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Abstract
We propose computationally tractable acceler-
ated first-order methods for Riemannian optimiza-
tion, extending the Nesterov accelerated gradient
(NAG) method. For both geodesically convex and
geodesically strongly convex objective functions,
our algorithms are shown to have the same itera-
tion complexities as those for the NAG method on
Euclidean spaces, under only standard assump-
tions. To the best of our knowledge, the pro-
posed scheme is the first fully accelerated method
for geodesically convex optimization problems.
Our convergence analysis makes use of novel
metric distortion lemmas as well as carefully de-
signed potential functions. A connection with the
continuous-time dynamics for modeling Rieman-
nian acceleration in (Alimisis et al., 2020) is also
identified by letting the stepsize tend to zero. We
validate our theoretical results through numerical
experiments.

1. Introduction
We consider Riemannian optimization problems of the form

min
x∈N⊆M

f(x), (1)

where M is a Riemannian manifold, N is an open geodesi-
cally uniquely convex subset of M , and f : N → R is
a continuously differentiable geodesically convex function.
Geodesically convex optimization is the Riemannian ver-
sion of convex optimization and has salient features such
as every local minimum being a global minimum. More
interestingly, some (constrained) nonconvex optimization
problems defined in the Euclidean space can be considered
geodesically convex optimization problems on appropriate
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Riemannian manifolds (Vishnoi, 2018, Section 1). Geodesi-
cally convex optimization has a wide range of applications,
including covariance estimation (Wiesel, 2012), Gaussian
mixture models (Hosseini & Sra, 2015; 2020), matrix square
root computation (Sra, 2015), metric learning (Zadeh et al.,
2016), and optimistic likelihood calculation (Nguyen et al.,
2019). See (Zhang & Sra, 2016, Section 1.1) for more
examples.

The iteration complexity theory for first-order algorithms
is well known when M = Rn. Given an initial point x0,
gradient descent (GD) updates the iterates as

xk+1 = xk − γk grad f (xk) . (GD)

For a convex and L-smooth objective function f , GD with
γk = 1

L finds an ε-approximate solution, i.e., f (xk) −
f (x∗) ≤ ε, in O

(
L
ε

)
iterations. For a µ-strongly convex

and L-smooth objective function f , GD with γk = 1
L finds

an ε-approximate solution in O
(
L
µ log L

ε

)
iterations. A

major breakthrough in first-order algorithms is the Nesterov
accelerated gradient (NAG) method that achieves a faster
convergence rate than GD (Nesterov, 1983). Given an initial
point x0 = z0, the NAG scheme updates the iterates as

yk = xk + τk (zk − xk)

xk+1 = yk − αk grad f (yk)

zk+1 = yk + βk (zk − yk)− γk grad f (yk) .

(NAG)

For a convex and L-smooth function f , NAG with τk =
2
k+2 , αk = 1

L , βk = 1, γk = k+2
2L (NAG-C) finds an ε-

approximate solution in O
(√

L
ε

)
iterations (Tseng, 2008).

For a µ-strongly convex and L-smooth objective function f ,

NAG with τk =

√
µ/L

1+
√
µ/L

, αk = 1
L , βk = 1 −

√
µ
L ,

γk =
√

µ
L

1
µ (NAG-SC) finds an ε-approximate solution

in O
(√

L
µ log L

ε

)
iterations (Nesterov, 2018).

Considering the problem (1) for any Riemannian mani-
fold M , (Zhang & Sra, 2016) successfully generalizes the
complexity analysis of GD to Riemannian gradient descent
(RGD),

xk+1 = expxk (−γk grad f (xk)) , (RGD)
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Table 1. Iteration complexities (required number of iterations to obtain an ε-approximate solution) for various accelerated methods on
Riemannian manifolds. The notation Õ(·) and O∗(·) omits log(L/ε) and log(L/µ) factors, respectively (Martı́nez-Rubio, 2022). For
our algorithms, the constant ξ is defined as ξ = ζ + 3(ζ − δ), where ζ and δ are defined in Section 3.2. For the iteration complexity
of RAGD (Zhang & Sra, 2018), 10

9
is not regarded as a constant because this constant arises from their nonstandard assumption

d (x0, x
∗) ≤ 1

20
√

max{Kmax,−Kmin}

(
µ
L

) 3
4 .

Algorithm Objective function Iteration complexity Remark

Algorithm 1 (Liu et al., 2017) g-strongly convex O
(√

L/µ log (L/ε)
)

computationally intractable

Algorithm 2 (Liu et al., 2017) g-convex O
(√

L/ε
)

computationally intractable

RAGD (Zhang & Sra, 2018) g-strongly convex O
(

(10/9)
√
L/µ log (L/ε)

)
nonstandard assumption

Algorithm 1 (Ahn & Sra, 2020) g-strongly convex O∗
(
L/µ+

√
L/µ log (µ/ε)

)
eventually accelerated

RAGDsDR (Alimisis et al., 2021) g-convex O
(√

ζL/ε
)

only in early stages

(Martı́nez-Rubio, 2022) g-convex Õ
(√

L/ε
)

only for constant curvature

(Martı́nez-Rubio, 2022) g-strongly convex O∗
(√

L/µ log (µ/ε)
)

only for constant curvature

RNAG-C (ours) g-convex O
(
ξ
√
L/ε

)
RNAG-SC (ours) g-strongly convex O

(
ξ
√
L/µ log (L/ε)

)
using a lower bound Kmin of the sectional curvature and an
upper bound D of diam(N). For completeness, we provide
a potential-function analysis in Appendix D to show that
RGD with a fixed stepsize has the same iteration complexity
as GD.

However, it is still unclear whether a reasonable general-
ization of NAG to the Riemannian setting is possible with
strong theoretical guarantees. When studying the global
complexity of Riemannian optimization algorithms, it is
common to assume that the sectional curvature of M is
bounded below byKmin and bounded above byKmax to pre-
vent the manifold from being overly curved. Unfortunately,
(Criscitiello & Boumal, 2021; Hamilton & Moitra, 2021)
show that even when sectional curvature is bounded, achiev-
ing global acceleration is impossible in general. Thus, one
might need another common assumption, an upper bound
D of diam(N). This motivates our central question:

Can we design computationally tractable accelerated
first-order methods on Riemannian manifolds when the
sectional curvature and the diameter of the domain are

bounded?

In the literature, there are some partial answers but no full
answer to this question (see Table 1 and Section 2). In this
paper, we provide a complete answer via new first-order
algorithms, which we call the Riemannian Nesterov acceler-
ated gradient (RNAG) method. We show that acceleration
is possible on Riemannian manifolds for both geodesically
convex (g-convex) and geodesically strongly convex (g-

strongly convex) cases whenever the bounds Kmin, Kmax,
and D are available. The main contributions of this work
can be summarized as follows:

• Generalizing Nesterov’s scheme, we propose RNAG,
a first-order method for Riemannian optimization. We
provide two specific algorithms: RNAG-C (Algo-
rithm 1) for minimizing g-convex functions and RNAG-
SC (Algorithm 2) for minimizing g-strongly convex
functions. Both algorithms call one gradient oracle per
iteration. Our algorithms are computationally tractable
in the sense that they only involve exponential maps,
logarithm maps, parallel transport, and operations in
tangent spaces. In particular, RNAG-C can be inter-
preted as a variant of NAG-C with high friction in (Su
et al., 2014, Section 4.1) (see Appendix B).

• Given the bounds Kmin, Kmax, and D, we prove that

RNAG-C has anO
(√

L
ε

)
iteration complexity (Corol-

lary 5.5), and that RNAG-SC has an O
(√

L
µ log L

ε

)
iteration complexity (Corollary 5.7). The crucial steps
of the proofs are constructing potential functions as (4)
and handling metric distortion using Lemma 5.2 and
Lemma 5.3. To the best of our knowledge, this is the
first proof for full acceleration in the g-convex case.

• We identify a connection between our algorithms and
the ODEs for modeling Riemannian acceleration in (Al-
imisis et al., 2020) by letting the stepsize tend to zero.
This analysis confirms the accelerated convergence of



Accelerated Gradient Methods for Geodesically Convex Optimization

our algorithms through the lens of continuous-time
flows.

2. Related Work
Given a bound D for diam(N), (Liu et al., 2017) pro-
posed accelerated methods for both g-convex and g-strongly
convex cases. Their algorithms have the same iteration
complexities as NAG but require a solution to a nonlin-
ear equation at every iteration, which could be as difficult
as solving the original problem in general. Given Kmin,
Kmax, and d (x0, x

∗), (Zhang & Sra, 2018) proposed a
computationally tractable algorithm for the g-strongly con-
vex case and showed that their algorithm achieves the it-
eration complexity O

(
10
9

√
L
µ log L

ε

)
when d (x0, x

∗) ≤
1

20
√

max{Kmax,−Kmin}

(
µ
L

) 3
4 . Given only Kmin and Kmax,

(Ahn & Sra, 2020) considered the g-strongly convex case.
Although full acceleration is not guaranteed, the authors
proved that their algorithm eventually achieves acceleration
in later stages. Given Kmin, Kmax, and D, (Alimisis et al.,
2021) proposed a momentum method for the g-convex case.
They showed that their algorithm achieves acceleration in
early stages. Although this result is not as strong as full
acceleration, their theoretical guarantee is meaningful in
practical situations. (Martı́nez-Rubio, 2022) focused on
manifolds with constant sectional curvatures, namely a sub-
set of the hyperbolic space or sphere. Their algorithm is
accelerated, but it is not straightforward to generalize their
argument to any manifolds. Beyond the g-convex setting,
(Criscitiello & Boumal, 2020) studied accelerated methods
for nonconvex problems. (Lezcano-Casado, 2020) studied
adaptive and momentum-based methods using the trivializa-
tion framework in (Lezcano-Casado, 2019). Further works
on accelerated Riemannian optimization can be found in
(Criscitiello & Boumal, 2021, Section 1.6).

Another line of research takes the perspective of continuous-
time dynamics as in the Euclidean counterpart (Su et al.,
2014; Wibisono et al., 2016; Wilson et al., 2021). For
both g-convex and g-strongly convex cases, (Alimisis et al.,
2020) proposed ODEs that can model accelerated methods
on Riemannian manifolds given Kmin and D. (Duruis-
seaux & Leok, 2021b) extended this result and developed
a variational framework. Time-discretization methods for
such ODEs on Riemannian manifolds have recently been of
considerable interest as well (Duruisseaux & Leok, 2021a;
França et al., 2021; Duruisseaux & Leok, 2022).

While many positive results have been obtained for accel-
erated Riemannian optimization, there are also a few nega-
tive results (Hamilton & Moitra, 2021) and (Criscitiello &
Boumal, 2021), showing that achieving full acceleration for
Riemannian optimization is impossible in general. Because
their results involve a growing diameter of domain and most

of the positive results assume that the diameter of domain
is bounded by a constant D, the negative result is not con-
tradictory but complementary to the positive results. This
indicates that the assumption of bounding the domain by a
constant is necessary for achieving full acceleration. See
Section 8 for a detailed discussion.

3. Preliminaries
3.1. Background

A Riemannian manifold (M, g) is a real smooth manifold
equipped with a Riemannian metric g which assigns to
each p ∈ M a positive-definite inner product gp(v, w) =
〈v, w〉p = 〈v, w〉 on the tangent space TpM . The in-
ner product gp induces the norm ‖v‖p = ‖v‖ defined as√
〈v, v〉p on TpM . The tangent bundle TM of M is de-

fined as TM = tp∈MTpM . For p, q ∈ M , the geodesic
distance d(p, q) between p and q is the infimum of the length
of all piecewise continuously differentiable curves from p
to q. For nonempty set N ⊆M , the diameter diam(N) of
N is defined as diam(N) = supp,q∈N d(p, q).

For a smooth function f : M → R, the Riemannian gradient
grad f(x) of f at x is defined as the tangent vector in TxM
satisfying

〈grad f(x), v〉 = df(x)[v],

where df(x) : TxM → R is the differential of f at x. Let
I := [0, 1]. A geodesic γ : I →M is a smooth curve of lo-
cally minimum length with zero acceleration.1 In particular,
straight lines in Rn are geodesics. The exponential map at
p is defined as, for v ∈ TpM ,

expp(v) = γv(1),

where γv : I → M is the geodesic satisfying γv(0) =
p and γ′v(0) = v. In general, expp is only defined on
a neighborhood of 0 in TpM . It is known that expp is
a diffeomorphism in some neighborhood U of 0. Thus,
its inverse is well defined and is called the logarithm map
logx : expp(U) → TpM . For a smooth curve γ : I → M

and t0, t1 ∈ I , the parallel transport Γ(γ)t1t0 : Tγ(t0)M →
Tγ(t1)M is a way of transporting vectors from Tγ(t0)M
to Tγ(t1)M along γ.2 When γ is a geodesic, we let Γqp :
TpM → TqM denote the parallel transport from TpM to
TqM .

A subset N of M is said to be geodesically uniquely convex
if for every x, y ∈ N , there exists a unique geodesic γ :
[0, 1] → M such that γ(0) = x, γ(1) = y, and γ(t) ∈
N for all t ∈ [0, 1]. Let N be a geodesically uniquely

1The mathematical definition of acceleration is provided in
Appendix A.

2The definition using covariant derivatives is contained in Ap-
pendix A.
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convex subset of M . A function f : N → R is said to be
geodesically convex if f ◦ γ : [0, 1]→ R is convex for each
geodesic γ : [0, 1]→M whose image is in N . When f is
geodesically convex, we have

f(y) ≥ f(x) + 〈grad f(x), logx(y)〉 .

LetN be an open geodesically uniquely convex subset ofM ,
and f : N → R be a continuously differentiable function.
We say that f is geodesically µ-strongly convex for µ > 0
if

f(y) ≥ f(x) + 〈grad f(x), logx(y)〉+
µ

2
‖logx(y)‖2

for all x, y ∈ N . We say that f is geodesically L-smooth if

f(y) ≤ f(x) + 〈grad f(x), logx(y)〉+
L

2
‖logx(y)‖2

for all x, y ∈ N . For additional notions from Riemannian
geometry that are used in our analysis, we refer the reader to
Appendix A as well as the textbooks (Lee, 2018; Petersen,
2016; Boumal, 2020).

3.2. Assumptions

In this subsection, we present the assumptions that are im-
posed throughout the paper.

Assumption 3.1. The domain N is an open geodesically
uniquely convex subset of M . The diameter of the domain
is bounded as diam(N) ≤ D <∞. The sectional curvature
inside N is bounded below by Kmin and bounded above by
Kmax. If Kmax > 0, we further assume that D < π√

Kmax
.

Assumption 3.1 implies that the exponential map expx is a
diffeomorphism for any x ∈ N (Alimisis et al., 2021).

Assumption 3.2. The objective function f : N → R is con-
tinuously differentiable and geodesically L-smooth. More-
over, f is bounded below, and has minimizers, all of which
lie in N . A global minimizer is denoted by x∗.

Assumption 3.3. All the iterates xk and yk are well-defined
on the manifold M remain in N .

Although Assumption 3.3 is common in the literature
(Zhang & Sra, 2018; Ahn & Sra, 2020; Alimisis et al., 2021),
it is desirable to relax or remove it. We leave the extension
as a future research topic.

To implement our algorithms, we also assume that we can
compute (or approximate) exponential maps, logarithmic
maps, and parallel transport. For many manifolds in prac-
tical applications, these maps are implemented in libraries
such as (Townsend et al., 2016).

Figure 1. Illustration of the maps vA 7→ ΓpBpA
(
vA − logpA (pB)

)
and vA 7→ logpB

(
exppA (vA)

)
.

We define the constants ζ ≥ 1 and δ ≤ 1 as

ζ =

{√−KminD coth
(√−KminD

)
, if Kmin < 0

1, if Kmin ≥ 0

δ =

{
1, if Kmax ≤ 0√
KmaxD cot

(√
KmaxD

)
, if Kmax > 0.

These constants naturally arise from the Rauch compari-
son theorem (Lee, 2018, Theorem 11.7) (Petersen, 2016,
Theorem 6.4.3), and many known methods on Riemannian
manifolds have a convergence rate depending on some of
these constants (Alimisis et al., 2020; 2021; Zhang & Sra,
2016). Note that we can set ζ = δ = 1 when M = Rn.

4. Algorithms
In this section, we first generalize Nesterov’s scheme to
the Riemannian setting and then design specific algorithms
for both g-convex and g-strongly convex cases. In (Ahn
& Sra, 2020; Zhang & Sra, 2018) NAG is generalized to a
three-step algorithm on a Riemannian manifold as

yk = expxk
(
τk logxk (zk)

)
xk+1 = expyk (−αk grad f (yk))

zk+1 = expyk
(
βk logyk (zk)− γk grad f (yk)

)
.

(2)

However, it is more natural to define the iterates zk in the
tangent bundle TM , instead of in M .3 Thus, we propose
another scheme that involves iterates in TM without using
zk. To associate tangent vectors in different tangent spaces,
we use parallel transport, which is a way to transport vectors
from one tangent space to another.

3The scheme (2) always uses zk after mapping it to TM via
logarithm maps. The proof of convergence needs the value of f at
xk and yk. Thus, these iterates (but not zk) should be defined in
M . Considering continuous-time interpretation, the role of zk is
similar to the role of velocity vector Ẋ , which is defined in TM
(see Section 6).
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Algorithm 1 RNAG-C
Input: initial point x0, parameters ξ and T > 0, step size
s ≤ 1

L
Initialize v̄0 = 0 ∈ Tx0

M .
Set λk = k+2ξ+T

2 .
for k = 0 to K − 1 do
yk = expxk

(
ξ

λk+(ξ−1) v̄k
)

xk+1 = expyk (−s grad f (yk))

vk = Γykxk
(
v̄k − logxk (yk)

)
¯̄vk+1 = vk − sλk

ξ grad f (yk)

v̄k+1 = Γ
xk+1
yk

(
¯̄vk+1 − logyk (xk+1)

)
end for
Output: xK

Given zk ∈M in (2), we define the iterates vk = logyk (zk),
v̄k = logxk (zk), and ¯̄vk = logyk−1

(zk) in the tangent
bundle TM . It is straightforward to check that the following
scheme is equivalent to (2):

yk = expxk (τkv̄k)

xk+1 = expyk (−αk grad f (yk))

vk = logyk
(
expxk (v̄k)

)
¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = logxk+1

(
expyk (¯̄vk+1)

)
.

(3)

In (3), the third and last steps associate tangent vec-
tors in different tangent spaces using the map TpAM →
TpBM ; vA 7→ logpB

(
exppA (vA)

)
. We change these steps

by using the map vA 7→ ΓpBpA
(
vA − logpA (pB)

)
instead.

Technically, this modification allows us to use Lemma 5.3
when handling metric distortion in our convergence analysis.
With the change, we obtain the following scheme, which we
call RNAG:

yk = expxk (τkv̄k)

xk+1 = expyk (−αk grad f (yk))

vk = Γykxk
(
v̄k − logxk (yk)

)
¯̄vk+1 = βkvk − γk grad f (yk)

v̄k+1 = Γxk+1
yk

(
¯̄vk+1 − logyk (xk+1)

)
.

(RNAG)

Because RNAG only involves exponential maps, loga-
rithm maps, parallel transport, and operations in tangent
spaces, this scheme is computationally tractable, unlike
the scheme in (Liu et al., 2017), which involves a non-
linear operator. Note that RNAG is different from the
scheme (2) because the maps vA 7→ logpB

(
exppA (vA)

)
and vA 7→ ΓpBpA

(
vA − logpA (pB)

)
are not equivalent in

general (see Figure 1).

By carefully choosing the parameters τk, αk, βk and γk, we
finally obtain two algorithms, RNAG-C (Algorithm 1) for

Algorithm 2 RNAG-SC
Input: initial point x0, parameter ξ, step size s ≤ 1

L
Initialize v̄0 = 0 ∈ Tx0

M .
Set q = µs.
for k = 0 to K − 1 do
yk = expxk

( √
ξq

1+
√
ξq
v̄k

)
xk+1 = expyk (−s grad f (yk))

vk = Γykxk
(
v̄k − logxk (yk)

)
¯̄vk+1 =

(
1−

√
q
ξ

)
vk +

√
q
ξ

(
− 1
µ grad f (yk)

)
v̄k+1 = Γ

xk+1
yk

(
¯̄vk+1 − logyk (xk+1)

)
end for
Output: xK

Figure 2. Illustration of RNAG-SC.

the g-convex case, and RNAG-SC (Algorithm 2) for the g-
strongly convex case. In particular, we can interpret RNAG-
C as a slight variation of NAG-C with high friction (Su et al.,
2014, Section 4.1) with the friction parameter r = 1 + 2ξ.
See Appendix B for a detailed interpretation. Note that we
recover NAG-C and NAG-SC from these algorithms when
M = Rn and ξ = 1. Figure 2 is an illustration of some
steps of RNAG-SC, where the curve γ is a geodesic with
γ(0) = yk and γ′(0) = grad f (yk).

5. Convergence Analysis
5.1. Metric distortion lemma

To handle a potential function involving squared norms in
tangent spaces, we need to compare distances in different
tangent spaces.

Proposition 5.1. (Alimisis et al., 2020, Lemma 2) Let γ be
a smooth curve whose image is in N . Then, we have

δ ‖γ′(t)‖2 ≤
〈
Dt logγ(t)(x),−γ′(t)

〉
≤ ζ ‖γ′(t)‖2 .

In the proposition above, Dt is a covariant derivative along
the curve (see Appendix A). Using this proposition, we
obtain the following lemma.

Lemma 5.2. Let pA, pB , x ∈ N and vA ∈ TpAM . If there
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is r ∈ [0, 1] such that logpA (pB) = rvA, then we have∥∥vB − logpB (x)
∥∥2
pB

+ (ζ − 1) ‖vB‖2pB
≤
∥∥vA − logpA (x)

∥∥2
pA

+ (ζ − 1) ‖vA‖2pA ,

where vB = ΓpBpA
(
vA − logpA (pB)

)
∈ TpBM

In particular, when r = 1, Lemma 5.2 recovers a weaker
version of (Zhang & Sra, 2016, Lemma 5). We can further
generalize this lemma as follows:
Lemma 5.3. Let pA, pB , x ∈ N and vA ∈ TpAM . De-
fine vB = ΓpBpA

(
vA − logpA (pB)

)
∈ TpBM . If there are

a, b ∈ TpAM , and r ∈ (0, 1) such that vA = a + b and
logpA (pB) = rb, then we have∥∥vB − logpB (x)

∥∥2
pB

+ (ξ − 1) ‖vB‖2pB
≤
∥∥vA − logpA (x)

∥∥2
pA

+ (ξ − 1) ‖vA‖2pA

+
ξ − δ

2

(
1

1− r − 1

)
‖a‖2pA

for ξ ≥ ζ.

As exppA (vA) 6= exppB (vB) (see Figure 1), our lemma
does not compare the projected distance4 between points on
the manifold, unlike (Zhang & Sra, 2018, Theorem 10) and
(Ahn & Sra, 2020, Lemma 4.1). The proofs of Lemma 5.2
and Lemma 5.3 can be found in Appendix C.

5.2. Main results

We now prove the iteration complexities of RNAG-C and
RNAG-SC using potential functions of the form

φk = Ak (f (xk)− f (x∗))

+Bk

(∥∥v̄k − logxk (x∗)
∥∥2
xk

+ (ξ − 1) ‖v̄k‖2xk
)
.

(4)
The term (ξ − 1) ‖v̄k‖2xk is novel compared with the po-
tential function in (Ahn & Sra, 2020), and it measures the
kinetic energy (Wibisono et al., 2016). Intuitively, this po-
tential makes sense because a large ξ means high friction
(see Appendix B and Section 6). This term is useful when
handling metric distortion.

5.2.1. THE GEODESICALLY CONVEX CASE

For the g-convex case, we use a potential function defined
as

φk = sλ2k−1 (f (xk)− f (x∗))

+
ξ

2

∥∥v̄k − logxk (x∗)
∥∥2 +

ξ(ξ − 1)

2
‖v̄k‖2 .

(5)

4For u, v, w ∈ M , the projected distance between v and w
with respect to u is defined as ‖logu(v)− logu(w)‖2 (Ahn & Sra,
2020, Definition 3.1).

The following theorem shows that this potential function is
decreasing when the parameters ξ and T are chosen appro-
priately.
Theorem 5.4. Let f be a g-convex and geodesically L-
smooth function. If the parameters ξ and T of RNAG-C
satisfy ξ ≥ ζ and

ξ − δ
2

(
1

1− ξ/λk
− 1

)
≤ (ξ − ζ)

(
1

(1− ξ/ (λk + ξ − 1))
2 − 1

)
for all k ≥ 0, then the iterates of RNAG-C satisfy φk+1 ≤
φk for all k ≥ 0, where φk is defined as (5).

In particular, we can show that the parameters ξ = ζ+3(ζ−
δ) and T = 4ξ satisfy the condition in Theorem 5.4. In this
case, the monotonicity of the potential function yields

f (xk)− f (x∗) ≤ 1

sλ2k−1
φk ≤

1

sλ2k−1
φ0.

Thus, RNAG-C achieves acceleration. The result is summa-
rized in the following corollary.
Corollary 5.5. Let f be a g-convex and geodesically L-
smooth function. Then, RNAG-C with parameters ξ = ζ +
3(ζ−δ), T = 4ξ and step size s = 1

L finds an ε-approximate

solution in O
(
ξ
√

L
ε

)
iterations.

This result implies that the iteration complexity of RNAG-C
is the same as that of NAG-C because ξ is a constant. The
proofs of Theorem 5.4 and Corollary 5.5 are contained in
Appendix E.

5.2.2. THE GEODESICALLY STRONGLY CONVEX CASE

For the g-strongly convex case, we consider a potential
function defined as

φk =

(
1−

√
q

ξ

)−k(
f (xk)− f (x∗)

+
µ

2

∥∥vk − logyk (x∗)
∥∥2 +

µ(ξ − 1)

2
‖vk‖2

)
.

(6)

This potential function is also shown to be decreasing under
appropriate conditions on ξ and s.
Theorem 5.6. Let f be a geodesically µ-strongly convex
and geodesically L-smooth function. If the step size s and
the parameter ξ of RNAG-SC satisfy ξ ≥ ζ,

√
ξq < 1, and

ξ − δ
2

(
1

1−√ξq − 1

)(
1−

√
q

ξ

)2

−
√
ξq

(
1−

√
q

ξ

)
≤ (ξ − ζ)

(
1(

1−√ξq/
(
1 +
√
ξq
))2 − 1

)
,
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then the iterates of RNAG-SC satisfy φk+1 ≤ φk for all
k ≥ 0, where φk is defined as (6).

In particular, the parameters ξ = ζ + 3(ζ − δ) and s =
1

9ξL satisfy the condition in Theorem 5.6. In this case, by
monotonicity of the potential function, we have

f (xk)− f (x∗) ≤
(

1−
√
q

ξ

)k
φk ≤

(
1−

√
q

ξ

)k
φ0,

which implies that RNAG-SC achieves acceleration. The
following corollary summarizes the result.

Corollary 5.7. Let f be a geodesically µ-strongly convex
and geodesically L-smooth function. Then, RNAG-SC with
parameter ξ = ζ + 3(ζ − δ) and step size s = 1

9ξL finds an

ε-approximate solution in O
(
ξ
√

L
µ log

(
L
ε

))
iterations.

Because ξ is a constant, the iteration complexity of RNAG-
SC is the same as that of NAG-SC. The proofs of Theo-
rem 5.6 and Corollary 5.7 can be found in Appendix F.

6. Continuous-Time Interpretation
In this section, we identify a connection to the ODEs for
modeling Riemannian acceleration in (Alimisis et al., 2020,
Equations 2 and 4). Specifically, following the informal
arguments in (Su et al., 2014, Section 2) and (d’Aspremont
et al., 2021, Section 4.8), we obtain ODEs by taking the limit
s → 0 in our schemes. The detailed analysis is contained
in Appendix G. For a sufficiently small s, the Euclidean
geometry is valid as only a sufficiently small subset of M
is considered. Thus, we informally assume M = Rn for
simplicity. We can show that the iterations of RNAG-C
satisfy

yk+1 − yk√
s

=
λk − 1

λk+1 + (ξ − 1)

yk − yk−1√
s

− λk+1

λk+1 + (ξ − 1)

√
s grad f (yk)

+
λk − 1

λk+1 + (ξ − 1)

√
s (grad f (yk−1)− grad f (yk)) .

We introduce a smooth curve y(t) that is approximated by
the iterates of RNAG-C as y(t) ≈ yt/√s = yk with k = t√

s
.

Using the Taylor expansion, we have

yk+1 − yk√
s

= ẏ(t) +

√
s

2
ÿ(t) + o

(√
s
)
,

yk − yk−1√
s

= ẏ(t)−
√
s

2
ÿ(t) + o

(√
s
)
,

√
s grad f (yk−1) =

√
s grad f (yk) + o

(√
s
)
.

Letting s→ 0 yields the ODE5

∇ẏ ẏ +
1 + 2ξ

t
ẏ + grad f(y) = 0, (7)

where the covariant derivative ∇ẏ ẏ = Dtẏ is a natural
extension of the second derivative ÿ (see Appendix A).

In the g-strongly convex case, we can show that the itera-
tions of RNAG-SC satisfy

yk+1 − yk√
s

=
1−

√
q/ξ

1 +
√
ξq

yk − yk−1√
s

− 1 +
√
q/ξ

1 +
√
ξq

√
s grad f (yk)

+
1−

√
q/ξ

1 +
√
ξq

√
s (grad f (yk−1)− grad f (yk)) .

Through a similar limiting process, we obtain the following
ODE:

∇ẏ ẏ +

(
1√
ξ

+
√
ξ

)√
µẏ + grad f(y) = 0. (8)

Replacing the parameter ξ in the coefficients of our ODEs
with ζ, we recover (Alimisis et al., 2020, Equations 2 and
4). Because ξ ≥ ζ, the continuous-time acceleration re-
sults (Alimisis et al., 2020, Theorems 5 and 7) are valid for
our ODEs as well. Thus, this analysis confirms the accel-
erated convergence of our algorithms through the lens of
continuous-time flows.

In both ODEs, the parameter ξ ≥ ζ appears in the coefficient
of the friction term Ẋ , increasing with ξ. Intuitively, this
makes sense because ζ is large for an ill-conditioned domain,
where −Kmin and D are large and thus metric distortion is
more severe (where one might want to decrease the effect
of momentum).

7. Experiments
In this section, we examine the performance of our al-
gorithms on the Rayleigh quotient maximization problem
and the Karcher mean problem. To implement the geom-
etry of manifolds, we used the Python libraries Pymanopt
(Townsend et al., 2016) and Geomstats (Miolane et al.,
2020). For comparison, we use the known accelerated al-
gorithms RAGD (Zhang & Sra, 2018) for the g-strongly
convex case and RNAGsDR with no line search (Alimisis
et al., 2021) for the g-convex case. The source code of our
RNAG implementation is available online.6

5When M 6= Rn, we replace ÿ with the acceleration ∇ẏ ẏ =
Dtẏ, where Dt is a covariant derivative along the curve y (see
Appendix A).

6https://github.com/jungbinkim1/RNAG

https://github.com/jungbinkim1/RNAG
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Figure 3. Performances of various Riemannian optimization algorithms on the Rayleigh quotient maximization problem and the Karcher
mean problem.

We set the input parameters as ζ = 1 for implementing
RAGDsDR, and ξ = 1 for implementing our algorithms.
The stepsize was chosen as s = 1

L in our algorithms.

Rayleigh quotient maximization. Given a real d× d sym-
metric matrix A, we consider the problem

min
x∈Sd−1

f(x) = −1

2
x>Ax.

on the unit (d − 1)-sphere on Sd−1. For this manifold,
we set Kmin = Kmax = 1. We let d = 1000 and
A = 1

2

(
B +B>

)
, where the entries of B ∈ Rd×d were

randomly generated by the Gaussian distribution N(0, 1/d).
We have the smoothness parameter L = λmax − λmin by
the following proposition.
Proposition 7.1. The function f is geodesically
(λmax − λmin)-smooth, where λmax and λmin are
the largest and smallest eigenvalues of A, respectively.

The proof can be found in Appendix H. The result is shown
in Figure 3(a). We observe that RNAG-C outperforms
RGD and is comparable to RAGDsDR, a known accelerated
method for the g-convex case.

Karcher mean of SPD matrices. When Kmax ≤ 0, the
Karcher mean (Karcher, 1977) of the points pi ∈ M for
i = 1, . . . , n, is defined as the solution of

min
x∈M

f(x) =
1

2n

n∑
i=1

d (x, pi)
2
. (9)

The following proposition shows that one can set the strong
convexity parameter as µ = 1.
Proposition 7.2. The function f is geodesically 1-strongly
convex.

The proof can be found in Appendix H. We consider this
problem on the manifold P(d) ⊆ Rd×d of symmetric posi-
tive definite matrices endowed with the Riemannian metric

〈X,Y 〉P = Tr
(
P−1XP−1Y

)
. It is known that one can

set Kmin = − 1
2 and Kmax = 0 (Criscitiello & Boumal,

2020, Appendix I). We set the dimension and the number
of matrices as d = 100 and n = 50. The matrices pi were
randomly generated using Matrix Mean Toolbox (Bini &
Iannazzo, 2013) with condition number 106. We set the
smoothness parameter as L = 10. The result is shown in
Figure 3(b). We observe that RNAG-SC and RAGD (Zhang
& Sra, 2018) perform significantly better than RGD. The
performances of RNAG-C and RAGDsDR are only slightly
better than that of RGD in early stages. This result makes
sense because f is g-strongly convex and well-conditioned.

Karcher mean on hyperbolic space. We consider the prob-
lem (9) on the hyperbolic space Hd with the hyperboloid
model Hd =

{
x ∈ Rd+1 : −x2d+1 +

∑d
k=1 x

2
k = −1

}
.

For this manifold, we can set Kmin = Kmax = −1. We
set the dimension and the number of points as d = 1000
and n = 10. First d entries of each point pi are randomly
generated by the Gaussian distribution N(0, 1/d). We set
the smoothness parameter as L = 10. The result is similar
to that of the previous example, and is shown in Figure 3(c).

8. Discussion
In this paper, we have proposed novel computationally
tractable first-order methods that achieve Riemannian ac-
celeration for both g-convex and g-strongly convex objec-
tive functions whenever the constants Kmin, Kmax, and D
are available. The iteration complexities of RNAG-C and
RNAG-SC match those of their Euclidean counterparts. The
continuous-time analysis of our algorithms provides an intu-
itive interpretation of the parameter ξ as a measurement of
friction, which is higher when the domain manifold is more
ill-conditioned. In fact, the iteration complexities of our al-
gorithms depend on the parameter ξ ≥ ζ, which is affected
by the values of the constants Kmin, Kmax, and D. When
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ζ is large (i.e., −Kmin and D are large), we have a worse
guarantee. A possible future direction is to study the effect
of the constants Kmin, Kmax, and D on the complexities of
Riemannian optimization algorithms tightly.

Comparison with (Liu et al., 2017). The algorithms
in (Liu et al., 2017) achieve acceleration with only stan-
dard assumption. However, to implement the operator
S : (yk−1, xk, xk−1) 7→ yk in (Liu et al., 2017, Algo-
rithm 1), one needs to solve the following nonlinear equation
at each iteration:

(1−
√
µ/L)Γyk−1

yk
logyk (xk)− βΓyk−1

yk
grad f (yk)

= (1−
√
µ/L)3/2 logyk−1

(xk−1) .

It is unclear whether this equation is solvable in a tractable
way or even feasible as noted in (Ahn & Sra, 2020). On
the other hand, our algorithms involve only operations in
tangent spaces and the exponential map, logarithm map, and
parallel transport. Thus, our algorithms are computation-
ally tractable for various manifolds in practice, where the
operations above are implementable.

Comparison with (Criscitiello & Boumal, 2021). It is
natural to ask how our positive result is not contradictory
to the negative result in (Criscitiello & Boumal, 2021). To
clarify this, we provide the following two reasons:

(i) We assume that the diameter diam(N) of the domain N
is bounded, which is a more restrictive condition than their
assumption that the distance d (x0, x

∗) is bounded.

(ii) We assume that the diameter diam(N) is bounded by a
fixed constant D. Thus, in Corollary 5.5 and Corollary 5.7,
ξ does not depend on other parameters such as µ and L.
In contrast, (Criscitiello & Boumal, 2021, Theorem 1.3)
introduces a bound 3

4r of d (x0, x
∗) by letting r be the solu-

tion of κ = 12r
√−Kmin + 9), thus r

√−Kmin grows with
κ = L/µ. A similar discussion can be found in (Martı́nez-
Rubio, 2022, Remark 29).

We believe that the second one is the main reason for our
positive results coexist with their negative results. As men-
tioned in Section 2, their result is not contradictory but
complementary to our results.
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A. Background
Definition A.1. A smooth vector field V is a smooth map from M to TM such that p ◦ V is the identity map, where
p : TM →M is the projection. The collection of all smooth vector fields on M is denoted by X(M).

Definition A.2. Let γ : I →M be a smooth curve. A smooth vector field V along γ is a smooth map from I to TM such
that V (t) ∈ Tγ(t)M for all t ∈ I . The collection of all smooth vector fields along γ is denoted by X(γ).

Proposition A.3 (Fundamental theorem of Riemannian geometry). There exists a unique operator

∇ : X(M)× X(M)→ X(M) : (U, V ) 7→ ∇UV

satisfying the following properties for any U, V,W ∈ X(M), smooth functions f, g on M , and a, b ∈ R:

1. ∇fU+gWV = f∇UV + g∇WV

2. ∇U (aV + bW ) = a∇UV + b∇UW

3. ∇U (fV ) = (Uf)V + f∇UV

4. [U, V ] = ∇UV −∇V U

5. U〈V,W 〉 = 〈∇UV,W 〉+ 〈V,∇UW 〉,

where [·, ·] denotes the Lie bracket. The operator ∇ is called the Levi-Civita connection or the Riemannian connection. The
field∇UV is called the covariant derivative of V along U .

From now on, we always assume that M is equipped with the Riemannian connection∇.

Proposition A.4. (Boumal, 2020, Section 8.11) For any smooth vector fields U, V on M , the vector field∇UV at x depends
on U only through U(x). Thus, we can write ∇uV to mean (∇UV )(x) for any U ∈ X(M) such that U(x) = u, without
ambiguity.

For a smooth function f : M → R, grad f is a smooth vector field.

Definition A.5. (Boumal, 2020, Section 8.11) The Riemannian Hessian of a smooth function f on M at x ∈ M is a
self-adjoint linear operator Hess f(x) : TxM → TxM defined as

Hess f(x)[u] = ∇u grad f.

Proposition A.6. (Boumal, 2020, Section 8.12) Let c : I → M be a smooth curve. There exists a unique operator
Dt : X(c) → X(c) satisfying the following properties for all Y,Z ∈ X(c), U ∈ X(M), a smooth function g on I , and
a, b ∈ R:

1. Dt(aY + bZ) = aDtY + bDtZ

2. Dt(gZ) = g′Z + gDtZ

3. (Dt(U ◦ c))(t) = ∇c′(t)U for all t ∈ I

4. d
dt 〈Y,Z〉 = 〈DtY, Z〉+ 〈Y,DtZ〉.

This operator is called the (induced) covariant derivative along the curve c.

We define the acceleration of a smooth curve γ as the vector field Dtγ
′ along γ. Now, we can define the parallel transport

using covariant derivatives.

Definition A.7. (Boumal, 2020, Section 10.3) A vector field Z ∈ X(c) is parallel if DtZ = 0.

Proposition A.8. (Boumal, 2020, Section 10.3) For any smooth curve c : I →M , t0 ∈ I and u ∈ Tc(t0)M , there exists a
unique parallel vector field Z ∈ X(c) such that Z(t0) = u.
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Definition A.9. (Boumal, 2020, Section 10.3) Given a smooth curve c on M , the parallel transport of tangent vectors at
c(t0) to the tangent space at c(t1) along c,

Γ(c)t1t0 : Tc(t0)M → Tc(t1)M,

is defined by Γ(c)t1t0(u) = Z(t1), where Z ∈ X(c) is the unique parallel vector field such that Z(t0) = u.

Proposition A.10. (Boumal, 2020, Section 10.3) The parallel transport operator Γ(c)t1t0 is linear. Also, Γ(c)t2t1 ◦ Γ(c)t1t0 =

Γ(c)t2t0 and Γ(c)tt is the identity. In particular, the inverse of Γ(c)t1t0 is Γ(c)t0t1 . The parallel transport is an isometry, that is,

〈u, v〉c(t0) =
〈
Γ(c)t1t0(u),Γ(c)t1t0(v)

〉
c(t1)

.

Proposition A.11. (Boumal, 2020, Section 10.3) Consider a smooth curve c : I →M . Given a vector field Z ∈ X(c), we
have

DtZ(t) = lim
h→0

Γ(c)tt+hZ(t+ h)− Z(t)

h
.

B. Comparison between RNAG-C and High-Friction NAG-C
In this section, we review high-friction NAG-C in (Su et al., 2014, Section 4.1), and compare it to RNAG-C. For r ≥ 3, they
designed the gerenalized NAG-C with high friction as

xk = yk−1 − s grad f (yk−1)

yk = xk +
k − 1

k + r − 1
(xk − xk−1) .

Introducing the third sequence as zk = yk + k
r−1 (yk − xk), we can rewrite this method as

yk = xk +
r − 1

k + r − 1
(zk − xk)

xk+1 = yk − s grad f (yk)

zk+1 = zk −
k + r − 1

r − 1
s grad f (yk) .

(NAG-C-HF)

Note that we can recover NAG-C by letting r = 3. The iterates of NAG-C-HF satisfy

f (xk)− f (x∗) ≤ (r − 1)2 ‖x0 − x∗‖2
2s(k + r − 2)2

≤ (r − 1)2 ‖x0 − x∗‖2
2s(k − 2)2

for s ≤ 1
L (Su et al., 2014, Theorem 6). Thus, we have f (xk)− f (x∗) ≤ ε whenever

(k − 2)2 ≥ (r − 1)2 ‖x0 − x∗‖2
2sε

.

In particular, when s = 1
L and r = 1 + 2ξ, we have the Iteration complexity O

(
ξ
√

L
ε

)
.

For comparison, we write RNAG-C in Euclidean space as

yk = xk +
2ξ

k + 2ξ + (T + 2ξ − 2)
(zk − xk)

xk+1 = yk − s grad f (yk)

zk+1 = zk −
k + 2ξ + T

2ξ
s grad f (yk) .

(10)

One can see that the algorithm (10) is similar to that of NAG-C-HF with r = 1 + 2ξ, where the only difference occurs in

constants that can be ignored as k grows. Note that both algorithms have the same iteration complexity O
(
ξ
√

L
ε

)
even

when we do not ignore the effect of ξ, and lead to the same ODE (Su et al., 2014, Section 4.1)

ÿ +
1 + 2ξ

t
ẏ + grad f(y) = 0.
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C. Proofs of Lemma 5.2 and Lemma 5.3
Proposition C.1. (Alimisis et al., 2020, Lemma 12) Let γ be a smooth curve whose image is in N , then

d

dt

∥∥∥logγ(t)(x)
∥∥∥2 = 2

〈
Dt logγ(t)(x), logγ(t)(x)

〉
= 2

〈
logγ(t)(x),−γ′(t)

〉
.

Lemma C.2. Let pA, pB , x ∈ N and vA ∈ TpAM . If there is r ∈ [0, 1] such that logpA (pB) = rvA, then we have∥∥vB − logpB (x)
∥∥2
pB

+ (ζ − 1) ‖vB‖2pB
≤
∥∥vA − logpA (x)

∥∥2
pA

+ (ζ − 1) ‖vA‖2pA ,

where vB = ΓpBpA
(
vA − logpA (pB)

)
∈ TpBM

Proof. By geodesic unique convexity of N , there is a unique geodesic γ such that γ(0) = pA and γ(r) = pB whose
image lies in N . We can check that γ′(0) = vA.7 Define the vector field V (t) along γ as V (t) = Γ(γ)t0 (vA − tγ′(0)).
Then, we can check that V (t) = (1 − t)γ′(t) and V ′(t) = −γ′(t).8 Define the function w : [0, r] → R as w(t) =∥∥∥logγ(t)(x)− V (t)

∥∥∥2, It follows from Proposition 5.1 and Proposition C.1 that

d

dt
w(t) = 2

〈
Dt

(
logγ(t)(x)− V (t)

)
, logγ(t)(x)− V (t)

〉
= 2

〈
Dt logγ(t)(x), logγ(t)(x)

〉
− 2

〈
Dt logγ(t)(x), V (t)

〉
− 2

〈
DtV (t), logγ(t)(x)

〉
+ 2 〈DtV (t), V (t)〉

= 2
〈
Dt logγ(t)(x), logγ(t)(x)

〉
− 2(1− t)

〈
Dt logγ(t)(x), γ′(t)

〉
+ 2

〈
γ′(t), logγ(t)(x)

〉
+ 2 〈DtV (t), V (t)〉

= 2(1− t)
〈
Dt logγ(t)(x),−γ′(t)

〉
+ 2 〈DtV (t), V (t)〉

≤ 2(1− t)ζ ‖γ′(t)‖2 + 2 〈DtV (t), V (t)〉
= −2ζ 〈−γ′(t), (1− t)γ′(t)〉+ 2 〈DtV (t), V (t)〉
= −2(ζ − 1) 〈DtV (t), V (t)〉

= −(ζ − 1)

(
d

dt
‖V (t)‖2

)
.

Integrating both sides from 0 to r gives

w(r)− w(0) ≤
∫ r

0

−(ζ − 1)

(
d

dt
‖V (t)‖2

)
dt = −(ζ − 1)

(
‖V (r)‖2 − ‖V (0)‖2

)
.

This completes the proof.

Lemma C.3. Let pA, pB , x ∈ N and vA ∈ TpAM . Define vB = ΓpBpA
(
vA − logpA (pB)

)
∈ TpBM . If there are

a, b ∈ TpAM , and r ∈ (0, 1) such that vA = a+ b and logpA (pB) = rb, then we have∥∥vB − logpB (x)
∥∥2
pB

+ (ξ − 1) ‖vB‖2pB
≤
∥∥vA − logpA (x)

∥∥2
pA

+ (ξ − 1) ‖vA‖2pA

+
ξ − δ

2

(
1

1− r − 1

)
‖a‖2pA

for ξ ≥ ζ.
7Consider the geodesic c : t 7→ γ(rt). Then c(0) = pA and c(1) = pB . By definition of the exponential map, c′(0) = logpA (pB) =

rvA. Combining this equality with c′(0) = rγ′(0) gives the desired result.
8A similar argument as in the previous footnote shows the first equality. The second equality follows from Proposition A.11 and the

fact that γ′(t) is parallel along γ.
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Proof. Define γ, V , w as in the proof of Lemma 5.2. As in the proof of Lemma 5.2, we can check that γ′(0) = b and
V ′(t) = −γ′(t), and that we have

d

dt
w(t) = −2

〈
Dt logγ(t)(x), V (t)

〉
+ 2 〈DtV (t), V (t)〉 .

Consider the smooth function f0 : p 7→ 1
2

∥∥logp(x)
∥∥2. Because grad f0(p) = − logp(x), we have Hess f0(γ(t))[w] =

∇wX , where X : p 7→ − logp(x) (Alimisis et al., 2020, Section 4). By Proposition 5.1, we have δ ‖w‖2 ≤
〈Hess f0(γ(t))[w], w〉 ≤ ζ ‖w‖2 ≤ ξ ‖w‖2 (Alimisis et al., 2021, Appendix D). Thus,

−ξ − δ
2
‖w‖2 = δ ‖w‖2 − ξ + δ

2
‖w‖2 ≤

〈
Hess f0(γ(t))[w]− ξ + δ

2
w,w

〉
≤ ξ ‖w‖2 − ξ + δ

2
‖w‖2 =

ξ − δ
2
‖w‖2 .

Because Hess f0(γ(t)) is self-adjoint, it is diagonalizable. Thus, the norm of the operator Hess f0(γ(t))− ξ+δ
2 I on Tγ(t)M

can be bounded as ∥∥∥∥Hess f0(γ(t))− ξ + δ

2
I

∥∥∥∥ ≤ ξ − δ
2

.

Now, we have

−2
〈
Dt logγ(t)(x), V (t)

〉
= 2

〈
∇γ′(t)X,V (t)

〉
= 2 〈Hess f0(γ(t))[γ′(t)], V (t)〉

= 2

〈(
Hess f0(γ(t))− ξ + δ

2
I

)
(γ′(t)) , V (t)

〉
+ 2

〈
ξ + δ

2
γ′(t), V (t)

〉
≤ 2

∥∥∥∥(Hess f0(γ(t))− ξ + δ

2
I

)
(γ′(t))

∥∥∥∥ ‖V (t)‖+ 2

〈
ξ + δ

2
γ′(t), V (t)

〉
≤ 2

∥∥∥∥Hess f0(γ(t))− ξ + δ

2
I

∥∥∥∥ ‖γ′(t)‖ ‖V (t)‖+ 2

〈
ξ + δ

2
γ′(t), V (t)

〉
≤ 2

ξ − δ
2
‖γ′(t)‖ ‖V (t)‖+ 2

〈
ξ + δ

2
γ′(t), V (t)

〉
.

Because the parallel transport preserves inner product and norm, we obtain

−2
〈
Dt logγ(t)(x), V (t)

〉
≤ 2

ξ − δ
2
‖b‖ ‖a+ (1− t)b‖+ (ξ + δ) 〈b, a+ (1− t)b〉

=
ξ − δ

2

1

1− t2 ‖(1− t)b‖ ‖a+ (1− t)b‖+ (ξ + δ) 〈b, a+ (1− t)b〉

≤ ξ − δ
2

1

1− t
(
‖(1− t)b‖2 + ‖a+ (1− t)b‖2

)
+ (ξ + δ) 〈b, a+ (1− t)b〉

=
ξ − δ

2

1

1− t ‖a‖
2 − 2ξ 〈−b, a+ (1− t)b〉

=
ξ − δ

2

1

1− t ‖a‖
2 − 2ξ 〈DtV (t), V (t)〉 .

Thus, for t ∈ (0, r)
d

dt
w(t) ≤ ξ − δ

2

1

1− r ‖a‖
2 − 2(ξ − 1) 〈DtV (t), V (t)〉 .

Integrating both sides from 0 to r, the result follows.

D. Convergence Analysis for RGD
In this section, we review the iteration complexity of RGD with the fixed step size γk = s under the assumptions in
Section 3.2. The results in this section correspond to (Zhang & Sra, 2016, Theorems 13 and 15).
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D.1. Geodesically convex case

We define the potential function as

φk = s(k + ζ − 1) (f (xk)− f (x∗)) +
1

2

∥∥logxk (x∗)
∥∥2 .

The following theorem says that φk is decreasing.

Theorem D.1. Let f be a geodesically convex and geodesically L-smooth function. If s ≤ 1
L , then the iterates of RGD

satisfy

s(k + ζ) (f (xk+1)− f (x∗)) +
1

2

∥∥∥logxk+1
(x∗)

∥∥∥2 ≤ s(k + ζ − 1) (f (xk)− f (x∗)) +
1

2

∥∥logxk (x∗)
∥∥2

for all k ≥ 0.

Proof. (Step 1). In this step, 〈·, ·〉 and ‖ · ‖ always denote the inner product and the norm on TxkM . It follows from the
geodesic convexity of f that

f (x∗) ≥ f (xk) +
〈
grad f (xk) , logxk (x∗)

〉
= f (xk)− 1

s

〈
logxk (xk+1) , logxk (x∗)

〉
.

By the geodesic 1
s -smoothness of f , we have

f (xk+1) ≤ f (xk) +
〈
grad f (xk) , logxk (xk+1)

〉
+

1

2s

∥∥logxk (xk+1)
∥∥2

= f (xk)− 1

2s

∥∥logxk (xk+1)
∥∥2 .

Taking a weighted sum of these inequalities yields

0 ≥
[
f (xk)− f (x∗)− 1

s

〈
logxk (xk+1) , logxk (x∗)

〉]
+ (k + ζ)

[
f (xk+1)− f (xk) +

1

2s

∥∥logxk (xk+1)
∥∥2]

= (k + ζ) (f (xk+1)− f (x∗))− (k + ζ − 1) (f (xk)− f (x∗))

− 1

s

〈
logxk (xk+1) , logxk (x∗)

〉
+
k + ζ

2s

∥∥logxk (xk+1)
∥∥2

≥ (k + ζ) (f (xk+1)− f (x∗))− (k + ζ − 1) (f (xk)− f (x∗))

− 1

s

〈
logxk (xk+1) , logxk (x∗)

〉
+

ζ

2s

∥∥logxk (xk+1)
∥∥2

= (k + ζ) (f (xk+1)− f (x∗))− (k + ζ − 1) (f (xk)− f (x∗))

+
1

2s

(
ζ
∥∥logxk (xk+1)

∥∥2 − 2
〈
logxk (xk+1) , logxk (x∗)

〉)
= (k + ζ) (f (xk+1)− f (x∗))− (k + ζ − 1) (f (xk)− f (x∗))

+
1

2s

(∥∥logxk (xk+1)− logxk (x∗)
∥∥2 + (ζ − 1)

∥∥logxk (xk+1)
∥∥2 − ∥∥logxk (x∗)

∥∥2) .
(Step 2: Handling metric distortion). By Lemma 5.2 with pA = xk, pB = xk+1, x = x∗, vA = logxk (xk+1), vB = 0,
r = 1, we have ∥∥∥logxk+1

(x∗)
∥∥∥2
xk+1

≤
∥∥logxk (xk+1)− logxk (x∗)

∥∥2
xk

+ (ζ − 1)
∥∥logxk (xk+1)

∥∥2
xk
.
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Combining this inequality with the result in Step 1 gives

0 ≥ (k + ζ) (f (xk+1)− f (x∗))− (k + ζ − 1) (f (xk)− f (x∗))

+
1

2s

(∥∥logxk (xk+1)− logxk (x∗)
∥∥2
xk

+ (ζ − 1)
∥∥logxk (xk+1)

∥∥2
xk
−
∥∥logxk (x∗)

∥∥2
xk

)
+

1

2s

(∥∥∥logxk+1
(x∗)

∥∥∥2
xk+1

−
∥∥logxk (xk+1)− logxk (x∗)

∥∥2
xk
− (ζ − 1)

∥∥logxk (xk+1)
∥∥2
xk

)
= (k + ζ) (f (xk+1)− f (x∗))− (k + ζ − 1) (f (xk)− f (x∗)) +

1

2s

∥∥∥logxk+1
(x∗)

∥∥∥2
xk+1

− 1

2s

∥∥logxk (x∗)
∥∥2
xk

=
φk+1 − φk

s
.

Corollary D.2. Let f be a geodesically convex and geodesically L-smooth function. Then, RGD with the step size s = 1
L

finds an ε-approximate solution in O
(
ζL
ε

)
iterations.

Proof. It follows from Theorem D.1 that

f (xk)− f (x∗) ≤ φk
s(k + ζ − 1)

≤ φ0
s(k + ζ − 1)

=
1

s(k + ζ − 1)

(
s(ζ − 1) (f (x0)− f (x∗)) +

1

2

∥∥logx0
(x∗)

∥∥2) .
By geodesic 1

s -smoothness of f , we have

f (xk)− f (x∗) ≤ 1

s(k + ζ − 1)

(
s(ζ − 1)

1

2s

∥∥logx0
(x∗)

∥∥2 +
1

2

∥∥logx0
(x∗)

∥∥2) =
ζL

2(k + ζ − 1)

∥∥logx0
(x∗)

∥∥2 .
Thus, we have f (xk) − f (x∗) ≤ ε whenever k ≥ ζL

2ε

∥∥logx0
(x∗)

∥∥2 − (ζ − 1). Thus we obtain an O
(
ζL
ε

)
iteration

complexity.

This result implies that the iteration complexity of RGD for geodesically convex case is the same as that of GD, since ζ is a
constant.

D.2. Geodesically strongly convex case

We define the potential function as

φk = (1− µs)−k
(
f (xk)− f (x∗) +

µ

2

∥∥logxk (x∗)
∥∥2) .

The following theorem states that φk is decreasing.

Theorem D.3. Let f be a geodesically µ-strongly convex and geodesically L-smooth function. If s ≤ min
{

1
L ,

1
ζµ

}
, then

the iterates of RGD satisfy

(1− µs)−(k+1)

(
f (xk+1)− f (x∗) +

µ

2

∥∥∥logxk+1
(x∗)

∥∥∥2) ≤ (1− µs)−k
(
f (xk)− f (x∗) +

µ

2

∥∥logxk (x∗)
∥∥2)

for all k ≥ 0.

Proof. (Step 1). In this step, 〈·, ·〉 and ‖ · ‖ always denote the inner product and the norm on TxkM . Set q = µs. By
geodesic µ-strong convexity of f , we have

f (x∗) ≥ f (xk) +
〈
grad f (xk) , logxk (x∗)

〉
+
µ

2

∥∥logxk (x∗)
∥∥2

= f (xk)− 1

s

〈
logxk (xk+1) , logxk (x∗)

〉
+

q

2s

∥∥logxk (x∗)
∥∥2 .
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By geodesic 1
s -smoothness of f , we have

f (xk+1) ≤ f (xk) +
〈
grad f (xk) , logxk (xk+1)

〉
+

1

2s

∥∥logxk (xk+1)
∥∥2

= f (xk)− 1

2s

∥∥logxk (xk+1)
∥∥2 .

Note that ζq ≤ 1. Taking weighted sum of these inequalities, we arrive to the valid inequality

0 ≥ q
[
f (xk)− f (x∗)− 1

s

〈
logxk (xk+1) , logxk (x∗)

〉
+

q

2s

∥∥logxk (x∗)
∥∥2 .]

+

[
f (xk+1)− f (xk) +

1

2s

∥∥logxk (xk+1)
∥∥2]

= f (xk+1)− f (x∗)− (1− q) (f (xk)− f (x∗))

− q

s

〈
logxk (xk+1) , logxk (x∗)

〉
+
q2

2s

∥∥logxk (x∗)
∥∥2 +

1

2s

∥∥logxk (xk+1)
∥∥2

≥ f (xk+1)− f (x∗)− (1− q) (f (xk)− f (x∗))

+
q

2s

(
−2
〈
logxk (xk+1) , logxk (x∗)

〉
+ q

∥∥logxk (x∗)
∥∥2 + ζ

∥∥logxk (xk+1)
∥∥2)

= f (xk+1)− f (x∗)− (1− q) (f (xk)− f (x∗))

+
q

2s

(∥∥logxk (xk+1)− logxk (x∗)
∥∥2 + (ζ − 1)

∥∥logxk (xk+1)
∥∥2 − (1− q)

∥∥logxk (x∗)
∥∥2) .

(Step 2: Handle metric distortion). By Lemma 5.2 with pA = xk, pB = xk+1, x = x∗, vA = logxk (xk+1), vB = 0, r = 1,
we have ∥∥∥logxk+1

(x∗)
∥∥∥2
xk+1

≤
∥∥logxk (xk+1)− logxk (x∗)

∥∥2
xk

+ (ζ − 1)
∥∥logxk (xk+1)

∥∥2
xk
.

Combining this inequality with the result in Step 1 gives

0 ≥ f (xk+1)− f (x∗)− (1− q) (f (xk)− f (x∗))

+
q

2s

(∥∥logxk (xk+1)− logxk (x∗)
∥∥2
xk

+ (ζ − 1)
∥∥logxk (xk+1)

∥∥2
xk
− (1− q)

∥∥logxk (x∗)
∥∥2
xk

)
+

q

2s

(∥∥∥logxk+1
(x∗)

∥∥∥2
xk+1

−
∥∥logxk (xk+1)− logxk (x∗)

∥∥2
xk
− (ζ − 1)

∥∥logxk (xk+1)
∥∥2
xk

)
0 = f (xk+1)− f (x∗)− (1− q) (f (xk)− f (x∗)) +

q

2s

∥∥∥logxk+!
(x∗)

∥∥∥2
xk+1

− q

2s
(1− q)

∥∥logxk (x∗)
∥∥2
xk

=

(
f (xk+1)− f (x∗) +

µ

2

∥∥∥logxk+1
(x∗)

∥∥∥2
xk+1

)
− (1− q)

(
f (xk)− f (x∗) +

µ

2

∥∥logxk (x∗)
∥∥2
xk

)
= (1− q)(k+1) (φk+1 − φk) .

Corollary D.4. Let f be a geodesically µ-strongly convex and geodesically L-smooth function. Then, RGD with step size
s = 1

ζL finds an ε-approximate solution in O
(
ζL
µ log L

ε

)
iterations.

Proof. By Theorem D.3, we have

f (xk)− f (x∗) ≤ (1− µs)k φk ≤ (1− µs)k φ0 = (1− µs)k
(
f (x0)− f (x∗) +

µ

2

∥∥logx0
(x∗)

∥∥2) .
It follows from the geodesic L-smoothness of f and the inequality

(
1− µ

ζL

)k
≤ e− µ

ζLk that

f (xk)− f (x∗) ≤
(

1− µ

ζL

)k (
L

2

∥∥logx0
(x∗)

∥∥2 +
µ

2

∥∥logx0
(x∗)

∥∥2) ≤ e− µ
ζLkL

∥∥logx0
(x∗)

∥∥2 .
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Thus, we have f (xk)− f (x∗) ≤ ε whenever k ≥ ζL
µ log

(
L
ε

∥∥logx0
(x∗)

∥∥2). Accordingly, we obtain an O
(
ζL
µ log L

ε

)
iteration complexity.

This result implies that the iteration complexity of RGD for g-strongly convex case is the same as that of GD, since ζ is a
constant. Another proof of the iteration complexity of RGD for g-strongly convex functions can be found in (Criscitiello &
Boumal, 2021, Proposition 1.8).

E. Convergence Analysis for RNAG-C
Theorem 5.4. Let f be a g-convex and geodesically L-smooth function. If the parameters ξ and T of RNAG-C satisfy ξ ≥ ζ
and

ξ − δ
2

(
1

1− ξ/λk
− 1

)
≤ (ξ − ζ)

(
1

(1− ξ/ (λk + ξ − 1))
2 − 1

)

for all k ≥ 0, then the iterates of RNAG-C satisfy φk+1 ≤ φk for all k ≥ 0, where φk is defined as (5).

Proof. (Step 1). In this step, 〈·, ·〉 and ‖ · ‖ always denote the inner product and the norm on TykM . It is easy to check
that grad f (yk) = − ξ

sλk
(¯̄vk+1 − vk), logyk (xk) = − ξ

λk−1vk,9 and λ2k − λk ≤ λ2k−1. By the geodesic convexity of f , we
have

f (x∗) ≥ f (yk) +
〈
grad f (yk) , logyk (x∗)

〉
= f (yk)− ξ

sλk

〈
¯̄vk+1 − vk, logyk (x∗)

〉
,

f (xk) ≥ f (yk) +
〈
grad f (yk) , logyk (xk)

〉
= f (yk) +

ξ2

s (λ2k − λk)
〈¯̄vk+1 − vk, vk〉 .

It follows from the geodesic 1
s -smoothness of f that

f (xk+1) ≤ f (yk) +
〈
grad f (yk) , logyk (xk+1)

〉
+

1

2s

∥∥logyk (xk+1)
∥∥2

= f (yk)− s

2
‖grad f (yk)‖2

= f (yk)− ξ2

2sλ2k
‖¯̄vk+1 − vk‖2 .

9Note that yk = expxk

(
ξ

λk+(ξ−1)
v̄k

)
and vk = Γ

yk
xk

(
v̄k − logxk (yk)

)
= Γ

yk
xk

((
1− ξ

λk+(ξ−1)

)
v̄k

)
. Let γ1 be the geodesic such

that γ1(0) = xk and γ1(1) = yk, then γ′1(0) = logxk (yk). Let γ2 be the geodesic defined as γ2(t) = γ1(1− t). Then, logyk (xk) =

γ′2(0) = −γ′1(1) = −Γ
yk
xk (γ′1(0)) = −Γ

yk
xk

(
logxk (yk)

)
. Now, we have logyk (xk) = −Γ

yk
xk

(
logxk (yk)

)
= − ξ

λk+(ξ−1)
Γ
yk
xk (v̄k) =

−
ξ

λk+(ξ−1)

1− ξ
λk+(ξ−1)

vk = − ξ
λk−1

vk.
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Taking a weighted sum of these inequalities yields

0 ≥ λk
[
f (yk)− f (x∗)− ξ

sλk

〈
¯̄vk+1 − vk, logyk (x∗)

〉]
+
(
λ2k − λk

) [
f (yk)− f (xk) +

ξ2

s (λ2k − λk)
〈¯̄vk+1 − vk, vk〉

]
+ λ2k

[
f (xk+1)− f (yk) +

ξ2

2sλ2k
‖¯̄vk+1 − vk‖2

]
= λ2k (f (xk+1)− f (x∗))−

(
λ2k − λk

)
(f (xk)− f (x∗))

− ξ

s

〈
¯̄vk+1 − vk, logyk (x∗)

〉
+
ξ2

s
〈¯̄vk+1 − vk, vk〉+

ξ2

2s
‖¯̄vk+1 − vk‖2

≥ λ2k (f (xk+1)− f (x∗))− λ2k−1 (f (xk)− f (x∗))

+
ξ

2s

(
−2
〈
¯̄vk+1 − vk, logyk (x∗)

〉
+ 2ξ 〈¯̄vk+1 − vk, vk〉+ ξ ‖¯̄vk+1 − vk‖2

)
= λ2k (f (xk+1)− f (x∗))− λ2k−1 (f (xk)− f (x∗))

+
ξ

2s

(
‖¯̄vk+1 − vk‖2 − 2

〈
¯̄vk+1 − vk, logyk (x∗)− vk

〉
+ 2(ξ − 1) 〈¯̄vk+1 − vk, vk〉+ (ξ − 1) ‖¯̄vk+1 − vk‖2

)
.

= λ2k (f (xk+1)− f (x∗))− λ2k−1 (f (xk)− f (x∗))

+
ξ

2s

(
‖¯̄vk+1 − vk‖2 − 2

〈
¯̄vk+1 − vk, logyk (x∗)− vk

〉
+ (ξ − 1) ‖¯̄vk+1‖2 − (ξ − 1) ‖vk‖2

)
.

Note that ∥∥¯̄vk+1 − logyk (x∗)
∥∥2 − ∥∥vk − logyk (x∗)

∥∥2 = ‖¯̄vk+1 − vk‖2 − 2
〈
¯̄vk+1 − vk, logyk (x∗)− vk

〉
.

Thus, we obtain

0 ≥ λ2k (f (xk+1)− f (x∗))− λ2k−1 (f (xk)− f (x∗))

+
ξ

2s

(∥∥¯̄vk+1 − logyk (x∗)
∥∥2 − ∥∥vk − logyk (x∗)

∥∥2 + (ξ − 1) ‖¯̄vk+1‖2 − (ξ − 1) ‖vk‖2
)
.

(Step 2: Handle metric distortion). By Lemma 5.3 with pA = yk, pB = xk+1, x = x∗, vA = ¯̄vk+1, vB = v̄k+1, a = vk,
b = −γk grad f (yk) = − sλkξ grad f (yk), r = s

γk
= ξ

λk
∈ (0, 1), we have

∥∥∥logxk+1
(x∗)− v̄k+1

∥∥∥2
xk+1

+ (ξ − 1) ‖v̄k+1‖2xk+1

≤
∥∥logyk (x∗)− ¯̄vk+1

∥∥2
yk

+ (ξ − 1) ‖¯̄vk+1‖2yk +
ξ − δ

2

(
1

1− ξ/λk
− 1

)
‖vk‖2yk .

It follows from Lemma 5.2 with pA = xk, pB = yk, x = x∗, vA = v̄k, vB = vk, r = τk = ξ
λk+ξ−1 that

∥∥logxk (x∗)− v̄k
∥∥2
xk

+ (ξ − 1) ‖v̄k‖2xk =
(∥∥logxk (x∗)− v̄k

∥∥2
xk

+ (ζ − 1) ‖v̄k‖2xk
)

+ (ξ − ζ) ‖v̄k‖2xk
≥
(∥∥logyk (x∗)− vk

∥∥2
yk

+ (ζ − 1) ‖vk‖2yk
)

+ (ξ − ζ) ‖v̄k‖2xk

=
∥∥logyk (x∗)− vk

∥∥2
yk

+ (ζ − 1) ‖vk‖2yk + (ξ − ζ)
1

(1− τk)
2 ‖vk‖

2
yk

=
∥∥logyk (x∗)− vk

∥∥2
yk

+ (ξ − 1) ‖vk‖2yk + (ξ − ζ)

(
1

(1− τk)
2 − 1

)
‖vk‖2yk ,
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Combining these inequalities with the result in Step 1 gives

0 ≥ sλ2k (f (xk+1)− f (x∗))− λ2k−1 (f (xk)− f (x∗))

+
ξ

2

(∥∥¯̄vk+1 − logyk (x∗)
∥∥2 + (ξ − 1) ‖¯̄vk+1‖2 −

∥∥vk − logyk (x∗)
∥∥2 − (ξ − 1) ‖vk‖2

)
.

+
ξ

2

[∥∥∥logxk+1
(x∗)− v̄k+1

∥∥∥2
xk+1

+ (ξ − 1) ‖v̄k+1‖2xk+1

−
∥∥logyk (x∗)− ¯̄vk+1

∥∥2
yk
− (ξ − 1) ‖¯̄vk+1‖2yk −

ξ − δ
2

(
1

1− ξ/λk
− 1

)
‖vk‖2yk

]
+
ξ

2

[∥∥logyk (x∗)− vk
∥∥2
yk

+ (ξ − 1) ‖vk‖2yk + (ξ − ζ)

(
1

(1− τk)
2 − 1

)
‖vk‖2yk

−
∥∥logxk (x∗)− v̄k

∥∥2
xk
− (ξ − 1) ‖v̄k‖2xk

]
= φk+1 − φk +

ξ

2

(
(ξ − ζ)

(
1

(1− τk)
2 − 1

)
− ξ − δ

2

(
1

1− ξ/λk
− 1

))
‖vk‖2yk

≥ φk+1 − φk.

Corollary E.1. Let f be a g-convex and geodesically L-smooth function. Then, RNAG-C with parameters ξ = ζ + 3(ζ − δ),

T = 4ξ and step size s = 1
L finds an ε-approximate solution in O

(
ξ
√

L
ε

)
iterations.

Proof. (Step 1: Checking the condition for Theorem 5.4). A straightforward calculation shows that

2

(
1

1− t − 1

)
≤ 3

(
1

1− (3/4)t
− 1

)
.

for all t ∈ (0, 1/3]. For convenience, let r = s
γk

= ξ
λk

= 2ξ
k+6ξ ∈ (0, 1/3]. Then, τk = ξ

λk+(ξ−1) = 2ξ
k+6ξ+2(ξ−1) ≥

2ξ
k+8ξ ≥

2ξ
4
3 (k+6ξ)

= 3
4r. Now, we have

(ξ − ζ)

(
1

(1− τk)
2 − 1

)
≥ (ξ − ζ)

(
1

1− τk
− 1

)
≥ (ξ − ζ)

(
1

1− 3
4r
− 1

)
≥ ξ − δ

2

(
1

1− r − 1

)
.

(Step 2: Computing iteration complexity). By Theorem 5.4, we have

f (xk)− f (x∗) ≤ φk
sλ2k−1

≤ φ0
sλ2k−1

=
1

sλ2k−1

(
sλ2−1 (f (x0)− f (x∗)) +

ξ

2

∥∥logx0
(x∗)

∥∥2) .
It follows from the geodesic 1

s -smoothness of f that

f (xk)− f (x∗) ≤ 1

sλ2k−1

(
sλ2−1

1

2s

∥∥logx0
(x∗)

∥∥2 +
ξ

2

∥∥logx0
(x∗)

∥∥2)
=

1

sλ2k−1

(
λ2−1

2
+
ξ

2

)∥∥logx0
(x∗)

∥∥2
=

4L

(k − 1 + 6ξ)2

(
(6ξ − 1)2

8
+
ξ

2

)∥∥logx0
(x∗)

∥∥2
≤ 4L

(k − 1)2

(
(6ξ − 1)2

8
+
ξ

2

)∥∥logx0
(x∗)

∥∥2 .
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Thus, we have f (xk)− f (x∗) ≤ ε whenever

(k − 1)2 ≥ 4L

ε

(
(6ξ − 1)2

8
+
ξ

2

)∥∥logx0
(x∗)

∥∥2 .
This implies that RNAG-C has an O

(
ξ
√

L
ε

)
iteration complexity.

F. Convergence Analysis for RNAG-SC
Theorem 5.6. Let f be a geodesically µ-strongly convex and geodesically L-smooth function. If the step size s and the
parameter ξ of RNAG-SC satisfy ξ ≥ ζ,

√
ξq < 1, and

ξ − δ
2

(
1

1−√ξq − 1

)(
1−

√
q

ξ

)2

−
√
ξq

(
1−

√
q

ξ

)
≤ (ξ − ζ)

(
1(

1−√ξq/
(
1 +
√
ξq
))2 − 1

)
,

then the iterates of RNAG-SC satisfy φk+1 ≤ φk for all k ≥ 0, where φk is defined as (6).

Proof. (Step 1). In this step, 〈·, ·〉 and ‖ · ‖ always denote the inner product and the norm on TykM . Set q = µs. It is

straightforward to check that grad f (yk) = µ
1−
√
q/ξ√
q/ξ

vk−µ 1√
q/ξ

¯̄vk+1 and logyk (xk) = −√ξqvk.10 By geodesic µ-strong

convexity of f , we have

f (x∗) ≥ f (yk) +
〈
grad f (yk) , logyk (x∗)

〉
+
µ

2

∥∥logyk (x∗)
∥∥2

= f (yk) + µ
1−

√
q/ξ√

q/ξ

〈
vk, logyk (x∗)

〉
− µ 1√

q/ξ

〈
¯̄vk+1, logyk (x∗)

〉
+
µ

2

∥∥logyk (x∗)
∥∥2 .

It follows from the geodesic convexity of f that

f (xk) ≥ f (yk) +
〈
grad f (yk) , logyk (xk)

〉
= f (yk)− ξµ

(
1−

√
q

ξ

)
‖vk‖2 + ξµ 〈vk, ¯̄vk+1〉 .

By the geodesic 1
s -smoothness of f , we have

f (xk+1) ≤ f (yk) +
〈
grad f (yk) , logyk (xk+1)

〉
+

1

2s

∥∥logyk (xk+1)
∥∥2

= f (yk)− s

2
‖grad f (yk)‖2

= f (yk)− s

2

∥∥∥∥∥µ1−
√
q/ξ√

q/ξ
vk − µ

1√
q/ξ

¯̄vk+1

∥∥∥∥∥
2

= f (yk)− ξµ

2

(
1−

√
q

ξ

)2

‖vk‖2 + ξµ

(
1−

√
q

ξ

)
〈vk, ¯̄vk+1〉 −

ξµ

2
‖¯̄vk+1‖2 .

10Note that yk = expxk

( √
ξq

1+
√
ξq
v̄k

)
and vk = Γ

yk
xk

(
v̄k − logxk (yk)

)
= Γ

yk
xk

((
1−

√
ξq

1+
√
ξq

)
v̄k

)
. Let γ1 be the geodesic such that

γ1(0) = xk and γ1(1) = yk, then γ′1(0) = logxk (yk). Let γ2 be the geodesic defined as γ2(t) = γ1(1 − t). Then logyk (xk) =

γ′2(0) = −γ′1(1) = −Γ
yk
xk (γ′1(0)) = −Γ

yk
xk

(
logxk (yk)

)
. Now, we have logyk (xk) = −Γ

yk
xk

(
logxk (yk)

)
= −

√
ξq

1+
√
ξq

Γ
yk
xk (v̄k) =

−
√
ξq

1+
√
ξq

1−
√
ξq

1+
√
ξq

=
√
ξqvk.
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Taking a weighted sum of these inequalities yields

0 ≥
√
q

ξ

[
f (yk)− f (x∗) + µ

1−
√
q/ξ√

q/ξ

〈
vk, logyk (x∗)

〉
− µ 1√

q/ξ

〈
¯̄vk+1, logyk (x∗)

〉
+
µ

2

∥∥logyk (x∗)
∥∥2]

+

(
1−

√
q

ξ

)[
f (yk)− f (xk)− ξµ

(
1−

√
q

ξ

)
‖vk‖2 + ξµ 〈vk, ¯̄vk+1〉

]
+

[
f (xk+1)− f (yk) +

ξµ

2

(
1−

√
q

ξ

)2

‖vk‖2 − ξµ
(

1−
√
q

ξ

)
〈vk, ¯̄vk+1〉+

ξµ

2
‖¯̄vk+1‖2

]

= (f (xk+1)− f (x∗))−
(

1−
√
q

ξ

)
(f (xk)− f (x∗))

+ µ

(
1−

√
q

ξ

)〈
vk, logyk (x∗)

〉
− µ

〈
¯̄vk+1, logyk (x∗)

〉
+
µ

2

√
q

ξ

∥∥logyk (x∗)
∥∥2

− ξµ

2

(
1−

√
q

ξ

)2

‖vk‖2 +
ξµ

2
‖¯̄vk+1‖2 .

We further notice that

∥∥¯̄vk+1 − logyk (x∗)
∥∥2 − (1−

√
q

ξ

)∥∥vk − logyk (x∗)
∥∥2

= ‖¯̄vk+1‖2 − 2
〈
¯̄vk+1, logyk (x∗)

〉
−
(

1−
√
q

ξ

)
‖vk‖2 + 2

(
1−

√
q

ξ

)〈
vk, logyk (x∗)

〉
+

√
q

ξ

∥∥logyk (x∗)
∥∥2 .

Therefore, we obtain

0 ≥
(
f (xk+1)− f (x∗) +

µ

2

∥∥¯̄vk+1 − logyk (x∗)
∥∥2)− (1−

√
q

ξ

)(
f (xk)− f (x∗) +

µ

2

∥∥vk − logyk (x∗)
∥∥2)

+ (ξ − 1)
µ

2
‖¯̄vk+1‖2 −

ξµ

2

(
1−

√
q

ξ

)2

‖vk‖2 +
µ

2

(
1−

√
q

ξ

)
‖vk‖2

=
(
f (xk+1)− f (x∗) +

µ

2

∥∥¯̄vk+1 − logyk (x∗)
∥∥2)− (1−

√
q

ξ

)(
f (xk)− f (x∗) +

µ

2

∥∥vk − logyk (x∗)
∥∥2)

+ (ξ − 1)
µ

2
‖¯̄vk+1‖2 − (ξ − 1)

µ

2

(
1−

√
q

ξ

)
‖vk‖2 +

ξµ

2

√
q

ξ

(
1−

√
q

ξ

)
‖vk‖2

=
(
f (xk+1)− f (x∗) +

µ

2

∥∥¯̄vk+1 − logyk (x∗)
∥∥2 + (ξ − 1)

µ

2
‖¯̄vk+1‖2

)
−
(

1−
√
q

ξ

)(
f (xk)− f (x∗) +

µ

2

∥∥vk − logyk (x∗)
∥∥2 + (ξ − 1)

µ

2
‖vk‖2

)
+
ξµ

2

√
q

ξ

(
1−

√
q

ξ

)
‖vk‖2 .

(Step 2: Handle metric distortion). It follows from Lemma 5.3 with pA = yk, pB = xk+1, x = x∗, vA = ¯̄vk+1, vB = v̄k+1,
a =

(
1−

√
q
ξ

)
vk, b =

√
q
ξ

(
− 1
µ

)
grad f (yk), r =

√
ξq that

∥∥∥logxk+1
(x∗)− v̄k+1

∥∥∥2
xk+1

+ (ξ − 1) ‖v̄k+1‖2xk+1

≤
∥∥logyk (x∗)− ¯̄vk+1

∥∥2
yk

+ (ξ − 1) ‖¯̄vk+1‖2yk +
ξ − δ

2

(
1

1−√ξq − 1

)∥∥∥∥(1−
√
q

ξ

)
vk

∥∥∥∥2
yk

.
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Applying Lemma 5.2 with pA = xk, pB = yk, x = x∗, vA = v̄k, vB = vk, r =
√
ξq

1+
√
ξq

gives

∥∥logxk (x∗)− v̄k
∥∥2
xk

+ (ξ − 1) ‖v̄k‖2xk
=
(∥∥logxk (x∗)− v̄k

∥∥2
xk

+ (ζ − 1) ‖v̄k‖2xk
)

+ (ξ − ζ) ‖v̄k‖2xk
≥
(∥∥logyk (x∗)− vk

∥∥2
yk

+ (ζ − 1) ‖vk‖2yk
)

+ (ξ − ζ) ‖v̄k‖2xk

=
∥∥logyk (x∗)− vk

∥∥2
yk

+ (ζ − 1) ‖vk‖2yk + (ξ − ζ)
1(

1−
√
ξq

1+
√
ξq

)2 ‖vk‖2yk
=
∥∥logyk (x∗)− vk

∥∥2
yk

+ (ξ − 1) ‖vk‖2yk + (ξ − ζ)

 1(
1−

√
ξq

1+
√
ξq

)2 − 1

 ‖vk‖2yk
Combining these inequalities with the result in Step 1 gives

0 ≥
(
f (xk+1)− f (x∗) +

µ

2

∥∥¯̄vk+1 − logyk (x∗)
∥∥2
yk

+ (ξ − 1)
µ

2
‖¯̄vk+1‖2yk

)
−
(

1−
√
q

ξ

)(
f (xk)− f (x∗) +

µ

2

∥∥vk − logyk (x∗)
∥∥2
yk

+ (ξ − 1)
µ

2
‖vk‖2yk

)
+
µ

2

√
ξq

(
1−

√
q

ξ

)
‖vk‖2yk

+
µ

2

[∥∥∥logxk+1
(x∗)− v̄k+1

∥∥∥2
xk+1

+ (ξ − 1) ‖v̄k+1‖2xk+1

−
∥∥logyk (x∗)− ¯̄vk+1

∥∥2
yk
− (ξ − 1) ‖¯̄vk+1‖2yk −

ξ − δ
2

(
1

1−√ξq − 1

)∥∥∥∥(1−
√
q

ξ

)
vk

∥∥∥∥2
yk

]

+
µ

2

∥∥logyk (x∗)− vk
∥∥2
yk

+ (ξ − 1) ‖vk‖2yk + (ξ − ζ)

 1(
1−

√
ξq

1+
√
ξq

)2 − 1

 ‖vk‖2yk
−
∥∥logxk (x∗)− v̄k

∥∥2
xk
− (ξ − 1) ‖v̄k‖2xk

]
=

(
1−

√
q

ξ

)k+1

(φk+1 − φk)

+
µ

2

√ξq(1−
√
q

ξ

)
− ξ − δ

2

(
1

1−√ξq − 1

)(
1−

√
q

ξ

)2

+ (ξ − ζ)

 1(
1−

√
ξq

1+
√
ξq

)2 − 1


 ‖vk‖2

≥
(

1−
√
q

ξ

)k+1

(φk+1 − φk) .

Corollary F.1. Let f be a geodesically µ-strongly convex and geodesically L-smooth function. Then, RNAG-SC with
parameter ξ = ζ + 3(ζ − δ) and step size s = 1

9ξL finds an ε-approximate solution in O
(
ξ
√

L
µ log

(
L
ε

))
iterations.

Proof. (Step 1: Checking the condition for Theorem 5.6). It is straightforward to check that

ξ − δ
2

(
1

1− t − 1

)
≤ (ξ − ζ)

(
1

1− t
1+t

− 1

)
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for all t ∈ (0, 1/3]. Because
√
ξq =

√
ξµ 1

9ξL = 1
3

√
µ/L ∈ (0, 1/3], we have

(ξ − ζ)

 1(
1−

√
ξq

1+
√
ξq

)2 − 1

 ≥ (ξ − ζ)

 1(
1−

√
ξq

1+
√
ξq

) − 1


≥ ξ − δ

2

(
1

1−√ξq − 1

)
.

Because
√

q
ξ ∈ (0, 1), we have

ξ − δ
2

(
1

1−√ξq − 1

)(
1−

√
q

ξ

)2

−
√
ξq

(
1−

√
q

ξ

)
≤ ξ − δ

2

(
1

1−√ξq − 1

)(
1−

√
q

ξ

)2

≤ ξ − δ
2

(
1

1−√ξq − 1

)
.

Combining these inequalities gives the desired condition.

(Step 2: Computing iteration complexity). It follows from Theorem 5.4 that

f (xk)− f (x∗) ≤
(

1−
√
q

ξ

)k
φk ≤

(
1−

√
q

ξ

)k
φ0 =

(
1−

√
q

ξ

)k (
f (x0)− f (x∗) +

µ

2

∥∥logx0
(x∗)

∥∥2) .
By the geodesic L-smoothness of f , we have

f (xk)− f (x∗) ≤
(

1−
√
q

ξ

)k (
L

2

∥∥logx0
(x∗)

∥∥2 +
µ

2

∥∥logx0
(x∗)

∥∥2)
≤
(

1−
√
q

ξ

)k
L
∥∥logx0

(x∗)
∥∥2

=

(
1−

√
µ

9ξ2L

)k
L
∥∥logx0

(x∗)
∥∥2

≤ e−
√

µ

9ξ2L
k
L
∥∥logx0

(x∗)
∥∥2

≤ e−
√

µ

9ξ2L
k
L
∥∥logx0

(x∗)
∥∥2 .

Thus, we have f (xk)− f (x∗) ≤ ε whenever

k ≥
√

9ξ2L

µ
log

(
L

ε

∥∥logx0
(x∗)

∥∥2) ,

which implies the O
(
ξ
√

L
µ log L

ε

)
iteration complexity of RNAG-SC.
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G. Continuous-Time Interpretation
G.1. The g-convex case

Because we approximate the curve y(t) by the iterates yk, we first rewrite RNAG-C in the form using only the iterates yk as
follows:

yk+1 − yk = xk+1 − yk +
ξ

λk+1 + ξ − 1
v̄k+1

= −s grad f (yk) +
ξ

λk+1 + ξ − 1
(¯̄vk+1 + s grad f (yk))

= −s grad f (yk) +
ξ

λk+1 + ξ − 1

(
vk −

sλk
ξ

grad f (yk) + s grad f (yk)

)
=

(
−1 +

−λk + ξ

λk−1 + ξ − 1

)
s grad f (yk) +

ξ

λk+1 + (ξ − 1)

λk − 1

ξ
(yk − xk)

=
1− λk − λk+1

λk+1 + (ξ − 1)
s grad f (yk) +

λk − 1

λk+1 + (ξ − 1)
(yk − xk)

=
1− λk − λk+1

λk+1 + (ξ − 1)
s grad f (yk) +

λk − 1

λk+1 + (ξ − 1)
(yk − yk−1 + s grad f (yk−1))

=
λk − 1

λk+1 + (ξ − 1)
(yk − yk−1)− λk+1

λk+1 + (ξ − 1)
s grad f (yk)

+
λk − 1

λk+1 + (ξ − 1)
s (grad f (yk−1)− grad f (yk))

We introduce a smooth curve y(t) as mentioned in Section 6. Now, dividing both sides of the above equality by
√
s and

substituting

yk+1 − yk√
s

= ẏ +

√
s

2
ÿ + o

(√
s
)

yk − yk−1√
s

= ẏ −
√
s

2
ÿ + o

(√
s
)

√
s grad f (yk−1) =

√
s grad f (yk) + o

(√
s
)
,

we obtain

ẏ +

√
s

2
ÿ + o

(√
s
)

=
λk − 1

λk+1 + (ξ − 1)

(
ẏ −
√
s

2
ÿ + o

(√
s
))
− λk+1

λk+1 + (ξ − 1)

√
s grad f(y).

Dividing both sides by
√
s and rearranging terms, we have

1

2

(
1 +

λk − 1

λk+1 + (ξ − 1)

)
ÿ +

1√
s

(
1− λk − 1

λk+1 + (ξ − 1)

)
ẏ +

λk+1

λk+1 + (ξ − 1)
grad f(y) +

o (
√
s)√
s

= 0.

Substituting k = t√
s
, we can check that λk−1

λk+1+(ξ−1) → 1, λk+1

λk+1+(ξ−1) → 1, and 1√
s

(
1− λk−1

λk+1+(ξ−1)

)
=

1√
s

λk+1−λk+ξ
λk+1+(ξ−1) = 1√

s
1+2ξ

k+T+4ξ−2 = 1+2ξ
t+(T+4ξ−2)√s →

1+2ξ
t as s→ 0. Therefore, we obtain

ÿ +
1 + 2ξ

t
ẏ + grad f(y) = 0.
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G.2. The g-strongly convex case

As we approximate the curve y(t) by the iterates yk, we first rewrite RNAG-C in the form using only the iterates yk as
follows:

yk+1 − yk = xk+1 − yk +

√
ξµs

1 +
√
ξµs

v̄k+1

= −s grad f (yk) +

√
ξµs

1 +
√
ξµs

(¯̄vk+1 + s grad f (yk))

= − s

1 +
√
ξµs

grad f (yk) +

√
ξµs

1 +
√
ξµs

((
1−

√
µs

ξ

)
vk +

√
µs

ξ

(
−grad f (yk)

µ

))
= − 2s

1 +
√
ξµs

grad f (yk) +

√
ξµs

1 +
√
ξµs

(
1−

√
µs

ξ

)
1√
ξµs

(yk − xk)

= − 2s

1 +
√
ξµs

grad f (yk) +
1−

√
µs/ξ

1 +
√
ξµs

(yk − yk−1 + s grad f (yk−1))

=
1−

√
µs/ξ

1 +
√
ξµs

(yk − yk−1)− 1 +
√
µs/ξ

1 +
√
ξµs

s grad f (yk) +
1−

√
µs/ξ

1 +
√
ξµs

s (grad f (yk−1)− grad f (yk))

Dividing both sides by
√
s and substituting

yk+1 − yk√
s

= ẏ +

√
s

2
ÿ + o

(√
s
)

yk − yk−1√
s

= ẏ −
√
s

2
ÿ + o

(√
s
)

√
s grad f (yk−1) =

√
s grad f (yk) + o

(√
s
)

yield

ẏ +

√
s

2
ÿ + o

(√
s
)

=
1−

√
µs/ξ

1 +
√
ξµs

(
ẏ −
√
s

2
ÿ + o

(√
s
))
− 1 +

√
µs/ξ

1 +
√
ξµs

√
s grad f (yk) .

Dividing both sides by
√
s and rearranging terms, we obtain

1

2

(
1 +

1−
√
µs/ξ

1 +
√
ξµs

)
ÿ +

(√
1/ξ +

√
ξ
)√

µ

1 +
√
ξµs

ẏ +
1 +

√
µs/ξ

1 +
√
ξµs

grad f (yk) +
o (
√
s)√
s

= 0.

Taking the limit s→ 0 gives

ÿ +

(
1√
ξ

+
√
ξ

)√
µẏ + grad f(y) = 0

as desired.

G.3. Experiments

In this section, we empirically show that the iterates of our methods converge to the solution of the corresponding ODEs,
as taking the limit s → 0. We use the Rayleigh quotient maximization problem in Section 7 with d = 10 and ξ = 2.
For RNAG-SC, we set µ = 0.1 (note that the limiting argument above does not use geodesic µ-strong convexity of f ).
To compute the solution of ODEs (7) and (8), we implement SIRNAG (Option I) (Alimisis et al., 2020) with very small
integration step size. The results are shown in Figure 4 and Figure 5.

H. Proofs for Section 7
Proposition H.1. The function f is geodesically (λmax − λmin)-smooth, where λmax and λmin are the largest and smallest
eigenvalues of A, respectively.
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Figure 4. Convergence of RNAG-C to the solution of ODE (7).
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Figure 5. Convergence of RNAG-SC to the solution of ODE (8).

Proof. For x ∈ Sd−1 ⊆ Rd and a unit tangent vector v ∈ TxM , we have

expx(tv) =
x+ tan(t) v

‖x+ tan(t) v‖ =
x+ tan(t) v

sec(t)

for t ∈ I , where I is a small interval containing 0. We consider the function h : I →M defined as

h(t) = f (expx(tv))

= −1

2
cos2(t) (x+ tan(t) v)

>
A (x+ tan(t) v)

= −1

2
h1(t)h2(t),

where h1(t) = cos2(t) and h2(t) = (x+ tan(t) v)
>
A (x+ tan(t) v). Note that h1(0) = 1, h′1(0) = 0, h′′1(0) = −2,

h2(0) = x>Ax, h′2(0) = 2v>Ax, and h′′2(0) = 2v>Av. Now, by the product rule, we have

h′′(0) = −1

2
h′′1(0)h2(0)− h′1(0)h′2(0)− 1

2
h1(0)h′′2(0) = x>Ax− v>Av.
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Because Rayleigh quotient is always in [λmin, λmax], we have |h′′(0)| ≤ (λmax − λmin). This shows that f is geodesically
(λmax − λmin)-smooth.

Proposition H.2. The function f is geodesically 1-strongly convex.

Proof. It is enough to show that the function x 7→ d (x, pi)
2 is convex. When Kmax ≤ 0, we have δ = 1. Let γ : I →M

be a geodesic whose image is in N . It follows from Proposition C.1 that

d2

dt2
1

2
d (γ(t), pi)

2
=

d

dt

〈
logγ(t) (pi) ,−γ′(t)

〉
=
〈
Dt logγ(t) (pi) ,−γ′(t)

〉
+
〈

logγ(t) (pi) ,−γ′′(t)
〉
.

Note that γ′′(t) = 0 because γ is a geodesic. Now, Proposition 5.1 gives d2

dt2
1
2d (γ(t), pi)

2 ≥ 1.


