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Abstract

Saliency methods are a popular class of feature
attribution explanation methods that aim to cap-
ture a model’s predictive reasoning by identifying
“important” pixels in an input image. However,
the development and adoption of these methods
are hindered by the lack of access to ground-truth
model reasoning, which prevents accurate evalu-
ation. In this work, we design a synthetic bench-
marking framework, SMERF, that allows us to
perform ground-truth-based evaluation while con-
trolling the complexity of the model’s reasoning.
Experimentally, SMERF reveals significant limita-
tions in existing saliency methods and, as a result,
represents a useful tool for the development of
new saliency methods.

1. Introduction

Saliency methods are a popular tool to help understand the
behavior of machine learning models. Given a model and
an input image, these methods output a feature attribution
that indicates which pixels they deem to be most “important”
to the model’s prediction (Simonyan et al., 2013; Sundarara-
jan et al., 2017; Lundberg & Lee, 2017). Then, a natural
question to ask is: how do we define “important” and sub-
sequently evaluate the efficacy of these methods?

One intuitive approach to answering this question is to mea-
sure how well a saliency method locates the expected pixels
of interest in the input image. In fact, this so-called “point-
ing game” (Zhang et al., 2018) is one of the predominant
evaluations used today (Zhou et al., 2016; Selvaraju et al.,
2017; Chattopadhay et al., 2018; Woo et al., 2018; Gao et al.,
2019; Arun et al., 2020). Current versions of this evaluation
rely on external knowledge to define an expected feature
attribution that highlights the region that a human would
expect to be important for the given task. Then, the quality
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Figure 1. Top. Existing pointing game evaluations do not have
access to ground-truth feature attributions but instead rely on ex-
pected feature attributions. For instance, while a model trained to
identify a baseball bat is expected to rely on the baseball bat region
of the image (top), it may rely on a more complex reasoning by
using the presence of a hitter and a glove to identify a bat (bottom).
Bottom. SMERF constructs a synthetic set of tasks that are stylized
versions of real object classification tasks. Consider the task of
identifying the letter ‘B’ in an image, where the letter and the two
boxes correspond to the bat, the hitter, and the glove, respectively.
SMEREF controls the model’s underlying reasoning via simulations
over different data distributions, providing ground-truth feature
attributions used to evaluate saliency methods (in this example, a
model is relying on two boxes to identify the letter).

of a saliency method is measured using the overlap between
its output and this expected feature attribution by metrics
such as Intersection-Over-Union (IOU) (See Section 4).

Unfortunately, this approach has two key limitations. First,
the results are unreliable when the model’s ground-truth
reasoning does not match human expectations, e.g., when
the model is relying on spurious correlations. This is partic-
ularly problematic because detecting such discrepancies is
one of the motivating use cases of saliency methods. Sec-
ond, existing versions are based on relatively simple object
classification tasks where we expect only a single region of
the image, i.e., the object itself, to be relevant to the predic-
tion. In practice, there exist more complex tasks, e.g., in
medical imaging or autonomous driving, where considering
interactions among multiple regions of the image may be
necessary for the model to achieve high predictive accuracy.

These two limitations highlight the same fundamental con-
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cern: we do not know a priori what or how complex the
model’s reasoning will be, irrespective of how simple we
think the underlying task is. For instance, the top panel of
Figure 1 considers the seemingly simple task of identifying
a baseball bat in an image. Based on the description of the
task, we might expect the model to use simple reasoning,
which we define as relying on a single region of the im-
age, e.g., the bat itself, to make its prediction. If this is the
case, the expected feature attribution should highlight the
bat only. However, if the model actually uses more complex
reasoning, which we define as relying on interactions among
multiple regions of the image, e.g., using the presence of a
hitter and a glove to identify a bat, the actual ground-truth
feature attribution should highlight the hitter and the glove,
not the bat. As illustrated through this example, the correct
evaluation of saliency methods fundamentally depends on
the model’s ground-truth reasoning.

Consequently, we aim to address these key limitations by
controlling the model’s ground-truth reasoning. To do this,
we start by generating synthetic images composed of sim-
plified objects and consistent backgrounds that are stylized
versions of real-world scenarios (e.g., Figure 1 Bottom).
Then, by controlling the distribution and label of these im-
ages, we can induce and then verify a specific ground-truth
reasoning for the model. By repeating this process for dif-
ferent levels of reasoning complexity, we build a benchmark
called Simulated ModEI Reasoning Evaluation Framework
(SMERF) that can evaluate saliency methods against ground-
truth model reasoning.

Using SMERF, we consider seven distinct model reasoning
settings with varying complexity, and perform an extensive
evaluation of 10 leading saliency methods for each setting.
Our analyses are summarized in Figure 2 and discussed at
length throughout Section 4. We observe that for simple
reasoning settings, leading saliency methods perform rea-
sonably well on average, though still exhibit certain failure
cases (Section 4.1). We further observe clear performance
degradation as we increase model reasoning complexity. In-
deed, in all complex reasoning settings, none of the methods
meet our (lenient) definition of correctness', and all of them
demonstrate acute failure cases (Section 4.2, 4.3).

Our results highlight major limitations of existing saliency
methods, especially given the relative simplicity of SMERF’s
synthetic evaluation tasks. We further illustrate how
SMERF’s synthetic evaluations translate to more natural im-
ages, by presenting qualitatively similar yet generally worse
results on analogous reasoning tasks that leverage natural
image backgrounds instead of synthetic ones (Section 4.4).

"While we view the IOU > 0.5 as a lenient definition of correct-
ness in synthetic settings, this value is commonly used in practice
when evaluating on real tasks (Everingham et al., 2015; Wang
et al., 2019).
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Figure 2. Summary of ground-truth-based evaluation of saliency
methods via SMERF. Left. In simple reasoning settings, where the
model relies on a single region of the image to make its prediction,
average performance (blue) is reasonably good for most of the
methods. However, all methods still demonstrate failure cases
as shown by minimum performance (orange) over various tasks.
Right. In more complex reasoning settings, where the model relies
on interactions among multiple regions of the image, average
performance drops with more acute failure cases.

2. Related Work

Pointing Game Evaluation. The pointing game, which
measures how well a saliency method identifies the relevant
regions of an image, is one of the predominant ways to
evaluate the efficacy of these methods (Zhou et al., 2016;
Selvaraju et al., 2017; Chattopadhay et al., 2018; Woo et al.,
2018; Gao et al., 2019; Arun et al., 2020). Many existing
pointing game evaluations lack access to ground-truth model
reasoning but instead rely on expected feature attributions
generated by domain experts. Intuitively, this might appear
to be reasonable by observing that the model has high test
accuracy and concluding that it must be using the correct
reasoning. However, datasets often contain spurious cor-
relations and, as a result, a model may be able to achieve
high test accuracy using incorrect reasoning. Consequently,
these evaluations have confounded the correctness of the
explanation with the correctness of the model. SMERF elim-
inates this confounding factor by leveraging the model’s
ground-truth reasoning, which allows us to demonstrate that
several methods previously deemed to be effective are in fact
sometimes ineffective for more complex model reasoning.

Yang & Kim (2019); Adebayo et al. (2020) try to address
this same limitation using semi-synthetic datasets where the
ground-truth reasoning is known by combining the object
from one image with the background from another. Both
analyses are based on the simple reasoning setting and, in
that setting, our results roughly corroborate theirs. However,
our analysis extends to more complex reasoning settings
and demonstrates that methods that worked in the simple
reasoning setting mostly perform much worse in these set-
tings. It is important to consider the complex reasoning
setting because we do not know how complex the model’s
reasoning is in practice (e.g., a model may rely on a spurious
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correlation and use complex reasoning for a simple task).

A concurrent work by Zhou et al. (2022) introduces a similar
semi-synthetic pipeline for testing saliency methods, where
a family of image manipulations is applied to the input
so that the ground-truth impact of specific features on the
model prediction is known. Whereas Zhou et al. (2022)
focuses on model reasoning that relies on a single artificial
feature in the image, we establish a complementary criteria
for saliency methods by focusing on a more diverse set of
model reasoning complexity induced by interactions among
different features in the image.

Direct Criticisms of Saliency Methods. Adebayo et al.
(2018) uses two sanity checks that measure the statistical
relationship between a saliency method and the model’s
parameters or the data it was trained on. They found that
only a few methods (i.e., Gradient (Simonyan et al., 2013)
and Grad-CAM (Selvaraju et al., 2017)) passed these tests.
Kindermans et al. (2019) similarly tests several saliency
methods for input invariance and finds that the Gradient
satisfies the property while other methods generally do not.
While SMERF is orthogonal to such types of analyses, it
demonstrates that even methods that pass these tests have
failure cases (as shown in Figure 2). Shah et al. (2021)
suggests that a model’s adversarial robustness impacts how
well the Gradient is able to correctly focus only on the
relevant features. SMERF verifies this observation for simple
reasoning, and further shows that the problem persists in
complex reasoning settings even for robust models for all
tested methods.

Other Evaluations. Beyond the pointing game, several
proxy metrics have been proposed to evaluate saliency meth-
ods (Bach et al., 2015; Ancona et al., 2018; Alvarez Melis
& Jaakkola, 2018; Hooker et al., 2019). Additionally, Liu
etal. (2021) introduces a benchmarking framework based on
synthetic datasets sampled from different types of Gaussian
distributions to evaluate the methods on these proxy metrics.
However, Tomsett et al. (2020) shows that several popular
proxy metrics inherently depend on subtle hyperparameters
that are not well understood and that this leads to analyses
with inconsistent results. The unreliability of these popular
proxy metrics further emphasizes the advantage of using a
more intuitive evaluation like SMERF'. Similar setups with
humans in the loop are also being introduced to measure
the user’s perception of the feature attributions in detecting
model biases (Sixt et al., 2021).

3. Methods

SMERF is a synthetic evaluation benchmark where several
types of ground-truth model reasoning, ranging from simple
to complex, are generated to test a saliency method’s ability
to recover them. We first describe several types of model
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Figure 3. Given true features X and spurious features F' in the
training data, the model may exhibit simple or complex reasoning
depending on how it relies on X and/or F'. No-Reliance (NR) and
Full-Reliance (FR) denote settings where the model relies solely on
X or F|, respectively. Conditional Reliance (CR) denotes settings
where the model depends on both X and F'. SMERF allows us
to control the model’s reasoning and to thus evaluate saliency
methods against the ground-truth feature attribution (denoted in
red) derived from this underlying reasoning.

reasoning that are motivated by real-world examples and
then captured in SMERF’s synthetic family of datasets called
TextBox. We then explain the data generation and training
process in SMERF with TextBox. Additional details are
in Appendix A.

3.1. Types of Simple and Complex Model Reasoning

We are interested in evaluating the performance of saliency
methods in capturing both simple and complex model rea-
soning, where the complexity of reasoning is defined based
on whether the model relies on a single or multiple regions
of the image. We next describe three different ways in which
a model may exhibit simple or complex reasoning character-
ized by the model’s reliance on the true set of features (X)
and/or the set of spurious features (F').

Consider the model trained to detect a baseball bat from
Figure 1. The model may correctly rely on the true set of
features (e.g. the bat), without relying on spurious features
(e.g. the glove or the hitter). We denote models that exhibit
no reliance on spurious features as the No-Reliance (NR)
setting (Figure 3, left). Another model could instead depend
on the existence of the glove and the hitter, thus fully relying
on spurious features, a setting we call Full-Reliance (FR)
(Figure 3, middle). Finally, the model may rely on both the
true and the spurious sets of features (Figure 3 right), a set-
ting we denote as Conditional-Reliance (CR). For instance,
a model may learn to rely on the glove only when the hitter
is present, but otherwise on the bat itself for the prediction.

CR by default prescribes complex reasoning due to its condi-
tional nature. In contrast, the complexity of model reasoning
for NR and FR depends on how many objects are included
in X and F': simple when X and F’ each consists of fea-
tures corresponding to a single object, and complex when
they consist of multiple objects. It is notable that existing
pointing game evaluations in the literature are performed
with respect to a simple reasoning under the assumption that
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Figure 4. Features in the TextBox datasets.

the model exhibits NR, with X being the single object of
interest (Zhou et al., 2016; Selvaraju et al., 2017). Moreover,
previous controlled setups for evaluating saliency methods
were limited to simple model reasoning in the FR setting,
e.g., setting I as the background and X as a single object
of interest (Yang & Kim, 2019; Adebayo et al., 2020).

SMERF instantiates simple and complex model reasoning
across these three settings by creating a family of datasets
called TextBox. These datasets all consist of 64-by-64
pixel images with black background that include three types
of white objects in random locations of each image (Fig-
ure 4): Text, ‘A’, ‘B’; Box1, a 10-by-10 box; and Box2, a
4-by-4 box. SMERF simulates the objects’ relationship with
the labels (as in Figure 3) to control the model reasoning
for X = Text, F = {Box1, Box2}. Note that the choice of
these features are arbitrary — they can be replaced by other
shapes, colors, and backgrounds.

3.2. Training Models with Ground-truth Reasoning

SMEREF first creates an appropriate training dataset for a
particular desired model reasoning. Specifically, SMERF
starts by generating 12 buckets® of images (as shown in
Figure 5), where each bucket contains images with partic-
ular X and F', and an associated label designated by the
desired model reasoning. More formally, considering the
joint distribution p(X, F,Y"), each bucket will be composed
of images with features X = x, F' = f along with the
label y ~ p(Y'|X = x, F' = f) determined by the specified
model reasoning, with different images in each bucket vary-
ing by the location of the features. A convolutional neural
network?® is trained on the entire set of buckets, which is
then validated with unseen data points from each bucket

The total number of buckets depends on the cardinality of X
and F, as we create buckets for all possible (X, F') value pairs;
hence for TextBox datasets we consider 12 buckets: there are
three different values for Text (Nothing, ‘A’, or ‘B’), two for Box1,
and two for Box2, resulting in a total of 12 distinct combinations
(Appendix A.1).

3We consider a shallow CNN, AlexNet (Krizhevsky et al.,
2012), and VGG16 (Simonyan & Zisserman, 2014) for the model
architectures. The results in Section 4 are from the shallow CNN,
and we observe similar results from other deep architectures, as
reported in Section 4.3 and Appendix B.6.

to ensure that the ground-truth model reasoning has been
properly learned. Because the data distribution is simulated,
we can generate arbitrary number of images from differ-
ent buckets which differ only in terms of a single feature
and use them to confidently verify that specific features are
responsible for the model’s prediction. Repeating this for
all possible subsets of features effectively ensures that the
model follows the intended reasoning. Ground-truth feature
attributions are derived from this verified model reasoning
and are later used for evaluating saliency methods.

Figure 5 depicts the steps of dataset generation and model
training/validation for complex model reasoning with FR.
In this example, we want the labels to depend only on the
presence of both boxes, thus providing positive labels only
for the three buckets that include both boxes (buckets 10-12),
and negative labels for the nine buckets that include at most
one box (buckets 1-9). We verify that the model learns the
desired model reasoning, as it achieves near-perfect accu-
racy on unseen samples from each bucket. The ground-truth
model reasoning provides ground-truth feature attribution
shown in the table of Figure 5, defining regions the saliency
methods should focus and/or avoid for images from each
buckets. This information will later be used to evaluate the
feature attributions obtained from the saliency methods.

4. Experiments

We use SMERF and the TextBox datasets to show the per-
formance of leading saliency methods for different types of
model reasoning presented in Table 1 with varying complex-
ity (the example from Figure 5 corresponds to Complex-FR
in the third column). For simple reasoning (Section 4.1), we
find that saliency methods perform reasonably well (with a
few exceptions), which is generally consistent with previous
pointing game evaluations. However, we observe a general
trend of decreasing performance when input images become
more “saturated” (i.e., filled with more objects), even when
the model’s underlying reasoning does not change. For
complex reasoning (Section 4.2), the average performance
for all methods decreases, with several failure cases due to
methods focusing more on irrelevant objects. As a result,
feature attributions qualitatively become indistinguishable
across different model reasoning, raising practical concerns
since users in general do not know the type of reasoning
being used (and in fact would potentially rely on saliency
methods to get this information). We further show that a
similar trend is present when varying factors like model
architecture choice and robust training (Section 4.3). And
when the images contain more natural backgrounds (Sec-
tion 4.4), even lower worst-case performance is observed.
Additional details about the results are in Appendix B.

Saliency Methods and Baselines. We use a modified ver-
sion of the open-source library iNNvestigate(Alber
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Figure 5. Workflow of SMERF for a model with FR on Box1 and Box2, where the model predicts 1 if both boxes are present, otherwise 0
(Complex-FR in Table 1). Twelve buckets of images each composed of different sets of features are generated. These are then labeled
according to the model reasoning. The model is then trained/validated on samples from each bucket. The ground-truth feature attribution
should focus/avoid certain objects in the image, as labels depend on specific objects only, e.g. labels do not depend on Text, but only on
both Boxes (shown in the table). Feature attributions from saliency methods are compared against this ground-truth.

Name Simple-FR Simple-NR Complex-FR Complex-CR1 Complex-CR2 Complex-CR3 Complex-CR4
Reasonin ifB2&BI: I; ifBl & B2: I; ifB2 & T=A: 0; ifBl & T=A: 0;
(He\?{b kgt ifBI1: 1; ifT=A:0;  ifBI&B21; ifB2&NOBI:0; ifBl&NOB2:0; if B2 & T=B: I; if B & T=B: I;
0 X b“f ;’)S otherwise: 0 if T=B: 1 otherwise: 0 ifNOB2 & T=A:0; ifNOBI&T=A:0; ifNOB2&BI: I; if NOBI & B2: 1;
are labele ifNOB2&T=B:1 ifNOBl&T=B:1 ifNOB2&NOBI:0 ifNOBI&NOB2:0
# of Buckets 2 8 2 10 10 10 10
ID of Buckets 12,3,4,5.6 258,11 1,2,3,4,5,6,7,8.9 24,568 2,5,7.8.9 123,511 123,811
Labeled 0
ID of Buckets ;¢ o 11 15 3,6.9,12 10,11,12 3,9,10,11,12 3,6,10,11,12 6,7.8.9,12 4569,12
Labeled 1
ID of Undefined None 1,4.7,10 None 14 4,10 7,10
Buckets
Obiect 12.3.456: N 23568 12,345 2380: T 2356: T 123 N 123N
. P!“ S 7,8.9,10, TR 6,7.8.9: N 4,5,6: B2 7,89: Bl 5,6,11,12: B2,T 4,5,6: B2
0 rocus 11,12: Bl s 10,11,12: B1,B2  10,11,12: B1, B2 10,11,12: B1, B2 7.8,9:B1 8,9,11,12:B1,T
I: N 2,3: N . . . .
Objects 2380 T o B2 147.10: N 23,4,10: N 2,3,7,10: N 1,56,7: N 14,89 N
- 8,9: Bl 5,6: B2 2389: T 2356 T
to Avoid 4,10: B2 8.9: Bl 235,611,12: T S6 1112 T o1l 1o T Bl B
56,11,12: B2, T 11,12: B1,B2 R bl A S

Table 1. The seven model reasoning settings considered in the experiments (Section 4). Each column represents a model reasoning setting
that belongs to one of the three categories depicted in Figure 3. B1 stands for Box1, B2 stands for Box2, T stands for Text, and N stands
for None (see Figure 4). Depending on the reasoning, there are different numbers of buckets that belong to the positive/negative classes,
and different objects that feature attributions should focus on/avoid. Bucket ID numbers are taken from Figure 5, which corresponds to the
setting described in the third column of this table (Complex-FR). See Appendix A.1 for more details.

et al., 2019) which includes several implementations of
leading saliency methods. We use the following methods:
Gradient (G) (Simonyan et al., 2013), SmoothGradients
(SG) (Smilkov et al., 2017), DeConvNet (DCN) (Zeiler &
Fergus, 2014), Guided Backpropagation (GBP) (Springen-
berg et al., 2015), Deep Taylor Decomposition (DT) (Mon-
tavon et al., 2017), Input*Gradient (I*G) (Shrikumar et al.,
2017), Integrated Gradients (IG) (Sundararajan et al., 2017),
and Layerwise Relevance Propagation (LRP) (Bach et al.,
2015) (four variations: LRP-z, LRP-¢, LRP-Ab, LRP-Bb),
DeepLIFT (DL) (Shrikumar et al., 2017) (two variations:

DL-RC (using Reveal-Cancel rule), DL-R (using Rescale
rule)), Grad-CAM (G-CAM) (Selvaraju et al., 2017), and
DeepSHAP (D-SHAP) (Lundberg & Lee, 2017). We also
add some simple baselines, like Random (random-valued
feature attribution) and Edge-detection (Edge), both of
which are model-independent and therefore are not useful
in understanding the model reasoning.

Evaluation Metrics. Typical pointing game evaluations
measure the performance of saliency methods with the
Intersection-Over-Union (IOU) metric (Everingham et al.,
2015; Zhou et al., 2016). This metric computes the ratio
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Figure 6. (a) PAFL (left) and SAFL (right) for Simple-FR and Simple-NR (Table 1). The black vertical lines indicate the standard
deviation across different buckets. Most methods perform well on average, with reasonable PAFL and low SAFL. The methods on the left
part of the plot (G, SG, CGN, CBP) are the exception. The colored lines indicate average performance for different buckets that have
either Text or Box1 (i.e. the irrelevant features) present (o) or absent (x). (b) PAFL decreases and SAFL increases as the number of objects
(regardless of their relevance to the prediction) increases, which indicates that the methods perform worse as images become “saturated.”

of the area of the intersection to the area of the union of
the binary-masked feature attribution and the ground-truth
feature attribution. The binary-masked feature attribution
is obtained by first blurring the original feature attribution
averaged across the three color channels, followed by thresh-
olding the pixel intensity to select the top- K pixels, where
K is equal to the number of pixels that contain the object of
interest. Given the popularity of this metric, we perform ex-
tensive experiments with it: Figure 2 summarizes the results,
which are consistent with those of our main results.

However, we find that IOU loses information about raw attri-
bution values on extra objects when thresholding to generate
the binary-masked feature attribution for evaluation. It is
therefore more likely to disregard non-trivial signals from
extra objects in the image (see Appendix A.4).

To address these issues, we also consider a previously intro-
duced (Wang et al., 2020) but unnamed metric that we call
Attribution Focus Level (AFL). This metric quantifies the
proportion of the total attribution values that are assigned
to the region of interest. Given the raw, normalized feature
attribution values, it is the sum of values assigned to pix-
els inside the region of interest. Intuitively, values near 1
indicate a stronger level of focus on the region of interest.
‘We define a threshold value of 0.5, chosen to indicate that
more than half of the total attribution values is focused on
the object, to roughly distinguish good and bad performance
in terms of AFL.

To better account for the relationship among multiple fea-
tures in the image, we use two types of AFL: (1) Primary
AFL (PAFL), which measures the level of focus on the cor-
rect (primary) features that are relevant for the prediction
(corresponding to objects to focus in Table 2 and Figure 5),
and (2) Secondary AFL (SAFL), which measures the same

quantity for the incorrect (secondary) features that are irrel-
evant for the prediction (corresponding to objects to avoid in
Table 2 and Figure 5, excluding background). Notably, the
sum of PAFL and SAFL is upper bounded by 1, so PAFL
> 0.5 implies that PAFL > SAFL, which further indicates
that the feature attribution correctly focuses more on the
relevant features than the irrelevant ones (our definition of
“success”). Conversely, when SAFL > PAFL, the feature at-
tribution incorrectly focuses more on irrelevant regions and
is thus considered undesirable (our definition of “failure”).

4.1. Simple Reasoning Setting

For a high-level understanding of how the methods gener-
ally perform, we plot PAFL and SAFL averaged across all
buckets for simple reasoning instantiated with Simple-FR
and Simple-NR (grey vertical bars in Figure 6a). We ob-
serve that most of the methods, except for G, SG, DCN,
and GBP, perform reasonably well, with PAFL exceeding
the 0.5 correctness threshold and SAFL being lower. This
reasonable level of performance aligns with what existing
evaluations in the literature have shown with simple reason-
ing (Selvaraju et al., 2017; Adebayo et al., 2020).

Despite their reasonable performance in average, we ob-
serve a trend that PAFL decreases and SAFL increases as
more objects are visible in the image, even though the model
reasoning remains simple. The colored lines in Figure 6a
exemplify this trend by showing per-bucket performance for
two different buckets in Simple-FR (blue and orange) and
Simple-NR (green and red) each. For both reasoning, all
methods show lower PAFL on buckets where an irrelevant
object (Text for Simple-FR in blue and Box1 for Simple-
NR in green) is present, compared to buckets where that
object is absent (orange and red). This means that part of
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Figure 7. Top: The fraction of buckets for which the methods are
successful (i.e., PAFL > 0.5). Most success cases (white) are
concentrated on simple reasoning setting. Bottom: The cases
where the method fails due to wrong focus (i.e., SAFL > PAFL)
on more than half of the buckets for each reasoning (colored with
black). Most failure cases are concentrated on complex reasoning,
which aligns with increasing SAFL observed in Figure 8a.

the feature attribution originally assigned to the relevant
object shifts to the irrelevant ones when they are visible
in the image. Figure 6b verifies this trend for all buckets
containing different number of visible objects: PAFL from
buckets with fewer objects strictly upper bounds PAFL from
buckets with more objects, while SAFL increases along with
the number of objects. These variations in AFL based on the
number of objects in the image lead to non-trivial variance
across buckets as shown with black vertical error bars (stan-
dard deviation) in Figure 6a. Qualitative examples confirm
this undesirable dependence of methods’ AFL values on the
number of objects in the image (Appendix B.2).

To better view the success/failure cases, we record the frac-
tion of buckets that contain both relevant and irrelevant
features for which each method is considered successful and
indicate it with a color ranging from black (0) to white (1)
(Figure 7 Top). For simple reasoning (the first two rows),
methods in the middle (I*G through DL) have relatively
higher success rates overall. Among these, DL-R is the only
method that succeeds in all buckets for both types of simple
reasoning. Methods like G, SG, DCN, and GBP fail to be
successful for all buckets.

4.2. Complex Reasoning Setting

We consider 5 types of complex reasoning in Table 1:
Complex-FR, and Complex-CR1 through Complex-CR4.
Compared to the simple reasoning case, PAFL drops for
all methods (grey vertical bars in Figure 8a). Methods
with strong performance in simple reasoning settings (IG,
LRP, and DL) narrowly meet the correctness threshold for

complex reasoning settings, while those with decent perfor-
mance (G-CAM and D-SHAP) suffer from bigger drops in
PAFL. Methods like G, SG, DCN, and GBP, which showed
weak performance in simple reasoning settings, continue to
show low PAFL.

In addition to lower average PAFL overall, we see an in-
crease in SAFL for complex reasoning. In some cases,
SAFL approaches the 0.5 threshold, demonstrating a clear
failure by focusing on the wrong object(s) more (grey bars
in Figure 8a right). This is immediately verified in Figure 7
(top), where with a single exception (LRP-¢ on Complex-
FR), none of the methods are successful in all of the buckets
for complex reasoning (rows below the red dotted line). Fig-
ure 7 (bottom) further demonstrates that the majority of the
buckets show failures for complex reasoning (colored with
black), contrary to simple reasoning (mostly white).

We next measure the worst-case performance of different
methods (i.e., by evaluating the worst-performing buckets
for each method, as we also visualized in Figure 2). We
observe that the worst-case PAFL for complex reasoning
is much lower than that for simple reasoning (Figure 8b).
Qualitative samples from these worst-performing buckets
speak for the low PAFL with clear lack of focus on the
relevant features (Appendix B.2).

Moreover, we observe that per-bucket performance varia-
tion is more extreme in complex reasoning settings. For
instance, per-bucket performance on Complex-CR2 (blue,
orange, and green lines in Figure 8a) shows that most meth-
ods are successful in a bucket where only Box2 is present
(orange), while for other buckets with only Box1 (blue) or
both Boxes (green), all methods clearly fail. Such variation
is also visible across other types of complex reasoning (Ap-
pendix B.3). These altogether contribute to higher variance
of performance for complex reasoning settings (indicated
with black vertical error bars in Figure 8a), higher than the
simple reasoning settings (Figure 6a).

Finally, we contextualize the aforementioned failure cases
of saliency methods from a practitioners’ perspective, who
are not aware of the type of model reasoning used, but are
relying on the feature attributions for this information. By
failing to point to only the correct set of features, these meth-
ods are likely to mislead practitioners. Figure 9 visualizes
the feature attributions from IG (one of the best methods in
our evaluation) for each model reasoning (see Appendix B.5
for other methods). Essentially all objects are highlighted
in all samples, and it is thus not clear how to discern the
underlying model reasoning from any of them. For example,
Box1 appears to be the most important object according to
the feature attributions in the third row, even when this ob-
ject is clearly not part of the model reasoning for Simple-NR
(3rd column) and Complex-CR1 (5th column).
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Figure 8. (a) PAFL and SAFL for complex reasoning. Average performance on PAFL is mostly lower than 0.5, with worse performance
compared to the results for simple reasoning. Further, SAFL increases significantly (to the point where it is on par with PAFL for some
methods). Per-bucket performance variation for Complex-CR2 (from Table 1) is plotted with colored lines, each color corresponding to
the methods’ performance on a bucket with either Box1 or Box2 present (o) or absent (x). (b) Worst-case buckets show worse PAFL
values in complex reasoning (red) with a sharp drop from simple reasoning setting (blue).
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Figure 9. Feature attributions from Integrated Gradients for differ-
ent model reasoning on four inputs from different buckets, labeled
with their relevant features to highlight. Essentially all objects in
the image are highlighted, making it difficult to identify which
type of model reasoning is used for each column.

4.3. Impact of Model Architecture and Robustness

We next vary the model’s architecture and its robustness
and show that the trends we observed in previous sections
persist.

Model Architecture. We repeat the same set of experiments
with AlexNet (Krizhevsky et al., 2012) and VGG16 (Si-
monyan & Zisserman, 2014) to confirm that the trends we
observe for the saliency methods are not the artifact of
model architecture choice. Figure 10 shows similar trends
we have observed so far: both the average (blue lines) and
the worst-case performance drops (orange lines) as the rea-
soning becomes more complex (comparing solid against
dotted lines). For more details, see Appendix B.6.

Adversarial Robustness. It has been previously suggested
that Gradient feature attribution applied on adversarially
robust models tend to better ignore the signals from spurious
objects in the image (Shah et al., 2021). We verify that this
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Figure 10. 10U results on VGG16 (Left) and AlexNet (Right).
For both models, all methods show drops in both average (blue)
and worst-case (orange) performance on complex reasoning (solid
lines) compared to simple reasoning (dotted lines).

trend for Gradient feature attribution is somewhat true, yet
the general problem persists for most of the methods even
for robust models (Madry et al., 2018), in both simple and
complex reasoning settings (Figure 11). While Gradient (G)
and SmoothGradient (SG)’s performance on robust models
(solid lines) is higher compared to plain models (dotted
lines) for simple reasoning, we still observe performance
drops in complex reasoning throughout all methods. For
more details, see Appendix B.7.

4.4. Extending to Natural Image Backgrounds

In previous sections we focused on images with uniform
black background. With this black background, we aimed to
make it easy for the model to identify the objects present in
the image. We also expected that this simplistic background
would improve the performances of the saliency methods®.

However, we can simulate more realistic scenarios by replac-
ing the black background with natural images. To this end,
we replace the background of the Text Box datasets with

*We also run experiments using random noise pixels for the
background and observe performance drops (Appendix B.8).
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Figure 11. 10U results on robust models trained against PGD at-
tacks (solid lines) and plain models (dotted lines, taken from Fig-
ure 2) for simple (left) and complex reasoning settings (right).
Robust models show higher average performance for Gradient and
SmoothGradient in simple reasoning compared to plain models,
as suggested in (Shah et al., 2021). Nevertheless, there still are
performance drops for complex reasoning across all methods.
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Figure 12. Minimum PAFL comparison between cases with uni-
form black background (dotted lines) and real background (solid
lines). We observe a decrease in performance when moving from
simple (blue) to complex reasoning (red) even for the real back-
ground case. Due to more noise from the background, the overall
PAFL values are lower for the real background case.

real images of baseball stadiums, chosen to simulate tasks
that are more similar in spirit to the one depicted in the top
panel of Figure 1, sampled from the Places dataset (Zhou
et al., 2017), while still reasoning over the same objects
(Text, Box1, Box2), and repeat the experiments in Sec-
tions 4.1 and 4.2.

Figure 12 shows the summary of results on images with
real backgrounds (solid lines), comparing them to what
was observed in Sections 4.1 and 4.2 on images with black
backgrounds (dotted lines, identical to Figure 8b). There are
two types of performance drop observed. First, we observe
a similar drop as we move from simple (blue solid line) to
complex (red solid line) reasoning for both the black and real
background settings. Second, we see a general performance
drop in the real background setting as compared to the black
background setting. For instance, in the real background
setting, all methods are far from the threshold even for
simple reasoning settings (solid blue line), which differs
from results in the black background setting (dotted blue

line). See Appendix B.9 for more details.

Collectively, these results suggest that the performance of
these saliency methods is likely to further deteriorate under
even more realistic, noisier scenarios. They thus highlight
the importance of consistent success in controlled (synthetic)
settings as a stepping stone to success in real-world settings.

5. Conclusion

Using SMERF, we created seven stylized prediction tasks
which revealed significant shortcomings of existing saliency
methods, especially in their ability to recover complex
model reasoning. We further corroborated the main results
with additional results using natural image backgrounds,
demonstrating similar qualitative trends but degraded quan-
titative performance. SMERF serves as a natural bench-
mark to evaluate saliency methods’ correctness, and our
results suggest that it can roughly provide an optimistic up-
per bound of a method’s performance in more complicated
real-world scenarios.

We believe that SMERF can play an important role in guid-
ing future methodological advances to overcome the demon-
strated shortcomings of current saliency methods by system-
atically and quantitatively defining what correct behavior
looks like on various tasks. Moreover, SMERF can be ex-
tended over time as new methods are developed that perform
consistently well on these stylized settings, by generating
more sophisticated perception and reasoning tasks, e.g., by
introducing semi-synthetic objects and/or encoding more
complex reasoning through which the objects impact pre-
dictions. To facilitate this process, we provide source code’
that allows a user to (i) run the entire pipeline from generat-
ing datasets to computing results; and (ii) evaluate new tasks
by encoding new model reasoning and new methods. Fi-
nally, generalizing the main ideas behind SMERF may also
be useful in settings where saliency methods are inherently
not appropriate, e.g. problems that require counterfactual
model explanations (Wachter et al., 2017).
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A. Experiment Details

The repository of code used to generate the dataset and the results in the paper is available here®.

A.l. TextBox Dataset

The model for each reasoning was trained on a different number of training data points, based on the number of buckets
available to the dataset, as shown below in Table 2. The total number of buckets depend on how the reasoning is set up
(according to Table 1), i.e. how the labels are given based on the various combinations of features present/absent in the
image. Based on this reasoning, primary and secondary objects are determined, which are objects in the image that should
be highlighted (relevant for the prediction) and that should not be highlighted (not relevant for the prediction) respectively.
If the object of interest is absent in the image, the corresponding primary/secondary metrics are not computed for further
evaluations.

Name Simple-FR  Simple-NR Complex-FR Complex-CR1 Complex-CR2 Complex-CR3 Complex-CR4
Total Training 24000 16000 36000 150000 150000 150000 150000
.. 2000 (for 0)
Training/bucket 2000 2000 6000 (for 1) 15000 15000 15000 15000
Total Validation 6000 4000 6000 4000 4000 4000 4000
Validation/bucket 500 500 500 400 400 400 400

Table 2. The seven model reasoning settings considered in the experiments (Section 4) number of data points used. The total number of
data points depend on a potential class imbalance between positive and negative samples, along with the total number of buckets.

Note that while all seven settings start with twelve buckets of images (since the same set of features is used throughout),
some buckets may end up with undefined labels and will not be used to train the model. For instance, Simple-NR (second
column of Table 1) has 8 labeled buckets instead of 12, because images from four buckets without any Text (Buckets 1,
4,7, 10 in Figure 5) have undefined labels given that the specified model reasoning relies on Text to produce a label. To
balance the number of positive and negative samples in the dataset, more instances are sampled from buckets 10-12 for the
training data for Complex-FR in particular. Finally, we note that even for a specified model reasoning, the object to focus on
and/or avoid may differ across buckets. For instance, because Simple-NR relies only on Text for predictions, Text is always
the object to focus for buckets in which it is present In contrast, Box1 and Box2 are objects to avoid in buckets when they
appear, but of course cannot be avoided in buckets 2 and 3 where they do not appear in the first place.

TextBox dataset is generated by sampling a random vector, each element indicating a specific feature the image should
exhibit. The features include: the type of Text, location of the Text, color of the character, the background color, existence of
Box1 and/or Box2. When randomly placing Box1 and/or Box2 on top of the Text images, the locations of these objects are
constrained to avoid overlapping with one another. The resulting images have a dimension of 64-by-64 with three color
channels. The pixel values are scaled to be between 0 and 1. In Figure 13, we show some examples of data points for each
reasoning, along with their labels, primary objects, and secondary objects. For each images, we also show what our trained
model predicted (all of which are correct). The code for generating the dataset can be adapted to create different settings.

We show in Figure 13 some sample data points from different buckets with bounding boxes around primary and secondary
objects for each reasoning. For each images, we also show what the trained model predicted (all of which are correct).

Shttps://github.com/wnstl/SMERF
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trained model’s predictions on them (all of which are correct).
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A.2. Model Architecture and Hyperparameters for Training

For all results presented in the Experiments section (Section 4), we trained separate convolutional neural networks for
different types of model reasoning, but kept the same architecture of the same type. For simple reasoning, we have three
convolutional layers (32 filters, kernel-size 3, stride (2,2); 64 filters, kernel-size 3, stride (2,2); 64 filters, kernel-size 3,
stride (2,2)), followed by two fully-connected layers (200 units; 2 units), all with ReLLU activation functions except for the
output layer. For complex reasoning, however, to account for the more complex feature relationships encoded in the dataset
(lower number of parameters for the model could not achieve near-perfect accuracy on these datasets) the model has more
parameters: four convolutional layers (64 filters, kernel-size 3, stride (2,2); 128 filters, kernel-size 3, stride (2,2); 256 filters,
kernel-size 3, stride (2,2); 64 filters, kernel-size 3, stride (2,2)), followed by three fully-connected layers (200 units; 200
units; 2 units), all with ReLU activation functions except for the output layer.

Learning rate was set as 0.0001, trained with Adam optimizer minimizing the binary cross entropy loss, with maximum
epoch of 10. No particular grid search on these hyperparameters was performed, but the models were trained up to
near-perfect accuracy for each model reasoning within several runs with different initializations (Table 3 shows bucket-wise
test performance of the trained model for each reasoning). SMERF overall does not require much computational load as the
model sizes are not big; the entire pipeline was tested out on a machine with a single GPU (GTX 1070, 8GB), with a system
memory of 16GB.

To further ensure that our findings are not affected by the specific choice of model architecture as described above, we
additionally experimented with more complex model architectures: AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan
& Zisserman, 2014). The results are presented in Appendix B.6.

Simple-FR  Simple-NR  Complex-FR Complex-CR1 Complex-CR2 Complex-CR3 Complex-CR4

Bucketl 1.00 - 1.00 - - 1.00 1.00
Bucket2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bucket3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bucket4 1.00 - 1.00 1.00 - - 0.9975
Bucket5 1.00 1.00 1.00 0.95 1.00 0.9875 0.95
Bucket6 1.00 1.00 1.00 1.00 0.9975 1.00 0.9225
Bucket7 1.00 - 1.00 - 1.00 1.00 -
Bucket8 1.00 1.00 1.00 1.00 1.00 1.00 0.9975
Bucket9 1.00 1.00 1.00 0.9575 1.00 0.995 0.9975
Bucket10 1.00 - 1.00 1.00 1.00 - -
Bucket11 1.00 1.00 0.968 1.00 0.975 1.00 1.00
Bucket12 1.00 1.00 0.976 0.975 0.9125 0.9 0.995

Table 3. Bucket-wise test accuracy of the trained models.

A.3. Saliency Methods Tested

We used various saliency methods as implemented in iNNvestigate’ library (Alber et al., 2019), which is licensed under
the BSD License. For methods that are not included in the library, we used the existing implementations for Grad-CAM?
(Unlicensed) and DeepSHAP® (MIT Licensed) and integrated them into the pipeline. The details of the hyperparameters
used for these methods are all available in the source code, specifically in smerf/explanations.py file. No particular
grid search was performed for these hyperparameters.

"https://github.com/albermax/innvestigate
8https://github.com/wawaku/grad-cam-keras
“https://github.com/slundberg/shap
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A.4. Evaluation Metric: Intersection-Over-Union (IOU) and Attribution Focus Level (AFL)

Instead of using the typical IOU value as our main metric'®, we use Attribution Focus Level (AFL), which alternatively
computes the proportion of attribution values assigned to specific objects out of the total attribution value (normalized to be
1). Below we will demonstrate the advantage of using AFL over IOU in the context of SMERF.

A.4.1. IOU LOSES INFORMATION FROM RAW FEATURE ATTRIBUTION VALUES, SO MISSES THE IMPACT OF SIGNALS
FROM OTHER OBJECTS IN THE IMAGE.
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Figure 14. Computing AFL vs IOU on a toy example where attribution values from a secondary object are non-trivial. In this example,
object A (primary) and B (secondary) are both highlighted by the feature attribution as shown, where the attribution values for each pixel
of A being 1, B being 0.8, and background being 0.001. AFL is computed by taking the sum of values inside the object of interest and
dividing that to the sum of attribution values in the whole image. This results in PAFL value of 0.75, and SAFL value of 0.24. Notice the
non-zero SAFL that indicates non-trivial signal from the secondary object B. On the other hand, typical IOU, due to its thresholding to
contain only a limited number of pixels for the evaluation, fails to capture this non-trivial signal from object B, resulting in the Secondary
IOU value of 0.

Consider a feature attribution which focuses on two objects A and B in an image (A being primary and B being secondary),
where the attribution values of pixels inside object A are all 1, those inside object B are all 0.8, and 0.001 elsewhere in the
background. The example is shown in Figure 14. PAFL and SAFL for this feature attribution are 0.75 and 0.24 respectively.
Note that the SAFL value is non-zero, correctly reflectin the fact that the feature attribution values are non-trivial on the
secondary object despite most of the attribution still focused on the primary object.

However, 10U fails to correctly show this non-trivial signal on the secondary object (ie.e Secondary IOU is zero). This is
mainly due to the thresholding process which selects only top-K pixels with the highest attribution values and masking only
those to be included when computing the areas of intersection and union. For this example, as shown in the image on the
second column of Figure 14 for IOU, 247 pixels are selected from thresholding, which ends up selecting only the region of
object A, as the pixels within this region all have higher attribution values (1) compared to those in object B (0.8). This
results in Primary IOU and Secondary IOU of 1 and 0 respectively, which fails to capture non-trivial strength of focus on the
secondary object. As SMERF’s model reasoning settings require analyzing the feature attributions’ strength on both primary
and secondary objects, it is important to correctly address this issue.

Nevertheless, we provide full results on IOU in Appendix B.1, which are consistent with our results with AFL.
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Input Image  Feature Attribution 10U:0.188 10U:0.445 10U:0.432
or or Th for or Thresholded for Thresholded for Thresholded for
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Figure 15. Change of thresholded masks based on the number of pixels to include, and the corresponding Primary IOU values on feature
attributions obtained with Integrated Gradients. The IOU values are sensitive to the amount of thresholding.
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Figure 16. Taking the example of Objects A/B from Figure 14, (Top) as the strength of attribution values placed on object B increases, the
PAFL values decrease and SAFL values increase. With the background attribution values being significantly smaller than the objects,
PAFL and SAFL sums up to one. Naturally, when SAFL > PAFL, it more focus is attributed to the secondary object compared to the
primmary. (Bottom) When the attribution values on the background are high (higher than objects), PAFL and SAFL approaches zero as
the background dominates the share in the total attribution (first three images). So when both PAFL and SAFL is low, it represents the
case where most of the signals are coming from the background.

A.4.2. TOU IS SENSITIVE TO THE NUMBER OF PIXELS TO INCLUDE WHEN THRESHOLDING.

Another problem with thresholding is that it is usually unclear what the thresholding value should be. In the above example,
247 pixels are selected to include the number of pixels that consists the primary object. While this is an intuitive choice, this
value can be arbitrary and the resulting IOU values can vary significantly based on the choice. Figure 15 shows Primary
IOU from a feature attribution obtained by Integrated Gradients on one of the data points where the Text is primary and the
Box1 is secondary.

A.4.3. AFL PROVIDES MORE INTUITIVE UNDERSTANDING ABOUT THE SALIENCY METHODS’ LEVEL OF FOCUS
AMONG VARIOUS OBJECTS.

The sum of PAFL and SAFL is upper-bounded by one, as the sum of all attribution values in the image is normalized to
sum up to 1. By comparing these values, it is intuitive to deduce whether more focus is present on the primary/secondary
object, or on the background. Also it is easy to understand how the level of focus shifts among these objects. Figure 16
shows an example of how different degrees of attribution values placed on the secondary object (top) and the background
(bottom) can change the corresponding PAFL and SAFL values. Note that as more we can observe PAFL decreasing and
SAFL increasing, as more proportion of the total attributions are assigned to the secondary object (top). Also when the
background has higher attribution values than the objects, both PAFL and SAFL values plummet.
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B. Additional Experimental Results
B.1. Results with IOU Metric

Intersection-Over-Union (IOU) metric is a ratio of the intersecting area to the union area of the 0-1 masked feature attribution
and the ground-truth feature attribution. The ground-truth feature attributions are predefined from the data generation
process (by the ground-truth model reasoning). The 0-1 masked feature attribution from the saliency methods is obtained by
first blurring the original feature attribution averaged across the three color channels, followed by thresholding the pixel
intensity to select top-K pixels, where K is equal to the number of pixels that correspond to the primary object. Given the
0-1 masked feature attribution and the ground-truth feature attribution, we compute two types of IOU values just like AFL:
(1) primary IOU (PIOU), which measures how much of the 0-1 masked feature attribution overlaps with the ground-truth for
the region relevant to the model prediction; and (2) secondary IOU (SIOU), which measures the same value with respect to
the region not relevant to the model prediction. Just like AFLs, PIOU should be high and SIOU should be low for methods
that are more effective and correct. Throughout this section we use the threshold value of 0.5 to roughly distinguish good
and bad performance in terms of IOU as commonly done in practice (Everingham et al., 2015; Wang et al., 2019).
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Figure 17. (a) PIOU (left) and SIOU (right) for Simple-FR and Simple-NR from Table 1. The black vertical lines indicate the standard
deviation across different buckets. The dotted horizontal line is the correctness threshold of 0.5. Most methods perform well on average,
with reasonable PIOU and low SIOU, except for a few methods on the left. (b) There is not much difference between the PIOU and SIOU
values based on the number of objects in the image.

Primary IOU (for Different Buckets) Secondary 10U (for Different Buckets)
Complex Reasoning Complex Reasoning

1.0 1.0 |
i} 5 -8 (CR2) Box1 o, Box2 x
g °° o8 (CR2) Box1 x, Box2 0
© o6 S 06 -8~ (CR2) Box1 o, Box2 0
=] < PEY
5 i 0:5 threshold Minimum PIOU Across Buckets
0.4 0.4 —~ 1.
é g ] 2-0-0 9 2 v average aj =@- Simple Reasonig
© 0.2 Y Qo2 $\ #— f \ R /;’r‘ VAN £ o8 == Complex Reasoning
s n / S 3 T \z,‘\ /8 g 0.5 threshold
0.0 0.0+ - =
ERBSSEENSREYIZSES ERBSSELNSRREYLZSES =P
grcoxovsca=ptecoSTOS oLtco>xovca=pecgITO S o<
S0 >0l ncms Y520 S0>C00clCncmsnY52 o %5
kel kel << © ) O o kel < © ) o] 0.4
CEEXEgTLQL 20 US5 S0 CEEXEgT LB R0 U5 S0 [
CuoVaolg WUy 33T P50V lg WO o2y P 2Co ]
0oLl agL JUuuwTPUxw 0oVBapE JUuusTPlxw P
S0mol6 ZYVIULEGE T clma G S QPOLG8 T 02
EQ0oO¥ o Yaagk O E0pO¥ o Yaagk ) =
w8 59 adoa o w2 59 cdaoa 2 < 0
S 2% TEEQ o S 2% TELQ W '
3 <o T 0 ~o =0 L
g a }‘E’ a (b) Minimum PIOU across buckets
= (] = [0} . .
g g on simple (blue circle) vs. complex
(red x) reasoning (x-axis is the same
(a) PIOU and SIOU for Complex Reasoning as Figure 18a).

Figure 18. (a) PIOU and SIOU for complex reasoning. Average performance on PIOU is mostly lower than 0.5, with worse performance
compared to the results from simple reasoning. (b) Worst-case buckets show worse PIOU values in complex reasoning.

Figure 17a shows PIOU and SIOU values for simple reasoning settings. Note that most methods achieve PIOU higher than
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0.5, just like the results from AFL. SIOU values are mostly low throughout, even lower than what we observed from AFL.
However, we notice that the IOU values fail to capture the unexpected variation of level of focus given to multiple objects
based on how saturated the images are, unlike what we observed from AFLs (Figure 17b).

Figure 18a shows the PIOU and SIOU values for complex reasoning settings. In this case, all methods score PIOU below
0.5 correctness threshold, just like AFL. Also the minimum PIOU across different buckets from complex reasoning is
strictly lower than those from simple reasoning for all methods (Figure 18b). Therefore, general trend of methods being
reasonably good for simple reasoning and being bad for complex reasoning still is observable using IOU. However, note that
the SIOU values remain relatively low for both cases despite the decrease in PIOU for complex reasoning. This is where the
aforementioned limitation of IOU metric is exposed, where it is difficult to clearly deduce where the changes in the primary
values are coming from, contrary to what we observe from AFL.

Relatedly, IOU metric is relatively more generous to primary objects due to the way they are thresholded and it is more
prone to ignoring potential non-trivial signals from objects that are not primary. This naturally leads to low SIOU values
and a lack of clear relationship between primary and secondary metric: an increase in one would not necessarily imply a
decrease in another, and vice-versa. In addition, the loss of information from the attribution values makes it difficult to better
understand why one value decreased and how much of that change could be attributed to different objects in the image. Due
to these limitations (as well as examples mentioned earlier in Appendix A.4, we present AFL results in the main text for
better insights and highlighting the shortcomings of the methods in different settings.

B.2. Qualitative Results

Figure 19 and 20 show samples from simple reasoning (each from Simple-FR and Simple-NR) in buckets where the
methods record the lowest PAFL (indicated with red). For instance, in Simple-FR setup (Figure 19) almost all methods
achieve the lowest PAFL on the bucket where all features are present (top panel). Recall that Simple-FR relies fully on
Box1; however we observe that several methods highlight all objects that are present in the image to a certain degree. Such
tendency explains the unexpected variation of AFL based on the number of objects present in the image. Nevertheless, some
minimum PAFL values are still above 0.5 for a method like LRP-Epsilon, which makes it the most effective method for
Simple-FR that is less prone to errors (it also correctly focuses on Box1 without being distracted by other objects in the
image). Compared to Simple-FR, Simple-NR shows more evenly distributed failure cases across different buckets shown
(Figure 20).

In Figure 21 we have the samples from buckets with minimum PAFL for complex reasoning setup, in particular, Complex-
CR2. This time most of the cases with minimum performance is concentrated on the bucket with Box1 and Text B (top panel;
13 out of 15 methods have minimum PAFL on this bucket). Recall that for this bucket, the ground-truth feature attribution
should highlight just Box1. For most of the methods, more focus is given to the Text, which results in a particularly low
PAFL across all methods. Notice that all the values are below 0.5: this aligns with our earlier observation that the worst-case
performance of the methods on complex reasoning setup is much worse than simple reasoning setup.
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Figure 19. Image samples from buckets where minimum PAFL values are recorded for different methods (marked with red), for FR-Simple.
The ground-truth is to focus on Box1 only.
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Figure 20. Image samples from buckets where minimum PAFL values are recorded for different methods (marked with red, along with
corresponding PAFL values), for NR-Simple. The ground-truth is to focus on the Text only.




Sanity Simulations for Saliency Methods

>
>
o &
Q \(\‘ \@2'\ e
© & @ & 2 i &
& & & o A o 5 & % & © Q
S N N & & 8 §
6@* ZQ @b‘i@ Py gof’ @@ N ¢ (éf\\b q@ ~ Q&%& \<</\ © »\é&g & 5
< S <
& O@QQ &S Q WV AL o QQ &S QQ S

N

- - .
+ § 1 t
- - »

>

<

(‘\c? ’b(\(/

R 3 ¢ 5 s Y N
< & X & o & &
& > 3% & 4 28 & © Q
N & Lo FP & @"z‘b AR R & &5
&Ko Q@ o‘e Q A o ‘2 Q QO o Q«
(o4 &»9 Ko & oS

a
. £ .
B

>
& ,bo"@
5 N e
& & a”’& & g i &
&R S & 8"‘ & & &
& o & > & & & ) XY &
& < <3, B & o & SN @"0\, \> © \‘é > & 2y
o Q Q \\,‘ o & v {c,,;’) Q o Q S ,ob,& on’
& \3* &* © &

EEREEREEREE

L T B el E

IH.III..I.‘.;
S S S S P I G P I N

iy )

[o4
®,
2 Vs
% %,
i

&
%
Q

Figure 21. Image samples from buckets where minimum PAFL values are recorded for different methods (marked with red), for CR-

Complex2. The ground-truth is to focus on the Box1 and Box2 if Box1 is present, otherwise on Text.
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Primary AFL (for Different Buckets)
Complex Reasoning

In Figure 22, we show additional details from different types of complex reasoning that show high variance of PAFL and
SAFL we observed from Figure 8a. From top to bottom, we plot the variation of the values per bucket for Complex-CR1,

Complex-CR3, Complex-CR4, and Complex-FR, in addition to the results from Complex-CR2 reported in the main text.

We similarly observe that the variation is quite extreme for different buckets.

B.3. Per-bucket Performance Variation for Complex Reasoning

13199 3 J2UBIY 3y

uonoalep-abpg
wopuey
dvHsdeaq
WvD-pelo
a|edsay-1411deag

|92ued|eanay-141desa

12|34839531d-dY1
12|4v39531d-dY 1
uo|isd3-dy1

Z-d¥1

sjualpess pajesbajul
jualpels 4 nduj

JojAedaag

doudypeg paping
19UAU0D3Q
peioyioows
ualpel

Text A, Box2 x.
Text B, Box2 x

(CR3]
~&- (CR3

-
-
=3V

Secondary AFL (for Different Buckets)
Complex Reasoning

Text A, Box2 o
Text B, Box2 o

(CR3
(CR3

wopuey
dvHsdaaq
WVD-peio
3)edsay-1417d93a
|2oueD|eanay-1411daaa
1e1481953.1d-dY 1
1e|4VISsald-dy1

5% tuojisd3-dy

e [z-d¥l

@ & [sjuaipesn pajesbaju|

# hwuaipess 4 ndu
L, J10jAejdasq
doud>deg paping

18uAU0d2Q

= uonda19p-a6p3
° m
«

«s” el peioyroows
i usipein

Primary AFL (for Different Buckets)
Complex Reasoning

121339 3Y3 Jamo] 3y}

uondajep-abp3
_ Mt wopuey

o & | avHsdaaq
:.\/l WvD-pelo

w_mumwxun_.u__l_awwﬂ

|9oue)|eanay-1411daaa
1e|481953.1d-dY 1
1e|4V3ISsald-dy1
uojisd3-dy
Z-dd1
sjualpess pajesbajul
jualpels  Indu|
J10jAejdasq
doud>deg paping
18uAU0d2Q
pesoyioows
ualpein

127129 3u1 J2yBIY 3

Secondary AFL (for Different Buckets)
Complex Reasoning

x x o0
TRRK
23838
<u<a
EEEEN
[§gss: uon>219p-26p3
[SRSECRCR wopuey
XXX} @ 4 dvHSdeaa
s WVD-pelio
o~ a|edsay-141doaa
o § fjooueDjeanay-L411deaq
\\y 1e|4g319sald-dy1
«@” dheidviesaid-dyl
" uo|Isd3-dy
»® Z-dd1
« A sjusipelo pajelbaju|
e jualpels 4 ndu|
. J0jAedaag
" doidoeg peping
JoUAU022Q
peIDLI00WS
o dusipesn

123129 Y1 JaMo] 33

Primary AFL (for Different Buckets)
Complex Reasoning

12129 341 J2UB1Y By

uonda1ep-abp3
wopuey

dvHsdaag
WVD-pelio
w_mummm.._nm_n_nwwﬁu_
|9dueD|eanay-141deaa
3e[493953.d-dY1
1B[4V3I9sald-dY1
uojisd3-dy

Z-dd1

sjualpeso pajebaul
juaIpels x Indu|
JojAedaag
doud>oeg paping
12UAU0RQ
pesoyloows
jualpeln

@ -® (ComplexFR) Box1 x, Box2 x
(ComplexFR) Box1 o, Box2 x

0.5 threshold

--

| ~®- (ComplexFR) Box1 x, Box2 o
®) —&- (ComplexFR) Box1 o, Box2 o

)
\
.

N

*
1
1
1
il
1
I

-

\

\
\
o)

oot

/

o 0-o.

2-0-q
-o- Q'

-

Complex Reasoning

¥

Secondary AFL (for Different Buckets)

>

\

Complex Reasoning
/ﬂ\\
od >
o v

Primary AFL (for Different Buckets)
4

P

*
¢

193124 341 J2U61Y U

uopda319p-abp3
wopuey

dvHsda3a
WVD-peio
9|eds9y-1411d93q
|@2ue)|eanay-141dsaq
3e|4g319sald-dyl
3e|4V39S3ld-dd1
uojisd3-dy1

Z-dd1

sjualpels pajelbaju|
juapeI9 4« Indu|
10]Ae1dasg
doudyoeg paping
19UAU03Q
peigyjoows
jualpes

uons91ap-abp3
wopuey

dvHsdeaa
WvD-peio
9|eds9y-1411d93a
|9dueD|eanay-1411deaa
1e|48319S3ld-dy1
1e|4v1953.d-dY1
uojisd3-qy1

Z-dd1

sjusipes pajesbalu|
ualpel9 4 Induj
10]Aejdasg
doudydeg paping
19UAU03Q
peJoyjoows
ualpesn

Complex-CR1, Complex-CR3, Complex-CR4, Complex-FR). The performance varies significantly from bucket to bucket, just as we

Figure 22. Additional information for the variance of PAFL and SAFL across different buckets for complex reasoning (from top to bottom,
described in the main text.
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B.4. Additional Failure Case Analysis

While the AFL may be more suited to give a high-level understanding of the methods’ performance, to further understand the
degree to which the model focuses more on the incorrect region compared to the correct region (i.e. to identify failure due to
wrong focus), we also compute the mean of the attribution values inside the relevant (which we call Primary Mean-AFL,
or PMAFL) and irrelevant (which we call Secondary Mean-AFL, or SMAFL) regions for comparison. For a successful
method, primary MAFL should always upper bound secondary MAFL because on average the correct regions should always
be assigned higher attribution values compared to the incorrect regions. In this analysis, the actual values of primary and
secondary MAFL do not matter; only a relative comparison does.
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Figure 23. MAFL value comparison within buckets for simple reasoning with FR and NR. Title of each panel indicates the bucket with “(
correct feature ) vs (incorrect feature )”, and the blue and red lines show the general trend of primary and secondary MAFL values across
different methods (x-axis being the same as Figure 6a, omitted for brevity). Primary MAFL should ideally always upper-bound secondary
MAFL: while that is the case for FR, there are occasional failure cases in NR where the opposite happens.
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Figure 24. MAFL values for complex reasoning. While PMAFL (blue) should be always bigger than SMAFL (red), some buckets exhibit
much larger SMAFL. This means the methods are failing due to focusing significantly more on irrelevant regions features than relevant
ones.

Figure 23 plots MAFL value comparison for different buckets in Simple-NR and Simple-FR. It is important that the blue
line (PMAFL) should always upper-bound the red line (SMAFL). While that is the case for FR for all buckets, there are
occasional cases in NR with the opposite relationship for certain methods. Although the gap between the values are not big,
this still indicates that the feature attribution may sometimes be wrongly focusing on irrelevant regions of the image more
than the correct ones. Such failure cases have not been actively discussed in previous works that dealt models with simple
reasoning (Yang & Kim, 2019; Adebayo et al., 2020).

As further shown in Figure 24 it is observed that the gap between PMAFL (blue) and SMAFL (red) is bigger for some
buckets in complex reasoning compared to the simple reasoning case in Figure 23. Such larger gaps clearly demonstrate and
verify the methods’ more frequent failure due to wrong focus from complex reasoning.
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B.5. Identifiability Problem Samples

Figure 25 shows samples that illustrate the difficulty of clearly distinguishing model reasoning based on the feature
attributions (i.e. identifiability). Along with Integrated Gradients (as in Figure 9), all other methods including the ones
presented here (Gradients, LRP-Z, DeepLIFT) highlight all objects in the image up to a certain level regardless of the model

reasoning used, making it difficult to discern the reasoning based on the feature attributions.

Gradient

DeeplLIFT-RevealCancel

Figure 25. Identifiability problem samples with other methods (Gradient, LRP-Z, DeepLIFT from top to bottom). All methods highlight
all objects in the image up to a certain degree regardless of the model reasoning, making it difficult for the users to clearly distinguish
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B.6. Results on Other Model Architectures
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Figure 26. 10U results using AlexNet (left) and VGG16 (right) architecture for the model.
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Figure 27. PAFL results using AlexNet (left) and VGG16 (right) architecture for the model.

We repeat the same set of experiments with the model architecture using AlexNet (Krizhevsky et al., 2012) and VGG16 (Si-
monyan & Zisserman, 2014), to confirm that the trends we observe for the saliency methods are not the artifact of architecture
choice. IOU and AFL results for these models are shown in Figures 26 and 27" which show similar trends we have

observed so far in the simple CNN case: the average and the worst-case performance drops as the reasoning gets more
complex.

"Note that DeepLIFT was left out from the experiments on these models as the library for DeepLIFT does not support MaxPooling2D
layer at the moment.
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B.7. Relationship with Adversarial Robustness

Shah et al. (2021) showed that gradient feature attributions applied on more adversarially robust models tend to do better
in ignoring the signals from spurious objects in the image. We verify that such trend for gradient attribution is somewhat

true, yet the general problem persists for most of the other methods even for the robust models, in both simple and complex
settings.
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Figure 28. 10U (left) and PAFL (right) results on models trained against PGD attack (solid lines) and plain models (dotted lines, taken
from Figure 2) for simple and complex reasoning settings. We observe increase in average performance for Gradient and SmoothGradient
for simple reasoning compared to plain models, as suggested in (Shah et al., 2021). Nevertheless, in both metrics and across all methods,
there still are sharp performance drops for complex reasoning.

Figure 28 shows results for models trained against PGD attacks (Madry et al., 2018)'2. Throughout all methods, we still
observe sharp performance drops in complex reasoning. We also observe the trend reported in (Shah et al., 2021) as well,
where Gradient and SmoothGradient’s performance for simple reasoning (solid lines) is generally higher compared to plain
models (dotted lines). As shown, while training the model against adversarial attacks can help some methods in simple

reasoning settings, SMERF suggests that the overarching problem of methods not being able to reliably recover complex
reasoning still persists.

12Used a Python library https://github.com/Trusted-Al/adversarial-robustness-toolbox
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B.8. TextBox with Noisy Background

Instead of having zero-valued black pixels for the background, we set the background to consist of random pixel values
between 0-150 for each of the RGB channels (before being normalized to [0,1]).

The models were trained on these images to achieve near-perfect accuracy for all seven types of reasoning. Figure 29
shows PAFL and SAFL for simple reasoning settings, and Figure 30 for complex reasoning settings. Similar to our earlier
observations, methods under complex reasoning settings show sharp degradation of performance compared to the simple
reasoning settings (lower PAFL, higher SAFL). Also we notice that additional noise from the background lowers the
worst-case PAFL values throughout, even for the simple reasoning settings (Figure 30b).
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Figure 29. PAFL and SAFL for Simple Reasoning, tested with non-zero random noisy background.
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B.9. TextBox with Realistic Backgrounds

Figure 31. Images with real backgrounds used for the experiments.

We replace the background of TextBox images with real images of different scenes taken from the Places dataset'®(Zhou
et al., 2017). In particular, we replaced the background with images of baseball stadium and ran the same set of experiments
(Figure 31). The models trained on these images achieved near-perfect accuracy on both simple and complex settings (test
accuracy for each reasoning: Simple-FR: 0.99, Simple-NR: 0.99, Complex-FR: 0.93, Complex-CR1: 0.98, Complex-CR2:
0.99, Complex-CR3: 0.93, Comlpex-CR4: 0.99).

Primary AFL (for Different Buckets) Secondary AFL (for Different Buckets)

Simple Reasonin Simple Reasonin
10 B 9 10 B 9 -8~ (FR) Texto

=& (FR) Text x

=@~ (NR) Box1l o

=& (NR) Boxl x
0.5 threshold
average

the higher the better
the lower the better

02’ 02 : l ‘i
00 o0 ‘ '
- - [ 1] —_ - L e —_
E U S SEINSEETISLES oGS SELNEREFYSSES
LoEs=8ge-n 285 T8S LEsEs8ge=203T8S
T2 DYoo gnrinod T2 oSO gunrine v
s S5y-ao - a0 fogontd cS§S5uLce "2 oluon @
CEovales woalPTEas PSovals waolPE oo
0898005 LJuumElocy U898 005 Juumrflacd
o4& 0,0 FOVaukF0f& T = 0,0 ZTOVeEOK T
EPocOo0l o Saazt @ ECPocol- Saa =% ]
= 3 = 3
A @ Fag n‘.u‘.én_ o w9 Sa n'.n‘.go_ o
2 2% o o B 2 2ofF -l =
S £C s s 1 w =R~ Sk g w
(G} o “Aa G] o A
2 a 2 a
£ o 1] u
] ]
o o

Figure 32. PAFL and SAFL for Simple Reasoning, for images with real baseball stadium as background.
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Figure 33. (a) PAFL and SAFL for complex reasoning, for images with real baseball stadium as background. (b) Worst-case buckets show
overall lower PAFL values in complex reasoning compared to simple reasoning.

Figure 32 and Figure 33 respectively shows AFL results on simple and complex reasoning settings. Figure 33b in particular
shows that similar to the black background scenario studied earlier, there is a performance degradation moving from simple
to complex reasoning, but at a lower level compared to the black background scenario. Notably, the general performance
drop relative to the black background setting was larger in this case than what we observed for the noisy background setting
in Appendix B.8. The results suggest that synthetic results of SMERF on the black background provides an optimistic upper
bound for the methods’ performance on the real background.

Phitp://places2.csail.mit.edu/
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