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Abstract
We consider the infinitely many-armed bandit
problem with rotting rewards, where the mean
reward of an arm decreases at each pull of the
arm according to an arbitrary trend with maxi-
mum rotting rate % = o(1). We show that this
learning problem has an Ω(max{%1/3T,

√
T})

worst-case regret lower bound where T is the time
horizon. We show that a matching upper bound
Õ(max{%1/3T,

√
T}), up to a poly-logarithmic

factor, can be achieved by an algorithm that
uses a UCB index for each arm and a threshold
value to decide whether to continue pulling an
arm or remove the arm from further considera-
tion, when the algorithm knows the value of the
maximum rotting rate %. We also show that an
Õ(max{%1/3T, T 3/4}) regret upper bound can
be achieved by an algorithm that does not know
the value of %, by using an adaptive UCB index
along with an adaptive threshold value.

1. Introduction
We consider a fundamental sequential learning problem in
which an agent must play one option at a time from an
infinite set of options with non-stationary reward distribu-
tions, where the mean reward of an option decreases at
each play of this option. This is naturally studied as the
infinitely many-armed bandit problem with rotting rewards.
The assumption of infinitely many arms models practical
situations when there is a finite but large number of arms
relative to the number of available experiments. There is an
abundance of applications in which one must choose from a
large set of options with rotting rewards, e.g. online adver-
tising where arms correspond to ads and rewards decrease
over exposures of an ad to a user, content recommendation
systems where arms correspond to media items and rotting
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arises because of user boredom when watching the same
content, and clinical trials where the efficacy of a medicine
may decrease because of drug tolerance when a patient takes
the same medicine several times. While there has been a
lot of work on multi-armed bandits with a finite number
of arms with stationary or non-stationary rewards, and an
infinite number of arms with stationary rewards, not much
seems to be known for the case of infinitely many arms with
non-stationary rewards.

In this paper we make first steps to understand the fundamen-
tal limits of sequential learning for infinite number of arms
whose mean rewards decrease with the number of pulls—
the case commonly referred to as the rested rotting bandits.
Our focus is on rotting trends where the mean reward of
an arm decreases arbitrary for at most a fixed amount % at
each pull of this arm. The initial mean rewards of arms
are assumed to be independent and identically distributed
according to uniform distribution on [0, 1]. The objective
is to find a policy that minimizes the expected cumulative
regret over a time horizon of T time steps with respect to
playing the best arm.

We show that the worst-case regret for this problem is lower
bounded by Ω(max{%1/3T,

√
T}), where % is the maximum

rotting rate, and show that this lower bound is tight up to a
poly-logarithmic factor. This reveals that the rotting trend
starts to have an effect on regret precisely at the threshold
% = Θ(1/T 3/2). Our result implies that the rotting rested
bandit problem with infinitely many arms is harder than for
the stationary rewards case, as in the latter case the regret
lower bound is Ω(

√
T ) (Wang et al., 2009). This stands in

stark contrast to the case of finite K arms in which case
it is known that Õ(

√
KT ) can be achieved for the rotting

case (Seznec et al., 2019), which matches the optimal bound
in the stationary case (Auer et al., 2002b) up to a poly-
logarithmic factor.

In the case of infinitely many arms with stationary rewards,
it is not possible to explore all arms to find an optimal arm,
hence, it is required to find a near-optimal arm; contrast this
with the case of finitely many arms, where all arms must be
explored to identify an optimal arm. Further, when we con-
sider rotting rewards, the learner must keep exploring new
arms because a near-optimal arm may become suboptimal
as it is being pulled. Based on this fact, we design algo-
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rithms for the rotting infinitely many-armed bandit problem
to achieve tight regret bounds. We summarize our contribu-
tions in more details in what follows.

1.1. Summary of our contributions

We show an Ω(max{%1/3T,
√
T}) worst-case regret lower

bound for the rotting rested bandit case with maximum
rotting rate % = o(1). This regret lower bound matches
the regret lower bound Ω(

√
T ) that is known to hold for

the case of stationary rewards, when rotting is sufficiently
small—precisely when % = O(1/T 3/2). Otherwise, when
% = ω(1/T 3/2), the regret lower bound becomes worse
than for the stationary case.

We show that an Õ(max{%1/3T,
√
T}) regret can be

achieved by an algorithm when the maximum rotting rate %
is known to the algorithm. This algorithm uses a UCB index
to decide whether to continue pulling an arm or remove the
arm from further consideration and switch to exploring a
new arm by comparing the index with a threshold. This
threshold is set to account for rotting of rewards.

We further show that an Õ(max{%1/3T, T 3/4}) regret can
be achieved by an algorithm that does not know the value of
the maximum rotting rate %. This algorithm uses an adaptive
UCB index and an adaptive threshold value to compare the
UCB index of an arm with the threshold to decide whether
to continue pulling this arm or remove the arm from further
consideration. This upper bound matches the lower bound
up to poly-logarithmic factors when the rotting rate % is
sufficiently large, i.e. when % = Ω(1/T 3/4).

We present results of numerical experiments for randomly
generated problem instances of rotting infinitely many-
armed bandits. These results validate the insights derived
from our theoretical results.

1.2. Related work

The work on multi-armed bandits can be distinguished with
respect to two criteria, first whether the number of arms is
finite or infinite, and second whether rewards of arms are
stationary or non-stationary. For the case of non-stationary
rewards, we can further distinguish rested from restless
multi-armed bandit problems — in the former case, an arm’s
distribution of reward may change only when the arm is
pulled, while in the latter case, it may change at each time
step. Our work falls in the category of multi-armed bandit
problems with infinitely many non-stationary rested arms.

The case of finitely many arms with stationary rewards has
been studied by many, following on Lai & Robbins (1985);
Auer et al. (2002a). There exist algorithms having Õ(

√
KT )

worst-case regret, where K is the number of arms, and this
matches the lower bound Ω(

√
KT ) up to a poly-logarithmic

factor (Auer et al., 2002b; Slivkins, 2019).

We next discuss the case of finitely many arms with non-
stationary rewards. The non-stationarity in rewards can be
quantified by the number of abrupt changes or a variation
budget, which is referred to as abrupt-changing and slow-
varying environments, respectively. The non-stationary en-
vironments were studied by Auer et al. (2002b); Garivier &
Moulines (2011); Besbes et al. (2014); Auer et al. (2019) in
which proposed algorithms are based on a strategy of adapt-
ing current state rapidly and fading old history memory (e.g.
sliding window, discount factor, and restarting). In addi-
tion to this, non-stationary environments were studied under
various assumptions, e.g. contextual bandits and MDPs
(Cheung et al., 2019; Chen et al., 2019; Zhao et al., 2020;
Russac et al., 2019; Cheung et al., 2020), mortal bandits
where arms have a stochastic lifetime (Chakrabarti et al.,
2008; Tracà et al., 2020), and bandits where arm rewards
evolve according to a continuous-time stochastic process
(Slivkins & Upfal, 2008).

The multi-armed bandit problem with a finite number of
arms, where each arm’s mean reward decays with the num-
ber of pulls of this arm, was first studied by Komiyama
& Qin (2014); Heidari et al. (2016); Bouneffouf & Féraud
(2016); Levine et al. (2017). Following Levine et al. (2017),
this problem is referred to as rotting bandits problem.
Levine et al. (2017) showed that a sliding-window algorithm
has a Õ(K1/3T 2/3) regret in a non-parametric rested rotting
setting where the only assumption is that mean rewards are
positive and non-increasing in the number of pulls. The non-
parametric rotting bandit problem, allowing mean rewards
to be negative with bounded decay, was subsequently stud-
ied by Seznec et al. (2019), showing an algorithm that has
an Õ(

√
KT ) problem instance independent bound. Seznec

et al. (2020) showed that a single algorithm, an adaptive-
window UCB index policy, achieves near-optimal regret for
both rested and restless rotting bandits. In this paper, we
follow the non-parametric rested rotting setting where mean
rewards can only decrease with bounded decrements.

We next discuss the case of infinitely many arms with sta-
tionary rewards. Berry et al. (1997); Bonald & Proutière
(2013) proposed algorithms with asymptotically optimal
regret O(

√
T ) for the case of arms with Bernoulli rewards

and independent mean values according to uniform distri-
bution on [0, 1]. Wang et al. (2009) studied the case where
the mean reward distribution has support on [0, µ∗] with
µ∗ ≤ 1, and for each arm a the distribution of mean re-
ward µ(a) is such that P(µ(a) ≥ µ∗ − z) = Θ(zβ), for
some β > 0. Carpentier & Valko (2015) studied the same
problem but focused on simple regret, defined as the instan-
taneous regret at time step T . Bayati et al. (2020) showed
that a subsampled UCB algorithm (SSUCB) that samples
Θ(
√
T ) arms and executes UCB only on this subset of arms

has Õ(
√
T ) regret under 1-sub-Gaussian rewards with mean

rewards according to uniform distribution on [0, 1]. In this
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setting, for mean reward distributions such that there is a
large enough number of near-optimal arms, an algorithm
may find a near-optimal arm by exploring a restricted num-
ber of arms. There also exist several works dealing with
infinitely many arms under structured reward functions such
as contextual linear bandits (Abbasi-Yadkori et al., 2011)
and Lipschitz bandits (Bubeck et al., 2011). In this paper,
however, we focus on infinitely many arms under a mean re-
ward distribution, where the structured-reward assumptions
may not hold because of rotting.

Our work is different from the work discussed in this section
in that we consider the case of infinitely many arms with non-
stationary rotting arms. In the case of rotting bandits with a
finite number of arms, as we mentioned, Seznec et al. (2019;
2020) achieves worst-case regret bound Õ(

√
KT ) which

matches the near-optimal regret in the stationary stochastic
setting. This result indicates that the rotting in the finitely
many arms setting is not a harder problem than in the sta-
tionary rewards setting. However, in the setting of infinitely
many arms, rotting of rewards makes the problem harder
than in the stationary rewards case. This is because the value
of the optimal mean reward is not decreasing as the arms
are being pulled as there are infinitely many near-optimal
arms, which requires an additional exploration to recurrently
search for a new optimal arm outside of the set of already
pulled arms. Our algorithms are different from previously-
proposed algorithms for the case of infinitely many arms
with stationary rewards in keeping to explore new arms to
find a near-optimal arm over time because of rotting rewards.
In more details, our algorithms use UCB policies to decide
whether to continue pulling an arm or remove the arm from
further consideration and explore a new arm, by comparing
its UCB index with a threshold which is adjusted by using
the rotting rate or an estimated value of the rotting rate.

2. Problem formulation
We consider a non-stationary bandit problem with infinitely
many arms where the reward distributions of arms vary over
time. We consider the case when the mean reward of an arm
may decrease only when this arm is pulled by an agent that
uses a policy π, which is referred to as the rested rotting
bandit setting. LetA be an infinite set of arms, µt(a) be the
mean reward of arm a at time t before pulling an arm at time
t, and nt(a) be the number of times arm a ∈ A is pulled by
π before time t. Also, denote by rt the stochastic reward
gained by pulling arm aπt at time t. Let rt = µt(a

π
t ) + ηt

where ηt is a noise term with a 1-sub-Gaussian distribution.
We assume that initial mean rewards {µ1(a)}a∈A are i.i.d.
random variables with uniform distribution on [0, 1]. The
rotting of arms is defined as follows. Given a rotting rate
0 ≤ %t ≤ % at time t ≥ 1 with maximum rotting rate
% = o(1), the mean reward of the selected arm at time t

changes as follows

µt+1(at) = µt(at)− %t

whereas the mean rewards of other arms remain unchanged.
The mean reward of every arm a ∈ A at time t > 1 can be
represented as follows. With 0 ≤ %s ≤ % for all time steps
0 < s < t,

µt(a) = µ1(a)−
t−1∑
s=1

%s1(as = a).

The objective is to find a policy that minimizes the expected
cumulative regret over a time horizon of T time steps, which
for a given policy π is defined as follows

E[Rπ(T )] = E

[
T∑
t=1

(1− µt(aπt ))

]
.

In the regret definition, we use that the mean reward of the
optimal arm at any time t is equal to 1. This is because there
is an infinite number of arms in A with i.i.d. mean rewards
according to uniform distribution on [0, 1], so that there
always exist sufficiently many arms whose mean rewards
are close enough to 1. In what follows, ‘selecting an arm’
means that a policy chooses an arm in A before playing it
and ‘pulling an arm’ means that the policy plays a selected
arm and receives a reward.

3. Regret lower bound
We first discuss two different regimes for regret depending
on the value of the maximum rotting rate %. When % ≤
1/T 3/2, the mean reward of any arm over the time horizon
of T time steps changes for at most %T ≤ 1/

√
T . Therefore,

for any arm, there can be at most a gap of 1/
√
T between

the initial mean reward and the mean reward after T time
steps, which causes an additional regret of at most

√
T over

the horizon of T time steps to the case of stationary arms
(i.e. when % = 0). In Theorem 3 in Wang et al. (2009),
the optimal regret for the stationary case, with uniform
distribution of mean rewards of arms, is shown to be of
the order

√
T . Therefore, the extra regret of

√
T from the

rotting with % ≤ 1/T 3/2 does not affect the order of the
regret. When % > 1/T 3/2, we expect that the regret lower
bound may be different than for the stationary case.

By analyzing the regret lower bound for the specific case
with %t = % for all time steps t > 0, we provide a lower
bound for the worst-case regret with respect to arbitrary
rotting as given in the following theorem.

Theorem 3.1. For the rotting infinitely many-armed bandit
problem, there exist rotting rates 0 ≤ %t ≤ % = o(1) for all
time steps t > 0 such that any policy π has the regret over
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a time horizon of T time steps such that

E[Rπ(T )] = Ω(max{%1/3T,
√
T}).

From the result of the theorem, when the rotting is small
enough, i.e. precisely when % ≤ 1/T 3/2, the lower bound
corresponds to Ω(

√
T ), which is known to hold when re-

wards are stationary. Otherwise, when the rotting is suffi-
ciently large, then the lower bound is Ω(%1/3T ). For exam-
ple, when % = 1/T γ for some γ > 0, we have the lower
bound Ω(

√
T ), if γ ≥ 3/2 (small rotting case), and, oth-

erwise (large rotting case), we have Ω(T 1−γ/3). We can
observe that % = Θ(1/T 3/2) is a transition point at which
the lower bound switches from Ω(

√
T ) to Ω(%1/3T ).

Proof sketch. Here we present a proof sketch of the theorem
with the full version of the proof provided in Appendix A.2.

We assume that %t = % = o(1) for all time steps t > 0.
When % = O(1/T 3/2), the lower bound for the stationary
case of the order

√
T (Wang et al., 2009) is tight enough

for the non-stationary case. This is because we only need
to pay an extra regret of at most of order

√
T for small %.

Therefore, when % = O(1/T 3/2), we have

E[Rπ(T )] = Ω(
√
T ). (1)

We note that even though the mean rewards are rotting in
our setting, we can easily obtain (1) by following the same
proof steps of Theorem 3 in Wang et al. (2009). For the sake
of completeness, we provide a proof in the Appendix A.2.

When % = ω(1/T 3/2), however, the lower bound of the
stationary case is not tight enough. Here we provide the
proof of the lower bound Ω(%1/3T ) for the case when % =
ω(1/T 3/2). For showing the lower bound, we will classify
each arm to be either bad or good or else according to the
definition given shortly. To distinguish bad and good arms,
we use two thresholds 1− c and 1− δ, respectively, where c
and δ are such that 0 < 1−c < 1−δ < 1, δ = %1/3, and c is
a constant. An arm a is said to be a bad arm if µ1(a) ≤ 1−c,
and is said to be a good arm if µ1(a) > 1− δ.

Let NT be the number of distinct selected good arms until
time step T . We separately consider two cases when NT <
m and NT ≥ m, where m = d(1/2)T%2/3e, and show that
each case has Ω(%1/3T ) as the regret lower bound. The
main ideas for each case are outlined as follows. When the
number of selected good arms is relatively small (NT < m),
any policy π must pull arms with mean rewards less than
1− δ at least T/2 time steps until T , amounting to at least
δ regret for each pull (gap between 1 and mean reward of
a pulled arm). Therefore, the regret is lower bounded by
Ω(δ(T/2)) = Ω(%1/3T ). When the number of selected
good arms is relatively large (NT ≥ m), we can show

Algorithm 1 UCB-Threshold Policy (UCB-TP)

Given: T, δ,A; Initialize: A′ ← A
Select an arm a ∈ A′
Pull arm a and get reward r1
for t = 2, . . . , T do

Update the initial mean reward estimator µ̃ot (a)
if UCBt(a) ≥ 1− δ then

Pull arm a and get reward rt
else
A′ ← A′/{a}
Select an arm a ∈ A′
Pull arm a and get reward rt

end if
end for

that any policy π is likely to select at least of order %1/3T
number of distinct bad arms until T . From the fact that the
selected bad arms are pulled at least once and each pull adds
a constant regret of value at least c, the regret is shown to
be lower bounded by Ω(c%1/3T ) = Ω(%1/3T ). Therefore,
when % = ω(1/T 3/2), we can obtain

E[Rπ(T )]

= E[Rπ(T )1(NT < m) +Rπ(T )1(NT ≥ m)]

= Ω(%1/3T ). (2)

Finally, from (1) and (2), we have E[Rπ(T )] =
Ω(max{%1/3T,

√
T}).

4. Algorithms and regret upper bounds
In this section, we first present an algorithm for the rested
rotting bandit problem with infinitely many arms for the
case when the algorithm knows the value of the maximum
rotting rate. We show a regret upper bound of the algorithm
that matches the regret lower bound in Theorem 3.1 up to a
poly-logarithmic factor. Second, we present an algorithm
that does not know the maximum rotting rate and show a
regret upper bound that matches the regret lower bound up
to a poly-logarithmic factor, when the maximum rotting rate
is large enough.

4.1. An algorithm knowing maximum rotting rate

We present an algorithm which requires knowledge of the
maximum rotting rate in Algorithm 1. The algorithm selects
an arm and pulls this arm as long as the arm is tested to be a
good arm, by using a test comparing an upper confidence
bound of this arm with a threshold value. Specifically, if a
is the selected arm at time step t, the algorithm computes an
estimator µ̃ot (a) of the initial mean reward of arm a and uses
this estimator to compute an estimator of the mean reward
of arm a at time step t, considering the worst-case rotting
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rate % for the estimators. Comparing the upper confidence
bound for the mean reward with the threshold 1 − δ, the
algorithm tests whether the arm is a good arm. If the arm is
tested to be a good arm, then the algorithm continues to pull
this arm. Otherwise, it discards the arm and selects a new
one, and repeats the procedure described above until time
horizon T . We consider Algorithm 1 with the initial mean
reward estimator defined as

µ̃ot (a) :=

∑t−1
s=1(rs + %ns(a))1(as = a)

nt(a)

and the upper confidence bound term defined as

UCBt(a) := µ̃ot (a)− %nt(a) +
√

8 log(T )/nt(a).

Note that when %s = % for all 0 < s < t, µ̃ot (a) is an
unbiased estimator of the initial mean reward µ1(a) of arm
a and µ̃ot (a)− %nt(a) is an unbiased estimator of the mean
reward µt(a) of arm a at time step t. The upper confidence
bound UCBt(a) follows the standard definition of an upper
confidence bound. By designing the estimators to deal with
the maximum rotting rate %, for any arbitrary ρt ≤ % for
all time steps t > 0, we show that it has a near-optimal
worst-case regret upper bound in the following theorem.

Theorem 4.1. For the policy π defined by Algorithm 1 with
δ = max{%1/3, 1/

√
T}, and % = o(1), the regret satisfies

E[Rπ(T )] = Õ(max{%1/3T,
√
T}).

Proof sketch. Here we present a proof sketch of the theorem
with a full version of the proof provided in Appendix A.3.

Observe that initial mean rewards of selected arms are i.i.d.
random variables with uniform distribution on [0, 1]. We
first define arms to be good or bad arms depending on
the initial mean rewards. We assume % = o(1) and set
δ = max{%1/3, 1/

√
T}. Then we define an arm a to be

a good arm if ∆(a) ≤ δ/2, where ∆(a) = 1 − µ1(a),
and otherwise, a is a bad arm. Because of rotting, initially
good arm may become bad by pulling the arm several times.
Therefore, the policy π may select several good arms over
the entire time and we analyze the regret over time episodes
defined by the selections of good arms. Given the policy, we
refer to the period starting from selecting the i− 1-st good
arm until selecting the i-th good arm as the i-th episode.
Because of the uniform distribution of mean rewards with
small δ/2, it is likely to have several consecutive selected
bad arms in each episode.

We do an episodic analysis. We first analyze the expected
regret per episode and multiply it by the expected number
of episodes in T . However, this proof strategy has an issue
that the regret of each episode and the number of episodes

Figure 1: Episodes in a time line.

in T are not independent. To resolve the issue, we fix the
number of episodes to mG and analyze the regret not for T
but for mG episodes. Note that mG is a fixed value, and the
time after mG episodes can exceed T . For obtaining a regret
bound, we set mG so that the total number of time steps for
mG episodes is larger than T with high probability and thus
Rπ(T ) ≤ RπmG where RπmG is the regret accumulated for
mG episodes. For the regret analysis, we denote by mBi the
number of selections of distinct bad arms in the i-th episode.
See Figure 1 for an illustration of the episodes in a time line.

In what follows, we provide an overview of the regret anal-
ysis by considering two separate cases depending on the
value of the maximum rotting rate %; one for a large rot-
ting case, and the other for a small rotting case, which we
may interpret as a near-stationary case. For the analysis,
we use RGi to denote the regret accumulated by pulling the
good arm in the i-th episode, and RBi,j to denote the regret
accumulated by pulling the j-th bad arm in the i-th episode.

Case of large rotting % = ω(1/T 3/2): We first show that
by setting mG = d2T%2/3e, we have Rπ(T ) ≤ RπmG . If
the policy selects a good arm a, where µ1(a) ≥ 1 − δ/2,
then it must pull the arm at least δ/(2%) times, with high
probability, to decrease the mean reward below the threshold
1− δ. Then the total number of time steps for mG episodes
is at least (δ/(2%))mG = (1/(2%2/3))d2T%2/3e ≥ T . This
implies that Rπ(T ) ≤ RπmG . We next provide a bound for
E[Rπ(T )] using E[RπmG ]. For bounding E[RπmG ], we can
show that for any i ∈ [mG ] and j ∈ [mBi ], we have

E[RGi ] = Õ

(
1

%1/3

)
and E[RBi,j ] = Õ (1) . (3)

Observe that mB1 , . . . ,m
B
mG are i.i.d. random variables with

geometric distribution with parameter δ/2. Therefore, for
any non-negative integer k, we have P(mBi = k) = (1 −
δ/2)kδ/2 and E[mBi ] = (2/δ)−1 for all i ∈ [mG ]. We have
set δ = max{%1/3, 1/

√
T}. Then when % = ω(1/T 3/2),

with mG = d2T%2/3e and from (3), E[mBi ] = 2/δ − 1, and
δ = %1/3, we have

E[Rπ(T )] = O(E[RπmG ])

= O

E

 ∑
i∈[mG ]

RGi +
∑

j∈[mBi ]

RBi,j


= Õ

((
1

%1/3
+ E[mBi ]

)
mG
)

= Õ
(
%1/3T

)
. (4)
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Case of small rotting % = O(1/T 3/2): By setting mG =
C for some large constant C > 0, we can show that
Rπ(T ) ≤ RπmG . This is because if the policy selects a
good arm a, then it must pull the arm for at least order T
times with high probability. This is because the small rotting
case is a near-stationary setting so that the policy can pull
a good arm for a large amount of time steps. For bounding
E[RπmG ], we can show that for any i ∈ [mG ] and j ∈ [mBi ],

E[RGi ] = O(
√
T ) and E[RBi,j ] = Õ (1) . (5)

Then when % = O(1/T 3/2), with mG = C and from (5),
E[mBi ] = 2/δ − 1, and δ = Θ(1/

√
T ), we have

E[Rπ(T )] = O(E[RπmG ])

= Õ
((√

T + E[mBi ]
)
mG
)

= Õ(
√
T ). (6)

We note that in the small rotting case, the policy achieves
Õ(
√
T ) which matches a near-optimal bound for the station-

ary setting (Wang et al., 2009).

Putting the pieces together: From (4) and (6), by taking
% = o(1) and δ = max{%1/3, 1/

√
T}, it follows

E[Rπ(T )] = Õ(max{%1/3T,
√
T}).

4.2. An algorithm not knowing maximum rotting rate

In this section we present an algorithm which does not re-
quire information about the maximum rotting rate % defined
in Algorithm 2, and provide a regret upper bound for this
algorithm. The algorithm adopts the strategy of hierarchical
bandit algorithms similar to BOB (bandit-over-bandit) (Che-
ung et al., 2019). It consists of a master algorithm and
several base algorithms, where EXP3 (Auer et al., 2002b)
is used for the master algorithm whose goal is to find a
near-optimal base algorithm, and for each base algorithm,
a UCB index policy similar to that in Algorithm 1 is used
with a candidate rotting rate and an adaptive threshold to
decide whether to continue pulling currently selected arm.
In Algorithm 2, the time horizon of T time steps is parti-
tioned into blocks of H time steps. Before starting each
block, the master algorithm selects a rotting estimator β̃ of
the unknown maximum rotting rate % from a set of candidate
values denoted by B. Then it runs a base algorithm over H
time steps which decides whether to continue pulling the
selected arm based on a UCB index and a threshold tuned
using the selected β̃. By utilizing the obtained rewards over
the block as a feedback for the decision of the master algo-
rithm, it updates the master to find a near-optimal base and
repeats the procedure described above until time horizon T .

Algorithm 2 Adaptive UCB-Threshold Policy (AUCB-TP)

Given: T,H,B,A, α
Initialize: A′ ← A, w(β)← 1 for β ∈ B
for i = 1, 2, . . . , dT/He do

Select an arm a ∈ A′
Pull arm a and get reward r(i−1)H+1

p(β)← (1− α) w(β)∑
k∈B w(k) + α 1

B for β ∈ B
Select β̃ ← β with probability p(β) for β ∈ B
δ ← β̃1/3

for t = (i− 1)H + 2, . . . , i ·H ∧ T do
if UCBi,t(a, β̃) ≥ 1− δ then

Pull arm a and get reward rt
else
A′ ← A′/{a}
Select an arm a ∈ A′
Pull arm a and get reward rt

end if
end for
w(β̃)

← w(β̃) exp

(
α

Bp(β̃)

(
1
2 +

∑i·H∧T
t=(i−1)H rt

186H log T+4
√
H log T

))
end for

We note that the term 1/2 +
∑i·H∧T
t=(i−1)H rt/(186H log T +

4
√
H log T ) in updating w(β̃) in Algorithm 2 is for re-

scaling and translating rewards, which makes the rewards lie
in [0, 1] with high probability. Also by optimizing the block
size H , we can control regrets induced from the master and
a base. By increasing H , the regret induced from the mas-
ter increases and the regret induced from a base decreases.
Those facts are shown later in the poof of Theorem 4.2.

In what follows, we define the inputs B and α, and the
upper confidence bound index UCBi,t(a, β) for β ∈ B. B
contains candidate values of β to optimize UCBi,t(a, β)
and the threshold parameter δ. We find that the optimal
base parameter β† ∈ B is when β† = max{1/H3/2, %}
including a clipped domain for the optimal threshold value
δ as in Theorem 4.1. This implies that the optimized β† ≥
1/H3/2 = 2−3/2 log2H . Also from % = o(1), β† ≤ 1/8.
Therefore, we set

B = {2−3, 2−4, . . . , 2−d(3/2) log2He},

in which the cardinality of the set is restricted by O(logH)
which does not hurt the regret from EXP3 up to a log-
arithmic factor. Let B = |B|. Then we set α =
min{1,

√
B logB/((e− 1)dT/He)}, which is used to

guarantee a least selection probability for each base. Let
ni,t(a) be the number of times that arm a ∈ A is pulled by
the algorithm from time step (i− 1)H + 1 before time step
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t. Let µ̃oi,t(a, β) be defined as

µ̃oi,t(a, β) :=

∑t−1
s=(i−1)H+1(rs + βni,s(a))1(as = a)

ni,t(a)

and the UCBi,t(a, β) index be defined as

UCBi,t(a, β) := µ̃oi,t(a, β)−βni,t(a)+
√

8 log(H)/ni,t(a).

We provide a worst-case regret upper bound for Algorithm 2
in the following theorem.

Theorem 4.2. With % = o(1), for the policy π defined by
Algorithm 2 with H = dT 1/2e, the regret satisfies

E[Rπ(T )] = Õ(max{%1/3T, T 3/4}).

Proof sketch. Here we present a proof sketch of the theorem
with a full version of the proof given in Appendix A.4.

The policy π consists of two strategies: EXP3 for the master
and UCB-Threshold Policy (Algorithm 1) for bases. We
can decompose the regret into two parts: regret incurred by
playing a base with β ∈ B over each block of H time steps
and regret incurred due to the master trying to find a near-
optimal base parameter in B. In what follows, we define the
regret decomposition formally. Let πi(β) for β ∈ B denote
the base policy with β for time steps between (i− 1)H + 1

and i ·H ∧ T . Denote by aπi(β)t the pulled arm at time step
t by policy πi(β). Then, for β† ∈ B, which is set later for a
near-optimal base, we have

E[Rπ(T )] = E

 T∑
t=1

1−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

µt(a
π
t )


= E[Rπ1 (T )] + E[Rπ2 (T )], (7)

where

Rπ1 (T ) =

T∑
t=1

1−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

µt(a
πi(β

†)
t ),

Rπ2 (T ) =

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

(
µt(a

πi(β
†)

t )− µt(aπt )
)
.

Note that Rπ1 (T ) accounts for the regret caused by the near-
optimal base algorithm πi(β

†) against the optimal mean
reward and Rπ2 (T ) accounts for the regret caused by the
master algorithm by selecting a base with β ∈ B at every
block against the base with β† as illustrated in Figure 2. We
set β† to be the smallest value in B which is larger than
max{%, 1/H3/2}. Then the base has the threshold parame-
ter β†1/3 of order max{%1/3, 1/

√
H} which coincides with

Figure 2: Regret decomposition for Algorithm 2.

the optimal threshold parameter of Algorithm 1 by replac-
ing T with H . We note that the policy π does not require
knowing β† and it is defined only for the proof.

In what follows, we provide upper bounds for each regret
component. We first provide an upper bound for E[Rπ1 (T )]
by following the proof steps in Theorem 4.1. We can easily
find that regret of the base with β† for each block of size
H that has the same regret bound as in Theorem 4.1 by
replacing T with H amounting to Õ(max{%1/3H,

√
H}).

Then by adding the regret for dT/He number of blocks, we
have

E[Rπ1 (T )] = Õ((T/H) max{%1/3H,
√
H})

= Õ(max{%1/3T, T/
√
H}). (8)

Then we provide an upper bound for E[Rπ2 (T )] using a
regret bound for EXP3 in (Auer et al., 2002b). The EXP3
in policy π selects a base in B before starting a block and
gets feedback at the end of the block and repeats this over
dT/He blocks. Therefore, EXP3 in π can be thought to be
run for dT/He decision rounds and the number of decision
options for each round is B. Let Q be an upper bound for
the absolute sum of rewards for any block with length H
with high probability. Then from Corollary 3.2 in (Auer
et al., 2002b), we can show that

E[Rπ2 (T )] = Õ(Q
√
B(T/H)). (9)

By considering that mean rewards may become negative
because of rotting and using a Chernoff’s bound, we show
that with high probability∣∣∣∣∣∣

i·H∧T∑
t=(i−1)H+1

rt

∣∣∣∣∣∣ ≤ 93H log T + 2
√
H log T . (10)

Then with B = O(log T ), from (9) and (10), we have

E[Rπ2 (T )] = Õ
(
H log(T )

√
B(T/H)

)
= Õ

(√
HT

)
. (11)

Finally, from (7), (8), and (11), with H = dT 1/2e, we have

E[Rπ(T )] = Õ(max{%1/3T, T/
√
H}+

√
HT )

= Õ(max{%1/3T, T 3/4}).

This concludes the proof.
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The regret bound for Algorithm 2 in Theorem 4.2 is larger
than or equal to that for Algorithm 1 in Theorem 4.1. This
is because the master in Algorithm 2 needs to learn the
unknown maximum rotting rate to find a near-optimal base
algorithm, which produces extra regret. In the following
remarks, we discuss the region of the maximum rotting rate
% for which Algorithm 2 achieves the near-optimal regret
and discuss the computation and memory efficiency of our
algorithms.

Remark 4.3. When % = Ω(1/T 3/4), Algorithm 2 achieves
the optimal regret bound Õ(%1/3T ) up to a poly-logarithmic
factor. This is because when % = Ω(1/T 3/4), the additional
regret from learning the maximum rotting rate is negligible
compared with the regret from the rotting of rewards. It is
an open problem to achieve the optimal regret bound for any
value of %, without knowing the value of this parameter.

Remark 4.4. Note that we can achieve the same regret
bounds as in Theorems 4.1 and 4.2 for the worst-case rotting
by replacing our UCB index with adaptive-window UCB
index in (Seznec et al., 2020) which is known to achieve
near-optimal regret for the case of rotting with a finite num-
ber of arms. However, computing the adaptive-window
UCB over horizon T has high computation cost, O(T 2)
and O(TH), and memory space O(T ) and O(H), in Algo-
rithms 1 and 2, respectively, for optimizing the window size.
On the other hand, our proposed UCB index has a lower
computation cost of O(T ) and requires only O(1) memory
space using a simple trick for updating mean estimators in
online computation settings (Welford, 1962).

5. Numerical experiments
In this section we present results of our numerical exper-
iments using synthetic data in the rotting setting with in-
finitely many arms1. To the best of our knowledge, there are
no previously-proposed algorithms for the setting of rotting
with infinitely many arms. We compare the performance
of Algorithms 1 and 2 with SSUCB (Bayati et al., 2020),
which was proposed for infinitely many arms with station-
ary rewards, and is known to have a near-optimal regret
for stationary sub-Gaussian reward distributions. From the
theoretical results in Section 3 and Section 4, we expect that
Algorithm 1 and SSUCB would have similar performance
when the maximum rotting rate is sufficiently small, which
may be regarded as a nearly stationary case, and that both
Algorithm 1 and Algorithm 2 would outperform SSUCB
when the rotting rate is sufficiently large. We expect that
Algorithm 2 would not be competitive in the nearly station-
ary case because of the extra regret from the rotting rate
estimation. It requires the rotting rate to be sufficiently large

1Our code is available at https://github.com/
junghunkim7786/rotting_infinite_armed_
bandits

(a) (b)

(c) (d)

Figure 3: Performance of Algorithms 1 and 2, and SSUCB:
(a) regret versus %1/3 for fixed time horizon T , and (b,c,d)
regret versus time horizon T with rotting rates % = 1/T 1/2

(b), 1/T 3/5 (c), and 1/T 3/2 (d).

to have the near-optimal regret bound. We will confirm
these insights by our numerical results in what follows.

In our experiments, we consider the case of identical rotting
with %t = % for all t ∈ [T ]. We generate initial mean
rewards of arms by sampling from uniform distribution on
[0, 1]. In each time step, stochastic reward from pulling an
arm has a Gaussian noise with mean zero and variance 1. We
repeat each experiment 10 times and compute confidence
intervals for confidence probability 0.95.

We first investigate the performance of algorithms for varied
rotting rate % and fixed time horizon T . We ran experiments
for rotting rate % set to 1/T, 1/T 0.9, 1/T 0.8, . . . , 1/T 0.3,
and measured the expected regret for the time horizon
T = 106. In Figure 3 (a), we can confirm that our al-
gorithms show more robust performance than SSUCB for
various rotting rates with linearly increasing regret with re-
spect to %1/3 for large rotting, which matches Theorems 4.1
and 4.2. We observe that for large rotting cases, our al-
gorithms have similar performance and both outperform
SSUCB. For sufficiently small rotting, we can observe that
all the three algorithms have comparable performance while
Algorithm 2 performs slightly worse. These results conform
to the insights derived from our theoretical analysis.

We next investigate the performance of algorithms ver-
sus time horizon T and rotting rate % depending on T .
We ran experiments for time horizon T taking values
1, 1×105, 2×105, . . . , 106, and measured expected regret of
each case. We set the rotting rate % to 1/T 1/2, 1/T 3/5 and
1/T 3/2. Note that the case 1/T 3/2 may be considered as a

https://github.com/junghunkim7786/rotting_infinite_armed_bandits
https://github.com/junghunkim7786/rotting_infinite_armed_bandits
https://github.com/junghunkim7786/rotting_infinite_armed_bandits
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nearly-stationary case, because in this case the regret lower
bound is Ω(

√
T ) from Theorem 3.1. In Figure 3 (b) and (c),

corresponding to large rotting rates, we observe that Algo-
rithms 1 and 2 have similar performance and outperform
SSUCB. The gaps between regrets of our algorithms and
SSUCB become smaller by decreasing the rotting rate from
1/T 1/2 to 1/T 3/5. This is because SSUCB is designed for
the case of stationary rewards and has a near-optimal regret
in the stationary case. In the near-stationary case, in Fig-
ure 3 (d), we observe that Algorithm 1 has best performance
and, as expected, Algorithm 2 has worst performance.

6. Conclusion
In this paper we studied the infinitely many-armed bandit
problem with rested rotting rewards. We provided a regret
lower bound and proposed an algorithm which achieves a
near-optimal regret, when the the maximum rotting rate is
known to the algorithm. We also proposed an algorithm
which does not require knowledge of the rotting rate and we
showed that it achieves a near-optimal regret for any large
enough rotting rate. In future work, it may be of interest to
relax the assumption of uniform distribution for initial mean
rewards.
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A. Appendix
A.1. Preliminaries

Here we state some known concentration inequalities that we use in our proofs.

Lemma A.1 (Theorem 6.2.35 in Tsun (2020)). Let X1, . . . , Xn be identical independent Bernoulli random variables. Then,
for 0 < ν < 1, we have

P

(
n∑
i=1

Xi ≥ (1 + ν)E

[
n∑
i=1

Xi

])
≤ exp

(
−
ν2E[

∑n
i=1Xi]

3

)
.

Lemma A.2 (Corollary 1.7 in Rigollet & Hütter (2015)). Let X1, . . . , Xn be independent random variables with σ-sub-
Gaussian distributions. Then, for any a = (a1, . . . , an)> ∈ Rn and t ≥ 0, we have

P

(
n∑
i=1

aiXi > t

)
≤ exp

(
− t2

2σ2‖a‖22

)
and P

(
n∑
i=1

aiXi < −t

)
≤ exp

(
− t2

2σ2‖a‖22

)
.

A.2. Proof of Theorem 3.1

For showing the lower bound, we will classify arms to be either bad or good depending on the value of their initial mean
rewards, in a way that will be defined shortly. We will analyze the number of bad arm pulls which is the main contributor to
the regret. For the analysis, we count the number of bad arm pulls until the first or m-th good arm is pulled over a fixed time
horizon in order to preserve i.i.d. property of mean rewards in the proof. To distinguish good from bad arms, we utilize two
thresholds in the proof as follows. Let 0 < δ < c < 1 be such that 1 > 1− δ > 1− c > 0 for δ, which will be set small, and
some constant c. Then, 1− δ and 1− c represent threshold values for distinguishing good arms and bad arms, respectively.
In A, let ā1, ā2, . . . , be a sequence of arms. Given a policy π, without loss of generality let π select arms following the
sequence of ā1, ā2, . . . ,.

Case of small rotting: When % = O(1/T 3/2), the lower bound of order
√
T for the stationary case, from Theorem 3 in

Wang et al. (2009), is tight enough for the non-stationary case. This is because we only need to pay the extra regret of at
most of order

√
T for small %. From Theorem 3 in Wang et al. (2009), we have

E[Rπ(T )] = Ω(
√
T ). (12)

We note that even though the mean rewards are rotting in our setting, Theorem 3 in Wang et al. (2009) can be applied to our
setting without any proof changes providing a tight regret bound for the near-stationary case. For the sake of completeness,
we provide the proof of the theorem. Let K1 denote the number of “bad” arms a that satisfy µ1(a) ≤ 1− c before selecting
the first “good” arm, which satisfies µ1(a) > 1− δ, in the sequence of arms ā1, ā2, . . . . Let µ be the initial mean reward of
the best arm among the selected arms by π over time horizon T . Then for some κ > 0, we have

Rπ(T ) = Rπ(T )1(µ ≤ 1− δ) +Rπ(T )1(µ > 1− δ)
≥ Tδ1(µ ≤ 1− δ) +K1c1(µ > 1− δ)
≥ Tδ1(µ ≤ 1− δ) + κc1(µ > 1− δ,K1 ≥ κ). (13)

By taking expectations on the both sides in (13) and setting κ = Tδ/c, we have

E[Rπ(T )] ≥ TδP(µ ≤ 1− δ) + κc(P(µ > 1− δ)− P(K1 < κ)) = cκP(K1 ≥ κ).

Let δ′ = δ/(1 − c + δ). Then we observe that K1 follows a geometric distribution with success probability P(µ1(a) >
1− δ)/p(µ1(a) /∈ (1− c, 1− δ)) = δ′, in which the success probability is the probability of selecting a good arm given
that the arm is either a good or bad arm. Then by setting δ = 1/

√
T with κ =

√
T/c, for some constant C > 0 we have

E[Rπ(T )] ≥ cκ(1− δ′)κ = Ω
(√

T (1− C/
√
T )
√
T/c
)

= Ω(
√
T ),
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where the last equality is obtained from log x ≥ 1− 1/x for all x > 0.

Case of large rotting: When % = ω(1/T 3/2), however, the lower bound of the stationary case is not tight enough. Here
we provide the proof of the lower bound T%1/3 for the case of % = ω(1/T 3/2). Let Km denote the number of “bad” arms
a that satisfy µ1(a) ≤ 1 − c before selecting m-th “good” arm, which satisfies µ1(a) > 1 − δ, in the sequence of arms
ā1, ā2, . . . . Let NT be the number of selected good arms a such that µ1(a) > 1− δ until T .

We can decompose Rπ(T ) into two parts as follows:

Rπ(T ) = Rπ(T )1(NT < m) +Rπ(T )1(NT ≥ m). (14)

We set m = d(1/2)T%2/3e and δ = %1/3with % = o(1). For getting a lower bound for the first term in (14), Rπ(T )1(NT <
m), we use the fact that the minimal regret is obtained from the situation where there are m− 1 arms whose mean rewards
are 1. Then we can think of the optimal policy that selects the best m− 1 arms until their mean rewards become below the
threshold 1− δ (step 1) and then selects the best arm at each time for the remaining time steps (step 2). The required number
of pulling each arm for the best m − 1 arms until the mean reward becomes below 1 − δ is upper bounded by δ/% + 1.
Therefore, the regret from step 2 is R = Ω((T −mδ/%)δ) = Ω(T%1/3) in which the optimal policy pulls arms which mean
rewards are below 1− δ for the remaining time after step 1. Therefore, we have

Rπ(T )1(NT < m) = Ω(R1(NT < m)) = Ω(T%1/31(NT < m)). (15)

For getting a lower bound of the second term in (14), Rπ(T )1(NT ≥ m), we use the minimum number of selected arms a
that satisfy µ1(a) ≤ 1− c. When NT ≥ m and Km ≥ κ, the policy selects at least κ number of distinct arms a satisfying
µ1(a) ≤ 1− c until T . Therefore, we have

Rπ(T )1(NT ≥ m) ≥ cκ1(NT ≥ m,Km ≥ κ). (16)

Let δ′ = δ/(1− c+ δ). By setting κ = m/δ′ −m−
√
m/δ′, with % = o(1), we have

κ = Θ(T%1/3). (17)

Then from (15), (16), and (17), we have

E[Rπ(T )] = Ω(T%1/3P(NT < m) + T%1/3P(NT ≥ m,Km ≥ κ)) ≥ Ω(T%1/3P(Km ≥ κ)). (18)

Next we provide a lower bound for P(Km ≥ κ). Observe thatKm follows a negative binomial distribution withm successes
and the success probability P(µ1(a) > 1 − δ)/P(µ1(a) /∈ (1 − c, 1 − δ)) = δ/(1 − c + δ) = δ′, in which the success
probability is the probability of selecting a good arm given that the arm is either a good or bad arm. In the following lemma,
we provide a concentration inequality for Km.

Lemma A.3. For any 1/2 + δ′/m < α < 1,

P(Km ≥ αm(1/δ′)−m) ≥ 1− exp(−(1/3)(1− 1/α)2(αm− δ′)). (19)

Proof. Let Xi for i > 0 be i.i.d. Bernoulli random variables with success probability δ′. From Section 2 in Brown (2011),
we have

P

(
Km ≤

⌊
αm

1

δ′

⌋
−m

)
= P

bαm 1
δ′ c∑

i=1

Xi ≥ m

 . (20)
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From (20) and Lemma A.1, for any 1/2 + δ′/m < α < 1 we have

P

(
Km ≤ αm

1

δ′
−m

)
= P

(
Km ≤

⌊
αm

1

δ′

⌋
−m

)

= P

bαm 1
δ′ c∑

i=1

Xi ≥ m


≤ exp

(
− (1− 1/α)2

3

⌊
αm

1

δ′

⌋
δ′
)

≤ exp

(
− (1− 1/α)2

3
(αm− δ′)

)
,

in which the first inequality comes from Lemma A.1, which concludes the proof.

From Lemma A.3 with α = 1− 1/
√
m and large enough T , we have

P(Km ≥ κ) ≥ 1− exp

(
−1

3
(m−

√
m− δ′)

(
1√
m− 1

)2
)

≥ 1− exp

(
−1

6
(m−

√
m)

(
1√
m− 1

)2
)

= 1− exp

(
−1

6

√
m√

m− 1

)
≥ 1− exp(−1/6). (21)

Therefore, from (18) and (21), we have

E[Rπ(T )] = Ω(T%1/3). (22)

Finally, from (12) and (22) we conclude that for any policy π, we have

E[Rπ(T )] = Ω(max{T%1/3,
√
T}).

A.3. Proof of Theorem 4.1

Observe that initial mean rewards of selected arms are i.i.d. with a uniform distribution which should simplify analysis of the
expected regret. However, by fixing the number of selected arms by a policy over the time horizon T , the mean rewards of
arms become dependent. To deal with this dependence, we analyze the regret by controlling the number of distinct selected
arms instead of fixing the time horizon. We explain this in more details in the following proofs.

We set δ = max{%1/3, 1/
√
T}. Then we define an arm a to be a good arm if ∆(a) ≤ δ/2, and, otherwise, a is a bad arm.

In A, let ā1, ā2, . . . , be a sequence of arms, which have i.i.d. mean rewards with uniform distribution on [0, 1]. Given a
policy selecting arms in the sequence order, let mG be the number of selections of distinct good arms and mBi be the number
of consecutive selections of distinct bad arms between the i− 1-st and i-th selection of a good arm among mG good arms.
We refer to the period starting from selecting the i− 1-st good arm before selecting the i-th good arm as the i-th episode.
Observe that mB1 , . . . ,m

B
mG are i.i.d. random variables with geometric distribution with parameter δ/2, given a fixed value

of mG . Therefore, for non-negative integer k we have P(mBi = k) = (1− δ/2)kδ/2, for i = 1, . . . ,mG . Define m̃ to be
the number of episodes from the policy π over the horizon T , m̃G to be the total number of selections of a good arm by the
policy π over the horizon T such that m̃G = m̃ or m̃G = m̃− 1, and m̃Bi to be the number of selections of a bad arm in the
i-th episode by the policy π over the horizon T . Without loss of generality, we assume that the policy selects arms in the
sequence of ā1, ā2, . . . , . Let AT be the set of selected arms over the horizon of T time steps, which satisfies |AT | ≤ T . Let

µ̂t(a) =

∑t−1
s=1 rs1(as = a)

nt(a)
and µ̄t(a) =

∑t−1
s=1 µs(a)1(as = a)

nt(a)
.
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We define the event E1 = {|µ̂t(a)− µ̄t(a)| ≤
√

2 log(T 4)/nt(a) for all t ∈ [T ], a ∈ AT } to guarantee that the estimators
of initial mean reward are well estimated. From Lemma A.2, by following similar steps of the proof of Lemma 5 in Auer
et al. (2019), we have

P(Ec1) ≤ 2/T 2.

Recall that Rπ(T ) =
∑T
t=1 1−µt(aπt ). It is true that Rπ(T ) = o(T 2) because the maximum mean reward gap from rotting

is bounded by 1 + T% = o(T ). Given that E1 does not hold, the regret is E[Rπ(T )|Ec1]P(Ec1) = o(1), which is negligible
comparing with the regret when E1 holds true which we show later. Therefore, in the rest of the proof we assume that E1

holds true.

Under a policy π, let RGi be the regret (summation of mean reward gaps) contributed by pulling the good arm in the i-th

episode and RBi,j be the regret contributed by pulling the j-th bad arm in the i-th episode. Then let RπmG =
∑mG

i=1(RGi +∑
j∈[mBi ]

RBi,j),
2 which is the regret over the period of mG episodes.

For obtaining a regret bound, we first focus on finding a required number of episodes, mG , such that Rπ(T ) ≤ RπmG . Then
we provide regret bounds for each bad arm and good arm in an episode. Lastly, we obtain a regret bound for E[Rπ(T )]
using the episodic regret bound.

For i ∈ [m̃G ], j ∈ [m̃Bi ], let ñGi be the number of pulls of the good arm in the i-th episode and ñBi,j be the number of pulls of
the j-th bad arm in the i-th episode by the policy π over the horizon T . Let ã be the last selected arm over time horizon T
by π. We denote by m̂G and m̂Bi for i ∈ [m̃] the number of arms excluding ã in the selected m̃G number of good arms and
m̃Bi number of bad arms for i ∈ [m̃] as follows:

m̂G =

{
m̃G − 1 if ã is a good arm
m̃G otherwise

,

m̂Bi = m̃Bi for i ∈ [m̃− 1], and m̂Bm̃ =

{
m̃Bm̃ if ã is a good arm
m̃Bm̃ − 1 otherwise.

Those notations are defined only if they exist.3 Excluding the last arm ã which the policy π may stop to pull suddenly by
reaching the horizon T , we provide lower bounds of the number of pulling a good arm, ñGi for i ∈ [m̂G ] in the following
lemma if they exist.

Lemma A.4. Under E1, given m̂G , for any i ∈ [m̂G ] we have

ñGi ≥ δ/(2%).

Proof. Let

µ̂ot (a) =

∑t−1
s=1(rs + %sns(a))1(as = a)

nt(a)
,

which satisfies µ̃ot (a) ≥ µ̂ot (a) from %s ≤ % for all s. Under E1, we can easily show that for all t ∈ [T ] and a ∈ AT ,

|µ̂ot (a)− µ1(a)| ≤
√

8 log(T )/nt(a).

Let a(i) be a selected good arm in the i-th episode. Suppose that nt(a(i)) = ñGi = bδ/(2%)c for some t > 0, then we have

µ̃ot (a(i))− %ñGi +

√
8 log(T )/ñGi ≥ µ̂

o
t (a(i))− %ñGi +

√
8 log(T )/ñGi ≥ µ1(a(i))− δ/2 ≥ 1− δ,

where the second inequality is obtained from E1 and ñGi ≤ δ/(2%), and the third inequality is from µ1(a(i)) ≥ 1− δ/2.
Therefore, policy π must pull arm a more times than bδ/(2%)c, which implies ñGi ≥ δ/(2%).

2Note that RπmB does not contain undefined RB
i,j such that RB

i,j when mB
i = 0.

3ñG
i , ñB

i,j , and m̂B
i are not defined for i ∈ [0] or j ∈ [0].
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We first consider the case when % = ω(1/T 3/2). We have δ = %1/3. For getting RπmG , here we define the policy π after time
T such that it pulls dδ/(2%)e amount for a good arm and 0 for a bad arm. We note that defining how π works after T is only
for the proof to get a regret bound over time horizon T . For the last arm ã over the horizon T , it pulls the arm up to dδ/(2%)e
amounts if ã is a good arm and ñG

m̃G
< δ/(2%). For i ∈ [mG ], j ∈ [mBi ] let nGi and nBi,j be the number of pulling the good

arm in i-th episode and j-th bad arm in i-th episode from the policy, respectively. Here we define nGi ’s and nBi,j’s as follows:

If ã is a good arm and ñG
m̃G

< δ/(2%),

nGi =

{
ñGi for i ∈ [m̃G − 1]

dδ/(2%)e for i ∈ [mG ]/[m̃G − 1]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ].

Otherwise,

nGi =

{
ñGi for i ∈ [m̃G ]

dδ/(2%)e for i ∈ [mG ]/[m̃G ]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G − 1], j ∈ [mBi ]/[m̃Bi ].

We note that nGi ’s and nBi,j’s are defined only if they exist.4 Then we provide mG such that Rπ(T ) ≤ RπmG in the following
lemma.
Lemma A.5. Under E1, when mG = d2T%2/3e we have

Rπ(T ) ≤ RπmG .

Proof. From Lemma A.4, with δ = %1/3 we have

∑
i∈[mG ]

nGi +
∑

j∈[mBi ]

nBi,j

 ≥ mG δ
2%
≥ T,

which implies that Rπ(T ) ≤ RπmG .

From the result of Lemma A.5, we set mG = d2T%2/3e. For getting a bound for E[RπmG ], we provide bounds for E[RGi ] and
E[RBi,j ] in the following lemma.

Lemma A.6. Under E1 and policy π, for any i ∈ [mG ], j ∈ [mBi ], we have

E[RGi ] = Õ

(
δ

%2/3
+
δ2

%
+

1

%1/3

)
,

and

E[RBi,j ] = Õ

(
1 +

δ

%1/3
+

δ2

%2/3

)
.

Proof. First we provide a bound for RGi using an upper bound of nGi . Recall that a(i) is the selected arm for the i-th good
arm. We have

µ̃ot (a(i))− %nt(a(i)) = µ̂t(a(i)) + %

∑t−1
s=1 ns(a(i))1(as = a(i))

nt(a(i))
− %nt(a(i))

≤ µ̂t(a(i)) + %
nt(a(i)) + 1

2
− %nt(a(i))

= µ̂t(a(i))− %nt(a(i))− 1

2
.

4nG
i and nB

i,j are not defined for i ∈ [0] or j ∈ [0].



Rotting Infinitely Many-armed Bandits

Then since, under E1,

µ̂t(a(i))− (%/2)(nt(a(i))− 1) ≤ µ̄t(a(i)) +
√

8 log(T )/nt(a(i))− (%/2)(nt(a(i))− 1)

≤ 1 +
√

8 log(T )/nt(a(i))− (%/2)(nt(a(i))− 1),

for i ∈ [m̃G ], from the policy π, we need to get n such that

1− %

2
(n− 1) + 2

√
8 log(T )/n < 1− δ, (23)

in which n+ 1 is an upper bound for nGi . Let n1 = 2(δ + %1/3)/%+ 1 and n2 = C log(T )/%2/3 with some large enough
constant C > 0. Then n = n1 + n2 satisfies (23) because 1− %n1 + 2

√
8 log(T )/n2 < 1− δ. Therefore, for all i ∈ [m̃G ]

we have nGi = Õ((δ + %1/3)/%). Then with the fact that nGi = dδ/(2%)e for i ∈ [mG ]/[m̃G ] if they exist, for any i ∈ [mG ]
we have

nGi = Õ((δ + %1/3)/%).

Then for any i ∈ [mG ] we have

E[RGi ] ≤ E

[
∆(a(i))nGi +

nGi (nGi − 1)

2
%

]
= Õ

(
2

δ

∫ δ/2

0

δ + %1/3

%
x+

(
δ + %1/3

%

)2

%dx

)

= Õ

(
δ

%2/3
+
δ2

%
+

1

%1/3

)
,

where the first equality is obtained from the fact that ∆(a(i)) are i.i.d. random variables with uniform distribution on [0, δ/2]
and nGi = Õ((δ + %1/3)/%).

Now we provide an upper bound of nBi,j to get a bound of RBi,j for i ∈ [mG ], j ∈ [mBi ]. Let a(i, j) be a selected
arm for j-th bad arm in the i-th episode. When δ/2 < ∆(a(i, j)) ≤ δ + %1/3, as in the case of the good arm, n =
2(δ+ %1/3)/%+ 1 +C1 log(T )/%2/3 for some large enough constant C1 > 0, satisfies (23) so that nBi,j = Õ((δ+ %1/3)/%)

for all i ∈ [m̃], j ∈ [m̃Bi ]. Since under E1

µ̂t(a(i, j))− (%/2)(nt(a(i, j))− 1) ≤ µ̄t(a(i, j)) +
√

8 log(T )/nt(a(i, j))− (%/2)(nt(a(i, j))− 1)

≤ µ1(a(i, j)) +
√

8 log(T )/nt(a(i, j))− (%/2)(nt(a(i, j))− 1),

when δ + %1/3 < ∆(a(i, j)) ≤ 1, from the policy π under E1, we need to get n ≥ 1 such that

µ1(a(i, j))− %

2
(n− 1) + 2

√
8 log(T )/n < 1− δ, (24)

in which n+ 1 is an upper bound of nBi,j for i ∈ [m̃], j ∈ [m̃Bi ]. From a sufficient condition for (24) to hold such that

µ1(a(i, j)) + 2
√

8 log(T )/n < 1− δ,

we can find that n = C2 log(T )/(∆(a(i, j)) − δ)2 for some large constant C2 > 0 satisfies (24). Therefore, when
δ + %1/3 < ∆(a(i, j)) ≤ 1, for all i ∈ [m̃], j ∈ [m̃Bi ] we have nBi,j = Õ(1/(∆(a(i, j)) − δ)2). Then with the fact that
nBi,j = 0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ] if they exist, for any i ∈ [mG ] and j ∈ [mBi ], we have

nBi,j =

{
Õ((δ + %1/3)/%) if δ/2 < ∆(a(i, j)) ≤ δ + %1/3

Õ(1/(∆(a(i, j))− δ)2) if δ + %1/3 < ∆(a(i, j)) ≤ 1
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Then for any i ∈ [mG ], j ∈ [mBi ], we have

E[RBi,j ] ≤ E

[
∆(a(i, j))nBi,j +

nBi,j(n
B
i,j − 1)

2
%

]

= Õ

(
1

1− δ/2

(∫ δ+%1/3

δ/2

δ + %1/3

%
x+

(
δ + %1/3

%

)2

%dx +

∫ 1

δ+%1/3

1

(x− δ)2
x+

1

(x− δ)4
%dx

))
= Õ

(
1 +

δ

%1/3
+

δ2

%2/3

)
.

Recall that RπmG =
∑mG

i=1(RGi +
∑
j∈[mBi ]

RBi,j). With δ = %1/3 and mG = d2T%2/3 log(1/δ′)e, from Lemmas A.5 and
A.6, and the fact that mBi ’s are i.i.d. random variables with geometric distribution with E[mBi ] = 2/δ − 1, we have

E[Rπ(T )] = O(E[RπmG ])

= O

E

mG∑
i=1

RGi +
∑

j∈[mBi ]

RBi,j


= Õ

(
T%2/3

((
δ

%2/3
+
δ2

%
+

1

%1/3

)
+

1

δ

(
1 +

δ

%1/3

)))
= Õ

(
T%2/3

(
δ

%2/3
+
δ2

%
+

1

δ
+

1

%1/3

))
= Õ

(
T%1/3

)
. (25)

Now we consider the case when % = O(1/T 3/2). We have δ = Θ(1/
√
T ). With a slight abuse of notation, we use π for a

modified strategy after T . For getting RπmG , here we define the policy π after time T such that it pulls T amounts for a good
arm and once for a bad arm. For the last arm ã over the horizon T , it pulls the arm up to T amounts if ã is a good arm and
ñG
m̃G

< T . With slight abuse of notation, for i ∈ [mG ], j ∈ [mBi ] let nGi and nBi,j be the number of pulling the good arm in
i-th episode and j-th bad arm in i-th episode from the policy, respectively. Here we define nGi ’s and nBi,j’s as follows:

If ã is a good arm and ñG
m̃G

< T ,

nGi =

{
ñGi for i ∈ [m̃G − 1]

T for i ∈ [mG ]/[m̃G − 1]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ].

Otherwise,

nGi =

{
ñGi for i ∈ [m̃G ]

T for i ∈ [mG ]/[m̃G ]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G − 1], j ∈ [mBi ]/[m̃Bi ].

From Lemma A.4, under E1 we can find that nGi ≥ min{δ/(2%), T} for i ∈ [mG ]. Then if mG = C3 with some large
enough constant C3 > 0, then with δ = Θ(1/

√
T ) and % = O(1/T 3/2), we have∑

i∈[mG ]

nGi ≥ C3 min{δ/(2%), T} > T,

which implies Rπ(T ) ≤ RπmG . Therefore, we set mG = C3. For getting a bound for E[RπmG ], we provide bounds for E[RGi ]
and E[RBi,j ] in the following lemma.
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Lemma A.7. Under E1 and policy π, for any i ∈ [mG ] and j ∈ [mBi ], we have

E[RGi ] = O
(
δT + T 2%

)
,

and

E[RBi,j ] = Õ
(
Tδ2 +

√
Tδ + 1

)
.

Proof. First we provide a bound for RGi using an upper bound of nGi . With the definition of nGi = T for i ∈ [mG ]/[m̃G ], for
any i ∈ [mG ] we have

nGi ≤ T.

Recall that a(i) is the selected arm for the i-th good arm. Then for any i ∈ [mG ] we have

E[RGi ] ≤ E

[
∆(a(i))nGi +

nGi (nGi − 1)

2
%

]
= O

(
δT + T 2%

)
,

where the first equality is obtained from the fact that ∆(a(i))’s are i.i.d. random variables with uniform distribution on
[0, δ/2] and nGi ≤ T .

Now we provide an upper bound of nBi,j to get a bound of RBi,j for i ∈ [mG ], j ∈ [mBi ]. Let a(i, j) be a selected arm for
j-th bad arm in the i-th episode. When δ/2 < ∆(a(i, j)) ≤ δ + 1/

√
T , as in the case of the good arm, nBi,j ≤ T for all

i ∈ [m̃], j ∈ [m̃Bi ]. When δ + 1/
√
T < ∆(a(i, j)) ≤ 1, since under E1

µ̃ot (a(i, j))− %nt(a(i, j)) = µ̂t(a(i, j)) + %

∑t−1
s=1 ns(a(i, j))1(as = a(i, j))

nt(a(i, j))
− %nt(a(i, j))

≤ µ̂t(a(i, j)) + %
nt(a(i, j)) + 1

2
− %nt(a(i, j))

= µ̂t(a(i, j))− %nt(a(i, j))− 1

2

≤ µ̄t(a(i, j)) +
√

8 log(T )/nt(a(i, j))− (%/2)(nt(a(i, j))− 1)

≤ µ1(a(i, j)) +
√

8 log(T )/nt(a(i, j))− (%/2)(nt(a(i, j))− 1),

from the policy π we need to get n such that

µ1(a(i, j))− (%/2)(n− 1) + 2
√

8 log(T )/n < 1− δ, (26)

in which n+ 1 is an upper bound of nBi,j for i ∈ [m̃], j ∈ [m̃Bi ]. From a sufficient condition for (26) to hold such that

µ1(a(i, j)) + 2
√

8 log(T )/n < 1− δ,

we can find that n = C4 log(T )/(∆(a(i, j)) − δ)2 for some large constant C4 > 0 satisfies (26). Therefore, when
δ + 1/

√
T < ∆(a(i, j)) ≤ 1, for all i ∈ [m̃], j ∈ [m̃Bi ] we have nBi,j = Õ(1/(∆(a(i, j)) − δ)2). Then with the fact that

nBi,j = 0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ], for any i ∈ [mG ], j ∈ [mBi ], if δ/2 < ∆(a(i, j)) ≤ δ + 1/
√
T , we have

nBi,j ≤ T,

and if δ + 1/
√
T < ∆(a(i, j)) ≤ 1, we have

nBi,j = Õ(1/(∆(a(i, j))− δ)2).
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Then for any i ∈ [mG ], j ∈ [mBi ], we have

E[RBi,j ] ≤ E

[
∆(a(i, j))nBi,j +

nBi,j(n
B
i,j − 1)

2
%

]

= Õ

(
1

1− δ/2

(∫ δ+1/
√
T

δ/2

Tx+ T 2%dx +

∫ 1

δ+1/
√
T

1

(x− δ)2
x+

1

(x− δ)4
%dx

))
= Õ

(
Tδ2 +

√
Tδ + 1

)
.

Then with δ = Θ(1/
√
T ) and mG = C3, we have

E[Rπ(T )] = O(E[RπmG ])

= O

E

 ∑
i∈[mG ]

(RGi +
∑

j∈[mBi ]

RBi,j)


= Õ

((
δT + T 2%

)
+

1

δ

(
Tδ2 +

√
Tδ + 1

))
= Õ(

√
T ), (27)

where the third equality is obtained from Lemma A.7 and E[mBi ] = 2/δ − 1.

Finally, we can conclude the proof: From (25) and (27), for % = o(1), with δ = max{%1/3, 1/
√
T} we have

E[Rπ(T )] = Õ(max{T%1/3,
√
T}).

A.4. Proof of Theorem 4.2

Let πi(β) for β ∈ B denote the base policy for time steps between (i − 1)H + 1 and i · H ∧ T in Algorithm 2 using
UCBi,t(a, β) as a UCB index and 1− β1/3 as a threshold. Denote by aπi(β)t the pulled arm at time step t by policy πi(β).
Then, for β† ∈ B, which is set later for a near-optimal policy, we have

E[Rπ(T )] = E

 T∑
t=1

1−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

µt(a
π
t )

 = E[Rπ1 (T )] + E[Rπ2 (T )]. (28)

where

Rπ1 (T ) =

T∑
t=1

1−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

µt(a
πi(β

†)
t )

and

Rπ2 (T ) =

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

µt(a
πi(β

†)
t )−

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

µt(a
π
t ).

Note that Rπ1 (T ) accounts for the regret caused by the near-optimal base algorithm πi(β
†)’s against the optimal mean

reward and Rπ2 (T ) accounts for the regret caused by the master algorithm by selecting a base with β ∈ B at every block
against the base with β†. In what follows, we provide upper bounds for each regret component. We first provide an upper
bound for E[Rπ1 (T )] by following the proof steps in Theorem 4.1. Then we provide an upper bound for E[Rπ2 (T )]. We set
H =

√
T and β† to be a smallest value in B which is larger than max{%, 1/H3/2}.

Upper bounding E[Rπ1 (T )]. We refer to the period starting from time step (i− 1)H + 1 to time step i ·H ∧ T as the i-th
block. For any i ∈ dT/H − 1e, policy πi(β†) runs over H time steps independent to other blocks so that each block has the



Rotting Infinitely Many-armed Bandits

same expected regret and the last block has a smaller or equal expected regret than other blocks. Therefore, we focus on
finding a bound on the regret from the first block equal to

∑H
t=1 1− µt(aπ1(β

†)
t ). Denote by A(i) the set of selected arms in

the i-th block, which satisfies |A(i)| ≤ H . For notation simplicity, we use nt(a) instead of n1,t(a) and µ̃ot (a) instead of
µ̃o1,t(a). Let

µ̂t(a) =

∑t−1
s=1 rs1(as = a)

nt(a)
and µ̄t(a) =

∑t−1
s=1 µs(a)1(as = a)

nt(a)
.

Define the event E1 = {|µ̂t(a)− µ̄t(a)| ≤
√

8 log(H)/nt(a), for all t ∈ [H], a ∈ A(1)}. From Lemma A.2, by following
similar steps of the proof of Lemma 5 in Auer et al. (2019), we have

P(E1) ≥ 1− 2/H2.

We assume that E1 holds true in what follows. Otherwise, the regret for the first block is negligible from Rπ1(β
†)(H) =

o(H2). The proof follows similar steps as in the proof of Theorem 4.1.

From π1(β†) we have δ = β†
1/3. We define an arm a to be a good arm if ∆(a) ≤ δ/2, and, otherwise, a is a bad arm. In

A, let ā1, ā2, . . . be a sequence of arms, which have i.i.d. mean rewards with uniform distribution on [0, 1]. Given a policy
selecting arms in the sequence order, let mG be the number of selections of distinct good arms and mBi be the number of
consecutive selections of distinct bad arms between the i − 1-st and i-th selection of a good arm among mG good arms.
We refer to the period starting from selecting the i− 1-st good arm before selecting the i-th good arm as the i-th episode.
Observe that mB1 , . . . ,m

B
mG ’s are i.i.d. random variables with geometric distribution with parameter δ/2, conditional on

the value of mG . Therefore, P(mBi = k) = (1 − δ/2)kδ/2, for i = 1, . . . ,mG . Define m̃ to be the number of episodes
by following policy π over the horizon of T time steps, m̃G to be the total number of selections of a good arm such that
m̃G = m̃ or m̃G = m̃− 1, and m̃Bi to be the number of selections of a bad arm in the i-th episode by the policy π1(β†) over
the horizon H . Without loss of generality, we assume that the policy selects arms in the order of the sequence ā1, ā2, . . . .

Under policy π1(β†), let RGi be the regret (summation of mean reward gaps) contributed by pulling the good arm in

the i-th episode and RBi,j be the regret contributed by pulling the j-th bad arm in the i-th episode. Then let Rπ1(β
†)

mG
=∑mG

i=1(RGi +
∑
j∈[mBi ]

RBi,j)
5, which is the regret over the period of mG episodes.

For i ∈ [m̃G ], j ∈ [m̃Bi ], let ñGi be the number of pulls of the good arm in the i-th episode and ñBi,j be the number of pulls
of the j-th bad arm in the i-th episode by the policy π1(β†) over the horizon H . Let ã be the last selected arm over time
horizon H by π1(β†). We denote by m̂G and m̂Bi for i ∈ [m̃] the number of arms excluding ã in the selected m̃G number of
good arms and m̃Bi number of bad arms for i ∈ [m̃] as follows:

m̂G =

{
m̃G − 1 if ã is a good arm
m̃G otherwise

,

m̂Bi = m̃Bi for i ∈ [m̃− 1], and m̂Bm̃ =

{
m̃Bm̃ if ã is a good arm
m̃Bm̃ − 1 otherwise.

These notations are defined only if they exist.6 Excluding the last arm ã which the policy π1(β†) may stop to pull suddenly
by reaching the horizon H , we provide lower bounds for the number of pulls for each arm, ñGi for i ∈ [m̂G ] in the following
lemma if they exist.

Lemma A.8. Under E1, given m̂G , for any i ∈ [m̂G ] we have

ñGi ≥ δ/(2β
†).

5Note that Rπ1(β
†)

mB
does not contain undefined RB

i,j such that RB
i,j when mB

i = 0.
6ñG
i , ñB

i,j , and m̂B
i are not defined for i ∈ [0] or j ∈ [0].



Rotting Infinitely Many-armed Bandits

Proof. Let

µ̂ot (a) =

∑t−1
s=1(rs + %sns(a))1(as = a)

nt(a)
,

which satisfies µ̃ot (a, β
†) ≥ µ̂ot (a) from β† ≥ %. Under E1, it is true that for all t ∈ [H] and a ∈ A(1),

|µ̂ot (a)− µ1(a)| ≤
√

8 log(H)/nt(a).

Let a(i) be a selected good arm in the i-th episode. Suppose that nt(a(i)) = ñGi = bδ/(2β†)c for some t > 0, then we have

µ̃ot (a(i), β†)− β†ñGi +

√
8 log(H)/ñGi ≥ µ̂

o
t (a(i))− β†ñGi +

√
8 log(H)/ñGi ≥ µ1(a(i))− δ/2 ≥ 1− δ,

where the second inequality is obtained from E1 and ñGi ≤ δ/(2β†), and the third inequality is from µ1(a(i)) ≥ 1− δ/2.
Therefore, policy π1(β†) must pull arm a more times than bδ/(2β†)c, which implies ñGi ≥ δ/(2β†).

We first consider the case when % = ω(1/H3/2). Then we have that β† is the smallest value in B which exceeds %

such that % ≤ β† ≤ 2%. For getting Rπ1(β
†)

mG
, here we define how the policy π1(β†) works after time H such that it pulls

dδ/(2β†)e times a good arm and 0 time a bad arm. We note that defining how π1(β†) works after H is only for the proof to
get a regret bound over time horizon H . For the last arm ã over the horizon H , it pulls the arm up to dδ/(2β†)e times if ã is
a good arm and ñG

m̃G
< δ/(2β†). For i ∈ [mG ] and j ∈ [mBi ], let nGi and nBi,j be the number of pulls of the good arm in the

i-th episode and the j-th bad arm in the i-th episode by the policy, respectively. Here we define nGi ’s and nBi,j’s as follows:

If ã is a good arm and ñG
m̃G

< δ/(2β†), then

nGi =

{
ñGi for i ∈ [m̃G − 1]

dδ/(2β†)e for i ∈ [mG ]/[m̃G − 1]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ].

Otherwise,

nGi =

{
ñGi for i ∈ [m̃G ]

dδ/(2β†)e for i ∈ [mG ]/[m̃G ]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G − 1], j ∈ [mBi ]/[m̃Bi ].

We note that nGi ’s and nBi,j’s are defined only if they exist.7

We provide mG such that Rπ1(β
†)(H) ≤ Rπ1(β

†)

mG
in the following lemma.

Lemma A.9. Under E1, when mG = d2Hβ†2/3e, we have

Rπ1(β
†)(H) ≤ Rπ1(β

†)

mG
.

Proof. From Lemma A.8, with δ = β†
1/3 we have

∑
i∈[mG ]

nGi +
∑

j∈[mBi ]

nBi,j

 ≥ mG δ

2β†
≥ H,

which implies that Rπ1(β
†)(H) ≤ Rπ1(β

†)

mG
.

From the result of Lemma A.9, we set mG = d2Hβ†2/3e. For getting a bound for E[R
π1(β

†)

mG
], we provide bounds for E[RGi ]

and E[RBi,j ] in the following lemma.

7nG
i and nB

i,j are not defined for i ∈ [0] or j ∈ [0].
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Lemma A.10. Under E1 and policy π1(β†), for any i ∈ [mG ] and j ∈ [mBi ], we have

E[RGi ] = Õ

(
δ

%2/3
+
δ2

%
+

1

%1/3

)
,

and

E[RBi,j ] = Õ

(
1 +

δ

%1/3
+

δ2

%2/3

)
.

Proof. First we provide a bound for RGi using an upper bound of nGi . Recall that a(i) is the selected arm for the i-th good
arm. We have

µ̃ot (a(i), β†)− β†nt(a(i)) = µ̂t(a(i)) + β†
∑t−1
s=1 ns(a(i))1(as = a(i))

nt(a(i))
− β†nt(a(i))

≤ µ̂t(a(i)) + β†
nt(a(i)) + 1

2
− β†nt(a(i))

= µ̂t(a(i))− β†nt(a(i))− 1

2
.

Since, under E1,

µ̂t(a(i))− (β†/2)(nt(a(i))− 1) ≤ µ̄t(a(i)) +
√

8 log(H)/nt(a(i))− (β†/2)(nt(a(i))− 1)

≤ 1 +
√

8 log(H)/nt(a(i))− (β†/2)(nt(a(i))− 1),

for i ∈ [m̃G ], from the policy π, we need to get n such that

1− β†

2
(n− 1) + 2

√
8 log(H)/n < 1− δ, (29)

in which n + 1 is an upper bound for nGi . Let n1 = 2(δ + β†
1/3

)/β† + 1 and n2 = C log(H)/β†
2/3 with some large

enough constant C > 0. Then n = n1 + n2 satisfies (29) because 1− β†n1 + 2
√

8 log(H)/n2 < 1− δ. Therefore, for all

i ∈ [m̃G ] we have nGi = Õ((δ + β†
1/3

)/β†). Then with the fact that nGi = dδ/(2β†)e for i ∈ [mG ]/[m̃G ] if they exist and
β† = Θ(%), for any i ∈ [mG ] we have

nGi = Õ((δ + β†
1/3

)/β†) = Õ((δ + %1/3)/%).

Then for any i ∈ [mG ] we have

E[RGi ] ≤ E

[
∆(a(i))nGi +

nGi (nGi − 1)

2
%

]
= Õ

(
2

δ

∫ δ/2

0

δ + %1/3

%
x+

(
δ + %1/3

%

)2

%dx

)

= Õ

(
δ

%2/3
+
δ2

%
+

1

%1/3

)
,

where the first equality is obtained from the fact that ∆(a(i))’s are i.i.d. random variables with uniform distribution on
[0, δ/2] and nGi = Õ((δ + %1/3)/%).

Now we provide an upper bound of nBi,j to get a bound of RBi,j for i ∈ [mG ], j ∈ [mBi ]. Let a(i, j) be a selected
arm for j-th bad arm in the i-th episode. When δ/2 < ∆(a(i, j)) ≤ δ + %1/3, as in the case of the good arm, n =
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2(δ+β†
1/3

)/β†+1+C1 log(T )/β†
2/3 for some large enough constantC1 > 0, satisfies (29) so that nBi,j = Õ((δ+%1/3)/%)

for all i ∈ [m̃], j ∈ [m̃Bi ]. When δ + %1/3 < ∆(a(i, j)) ≤ 1, since under E1

µ̃ot (a(i, j))− β†nt(a(i, j)) = µ̂t(a(i, j)) + β†
∑t−1
s=1 ns(a(i, j))1(as = a(i, j))

nt(a(i, j))
− β†nt(a(i, j))

≤ µ̂t(a(i, j)) + β†
nt(a(i, j)) + 1

2
− β†nt(a(i, j))

= µ̂t(a(i, j))− β†nt(a(i, j))− 1

2

≤ µ̄t(a(i, j)) +
√

8 log(T )/nt(a(i, j))− (β†/2)(nt(a(i, j))− 1)

≤ µ1(a(i, j)) +
√

8 log(T )/nt(a(i, j))− (β†/2)(nt(a(i, j))− 1),

from the policy π we need to get n ≥ 1 such that

µ1(a(i, j))− β†

2
(n− 1) + 2

√
8 log(T )/n < 1− δ, (30)

in which n+ 1 is an upper bound of nBi,j for i ∈ [m̃], j ∈ [m̃Bi ]. From a sufficient condition for (30) to hold such that

µ1(a(i, j)) + 2
√

8 log(T )/n < 1− δ,

we can find that n = C2 log(T )/(∆(a(i, j)) − δ)2 for some large constant C2 > 0 satisfies (30). Therefore, when
δ + %1/3 < ∆(a(i, j)) ≤ 1, for all i ∈ [m̃], j ∈ [m̃Bi ] we have nBi,j = Õ(1/(∆(a(i, j)) − δ)2). Then with the fact that
nBi,j = 0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ] if they exist, for any i ∈ [mG ] and j ∈ [mBi ], we have

nBi,j =

{
Õ((δ + %1/3)/%) if δ/2 < ∆(a(i, j)) ≤ δ + %1/3

Õ(1/(∆(a(i, j))− δ)2) if δ + %1/3 < ∆(a(i, j)) ≤ 1

Then for any i ∈ [mG ], j ∈ [mBi ], we have

E[RBi,j ] ≤ E

[
∆(a(i, j))nBi,j +

nBi,j(n
B
i,j − 1)

2
%

]

= Õ

(
1

1− δ/2

(∫ δ+%1/3

δ/2

δ + %1/3

%
x+

(
δ + %1/3

%

)2

%dx +

∫ 1

δ+%1/3

1

(x− δ)2
x+

1

(x− δ)4
%dx

))
= Õ

(
1 +

δ

%1/3
+

δ2

%2/3

)
.

Recall that Rπ1(β
†)

mG
=
∑mG

i=1(RGi +
∑
j∈[mBi ]

RBi,j). With β† = Θ(%), δ = Θ(%1/3), and mG = d2Hβ†2/3e, from
Lemmas A.9 and A.10, and the fact that mBi ’s are i.i.d. random variables with geometric distribution with E[mBi ] = 2/δ− 1,
we have

E[Rπ1(β
†)(H)] = O(E[R

π1(β
†)

mG
])

= O

E

mG∑
i=1

RGi +
∑

j∈[mBi ]

RBi,j


= Õ

(
H%2/3

((
δ

%2/3
+
δ2

%
+

1

%1/3

)
+

1

δ

(
1 +

δ

%1/3

)))
= Õ

(
H%2/3

(
δ

%2/3
+
δ2

%
+

1

δ
+

1

%1/3

))
= Õ

(
H%1/3

)
. (31)
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Now we consider the case when % = O(1/H3/2). We have set β† as the smallest element in B that exceeds

max{%, 1/H3/2}; hence we have β† = Θ(1/H3/2). For getting Rπ1(β
†)

mG
, here we define how the policy π1(β†) works after

H time steps such that it pulls H times a good arm and once a bad arm. For the last arm ã over the horizon H , it pulls the
arm up to H times if ã is a good arm and ñG

m̃G
< H . With slight abuse of notation, for i ∈ [mG ] and j ∈ [mBi ], let nGi

and nBi,j be the number of pulls of the good arm in the i-th episode and the j-th bad arm in the i-th episode by the policy,
respectively. Here we define nGi ’s and nBi,j’s as follows:

If ã is a good arm and ñG
m̃G

< H , then

nGi =

{
ñGi for i ∈ [m̃G − 1]

H for i ∈ [mG ]/[m̃G − 1]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ].

Otherwise,

nGi =

{
ñGi for i ∈ [m̃G ]

H for i ∈ [mG ]/[m̃G ]
, nBi,j =

{
ñBi,j for i ∈ [m̃G ], j ∈ [m̃Bi ]

0 for i ∈ [mG ]/[m̃G − 1], j ∈ [mBi ]/[m̃Bi ].

From Lemma A.8, we observe that nGi ≥ min{δ/(2β†), H} for i ∈ [mG ]. Then under E1, if mG = C3 for some large
enough constant C3 > 0, then with δ = β†

1/3 and β† = Θ(1/H3/2), we have∑
i∈[mG ]

nGi ≥ H,

which implies Rπ1(β
†)(H) ≤ Rπ1(β

†)

mG
. Therefore, we set mG = C3. For getting a bound for E[R

π1(β
†)

mG
], we provide bounds

for E[RGi ] and E[RBi,j ] in the following lemma.

Lemma A.11. Under E1 and policy π1(β†), for any i ∈ [mG ] and j ∈ [mBi ], we have

E[RGi ] = O
(
δH +H2%

)
,

and

E[RBi,j ] = Õ
(
Hδ2 +

√
Hδ + 1

)
.

Proof. First we provide a bound for RGi using an upper bound of nGi . With the definition of nGi = H for i ∈ [mG ]/[m̃G ],
for any i ∈ [mG ] we have

nGi ≤ H.

Recall that a(i) is the selected arm for the i-th good arm. Then, for any i ∈ [mG ], we have

E[RGi ] ≤ E

[
∆(a(i))nGi +

nGi (nGi − 1)

2
%

]
= O

(
δH +H2%

)
,

where the first equality is obtained from the fact that ∆(a(i))’s are i.i.d. random variables with uniform distribution on
[0, δ/2] and nGi ≤ H .

Now we provide an upper bound of nBi,j to get a bound of RBi,j for i ∈ [mG ], j ∈ [mBi ]. Let a(i, j) be a selected arm for
j-th bad arm in the i-th episode. When δ/2 < ∆(a(i, j)) ≤ δ + 1/

√
H , as in the case of the good arm, nBi,j ≤ H for all

i ∈ [m̃], j ∈ [m̃Bi ]. When δ + 1/
√
H < ∆(a(i, j)) ≤ 1, from the policy π1(β†) under E1, we need to get n ≥ 1 such that

µ1(a(i, j))− β†

2
(n− 1) + 2

√
8 log(T )/n < 1− δ, (32)
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in which n+ 1 is an upper bound of nBi,j for i ∈ [m̃], j ∈ [m̃Bi ]. From a sufficient condition for (32) to hold such that

µ1(a(i, j)) + 2
√

8 log(H)/n < 1− δ,

we can find that n = C4 log(H)/(∆(a(i, j)) − δ)2 for some large constant C4 > 0 satisfies (32). Therefore, when
δ + 1/

√
H < ∆(a(i, j)) ≤ 1, for all i ∈ [m̃], j ∈ [m̃Bi ] we have nBi,j = Õ(1/(∆(a(i, j)) − δ)2). Then with the fact that

nBi,j = 0 for i ∈ [mG ]/[m̃G ], j ∈ [mBi ]/[m̃Bi ], for any i ∈ [mG ], j ∈ [mBi ], if δ/2 < ∆(a(i, j)) ≤ δ + 1/
√
H , we have

nBi,j ≤ H,

and if δ + 1/
√
H < ∆(a(i, j)) ≤ 1, we have

nBi,j = Õ(1/(∆(a(i, j))− δ)2).

For any i ∈ [mG ], j ∈ [mBi ], we obtain

E[RBi,j ] ≤ E

[
∆(a(i, j))nBi,j +

nBi,j(n
B
i,j − 1)

2
%

]

= Õ

(
1

1− δ/2

(∫ δ+1/
√
H

δ/2

Hx+H2%dx +

∫ 1

δ+1/
√
H

1

(x− δ)2
x+

1

(x− δ)4
%dx

))
= Õ

(
Hδ2 +

√
Hδ + 1

)
.

It follows that, with δ = Θ(1/
√
H) and mG = C3, we have

E[Rπ1(β
†)(H)] = O(E[R

π1(β
†)

mG
])

= O

E

 ∑
i∈[mG ]

RGi +
∑

j∈[mBi ]

RBi,j


= Õ

((
δH +H2%

)
+

1

δ

(
Hδ2 +

√
Hδ + 1

))
= Õ(

√
H), (33)

where the third equality is obtained from Lemma A.11 and E[mBi ] = 2/δ − 1.

Finally, we can conclude the proof by noting that from (31) and (33), for % = o(1), we have

E[Rπ1(β
†)(H)] = Õ(max{H%1/3,

√
H}).

Therefore, by summing regrets from dT/He number of blocks, we have shown that

E[Rπ1 (T )] = Õ((T/H) max{H%1/3,
√
H}) = Õ(max{T%1/3, T/

√
H}). (34)

Upper bounding E[Rπ2 (T )]. We observe that the EXP3 is run for dT/He decision rounds and the number of policies (i.e.
πi(β) for β ∈ B) is B. Denote the maximum absolute sum of rewards of any block with length H by a random variable Q′.
We first provide a bound for Q′ using concentration inequalities. For any block i, we have∣∣∣∣∣∣

i·H∧T∑
t=(i−1)H+1

µt(a
π
t ) + ηt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

i·H∧T∑
t=(i−1)H+1

µt(a
π
t )

∣∣∣∣∣∣+

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣ . (35)



Rotting Infinitely Many-armed Bandits

Denote by Ti the set of time steps in the i-th block. We define the event E2(i) = {|µ̂t(a) − µ̄t(a)| ≤√
7 log(T )/nt(a), for all t ∈ Ti, a ∈ A(i)} and E2 =

⋂
i∈[dT/He]E2(i). From Lemma A.2, by following similar steps of

the proof of Lemma 5 in Auer et al. (2019), with H =
√
T we have

P(Ec2) ≤
∑

i∈[dT/He]

2H2

T 7/2
≤ 2

T 2
.

By assuming that E2 holds true, we can get a lower bound for µt(aπt ), which may be a negative value from rotting, for
getting an upper bound for |

∑i·H∧T
t=(i−1)H+1 µt(a

π
t )|. Let βmax denote the maximum value in B. From the policy π with

H =
√
T , when µ1(a) = 0 for some arm a, since

µ̃ot (a(i, j))− %nt(a(i, j)) +

√
8 log(H)

nt(a(i, j))
≤ µ̂t(a(i, j))− (%/2)(nt(a(i, j))− 1) +

√
4 log(T )

nt(a(i, j))

= µ̄t(a(i, j))− (%/2)(nt(a(i, j))− 1) +

√
4 log(T )

nt(a(i, j))
+

√
7 log(T )

nt(a(i, j))

≤ µ1(a)− (%/2)(nt(a(i, j))− 1) +

√
4 log(T )

nt(a(i, j))
+

√
7 log(T )

nt(a(i, j))

≤

√
4 log(T )

nt(a(i, j))
+

√
7 log(T )

nt(a(i, j))
,

we need to find an positive integer n such that√
4 log(T )/n+

√
7 log(T )/n ≤ 1− β1/3

max,

in which n is an upper bound for the number of pulls of arm a. From β
1/3
max = 1/2, we can observe that the condition holds

with n = d92 log(T )e. From this fact, we can find that for any selected arm a from π, we have µt(a) ≥ −(92 log(T ) + 1)%.
Then under E2, with µt(a) ≤ 1, for any i ∈ [dT/He] we have |

∑i·H∧T
t=(i−1)H+1 µt(a

π
t )| ≤ max{(92 log(T ) + 1)%H,H}.

Next we provide a bound for |
∑i·H∧T
t=(i−1)H+1 ηt|. We define the event E3(i) = {|

∑i·H∧T
t=(i−1)H+1 ηt| ≤ 2

√
H log(T )} and

E3 =
⋂
i∈[dT/He]E3(i). From Lemma A.2, for any i ∈ [dT/He], we have

P (E3(i)c) ≤ 2

T 2
.

Then, under E2 ∩ E3, with (35), we have

Q′ ≤ max{93H log(T )%,H}+ 2
√
H log(T ) ≤ 93H log(T ) + 2

√
H log(T ),

which implies 1/2 +
∑i·H∧T
t=(i−1)H rt/(186H log T + 4

√
H log T ) ∈ [0, 1]. With the rescaling and translation of rewards in

Algorithm 2, from Corollary 3.2. in Auer et al. (2002b), we have

E[Rπ2 (T )|E2 ∩ E3] = Õ
(

(93H log T + 2
√
H log T )

√
BT/H

)
= Õ

(√
HBT

)
. (36)

Note that the expected regret from EXP3 is trivially bounded by o(H2(T/H)) = o(TH) and B = O(log(T )). Then, with
(36), we have

E[Rπ2 (T )] = E[Rπ2 (T )|E2 ∩ E3]P(E2 ∩ E3) + E[Rπ2 (T )|Ec2 ∪ Ec3]P(Ec2 ∪ Ec3)

= Õ
(√

HT
)

+ o (TH) (4/T 2)

= Õ
(√

HT
)
. (37)

Finally, from (28), (34), and (37), with H =
√
T , we have

E[Rπ(T )] = Õ
(

max{T 3/4, %1/3T}
)
,

which concludes the proof.


