig. 2, the sample
generated using the existing guidance method shows a far
worse CER than the existing TTS models, which indicates
that it is unsuitable for TTS. By contrast, the proposed
guidance method with the appropriate gradient scale helps
accurately generate samples given text sentences, similar to
existing TTS models.

If the gradient scale is too small, the effect of the classifier
gradient is negligible, and the generated samples do not
reflect the given text. On the other hand, we observed that
guidance with a large gradient scale deteriorates the sample
quality. For the proposed norm-based guidance, we set the
default gradient scale s to 0.3, which generates high-quality
samples that exactly match the given text. Samples for mul-
tiple gradient scales with each guidance method are on the
demo page.

Amount of Data for Phoneme Classifier We show the
CER of Guided-TTS on LJSpeech according to the amount
of LibriSpeech data used for training the phoneme classifier
in Table 3. We train the phoneme classifiers with 1% (9
hours), 10% (96 hours), 100% (960 hours) of LibriSpeech

Table 3: CER of Guided-TTS on LJSpeech test set accord-
ing to the amount of data used for training the phoneme
classifier.

Method CER(%)

GUIDED-TTS (LIBRISPEECH 100%) 1.03
GUIDED-TTS (LIBRISPEECH 10%) 2.28
GUIDED-TTS (LIBRISPEECH 1%) 4.24

respectively, and the classification accuracy of each model
is shown in Fig. 3. The CER results in Table 3 indicate that
the amount of data used for the phoneme classifier is crit-
ical regarding the pronunciation accuracy of Guided-TTS.
Therefore, the pronunciation of Guided-TTS improves as
the amount of data used for phoneme classification increases.
Thus, we anticipate that Guided-TTS can be improved even
further with a much larger-scale ASR dataset.
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Figure 3: Phoneme classification accuracy on LJSpeech test
set over timestep t. The number next to the term LibriSpeech
indicates the portion of LibriSpeech used for training.

6. Related Work
Unconditional Speech Generation In general, the uncondi-
tional speech generative model (van den Oord et al., 2016;
Vasquez & Lewis, 2019), which models audio without any
information, is more challenging than the conditional gen-
erative model that synthesizes speech using text or mel-
spectrograms. Several works have attempted to uncondition-
ally generate raw waveforms (van den Oord et al., 2016;
Donahue et al., 2019) or to model the unconditional distri-
bution of latent code or mel-spectrogram of audio (van den
Oord et al., 2017; Vasquez & Lewis, 2019; Lakhotia et al.,
2021; Kharitonov et al., 2022) instead of directly modeling
raw waveforms. Most existing unconditional models have
only been used for unconditional audio modeling and no
other purposes. To the best of our knowledge, this is the
first application of an unconditional model for TTS with
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appropriate guidance to enable speech synthesis using un-
transcribed data from a target speaker.

Text-to-Speech Models Most text-to-speech (TTS) models
are composed of two parts: a model that generates interme-
diate features (e.g., mel-spectrogram) from text (Shen et al.,
2018) and a vocoder, which synthesizes raw waveforms
from intermediate features (van den Oord et al., 2016). The
autoregressive model is used for the text-to-intermediate
feature model (Wang et al., 2017; Shen et al., 2018; Ping
et al., 2018; Li et al., 2019) and vocoder (van den Oord et al.,
2016; Kalchbrenner et al., 2018) to perform high-quality
TTS. To improve the sampling speed of the autoregressive
models, flow-based generative models (Kingma & Dhari-
wal, 2018) and feed-forward models have been proposed
for text-to-mel-spectrogram models (Ren et al., 2019; 2021;
Kim et al., 2020; Shih et al., 2021) and vocoders (Oord et al.,
2018; Prenger et al., 2019; Kim et al., 2019). In addition,
variational autoencoder based models (Kingma & Welling,
2014; Lee et al., 2020; Liu et al., 2021), diffusion based
models (Ho et al., 2020; Chen et al., 2021a; Kong et al.,
2021; Popov et al., 2021; Jeong et al., 2021), and GAN
based models (Goodfellow et al., 2014; Kumar et al., 2019;
Bińkowski et al., 2019; Kong et al., 2020) have been pro-
posed as high-quality speech synthesis models with parallel
sampling schemes. End-to-end TTS models have recently
been proposed, such as Ren et al. (2021), Donahue et al.
(2021), Weiss et al. (2021), Kim et al. (2021), and Chen
et al. (2021b).

Most previous TTS models perform conditional generation
tasks using transcribed data of the target speaker. On the
other hand, Guided-TTS models unconditional distribution
of speech with untranscribed data and generates conditional
samples with the pre-trained phoneme classifier. By model-
ing unconditional distribution of speech, Guided-TTS can
utilize long-form untranscribed data of the target speaker
without sentence-level segmentation or transcription.

Text-to-Speech with Untranscribed Data There are two
main approaches when building a TTS model without
the target speaker’s transcript: fine-tuning based approach
and speaker embedding based approach. Both approaches
require a pre-trained multi-speaker TTS model. In the
fine-tuning based approach (Yan et al., 2021), the mel-
spectrogram encoder is combined with the pre-trained TTS
model to fine-tune the model with untranscribed speech of
the target speaker. Speaker embedding based approach (Arik
et al., 2018; Jia et al., 2018; Casanova et al., 2021) provides
the target speaker’s embedding extracted from untranscribed
speech to the TTS model for adaptation. These methods
require a large-scale multi-speaker TTS dataset, which is
difficult to collect and challenging to model the distribution.
Also, the performances of these approaches are worse than
single speaker TTS models (Kim et al., 2020; Ren et al.,

2021; Popov et al., 2021) trained with the <speech, text>
pair of the target speaker. On the other hand, instead of using
a multi-speaker TTS dataset, we utilize an automatic speech
recognition (ASR) dataset to build a TTS model, which
is relatively easy to collect. By leveraging the phoneme
classifier trained on the ASR dataset, Guided-TTS achieves
performance comparable to other TTS models (Kim et al.,
2020; Ren et al., 2021; Popov et al., 2021) with untran-
scribed data of the target speaker.

There is also an approach that utilizes an untranscribed
dataset to extract unsupervised linguistic units and reduces
the amount of the paired dataset (Zhang & Lin, 2020). This
model focuses on TTS for low-resource languages, while
Guided-TTS assumes that a large-scale speech recognition
dataset is available and only untranscribed data is given for
the target speaker.

Diffusion-based Generative Models DDPM (Sohl-
Dickstein et al., 2015; Ho et al., 2020) has undergone several
theoretical developments (Song et al., 2021b) and produces
high quality samples in many domains (Ho et al., 2020;
Dhariwal & Nichol, 2021; Chen et al., 2021a; Popov et al.,
2021; Luo & Hu, 2021). A continuous version of DDPM, an
SDE-based model (Song et al., 2021b; Popov et al., 2021)
is also presented. Thanks to many theoretical and practi-
cal breakthroughs (Song et al., 2021a; Nichol & Dhariwal,
2021), DDPM has also shown strong performance in speech
synthesis (Chen et al., 2021a; Kong et al., 2021; Popov et al.,
2021; Jeong et al., 2021).

A pre-trained unconditional DDPM can be used for vari-
ous tasks such as imputation (Song et al., 2021b), and con-
trollable generation (Song et al., 2021b). In particular, the
controllable generation allows (Dhariwal & Nichol, 2021)
to achieve state-of-the-art performance in class-conditional
image generation by guiding the DDPM using a gradient
from the classifier trained on the same dataset as DDPM.
We introduce the classifier guidance method of uncondi-
tional DDPM to text-to-speech synthesis. Our unconditional
DDPM and the phoneme classifier can be trained using dif-
ferent datasets, making it possible to build a TTS model
with the target speaker’s untranscribed speech.

7. Conclusion
In this work, we present Guided-TTS, a new type of TTS
model that generates speech given transcript by guiding the
unconditional diffusion-based model for speech. As Guided-
TTS models unconditional distribution for speech, we can
construct a TTS model using the target speaker’s untran-
scribed data. Thanks to the properties of diffusion-based
generative models, our unconditional generative model can
generate a speech when a transcript is given by introduc-
ing the phoneme classifier trained on LibriSpeech. To the
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best of our knowledge, Guided-TTS is the first TTS model
to leverage the unconditional generative model for speech.
We showed that Guided-TTS matches the performance of
the previous TTS models on LJSpeech without the tran-
script. We also showed that Guided-TTS generalizes well to
diverse untranscribed datasets with the single phoneme clas-
sifier. We believe that Guided-TTS can reduce the burden
of constructing training datasets for high-quality TTS.
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A. Appendix
A.1. Training Details and Hyperparamters

In this section, we cover the training details and detailed
hyperparameters of Guided-TTS. We only use untranscribed
data of the various target speakers (LJSpeech, Hi-Fi TTS,
and Blizzard 2013) for training unconditional DDPMs and
we train the phoneme classifier and duration predictor on
LibriSpeech. Alignment labels are required for training the
phoneme classifier and the duration predictor, and we train
Montreal Forced Aligner (MFA) on LibriSpeech to extract
the alignment.

The unconditional DDPMs are trained with batch size 16
for all datasets. The phoneme classifier of Guided-TTS uses
a WaveNet-like structure with 256 residual channels and 6
residual blocks stacks of 3 dilated convolution layers, and
is trained for 200 epochs with batch size 64. The duration
predictor is trained for 20 epochs with batch size 64. The
speaker encoder is a two-layer LSTM with 768 channels fol-
lowed by a linear projection layer to extract 256-dimensional
speaker embedding eS , and trained for 300K iterations.

For sampling, we use the last checkpoint for the uncondi-
tional DDPM and the speaker encoder. For the phoneme
classifier and the duration predictor, we use the checkpoint
of the epoch that scores best on its respective metric (valida-
tion accuracy for the phoneme classifier and validation loss
of the duration predictor).

A.2. Hardware and Sampling Speed

We conduct all experiments and evaluations using NVIDIA’s
RTX A40 with 48GB memory. Although the main objectives
of Guided-TTS are not focused on fast inference, it can
perform real-time speech synthesis on GPU for N = 50,
which is the number of reverse steps we use for evaluation.
We measure the sampling speed of Guided-TTS using a
real-time factor (RTF). We also measure how much time it
takes to compute the unconditional score (∇Xt

log pθ(Xt))
and gradient of the classifier (∇Xt log pϕ(ŷ|Xt)). Guided-
TTS achieves an RTF of 0.486, of which 0.184 is used to
calculate the score and 0.291 is used for classifier gradient
calculation.

A.3. Out-of-Distribution (OoD) Text Robustness

From section 5.2, we have confirmed that Guided-TTS
constructs high-quality TTS models of various speakers.
Leveraging the phoneme classifier well-trained on ASR
data, Guided-TTS generates high-quality samples with pre-
cise pronunciation. Since the phoneme classifier is trained
on large-scale ASR data, Guided-TTS generates samples
from OoD texts robustly, those of which the model has not
seen in the target speaker datasets. In Table 4, we show the

Table 4: Mean Opinion Score (MOS) with 95% confi-
dence intervals of TTS models for out-of-distribution (OoD)
text (LJSpeech test set). ”Data” refers to the untranscribed
speech dataset used for each model.

Data Method 5-scale MOS CER(%)

HI-FI TTS GRAD-TTS-ASR 4.14±0.08 2.15
(ID: 92) GUIDED-TTS 4.23±0.07 0.94

HI-FI TTS GRAD-TTS-ASR 3.99±0.08 2.49
(ID: 6097) GUIDED-TTS 4.18±0.08 0.97

HI-FI TTS GRAD-TTS-ASR 3.91±0.09 2.74
(ID: 9017) GUIDED-TTS 4.15±0.08 0.84

performance and CER of the OoD samples generated by
the Guided-TTS model trained on Hi-Fi TTS. We randomly
select 50 sentences from LJSpeech’s test set for the OoD
text. And for comparison, we use Grad-TTS-ASR trained
on Hi-Fi TTS to generate speech corresponding to the OoD
text.

Through Table 4, we observe that Guided-TTS produces
high-quality samples. The CER result of Table 4 indicates
that Guided-TTS generates a sample that faithfully reflects
the OoD text. On the other hand, we confirm that Grad-TTS-
ASR produces inaccurate samples, showing worse quality
for OoD text. Through these results, we demonstrate that
Guided-TTS is a TTS model that robustly generates samples
for diverse text.

A.4. Norm of the Unconditional Score and Classifier
Gradient

The norm of the unconditional score and the gradient
norm of the classifier for each timestep are shown in
Fig. 4. We sample Xt at a total of 1000 timesteps (t ∈
( 1
2000 ,

3
2000 , ...,

1999
2000 )) using Eq. (3) for all 500 samples

from the test set of the LJSpeech. We then obtain the norm of
the unconditional score and the gradient of the classifier us-
ing the sampled Xt with Guided-TTS trained on LJSpeech.
Each norm is averaged over 500 samples for each timestep.
As shown in Fig. 4, the norm of the unconditional score
rises steeply around t = 0. This is about 70 times larger
than the norm of the classifier gradient near t = 0, which
significantly reduces the effect of the classifier guidance. To
alleviate this problem, we propose the norm-based guidance
in Section 3.2.1, which helps prevent both the gradient of the
classifier from being ignored and the issue of synthesized
speech not matching the text.

A.5. Guided-TTS with Transribed Speech Data

Guided-TTS leverages the phoneme classifier trained with
LibriSpeech for speech synthesis, taking advantage of train-
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Figure 4: The norm of the unconditional score and the classifier gradient for each timestep t. (Left) The norm of the
unconditional score (Right) The norm of the classifier gradient.

ing unconditional DDPM and phoneme classifier separately.
If transcripts corresponding to the target speaker’s speech
exist, we can train the phoneme classifier and duration pre-
dictor using the target speaker’s dataset instead of using Lib-
riSpeech. We refer to this model as Guided-TTS-T. Since
Guided-TTS-T uses the same dataset when training the un-
conditional DDPM and phoneme classifier, there is no need
for the phoneme classifier to generalize to unseen speakers,
which makes speaker encoder unnecessary for Guided-TTS-
T. For comparison, we train all modules in Guided-TTS-T
using LJSpeech.

The unconditional DDPM of Guided-TTS-T is trained using
the untranscribed speech of LJSpeech in the same way as
the unconditional DDPM of Guided-TTS. The phoneme
classifier and duration predictor of Guided-TTS-T use the
same structure and hyperparameters used in Guided-TTS.
We train the phoneme classifier for 1000 epochs and the
duration predictor for 60 epochs. Similar to Guided-TTS,
we use the checkpoint that scores best on respective metrics
(validation accuracy for phoneme classifier, and validation
loss for duration predictor) for evaluation.

The performance and CER of Guided-TTS-T are shown
in Table 5. Guided-TTS-T obtains similar performance to
Glow-TTS and Grad-TTS even when using the same amount
of training data. As demonstrated from this result, Guided-
TTS-T is a new approach to construct high-quality TTS in
a situation where the target speaker’s transcribed data is
given.

A.6. Inpainting

We perform the inpainting task to show how well the uncon-
ditional DDPM learns the dependencies in mel-spectrogram.
The pre-trained unconditional DDPM fills out the masked
part of the mel-spectrogram. We use samples from three
speakers; one female speaker (ID: 92), one male speaker
(ID: 6097) from Hi-Fi TTS, and a female speaker from

Table 5: Mean Opinion Score (MOS) with 95% confidence
intervals of TTS models for LJSpeech. ”GT MEL” repre-
sents the HiFi-GAN result of ground truth mel-spectrogram.

Method 5-scale MOS CER(%)

GT 4.45 ± 0.05 0.64
GT MEL 4.24 ± 0.07 0.77
GLOW-TTS 4.14 ± 0.08 0.66
GRAD-TTS 4.25 ± 0.07 1.09
GUIDED-TTS-T 4.23 ± 0.08 1.21

LJSpeech. Two cross-shaped masks (LJSpeech, Hi-Fi TTS
male) and one binarized MNIST (LeCun & Cortes, 2010)
mask (Hi-Fi TTS female) are used for masking. We set 1000
as the number of reverse steps N and τ = 1.5 for inpainting.
The method of inpainting is the same as Song et al. (2021b),
and the algorithm is as follows:

Algorithm 2 Inpainting Mel-spectrogram

Binary Mask: M , Original mel-spectrogram: X̂0

θ: parameter of unconditional DDPM
X1 ∼ N (0, τ−1I)
for i = N to 1 do
t← i

N

ρ(X̂0, t)← e−
1
2

∫ t
0
βsdsX̂0

λ(t)← I − e−
∫ t
0
βsds

X̂t ∼ N (ρ(X̂0, t), λ(t))
Xt ← Xt ⊙M + X̂t ⊙ (1−M)
zt ∼ N (0, τ−1I)

Xt− 1
N
← Xt+

βt

N ( 12Xt+∇Xt log pθ(Xt))+
√

βt

N zt
end for
return X0 ⊙M + X̂0 ⊙ (1−M)

The inpainting results are shown in Fig. 5, where (a)
is the original mel-spectrogram, (b) is the masked mel-
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Figure 5: Mel-spectrogram inpainting results of unconditional DDPM trained on LJSpeech, and two speakers (Speaker ID:
92, 6097) from Hi-Fi TTS.

spectrogram, and (c) is the result of inpainting on the masked
part. As shown in Fig. 5, we show that the unconditional
DDPM of Guided-TTS learns the adjacent frequency and
temporal dependencies of the mel-spectrogram. Samples of
inpainting results are provided on the demo page.


