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Abstract
The hybrid-model (Avent et al., 2017) in Differ-
ential Privacy is a an augmentation of the local-
model where in addition to N local-agents we are
assisted by one special agent who is in fact a cura-
tor holding the sensitive details of n additional in-
dividuals. Here we study the problem of machine
learning in the hybrid-model where the n individu-
als in the curator’s dataset are drawn from a differ-
ent distribution than the one of the general popula-
tion (the local-agents). We give a general scheme –
Subsample-Test-Reweigh – for this transfer learn-
ing problem, which reduces any curator-model
DP-learner to a hybrid-model learner in this set-
ting using iterative subsampling and reweighing
of the n examples held by the curator based on
a smooth variation of the Multiplicative-Weights
algorithm (introduced by Bun et al. (2020)). Our
scheme has a sample complexity which relies on
the χ2-divergence between the two distributions.
We give worst-case analysis bounds on the sam-
ple complexity required for our private reduction.
Aiming to reduce said sample complexity, we give
two specific instances our sample complexity can
be drastically reduced (one instance is analyzed
mathematically, while the other - empirically) and
pose several directions for follow-up work.

1. Introduction
Differential privacy (DP) has become modern era’s de-facto
gold standard for privacy-preserving data analysis. In partic-
ular, the local model of DP — in which each user interacts
in a computation by sending randomized messages whose
view yields at most ϵ-privacy loss — has gained much pop-
ularity due to its (relative) design simplicity. In particular,
much work has dealt with the problem of machine learning
in the local-model of DP: assuming the N users’ details are
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drawn i.i.d. from some distribution T, how can we design
local-DP protocols for finding an hypothesis h of small loss
w.r.t. T. However, as opposed to the curator-model of DP —
in which all data is held by a trusted curator in charge of
executing the computation — machine learning in the local
model of DP suffers from two drawbacks: (1) its has a much
larger sample complexity and (2) it is of limited learning
capabilities — where only problems that are SQ-learnable
are learnable in the local model, in contrast to the curator
model that allows us to learn (almost) any PAC-learnable
problem (Kasiviswanathan et al., 2008). In order to address
these problems, there has been an extensive study in recent
years regarding augmentations of DP’s local-model. Most
notably, the shuffle model has gained much focus (Bittau
et al., 2017; Cheu et al., 2019; Balle et al., 2019; 2020;
Ghazi et al., 2021a;b) as it reduces the privacy-loss of local-
model protocols drastically. Yet the focus of this work is on
a different, far less studied, augmentation of local-DP.

We study the hybrid-model of differential privacy (Avent
et al., 2017) — in which a local-model computation protocol
with N users is augmented by the aid of one special agent
who is in fact a curator holding the sensitive details of addi-
tional n individuals. (We refer to the former N users as the
“local-agents” and the latter n individuals as the “curator-
agents.”) The hybrid-model models a situation in which
some users (the n curator agents) trust a proposed curator
and allow her unrestricted access to their sensitive details;
while the remaining N ≫ n users trust solely themselves
and opt for the local-model. Indeed, hybrid-model improves
the learning capabilities of the local-model: the theoretical
work of Beimel et al. (2020) have proven that in the hybrid-
model certain problems, which are inefficiently solvable in
the standard local-DP model, are efficiently and privately
computable. Alas, in the analysis of Beimel et al. (2020),
the n curator-agents come from the exact same distribution
T as the remaining N local-agents.1 In contrast, this work is
motivated by a setting in which the n individuals voluntarily
opt-in to the curator-model. Coping with such a “selec-
tion bias” was posed by Beimel et al. (2020) as an acute
open problem since (quoting Beimel et al. (2020) verba-
tim:) “from a practical point of view, this ... is aligned with

1Such a situation may arise when an extrinsic powerful agency,
e.g. the census, randomly samples n individuals and mandates they
provide the curator with their sensitive details.
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current industry practices, and the ... individuals willing
to contribute via a curator can be employees, technology
enthusiasts, or individuals recruited as alpha- or beta-testers
of products... (Merriman, Oct 7, 2014; Microsoft, Sep 15,
2017; Mozilla, June 4, 2019)”

In this work we model this selection bias as a particular
type of a transfer learning problem. We no longer assume
that the n curator-agents were drawn from the same distri-
bution T as the local-agents, but rather that they were drawn
from some different distribution S (the source distribution).
Our goal, however, remains the same: to learn a good hy-
pothesis w.r.t. T (the target distribution) while incurring at
most ϵ privacy-loss for any of the agents involved in the
computation. Naturally, should S and T be so different that
they reside on disjoint support then the n curator agents
provide no assistance our transfer learning problem. Thus,
in our model S and T are of bounded χ2-divergence (see
details in Section 2). In other words, we study a particular
variation of a transfer learning problem: in the process of
finding h of small loss w.r.t. T we are allowed to conduct a
DP computation over a set of examples drawn from S and
also to conduct a local-DP computation over N additional
examples drawn from T. And so we ask:

Are there learning tasks that are infeasible in the
local-model, yet can be computed privately and efficiently

when we have a DP curator-model access to samples
drawn from a different distribution?

Our Contribution. Our transfer-learning problem has
two naı̈ve baselines. (1) Relying solely on the N local-
agents and learning a small loss hypothesis w.r.t. T via
some off-the-shelf local-model protocol; this is infeasible
for certain problems (e.g. PARITY (Kasiviswanathan et al.,
2008)) and costly for others (e.g. sparse problem in a
d-dimensional setting, where known sample complexity
bounds are ≥ d, (Duchi et al., 2013; Smith et al., 2017)).
(2) Relying solely on the n curator-agents and learning
an hypothesis via the some off-the-shelf DP learning al-
gorithm guaranteed to return an hypothesis of small loss,
such as a loss upper bounded by errS(h) ≤ α/D∞(T∥S) or
errS(h) ≤ α2

/χ2(T∥S)+1 (assuming these divergences are
finite, see definition in Section 2).2 This venue is feasible
only when indeed an hypothesis h exists whose error over
S is as small as we require; but fails to give a meaningful
guarantee in an agnostic setting, even if the best hypothesis
inH has error Θ(α).

Our work proposes a third technique, whose sample com-
plexity of the N local-agents is independent of d and whose
sample complexity of the n curator-agents depends on
pdim(H) (so if |H| = poly(d), e.g. the Example in Sec-

2This follows from the well known inequality, stating that for
any event E we have PrT[E] ≤

√
(χ2(T∥S) + 1)PrS[E].

tion 4, then n = polylog(d)) and which may be feasible
in the agnostic setting as well. Our proposed framework
resembles ‘Subsample & Aggregate’ (Nissim et al., 2007)
in broad brushstrokes, except that instead of subsampling
in parallel in order to convert a non-private mechanism to a
private one, we subsample sequentially in order to convert a
curator-model learning mechanism over S to hybrid-model
learner. The crux of our technique is that upon each time we
subsample and produce an hypothesis of small-loss w.r.t. S
yet high loss w.r.t. T, we make a Multiplicative-Weights
(MW)-based update step to our subsampling distribution.
With each MW-update we transition closer to a “target” dis-
tribution which is based on the importance sampling (IS)
weights of the points drawn from S. We thus title our tech-
nique Subsample-Test-Reweigh.

For clarity, we partition our analysis into two parts. The
first, detailed in Section 3, presents the main ideas of our
techniques while tabling the notion of privacy for a later
section. Specifically, seeing as we know that learning in the
local-model is equivalent to SQ-learning and that the vast
majority of PAC-learnable problems are learnt in the curator-
model, we pose the following model. Fix an hypothesis ℓ
which is PAC-learnable via hypothesis class H of pdim d
through some learning algorithmM. We are given n labeled
examples drawn from S and only a SQ-oracle access to T
(see formal definitions in Section 2). So we iteratively (1)
set a distribution µ over the n examples, (2) useM to learn
an hypothesis h of small loss w.r.t. µ, (3) query the SQ-
oracle to see if h’s loss is sufficiently small (halt if yes),
(4) if h has large loss we reweigh the distribution using
the MW-algorithm and proceed to the next iteration. In
Section 3 we prove that w.h.p. this algorithm outputs in T =
Õ(α−2) iterations an hypothesis h of error errT(h) = O(α)
provided n = Ω̃(d(χ2(T∥S) + 1)α−2). The crux of the
proof lies in showing (w.h.p.) the existence of a particular
distribution ū over the n drawn samples from S s.t. ∀h ∈ H
the loss of h w.r.t. ū and its loss w.r.t. T are close. Based on
the seminal results of Cortes et al. (2010), it is not surprising
that this ū is the truncated IS weights w(x) = PT(x)

PS(x)
for each

x drawn from S.

Next, in Section 4 we give the privacy-preserving version
of our MW-based technique from Section 3. Replacing the
SQ-oracle calls with simple applications of the Randomized-
Response mechanism is trivial, but maintaining the privacy
of the n curator-model agents is far trickier. First, it is evi-
dent that our off-the-shelf learnerMmust now be a privacy-
preserving PAC-learner. More importantly, our MW-update
step must also maintain bounded privacy-loss. Luckily this
latter point was already addressed by Bun et al. (2020) who
use the notion of κ-dense distributions to give a MW-based
algorithm where any intermediate distribution µ is such that
no one single point has probability mass exceeding 1/κn
(see details in Section 4). Using known several results re-
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garding subsampling and privacy (Karwa & Vadhan, 2018;
Bun et al., 2018), we end up with the following reduction.
Denote m1 as the sample complexity of some off-the-shelf
curator-model learner that outputs an hypothesis of loss
≤ α under privacy loss parameter of ϵ = 1. In order to
successfully apply the learner T times under our κ-dense
MW-update subsampling scheme and have a total privacy-
loss of ϵ, we require a sample of n curator-agents drawn
from S where n = Ω̃(m1 ·

√
T

ϵκ ) = Ω̃(m1 · χ
2(T∥S)+1

ϵα2 ) and
N = Ω̃(ϵ−2α−4) local-agents. While, admittedly, these
bounds are less than ideal, this is the first result to prove
the feasibility of private transfer learning using poly-size
sample even for problems whose sample complexity in the
local-model is exponential.

In Section 5 we pose suggestions as to how to reduce this
bound as open problems, leveraging on the fact that the
worst-case bounds for either the number of iterations T or
the density parameter κ may be drastically reduced for spe-
cific hypothesis classes / instances. We give two particular
examples of such instances: one proven rigorously (for the
case of PARITY under the uniform distribution) and one
based on empirical evaluations of our (non private version of
the) transfer-learning technique in a two high-dimensional
Gaussian settings, in which our algorithm makes far fewer
iterations than our O(α−2) worst-case upper-bound.

1.1. Related Work

The bounds and limitations of private learning were first
established by Kasiviswanathan et al. (2008) who proved
that (roughly speaking) the learning capabilities of the local-
model are equivalent to SQ-learning. This, together with the
seminal result of Blum et al. (1994), gives an exponential
lower bound on the number of local-agents required for
learning PARITY in the local-model (fully formally proven
in Beimel et al. (2020)). Other results regarding the power
and limitations of the local-model were given in Beimel et al.
(2008); Duchi et al. (2013); Bassily & Smith (2015); Smith
et al. (2017); Duchi & Rogers (2019) culminating in Joseph
et al. (2019). And yet, the classical SGD-algorithm is still
applicable in the local-model (Smith et al., 2017).

The two main works about the hybrid model (Avent et al.,
2017; Beimel et al., 2020) have been discussed already, as
well as the elegant private boosting paradigm of Bun et al.
(2020). Other works have also studied the applicability
of the MW-algorithm for various tasks in DP (Hardt &
Rothblum, 2010; Gupta et al., 2011). In the context of
transfer learning, few works tied differential privacy with
multi-task learning (Gupta et al., 2016; Xie et al., 2017;
Li et al., 2020), hypthesis testing (Wang et al., 2018) and
in a semi-supervised setting (Kumar, 2022); all focusing
on empirical measuring of the utility and none giving any
general framework with proven guarantees as this work.

Also, it could be interesting to implement a version of our
algorithm which isn’t private w.r.t. the samples from S in a
“PATE”-like setting (Papernot et al., 2018) where public (or
partially public) datasets are also available.

The classic problem of transfer learning has been stud-
ied extensively since the 20th century, and has too long
and too rich of a history to be surveyed properly here.
We thus mention a few recent works that achieved sam-
ple complexity bounds based on importance sampling (IS)
weights and show concentration bounds related to diver-
gences between the source and that target distributions.
Some works (Agapiou et al., 2017; Chatterjee & Diaco-
nis, 2017) showed sample complexity bounds based, in
part, on exp(KL(T∥S)) ≤ χ2(T∥S) + 1 as well as other
properties of the distribution3 which lack our desired sub-
Gaussian behavior. The seminal result of Cortes et al. (2010)
achieved a bound that is, in spirit, more similar to the de-
sired sub-Gaussian behavior. They also proved that with
sample size bounds depending on χ2(T∥S) we can achieve
accurate estimation of the loss of any hypothesis (simul-
taneously) in a finite pdim hypothesis class H. Recently,
Metelli et al. (2021) suggested a method of correction of the
weights that allow obtaining sub-Gaussian behavior, assum-
ing prior knowledge of the second moment of the weights.
Maia Polo & Vicente (2022) studied the case where ac-
cess to distribution T is restricted to unlabeled examples,
and propose methods for evaluating the IS weights. Yao
& Doretto (2010) use a boosting algorithm (based on the
MW algorithm) for transfer learning, yet in their work, the
distributions S and T are identical but the features of the
classes are different.

2. Preliminaries

PAC- and SQ-Learning. The seminal work of Valiant
(1984) defined PAC-learnability, where the learner has
access to poly-many examples drawn from a given dis-
tribution T over a domain X labeled by some ℓ and its
goal is to approximate ℓ as well as the best hypothesis in
some given hypothesis class H. We measure our predic-
tion success using some loss-function L where for every
x ∈ X , h ∈ H and any labelling function ℓ it holds that
L(h(x), ℓ(x)) ∈ [0, 1]; and so for any distribution T we de-
note errT(h) = Ex∼T[L(h(x), ℓ(x))]. Thus, a (α, β)-PAC-
learner outputs w.p.≥ 1 − β an hypothesis h ∈ H where
errT(h) ≤ αH + α, where αH

def
= minh∈H{errT(h)}. The

learner’s ability to draw n i.i.d. examples is simulated via an
example-oracle which upon a query returns such a labeled
example. Thus, in the PAC-mode, a learner has full access
to all of the details of any drawn example. In contrast, the
Statistical Query (SQ) model (Kearns, 1998) restricts the

3Namely, probability of drawing a point of large weight.
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operation of the algorithm to view solely statistical proper-
ties of the distribution T and the labeling function ℓ. This
is simulated via access to a SQτ -oracle which upon a sta-
tistical query ϕ : X × R → [0, 1] returns an estimation of
Ex∼T[ϕ(x, ℓ(x))] up to a tolerance parameter τ (polynomi-
ally bounded away from 0).

Differential Privacy. Given a domain X , two multi-sets
I, I ′ ∈ Xn are called neighbors if they differ on a single
entry. An algorithm (alternatively, mechanism) is said to
be (ϵ, δ)-differentially private (DP) (Dwork et al., 2006b;a)
if for any two neighboring I, I ′ and any set S of possible
outputs we have: Pr[M(I) ∈ S] ≤ eϵ Pr[M(I ′) ∈ S] + δ.

The Randomized-Response mechanism (Warner, 1965; Ka-
siviswanathan et al., 2008) is one of the classic (ϵ, δ)-DP
mechanisms in the local-model. Given privacy parame-
ters ϵ, δ, on an input b ∈ [0, 1] it outputs RRϵ,δ(b) ∼
N (b, 2 ln(2/δ)

ϵ2 ). When applied to N i.i.d. draws from a
Bernoulli r.v. of mean µ, then we estimate µ by θ =
1
N

∑
i RRϵ,δ(bi). Standard application of the Hoeffding

bound and Gaussian concentration bounds proves that ap-
plying the mechanism to N(α, β, ϵ, δ) = 4 ln(2/δ) ln(4/β)

ϵ2α2 ,
we get that Pr[|θ − µ| ≤ α] ≥ 1− β.

Differentially Private Machine Learning is by now too large
of a field to be surveyed properly. It was formally initi-
ated by (Kasiviswanathan et al., 2008) who, as discussed
above proved that the set of hypothesis-classes which is SQ-
learnable is conceptually equivalent to the set hypothesis-
classes learnable in the local-model of DP. It is also worth
mentioning the DP techniques for Empirical Risk Minimiza-
tion and especially private SGD (Chaudhuri et al., 2011;
Bassily et al., 2014) which we use as our private learner in
Appendix A.

Divergence Between Distributions. Given two distri-
butions S and T over the same domain X that have a
Radon-Nikodym derivative, we denote said derivative as
the importance sampling (IS) weight at a point x ∈ X as
w(x) = PT(x)

PS(x)
. Given a convex function f : (0,∞) → R

where f(1) = 0, the f -divergence between two distribution
T and S is Df (T||S) = Ex∼S[f(w(x))]. In the specific
case when f(x) = 1

2 |x − 1| we obtain the total varia-
tion distance, denoted TV(T,S); when f(x) = x log(x)
we obtain the Kullback-Leibler (KL) divergence, denoted
KL(T∥S); and when f(x) = x2 − 1 we obtain the χ2-
divergence, denoted χ2(T∥S). Thus, a finite χ2-divergence
between distributions implies a finite second moment for
w(x). It is indeed quite simple to see that Ex∼T[w(x)] =

Ex∼S[w(x)
2] = χ2(T∥S) + 1. Moreover, a well-known

result (Csiszár & Shields, 2004) states the for any twice-
differentiable f it holds that Df (T∥S) ≈ f ′′(1)

2 χ2(T∥S)
(as follows from f ’s Taylor series). In the context of trans-
fer learning, Cortes et al. (2010) proved that weighing all

examples in a sufficiently large sample drawn from S ac-
cording to their IS weights gives an accurate estimation
of the loss of any hypothesis in a finite pdim hypothe-
sis class H over T; where their sample size bounds de-
pend on χ2(T∥S). Another well-used notion of divergence
is the α-Reyni divergence between T and S, definted as
Dα(T∥S) = 1

α−1 ln(Ex∼S[w(x)
α]) for any α > 1, which

was also used to define similar notions of privacy (Bun &
Steinke, 2016; Mironov, 2017; Bun et al., 2018). Note that
D2(T∥S) = ln(χ2(T∥S)+1). We also denote D∞(T∥S) =
supx∈X w(x).

Bernstein Inequality: In our work we use several standard
concentration bounds (Markov- / Chernoff- / Hoeffding-
inequalities), and also the slightly less familiar inequality of
Bernstein (1954): Let {Xi}ni=1 be independent zero-mean
random variables. Suppose that |Xi| ≤ M almost surely,
for all i. Then for any positive t,

Pr

(∑
i

Xi ≥ t

)
≤ exp

(
−t2

2
∑

i E[X2
i ] + 2tM/3

)
(1)

3. A Non-Private Model
For the sake of clarity, we introduce our algorithm in
stages — where first we disregard the privacy aspect of
the problem. In this section we deal with a specific transfer
learning model, whose details are as follows. We are given
a known domain X and some unknown labelling function
ℓ : X → R. We also have the following access oracles
to two unknown distributions S and T over X — we are
given an example oracle Ex access to S, that upon a query
returns an example x drawn from S and labeled by ℓ; and
we are given a statistical query oracle SQτ to T, that upon
a query ϕ : X × R→ [0, 1] returns an answer in the range
Ex∼T[ϕ(x, ℓ(x)]± τ . Our goal is learn ℓ through some hy-
pothesis class H; i.e. to find an hypothesis h whose loss
w.r.t. ℓ over T is comparable to the loss of the best hypoth-
esis in H, whose pdim(H) = d. Formally, we introduce
our algorithm in the realizable setting, so given a parameter
α > 0 and a loss function L : R2 → [0, 1] our goal is to
find h such that errT(h) = α. (We later discuss extension
to the agnostic case.) In addition, we are given an algorithm
M which is a (α, β)-PAC learner for our hypothesis class
H. Namely, given α, β > 0, our learnerM takes a sample
of m(α, β) i.i.d. examples drawn from some distribution µ
and labeled by some ℓ and w.p. ≥ 1− β returns a function
h ∈ H whose loss is upper bounded by errµ(h) ≤ α. So,
had we been able to draw i.i.d. examples from T, we would
have just fed them to the algorithm and produce a good
hypothesis h. Alas, in our model, we only have statistical
query oracle access to T, SQτ , with error of ±τ .

In this section, we propose a general reduction of a PAC-
learner over S to finding a good hypothesis w.r.t. T, which
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Algorithm 1 Non-Private Subsample-Test-Reweigh

Input: parameters 0 < α, β < 1/8

Draw n ≥ 800(χ2+1) log(1/α)
α2 (d log( 400dα3 ) + log( 8β )) la-

beled points i.i.d. from S, denoted x1, x2, ..., xn.
Set weight w1

i ← 1 for each 1 ≤ i ≤ n.

Set T ← 32 log2(
8(χ2+1)

α )

α2 .
for (t = 1, 2, 3, ..., T ) do

Set µt as a distribution where µt
i ∝ wt

i .
Draw m(α, β/T) examples i.i.d from µt.
ApplyM to the drawn points and obtain a function ht.
Set at as the reply of the SQτ -oracle for the query
ϕt(x, ℓ(x)) = L(ht(x), ℓ(x)).
if (at > 2α+ τ + αH) then
∀i set wt+1

i ← wt
i ·exp(−α/8·[1−L(ht(xi), ℓ(xi))])

else
return ht (and halt)

end if
end for

depends solely on χ2(T∥S) def
= χ2. We argue that Algo-

rithm 1 achieves our goal within T = O(log(χ
2+1/α)/α2)-

iterations.

Note that Algorithm 1 is presented for the realizable case.
If we deal with an agnostic case, namely — where αH > 0,
then our algorithm iterates as long as errµt(ht) < αH + α.
(A condition which ought to hold when we begin with h1,
the a good hypothesis w.r.t. S and errS(h

1) ≪ errT(h
1).)

It ought to be clear that by returning ht with the smallest
error estimation given by the SQ-oracle in all T iterations,
an hypothesis h ∈ H of small loss w.r.t. T is obtained.

Theorem 3.1. In the above-described setting, w.p.≥ 1 −
2β Algorithm 1, halts and outputs an hypothesis h with
errT(h) ≤ 2α+ 2τ .

The proof of Theorem 3.1 relies on proving the following
lemma, and builds on — and extends — a theorem of Cortes
et al. (2010).

Lemma 3.2. Given 0 < α, β ≤ 1/8 and two distribu-
tions S and T whose χ2-divergence is χ2(T||S) = χ2.
Then, if n = Ω((χ2 + 1) log(

1/α)
α2 (d log( dα ) + log( 1β )))

w.p. ≥ 1 − β it holds that there exists a distribution ū
over the n drawn points such that (i) its divergence to
the uniform distribution over the n drawn point, U[n], sat-
isfies KL(ū∥U[n]) ≤ log2(8(χ

2+1)/α) and also (ii) ∀h ∈
H, erru(h) ≥ errT(h)− 5α/8.

Proof of Theorem 3.1. Based on Lemma 3.2, we now sim-
ply apply the characterization of the MW-algorithm from the
seminal work of Arora et al. (2012). Setting the ‘cost’ of ex-
ample i w.r.t. hypothesis ht as mt

i = 1−L(ht(xi), ℓ(xi)) we
have that applying the MW-algorithm with costs m̄1, ..., m̄T

and with an update rate of η = α/8, we get that for any fixed
distribution ν it holds that

∑
t

E
i∼µt

[mt
i] ≤

∑
t

E
i∼ν

[mt
i] +

αT

8
+

8KL(ν∥U[n])

α

Note that w.p. ≥ 1−β our algorithmM returns an hypothe-
sis of errµt ≤ α in all T iterations. In contrast, we know that
each MW-update happens since errT(h

t) ≥ 2α+ τ − τ =
2α; and so, w.p. ≥ 1−β, we have a distribution ν = ū given
by Lemma 3.2, which we plug-in to the above equation and
have

∑
t
(1− α) ≤

∑
t
[1− (2α− 5α

8 )] + αT
8 +

8 log2(
8(χ2+1)

α )

α

Rearranging we get the bound 3αT
8 ≤ αT

8 +
8 log2(

8(χ2+1)
α )

α .
Hence, w.p.≥ 1−2β Algorithm 1 halts within some iteration

t∗ ≤ 32 log2(
8(χ2+1)

α )

α2 steps, which means errT(ht∗) ≤ (2α+
τ) + τ = 2α+ 2τ .

Proof of Lemma 3.2. Let w(x) : X → R+ be the func-
tion defined by w(x) = PT(x)

PS(x)
, where PT and PS denotes

the PDFs of T and S resp. We call w(x) the weight of x.
Lets u(x) = min(w(x), 4(χ2+1)

α ) be the truncated weight
of x. Recall that E

x∼S
[w(x)] = 1 and that E

x∼S
[w(x)2] =

E
x∼T

[w(x)] = χ2 + 1. Thus, since for every x ∈ X it holds

that 0 ≤ u(x) ≤ w(x) then we have E
x∼S

[u(x)] ≤ 1 and that

E
x∼S

[u(x)2] ≤ E
x∼T

[u(x)] ≤ χ2 + 1. Denoting A = {x ∈

X : w(x) > 4(χ2+1)
α }, we can apply the Markov inequality

to infer that Pr
x∼T

[x ∈ A] = E
x∼T

[1A(x)] ≤ α/4 with 1A(x)

denoting the indicator of whether x ∈ A or not. And so:

E
x∼S

[w(x)− u(x)] = E
x∼S

[(w(x)− u(x))1A(x)]

≤
∫
X
w(x)1A(x)PS(x)dx

=

∫
X
1A(x)PT(x)dx = E

x∼T
[1A(x)] ≤ α/4

which implies that Ex∼S[u(x)] ≥ 1− α/4.

We continue to bounding U =
∑n

i=1 u(xi) for the n points
x1, x2, ..., xn in our sample taken i.i.d. from S, provided
n ≥ 150(χ2+1) ln(4/β)

α2 . To that end, we apply the Bernestein
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inequality. First, we have that

Pr[U > (1 + α/8)n] ≤ Pr[U − nE[u(xi)] > αn/8]

≤ exp

(
−

α2n2
/82

2
∑

i Var[u(xi)] +
2
3 (

4(χ2+1)
α ) · αn/8

)

≤ exp

(
− α2n2

128n(χ2 + 1) + 64n
3 (χ2 + 1)

)
≤ exp

(
− α2n

150(χ2 + 1)

)
≤ β/4

and similarly we can prove Pr[n(1−α/4)−U > αn/8] ≤ β/4.
Hence, w.p. ≥ 1 − β/2 it holds that (1 − 3α/8)n ≤ U ≤
(1 + α/8)n.

Now, setting ū as the distribution where point i is sampled
w.p. u(xi)

U we can use the above bound on U to infer that

KL(ū∥U[n]) =
∑
i

u(xi)
U log2(

u(xi)

U
/
1

n
)

≤
∑
i

u(xi)
U log2

(
u(xi)

1− 3α/8

)
≤
∑
i

u(xi)
U log2(

4(χ2+1)
α · 85 )≤ log2(

8(χ2+1)
α )

proving the first part of the claim. As for the second part
of the claim, we simply use the result of Cortes et al.
(2010) which shows universal convergence w.r.t. any un-
normalized weights function. Namely, by setting α′ =

α√
50(χ2+1) log(1/α)

,4 we have that for any hypothesis class

H of pdim(H) = d, the following holds

Pr[sup
h∈H

{
E

x∼S
[u(x)L(h(x), ℓ(x))]−

∑
i
u(xi)
n L(h(xi), ℓ(xi))

}
> α

4 ]

≤ Pr[sup
h∈H

{ E
x∼S

[u(x)L(h(x),ℓ(x))]−
∑

i
u(xi)

n L(h(xi),ℓ(xi))
√

Ex∼S[w2(x)L2(h(x),ℓ(x))]

}
> α′

√
2 + log( 1

α′ )]

≤ Pr[sup
h∈H

{ E
x∼S

[u(x)L(h(x),ℓ(x))]−
∑

i
u(xi)

n L(h(xi),ℓ(xi))
√

Ex∼S[u2(x)L2(h(x),ℓ(x))]

}
> α′

√
2 + log( 1

α′ )]

(∗)
≤ 4 exp

(
d log( 2end )− nα′2

4

)
= 4 exp

(
d log( 2end )− nα2

200(χ2+1) log(1/α)

)
≤ β

2

when n ≥ 800(χ2+1) log(1/α)
α2 (d log( 400dα3 ) + log( 8β )). Note

that (∗) is taken verbatim from Cortes et al. (2010) Theorem
8. Thus, w.p. ≥ 1 − β both the above bounds on U hold

4Which satisfies that α/4 > α′√(2 + ln(1/α′))(χ2 + 1) =

α′√(2 + ln(1/α′))Ex∼S [w2(x)], when α ≤ 1/8.

and we have that for any h ∈ H it holds that

err
T
(h) = E

x∼T
[L(h(x), ℓ(x))] = E

x∼S
[w(x)L(h(x), ℓ(x))]

≤ E
x∼S

[u(x)L(h(x), ℓ(x))] + E
x∼S

[w(x)− u(x)]

≤
[
α
4 + 1

n

∑
i

u(xi)L(h(xi), ℓ(xi))
]
+ α

4

≤ α
2 + (1+α/8)

U

∑
i

u(xi)L(h(xi), ℓ(xi))

≤ 5α
8 + E

xi∼ū
[L(h(xi), ℓ(xi)]

4. The Private Boosting Paradigm
We now turn our attention to the full hybrid-model, and
to our need to privatize Algorithm 1. In order to design
a private version of Algorithm 1 one required multiple
changes. First, and perhaps the easiest, is the fact that
instead of a SQτ oracle access to T we estimate the error
of ht using RR (in the local-model). Assuming our algo-
rithm makes at most T iterations, standard argument shows
that each such query requires Ω( 1

ϵ2α2 log(T/β)) users so
that w.p. ≥ 1 − β/T we get a α-esimation of errT (h

t);
so, the number of local-users required for our paradigm is
Ω(T log(T/β)

ϵ2α2 ) = Ω( log((χ
2+1)/α) log(log(χ2+1)/αβ)

ϵ2α4 ).

Second, which is also a rather straight-forward change, is
that we need to replace the learning mechanism M with
a privacy-preserving learning mechanism whose sample
complexity depends also on the privacy-loss parameter(s).
This implies that the sample complexity ofM is a function
of the 4 parameter m = m(α, β, ϵ, δ).5 The question of
setting the privacy parameters ofM, thereby inferring the
sample complexity ofM, will be discussed momentarily.

Lastly, the more challenging aspect of the problem is main-
taining the privacy of the samples among the n examples
that are drawn from S. To that end, we rely on the MW-
variant of (Bun et al., 2020), which in turn requires we
introduce one more parameter, namely κ, into the problem.

Definition 4.1. Fix some 0 < κ < 1. Given n points and
a set of weights w1, w2, ..., wn ≥ 0, we denote wavg =
1
n

∑
i wi and wmax = maxi{wi}. We say that the distri-

bution induced by these weights, namely the distribution
where µi ∝ wi, is κ-dense if κwmax ≤ wavg.

From a privacy stand-point, it is clear why a dense distribu-
tion is a desired trait: it makes it so that in a random sample
of m draws from µ we expect each point i to be drawn no
more than 1/κ times. (Bun et al., 2020) showed that for any
set of weights w̄ = (w1, w2, ..., wn) where ∀i, wi ∈ (0, κ],

5For brevity, we use (ϵ, δ) as the privacy parameters, even if
M is a (possibly truncated) zCDP-mechanism or Réyni-DP.
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by setting

Πκ(w̄) =
(
min{c · w1, 1},min{c · w2, 1}, . . . ,min{c · wn, 1}

)
(2)

for the smallest c s.t. ∥Πκ(w)∥1 = κn, we obtain a set
of weights whose induced distribution µ = Πκ(w̄)

∥Πκ(w̄)∥1
is

κ-dense. Using this projection we get the following claim.

Claim 4.1. Let S and S′ be any two neighboring datasets of
size n each. Let w̄ and w̄′ be two weight vectors in (0, κ]n

which may differ on the only entry that differs between S
and S′, and let µ and µ′ be the two distributions derived
from w̄ and w̄′ resp. using the projection of (2). Let H be
an hypothesis class and letM be a (ϵ, δ)-DP mechanism
that takes as input a dataset of size m = m(α, β, ϵ, δ) and
outputs some h ∈ H. Then, for any T ⊂ H, if we denote X̄
(resp. X̄ ′) as the result of m i.i.d. draws from S (resp. S′)
using µ (resp. µ′), then, setting ϵ∗ = 6ϵm

κn and δ∗ = 4meϵ
∗
δ

κn
we have that

Pr
X̄∼µm

[M(X̄) ∈ T ] ≤ eϵ
∗

Pr
X̄∼µ′m

[M(X̄ ′) ∈ T ] + δ∗

Proof. This follows immediately from applying Lemma 6.1
in (Karwa & Vadhan, 2018) to this setting, using the bound
TV(µ, µ′) ≤ 1/κn proven by Bun et al. (2020).

A reader familiar with sample complexity bounds in DP-
literature, knows that usually the dependency of m in ϵ is
inverse. Thus, the dependency of ϵ∗ in ϵm suggests that
ϵ∗ ends up independent of the privacy-loss of parameter
set to the private learning mechanism M. That is why
chose to apply M with ϵ = 1, a parameter under which
most private and non-private sample complexity bounds are
asymptotically equivalent.6 The flip side of it is that we now
set n to be proportional to ϵ−1. We are now ready to give
our DP algorithm for transfer learning in the hybrid model.

Theorem 4.2. Using the same notation as in Al-
gorithm 2, Algorithm 2 is a hybrid-model (ϵ, δ)-

DP algorithm provided n ≥ m1

√
288T ln(2/δ)

ϵκ =

Ω(m1
(χ2+1)

√
log((χ2+1)/α) log(1/δ)

α2ϵ ).

Proof. First, it is clear that each local-user is asked a sin-
gle query and replies using a mechanism that is (ϵ, δ)-
DP. As for the privacy of the curator-agents, by setting
m1 = m(α, β/T , 1, κδ

8eT ), Claim 4.1 asserts that in each iter-
ation we are (ϵ∗, δ∗)-DP for ϵ∗ = 6·1·m1

κn ≤ ϵ√
8T ln(2/δ)

< 1

and δ∗ ≤ 4m1e
1

κn · δ
4ϵ

√
2T
≤ 4e·ϵ

6
√
8T
· δ
ϵ
√
2T
≤ δ

2T . Applying
the Advanced Composition theorem of (Dwork et al., 2010)
we get that in all T iterations together we are (ϵ, δ)-DP w.r.t.
to each of the n curator-agents.

6Loosely speaking, a parameter under which we typically get
“privacy for free.”

Algorithm 2 Private Subsample-Test-Reweigh

Input: parameters 0 < α, β < 1/8, 0 < ϵ, δ. A
(ϵ, δ)-DP learning algorithm M of sample complexity
m(α, β, ϵ, δ).

Set κ← α
8(χ2+1) , T ← 128 log2(

8(χ2+1)
α )

α2 , N0 ← 4 ln(2/δ) ln(8T/β)
ϵ2α2 .

Draw a sample of n ≥ m(α, β
T , 1,

δ
ϵ
√
2T

)

√
288T ln(2/δ)

ϵκ

points i.i.d. from S, denoted x1, x2, ..., xn, all labeled
by ℓ. Similarly draw N0 · T local-users from T.
Set weight w1

i ← κ for each 1 ≤ i ≤ n.
for (t = 1, 2, 3, ..., T ) do

Set µt as a distribution where µt = Πκ(w̄)
∥Πκ(w̄∥1

.

ApplyM to a sample of m1 = m(α, β
T , 1,

δ
ϵ
√
2T

) ex-
amples drawn i.i.d. from µt, to obtain some hypo. ht.
Pick arbitrarily a new batch B of N0 local-users, and
set at ← 1

N0

∑
x∈B RRϵ,δ

(
L(ht(x), ℓ(x))

)
.

if (at > 3α) then
∀i set wt+1

i ← wt
i ·exp(−α/8·[1−L(ht(xi), ℓ(xi))])

else
return ht (and halt)

end if
end for

Theorem 4.3. W.p.≥ 1−3β, Algorithm 2 returns an hypoth-
esis h such that errT (h) ≤ 4α+ αH, provided the number
of curator-agents is n = Ω((χ2 + 1) log(

1/α)
α2 (d log( dα ) +

log( 1β ))), and the number of local-agents is N = N0T =

Ω( log((χ
2+1)/α) log(log(χ2+1)/αβ)

ϵ2α4 ).

Proof. Again, the proof relies on the characterization of the
utility of the MW-mechanism w.r.t. k-dense set of weights.
Again, let w̄1 be the initial weights vector where w1

i = κ for
all i. Let w̄∗ ∈ [0, 1]n be any fixed set of weights which is
κ-dense, and denote ŵ = w̄∗

∥w̄∗∥1
as its induced distribution.

Then, we have that for any sequence of costs m̄1, m̄2, ..., m̄t,
Bun et al. (2020) proved that this MW-mechanism with
learning rate of η = α

8 guarantees that

∑
t

E
i∼µt

[mt
i] ≤

∑
t

E
i∼ŵ

[mt
i] +

αT

8
+

1
κnϕ(w̄

∗, w̄1)

α/8
(3)

where ϕ(w̄∗, w̄1) is the Bregman divergence induced by the
entropy function, namely

ϕ(w̄∗, w̄1) =
∑
i

w∗
i log(

w∗
i

w1
i

)− w∗
i + w1

i

As w̄∗ we aim to use the weights which Lemma 3.2 guaran-
tees whose nice properties hold w.p.≥ 1− β. Thus, we set
for each xi drawn from S the weight w∗

i = u(xi)
4(χ2+1)/α

≤
1. As Lemma 3.2 asserts, it holds that U =

∑
u(xi)
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lies in the range [(1 − 3α/8)n, (1 + α/8)n], thus wavg =
1
n

∑ αu(xi)
4(χ2+1) ≥

α(1−3α/8)
4(χ2+1) . Thus, by setting κ = α

8(χ2+1)

we have that wavg ≥ κ · 1 ≥ κwmax, implying w∗ is indeed
κ-dense. Also, the same bounds on U imply that

ϕ(w̄∗, w̄1) =
∑
i

2κu(xi) log(
2κu(xi)

κ
)− 2κu(xi) + κ

= κ
∑
i

(2u(xi) log(2u(xi))− 2u(xi) + 1)

≤κ
(
n− 2U + 2

∑
i

u(xi) log(8(χ
2+1)/α)

)
≤ 2κ log(8(χ

2+1)/α) · U ≤ 4κn log(8(χ
2+1)/α)

The remainder of the proof is as in Theorem 3.1. In each
iteration it must hold that errµt(ht) ≤ α; whereas at ≥
3α, which w.p.≥ 1 − β — using classic utility bounds
for the Randomized Response mechanism — implies that
errT(h

t) ≥ 2α. Plugging this bound to Equation (3) stating
the regret of the κ-dense MW-algorithm we get∑

t(1− α)] ≤
∑

t[1− (2α− 5α
8 )] + αT

8 +
4 log2(

8(χ2+1)
α )

α/8

Rearranging yields the bound 3αT
8 ≤ αT

8 +
32 log2(

8(χ2+1)
α )

α

which implies that we halt in T ≤ 128 log2(
8(χ2+1)

α )

α2 itera-
tions. Again, upon halting at ≤ 3α so it holds errT(ht) ≤
4α.

Thus in a realizable setting, given a finiteH, we can setM
as the exponential mechanism overH returns w.p. ≥ 1− β
an hypothesis of error Θ(α) when the sample size it at least
Ω(ln(|H|)/αϵ). We thus obtain the following corollary.

Corollary 4.4. For any S,T with bounded χ2-divergence,
there exists a (ϵ, δ)-DP hybrid-model learning for a finite
H in the realizable case which returns w.p. ≥ 1 − β an
hypothesis h ∈ H with errT(h) = Θ(α), provided that we
have n = Ω̃( (χ

2+1) ln(|H|/β)
α3ϵ ) curator-agents drawn from S

and N = Ω̃( ln(
(χ2+1)/α)
ϵ2α4 ) local-agents drawn from T.

Example: Sparse Hypothses. It is worth noting that our
sample complexity bounds are independent of the dimen-
sion d (assuming the domain X ⊂ Rd). So consider a
specific case that deals with a s-sparse problem over a high
d-dimensional set where s ≪ d, say, where H is a lin-
ear seprartor that uses no more than s = O(1) features
out of the d features of each example. This suggests that
|H| = dO(s) = poly(d). We thus obtain s ·polylog(d) sam-
ple complexity bounds (setting all other parameters to be
come reasonable constants.) whereas learning solely over T
requires a sample complexity ≥ d (see Duchi et al. (2013)).

Private SGD. The specific case where the private learn-
ing mechanismM is SGD discussed in Appendix A. This

case is discussed separately for two main reasons. First, its
algorithmic presentation is slightly different than in Algo-
rithm 2, since in each iteration it makes successive draws
from µt rather than a single draw of a subsample. Sec-
ondly, this is the one canonical case where L is continuous
(rather than binary), and so the subject of scaling comes
into play. Whereas thus far we assumed L is bounded by
1, it is straightforward to see that a L-Lipfshitz convex loss
function over a convex set of diameter D has loss ∈ [0, LD],
thus our goal is now to obtain a loss≤ α (rather than α·LD).
Lastly, aiming to give a tight analysis, we use the notion
of (ρ, ω)-tCDP (Bun et al., 2018) which is then converted
to (ϵ, δ)-DP scheme. Nonetheless, the sample complexity
bounds we get are similar to those of Algorithm 2.

5. On Reducing Sample-Complexity Bounds
While our work is the first to show the feasibility of trans-
fer learning using poly-size sample, its sample complex-
ity bound for the curator-agents is a large multiplicative
factor Õ(ϵ−1α−2) over the sample complexity of a (non-
transfer) curator-model learner. We believe that it is possible
to significantly improve said bound, at least for particular
instances. Here we provide two specific instances where in-
deed the number of required iterations until convergence of
our algorithm is o(α−2), leading to a much smaller sample
complexity.

Transfer Learning for PARITY under the Uniform Dis-
tribution. Consider the domain X = {0, 1}d and the
class of PARITY functions, where for any S ⊂ [d] we
have cS(x) =

⊕
i∈S xi. It is a well-known result that un-

der the uniform distribution the PARITY class cannot be
learnt in the local-model unless the number of local-agents
is N = exp(d), yet a sample of size n = Θ(d/ϵα) suf-
fices to learn PARITY under any distribution in the curator-
model (Kasiviswanathan et al., 2008). In Appendix B we
show that in the hybrid-model one can learn PARITY in a
single iteration, provided S and the uniform distribution T
have polynomial χ2-divergence. The crux of the proof lies
in proving that w.h.p. a sufficiently large sample drawn from
S is linearly independent over Fd

2. This suggests that the pri-
vate curator-model learner for PARITY (Kasiviswanathan
et al., 2008) — which leverages on (multiple) Gaussian elim-
ination over Fd

2 — returns w.h.p. the true labeling function
in the PARITY hypothesis class.

Empirical Experiments: When Both S and T are Gaus-
sians. Next, we show empirically that in other settings, both
the number of required iterations until convergence and our
sample complexity bounds are far greater than required.
First, we consider a setting where S is a simple spherical
Gaussian in d = 500-dimensions, S = N (0̄, Id) whereas
for T we picked an arbitrary set of k = 10 coordinates and
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set the standard deviation on these k as σ = 0.02 whereas
the remaining d−k coordinates have standard deviation of 1,
i.e. T = N (0̄, Id−k⊗σ2Ik). It is a matter of simple calcula-
tion to show that χ2(T∥S) + 1 = ( 1

σ2(2−σ2) )
k/2 > 3 · 1015.

Now, our target hyperplane separator is set such that its
only non-zero coordinates are the k ones on which S and
T have a different variance, and so that is classifies pre-
cisely α = 0.01 of the mass of T as −1. Now, testing this
setting with the non-private version7 (Algorithm 1) over
n ≥ 90, 000 we obtain an hypothesis of error ≤ 2α in all
t = 50 repetitions of our experiment. Moreover, our iter-
ative algorithm runs for only T ≈ 1200− 1300 iterations,
far below the ≈ α−2 upper bound. The results appear in
Figures 1a and 1b in Appendix C. Second, we consider a
setting where the true hypothesis actually corresponds to
a k-dimensional ball over the k coordinates that are more
concentrated in T than in S and ran both the private and
non-private version of our algorithm. While the non-private
version converged very fast, the private version required a
very large sample of curator-agents, and so we were able to
conduct only preliminary experiments with it. The experi-
ment is detailed in Appendix D where the results appear in
Figures 2 and 3.

Open Problems. Our work is the first to present a general
framework for transfer learning in the hybrid-model, thus
providing an initial answer to the open problem of “selection
bias” posed by Beimel et al. (2020). While our framework
does surpasses certain naı̈ve baselines in some specific cases,
there is still much work to be done in order to reduce its
sample complexity. Considering different divergences can
be a promising direction, especially if we know that the 4th
moment of the IS weights is bounded (as it may increase the
value of κ). A different venue can be the study of repeated
uses of Subsample-Test-Reweigh — when person A applied
the paradigm until she finds a good hypothesis, then hands
over her last set of weights to Person B who uses it for learn-
ing a different hypothesis. Lastly, we believe that there’s
more to be studied in general in the intersection between DP
and transfer learning, as the problem can be tackled from
the alternative approach of discrepancy between hypothesis
classes (Ben-David et al., 2010; Mansour et al., 2009).
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A. Private Stochastic Gradient Descent

The Private SGD Algorithm. In this section, we dis-
cuss our private Subsample-Test-Reweigh paradigm where
the private learning mechanism applied in each iteration is
the standard private SGD (see Hazan (2016); Bassily et al.
(2014)). For simplicity, we give the algorithm here.

Algorithm 3 Online SGD

Input: Parameters α, β, σ Lipfshitz constant L and a
convex setH ⊂ Rd of diameter D. A distribution µ over
a sample S.
Let h1 ∈ H arbitrarily.
Set R ← max

{ 9D2(L2+σ2d)
α2 , 8D2L2 ln(2/β)

α2

}
; or set

R ← max
{ 4(L2+σ2d)

λα ln(L
2+σ2d
λα ), 8D2L2 ln(2/β)

α2

}
if L

is λ-strongly convex.
for (r = 1, 2, 3, ..., R) do

Draw a labeled example (xr, ℓ(xr)) ∼ µ
Draw a random vector v ∼ N (0, σ2Id)
Set ηr ← D

σ
√
r

; or set ηr ← D
λr if L is λ-strongly

convex.
Set hr+1 ← ΠH

(
hr − ηr(∇L(hr(xr), ℓ(xr)) + v)

)
end for
Return h̄ = 1

R

∑R
r=1 h

r.

Standard arguments from Hazan (2016) give the following
utility theorem.
Theorem A.1. Let H ⊂ Rd be a convex set of diameter
D and let L be a L-Lipfshitz function and denote αH =
minh∈H E(x,ℓ(x))∼µ[L(h(x), ℓ(x))]. Then, w.p. ≥ 1 − β
after R iterations, err(h̄) ≤ αH + α.

Proof. The proof follows from the usual analysis of SGD,
under the observation that in each iterations

E(xr,ℓ(xr))∼µ

v∼N (0,σ2Id)

[∇L(hr(xr), ℓ(xr)) + v]

= E(x,y)∼µ[∇L(hr(x), ℓ(x))]

and that

E[∥∇L(hr(xr), ℓ(xr)) + v∥2] ≤ E[∥∇L(hr(xr), ℓ(xr))∥2]
+ 2E[∇L(hr(xr), ℓ(xr)) · v] + E[∥v∥2] ≤ L2 + σ2d

Plugging those into the bounds of the generalization proper-
ties of the SGD for convex functions we obtain:

err
µ
(h̄) ≤ err

µ
(h∗) +

3D
√

(L2 + dσ2)

2
√
R

+ LD

√
8 ln(2/β)

R

So setting R ≥ max
{ 9D2(L2+σ2d)

α2 , 8D2L2 ln(2/β)
α2

}
yields

that errµ(h̄) ≤ αH + α
2 + α

2 as required. Similarly, for a
λ-strongly convex function we get

err
µ
(h̄) ≤ err

µ
(h∗)+

(L2 + dσ2)(1 + ln(T ))

2λR
+LD

√
8 ln(2/β)

R

Algorithm 4 Private Subsample-Test-Reweigh with SGD

Input: parameters 0 < α, β < 1/8, 0 < ϵ < 1,0 < δ <
1/4. Private SGD mechanism over a convex setH ∈ Rd

of diameter D with convex L-Lipfshitz loss function L
making at most R SGD-iterations.

Set κ ← α
8(χ2+1) , T ← 128L2D2 log2(

8(χ2+1)
α )

α2 , N0 ←
4 ln(2/δ) ln(8T/β)

ϵ2α2 , σ2 ← max
{
20L2, 16ϵ−1L2 ln(1/δ)+8L2

ln(κn)

}
.

Set R ← max
{ 9D2(L2+σ2d)

α2 , 8D2L2 ln(2/β)
α2

}
; or set

R ← max
{ 4(L2+σ2d)

λα ln(L
2+σ2d
λα ), 8D2L2 ln(2/β)

α2

}
if L

is λ-strongly convex.

Draw a sample of n ≥
√

52RT
8κ2ϵ ln( 52RT

8κ2ϵ ) points
i.i.d. from S, denoted x1, x2, ..., xn, all labeled by ℓ.
Draw N0 · T local-users from T.
Set weight w1

i ← κ for each 1 ≤ i ≤ n.
for (t = 1, 2, 3, ..., T ) do

Set µt as a distribution where µt = Πκ(w̄)
∥Πκ(w̄∥1

.
Apply private SGD using µt and using σ2 for R itera-
tions, and obtain an hypothesis ht.
Pick arbitrarily a new batch B of N0 local-users, and
set at ← 1

N0

∑
x∈B RRϵ,δ

(
L(ht(x), ℓ(x))

)
.

if (at > 3α+ αH) then
∀i set
wt+1

i ← wt
i ·exp(−α/8LD·[LD−L(ht(xi), ℓ(xi))])

else
return ht (and halt)

end if
end for

So setting R ≥ max
{ 4(L2+σ2d)

λα ln(L
2+σ2d
λα ), 8D2L2 ln(2/β)

α2

}
yields that errµ(h̄) ≤ αH + α as required.

While we can apply a privacy analysis of Algorithm 3, we
table it to the privacy analysis of our full algorithm.

The Subsample-Test-Reweigh Using SGD. We now transi-
tion to the full analysis of STR when we apply SGD as an
intermediate procedure.

The utility analysis of Algorithm 4 is just as the one of
Algorithm 2 modulo the fact that the non-negative loss
is now bounded by LD rather than 1, which implies we
must increase the number of MW-iterations by L2D2.
It requires a sample complexity of n = Ω(L2D2(χ2 +

1) log(
1/α)

α2 (d log( dα ) + log( 1β ))) curator-agents, and N =

N0T = Ω(L
2D2 log((χ2+1)/α) log(log(χ2+1)/αβ)

ϵ2α4 ) local-
agents to return, w.p.≥ 1 − 3β an hypothesis of error
≤ αH +α. (The increase in the number of curator-agents is
due to the fact that the loss is now in the range [0, LD] rather
than [0, 1].) The privacy analysis of Algorithm 4 requires
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we transition of (ρ, ω)-tCDP given in Bun et al. (2018). Its
definition as well as some of its basic properties (proven
in Bun & Steinke (2016); Mironov (2017); Bun et al. (2018))
are provided below.
Definition A.1. A mechanism M is said to be (ρ, ω)-
tCDP if for two neighboring inputs I and I ′ the α-
Reyni divergence of the two distributions is bounded:
Dα(M(I)||M(I ′)) ≤ αρ for any 1 < α ≤ ω.
Fact A.2. • Let f be a d-dimensional function of L2-

global sensitivity of maxI,I′ neighbors ∥f(I)− f(I ′)∥ ≤
L. Then the mechanism that outputs for any instance
I an output drawn from N (f(I), σ2Id) is ( 2L

2

σ2 ,∞)-
tCDP.

• Let M1,M2 be two (ρ1, ω1)-tCDP (resp. (ρ2, ω2)-
tCDP) mechanisms. Then the mechanism that applies
them to the same instance but using independent coin
toss for each is (ρ1 + ρ2,min{ω1, ω2})-tCDP.

• A mechanism which is (ρ, ω)-tCDP is also
(ρω + ln(1/δ)

ω−1 , δ)-DP for any δ < 1/e.

Perhaps, however, the most important property of tCDP is
that it is amplified by subsampling.
Theorem A.3. [Thm. 12 of Bun et al. (2018) reworded]
Fix ρ ∈ (0, 0.1]. Let s be a constant satisfying log(1/s) ≥
3ρ(2 + ln(1/ρ)). LetM be a (ρ,∞)-tCDP mechanism. Let
I and I ′ be two neighboring instance and let µ be a distri-
bution where the probability of sampling the one different
entry between the two instances is s. Then the mechanism
that samples entries from the input and then appliesM on
the subsample is (13s2ρ, log(1/s)

4ρ )-tCDP.

Now, throughout the execution of Algorithm 4 it holds that
we subsample a point and apply the Gaussian mechanism
for RT iterations. In all of these iterations we apply a distri-
bution where the probability of subsampling any point into
M is at most 1/κn. Moreover, our private-SGD mechanism
when applied to a L-lipfshitz loss function is ( 2L

2

σ2 ,∞)-
tCDP. Thus, if 2L2

σ2 ≤ 0.1 and if

ln(κn) ≥ 6L2(2 + ln(σ
2
/2L2))

σ2
(4)

then all conditions of Theorem A.3 hold. This suggests that
each time we executeM over a randomly drawn sample we
are ( 26L2

σ2κ2n2 ,
σ2 ln(κn)

8L2 )-tCDP; thus, by composition, we are

( 26L
2RT

σ2κ2n2 ,
σ2 ln(κn)

8L2 )-tCDP. Thus, w.r.t. the curator-agents,
we are (ϵ, δ)-DP for any δ < 1/4 for

ϵ =
26RT ln(κn)

8κ2n2
+

8L2 ln(1/δ)

σ2 ln(κn)− 8L2

This suggests that in order to achieve (ϵ, δ)-DP w.r.t. the
curator agents, we set σ2 = 16ϵ−1L2 ln(1/δ)+8L2

ln(κn) , and we

must set n so that n ≥
√

52RT [ln(κ)+ln(n)]
8κ2ϵ . Seeing as

κ < 1 it thus suffices for us to set n =
√

52RT
8κ2ϵ ln( 52RT

8κ2ϵ ).
It remains to check that under these values (4) holds; but
indeed, note that σ2

2L2 ≥ 10 and so

3(2 + ln(σ
2
/2L2))

σ2
/2L2

≤ 3(2 + ln(10))

10
< 1.3

whereas under any reasonable set of parameters we get

that n ≥
√

52RT
8κ2ϵ ln( 52RT

8κ2ϵ ) >
4
κ , implying that ln(κn) ≥

ln(4) > 1.3.
Theorem A.4. For any given ϵ ∈ (0, 1), δ ∈ (0, 1/4), 0 <
α < 1/8, 0 < β < 1/3, two distribution S,T with bounded
χ2-divergence and a convex loss-function L over a convex
set H ⊂ Rd of diameter D, we have that Algorithm 4 is
(ϵ, δ)-DP algorithm in the hybrid model provided that

n = Ω̃(
(χ2 + 1)LD2

√
L2 + σ2d ·

√
ln(2/β)

α3
√
ϵ

)

= Ω̃(
(χ2 + 1)D2L2

√
d ln(1/δ) ·

√
ln(2/β)

α3ϵ
)

if the loss-function is L-Lipfshitz and convex, or provided
that

n = Ω̃(
LD(χ2 + 1)

√
L2+σ2d

λα + D2L2 ln(1/β)
α2

α2
√
ϵ

)

= Ω̃(
LD(χ2 + 1)

α2
· (

L
√

d ln(1/δ)

ϵ
√
αλ

+
DL
√

ln(1/β)√
ϵα

))

if the loss-function is L-Lipfshitz and λ-strongly con-
vex. Furthermore, if the number of local-agents is N =

Ω(L
2D2 log((χ2+1)/α) log(log(χ2+1)/αβ)

ϵ2α4 ) then w.p. ≥ 1−3β
it returns an hypothesis h ∈ H where errT(h) ≤ αH + 4α.

B. Transfer Learning for the PARITY-Problem
Under the Uniform Distribution

Transfer Learning of PARITY for the uniform distri-
bution. Consider the domain X = {0, 1}d and the class
of PARITY functions, where for any S ⊂ [d] we have
cS(x) =

⊕
i∈S

xi. It is a well-known result that under the

uniform distribution the PARITY class cannot be learnt
in the local-model unless the number of local-agents is
N = exp(d), yet a sample of size n = Θ(d/ϵα) suffices
to learn PARITY under any distribution in the curator-
model (Kasiviswanathan et al., 2008). Here we show that
in the hybrid-model one can learn the PARITY class with a
single iteration, provided S and the uniform distribution T
have polynomial χ2-divergence.

To establish this, we prove the following sequence of claims
and corollaries.
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Proposition B.1. Fix 0 < β < 1/2. Let S be a sample
of n ≥ d log2(d/β) points drawn i.i.d. from the uniform
distribution over {0, 1}d. Then the probability that S isn’t
linearly independent is ≤ β.

Proof. We prove the claim inductively as we iterate over all
vectors in S. Due to simple counting argument, it is easy
to see that the probability to draw an vector that is linearly
dependent of given set of i vectors in a the d-dimension
space Fd

2 is at most 2i−d. So fix any 0 ≤ i ≤ d − 1. At
each step we have a set of i linearly independent vectors
spanning a subspace of dimension i. We argue that the
probability that among the next t = log2(d/β) vectors in
S the probability that all t vectors are linearly dependent
of these i basis vectors is at most (2i−d)t ≤ 2−t = β/d.
And so, after d iterations we have found a set of d linearly
independent vectors in S w.p. ≥ 1− β.

Claim B.2. Fix 0 < β < 1/2. Let T be the uniform distribu-
tion over {0, 1}d and let S be a distribution over the same
domain s.t. χ2(T∥S) = χ2 is finite. Let S be a sample of
n ≥ 4(χ2+1)d ln(d/β) points drawn i.i.d. from S. Then the
probability that S isn’t linearly independent is ≤ β.

Proof. The claim is proven in a similar inductive fashion
to Proposition B.1. Fix any 0 ≤ i ≤ d − 1. At each step
we have a set of i linearly independent vectors spanning a
subspace of dimension i. We argue that the probability that
among the next t = log2(d/β) vectors in S the probability
that all t vectors are linearly dependent of these i basis
vectors is at most ≤ β/d, from which the claim follows
immediately.

So now, given i linearly independent vectors, let E be the
event that we draw a vector not in their span. Under the
uniform distribution PrT[E] ≥ 1 − 2i−d ≥ 1/2. Standard
bounds on the χ2-divergence give that√

Pr
S
[E](χ2 + 1) ≥ Pr

T
[E] ≥ 1/2

implying that PrS[E] ≥ 1
4(χ2+1) and so PrS[Ē] ≤

1 − 1
4(χ2+1) . It follows that the probability that among

the next t = 4(χ2 + 1) ln(d/β) draws, not a single
one lies outside the span of these i vectors is at most
(1− 1

4(χ2+1) )
t ≤ exp(− t

4(χ2+1) ) =
β/d as required.

Corollary B.3. Fix β > 0. Set k = log4/3(2/β). Under
the same notation as in Claim B.2 let S1, S2, ..., Sk be k
independently drawn batches from S s.t. each Si contains
at least n ≥ 32(χ2+1)d ln(2dk/β)

ϵ . Then w.p. ≥ 1− β it holds
that when we drawn from each Si a subsample S′

i where
each x ∈ Si is put in the subsample w.p. ϵ/4 independently
of all other examples, then all S′

i are linearly independent.

Proof. Straight-forward application of the Chernoff bound
gives that w.p.≥ 1− β/2 each of the k S′

i-s contains at least
ϵ/8|Si| many points. This suffices for us to apply Claim B.2
and have that w.p. ≥ 1− β/2 all S′

i are linearly independent.

Based on Corollary B.3 we can now apply the same PARITY
learning algorithm from Kasiviswanathan et al. (2008) on
the kn curator-agents just once and then test its correctness
over the N . This algorithm outputs for each S′

i either a⊥ or
a solution in the affine subspace that solves a system of equa-
tions over F2. But due to the linear independence of each
S′
i, this solution must be the indicating vector of the relevant

features of the true classifying function c∗S ∈ PARITY. It
follows that for each Si outputs the true classifying function
w.p.≥ 1/4; and so, w.p. ≥ 1 − β all Si return either ⊥ or
c∗S where at least one of the Si-s outputs the true classifier.
Note that the true classifier’s loss – under any distribution
S or T – must be 0. Using additional O(ϵ−2α−2) we can
test and see that indeed we have an hypothesis c ∈ PARTIY
which is of small loss.

C. Experimental Evaluation of Non-Private
Subsample-Test-Reweigh.

In this section, we show empirically that in another setting,
both the number of required iterations until convergence and
our sample complexity bounds are far greater than required.
We consider a setting where S is a simple spherical Gaussian
in d = 500-dimensions, S = N (0̄, Id) whereas for T we
picked an arbitrary set of k = 10 coordinates and set the
standard deviation on these k as σ = 0.02 whereas the
remaining d− k coordinates have standard deviation of 1,
i.e. T = N (0̄, Id−k ⊗ (0.01)2Ik). It is a matter of simple
calculation to show that χ2(T∥S) + 1 = ( 1

σ2(2−σ2) )
k/2 >

3 · 1015. Now, true hypothesis is a hyperplane separator
set on the k coordinates on which S and T have a different
variance, so that is classifies precisely α = 0.01 of the mass
of T as −1.

We applied the non-private version of our algorithm (Al-
gorithm 1). In the non-private version, in order to learn
in each iteration a hyperplane separator over a subsample
of examples from S we used SVM, where our optimiza-
tion goal is 1

2∥w∥
2 + C ·

∑
x max{0, 1 − ⟨w, x⟩} with

a very large C = 1030 (aiming to find an exact hyper-
plane as possible) over a subsample whose size is set to be
d+ln(0.05/T )

α . First, aiming to find the sample complexity
of the curator-agents that already yields an hypothesis of
error ≤ 2α, we ran our experiments with varying values
of n = {104, 2 · 104, ..., 8 · 104, 9 · 104}, repeating each
experiment t = 50 times. We observed that for n = 80, 000
we consistently return an hypothesis of small-loss. Re-
sults appear in Figure 1a. Then, for even larger values of
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(a) Loss on T: The loss on distribution T until convergence (in
samples 90K-140K) or (in samples 10K-80K) until arriving to early
stopping condition (the average loss on T in last 200 iterations not
improved in more 0.01 compared to the best average loss in the
previous 200 iterations).

(b) Iterations number: The iterations number until convergence
decreases with size of the sample.

(c) Loss on T along the run: the loss on T decreases with the
iterations.

Figure 1: Empirical Experiment Results

n = {9 · 104, 1 · 105, .., 1.4 · 105} we ran our experiment to
see at which iteration do we halt. For n = 80, 000 we halt
after ≈ 1300 iterations whereas for n = 140, 000 we halt
after T ≈ 1200; yielding the rather surprising result that T
isn’t greatly affected by the increasing sample complexity.
But regardless, this is very far below than the O(α−2)-upper
bound. Results appear in Figure 1b. In fact, looking at the
error of the resulting hypothesis along the run itself returns
roughly the same values, as seen in Figure 1c.

D. Experimental Evaluation of Private
Subsample-Test-Reweigh

In order to implement the private algorithm, we used another
example with bounded examples and hypotheses.

Similarly, to the previous experiment, we consider a set-
ting where S is a simple spherical Gaussian in d = 200-
dimensions, S = N (0̄, Id) whereas for T we picked an
arbitrary set of k = 6 coordinates and set the standard
deviation on these k as σ = 0.4 whereas the remain-
ing d − k coordinates have standard deviation of 1, i.e.
T = N (0̄, Id−k ⊗ (0.4)2Ik). It is a matter of simple calcu-
lation to show that χ2(T∥S) + 1 = ( 1

σ2(2−σ2) )
k/2 > 39.1.

However, we now set the true labeling function as one that
correlated to points with large importance sampling weight.
It is fairly simple to see that by looking at the k-coordinates
with smaller variance in T, any origin-centered ball has more
probability mass in T then in S. And so, our hypothesis class
is the set of origin-centered ellipses H = {w1, ..., wd, b ∈
[0, 1] :

∑d
i=1 wix

2
i ≤ b} where so that xi ∼ S and thus

ȳ ∼ χ2
k. The true hypothesis ℓ is the hyperplane separator

with w̄ = 0 · Id−k ⊗ 1 · Ik and b = σ2r0, where r0 is the
a numerically set threshold under which a PrX∼χ2

k
[X <

r0] = 0.3. Thus ℓ labels precisely 30% of the probability
mass of T as −1, whereas it labels a significantly smaller
fraction of S as −1.

As the curator-model learning algorithm we used the online
SGD as presented in Hazan (2016), after mapping each
example x ∈ Rd to the vector y ∈ Rd

+ where yi = x2
i

for each coordinate y. This allows us to use the Hinge-loss
function - L(y) = max{0, ℓ∗(y)(⟨w, y⟩−b)}. The learning
rate of the algorithm depends on a bounded diameter of the
hypothesis and Lipschitzness of the loss that upper-bound
the ∥ȳ∥. So we set a value B = 27.9 - the empirically the
max value of ∥ȳ∥ of 90% of the examples drawn from S, and
projected each example with norm > B onto this simplex:
{y ∈ Rd

+ : ∥y∥ ≤ B}. Therefore, including the additional
intercept coordinate, we get: ∥∇L(ȳ)∥2 ≤ B2 + 1, so we
can use the Lipschitz parameter of L =

√
B2 + 1. We also

verify that the diameter is lower than
√
d+ 1 by verifying

that σ ≤ 1/
√
r0.
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Non-privately, we run the online SGD with a maximum
of 104 iterations or until finding an exact hyperplane with
a loss of at most α = 0.01 with β = 10−6

/T . Aim-
ing to find the sample complexity of the curator-agents
for which we get an hypothesis of error ≤ 2α over
T, we ran our experiments with varying values of n =
{10K, 25K, 50K, 75K, 100K, 125K}, repeating each ex-
periment t = 50 times. Note that all these values of n are
below the worst-case bound (in our settings is 15 · 1012), we
consistently return a hypothesis of small-loss on T. Results
appear in Figure 2a. Again, we see that the number of MW-
iterations, T , isn’t greatly affected by the increasing sample
complexity, as seen in Figure 2c. Also in all values of n we
halt after ≈ 1000 iterations (Results appear in Figure 2b)
which is far below than the O(α−2)-upper bound.

In the private version of the algorithm we applied Algo-
rithm 4 with the private online SGD (Algorithm 3). The
settings of the non-private version required a vast amount of
memory because of the sample complexity bounds that are
pretty big even for moderate values of α and ϵ, so we had to
change some parameters and use fairly close distributions
S and T. The changes from the non-private settings are as
follows. We set the dimension to d = 8 and the number
of “closer” coordinates to k = 2, so S = N (0̄, (0.1)2Id)
whereas T = N (0̄, (0.1)2Id−k ⊗ (0.07)2Ik). (It is a mat-
ter of simple calculation to show that χ2(T∥S) + 1 =

(
σ4
S

σ2
T (2σ2

S−σ2
T )
)k/2 > 1.35, where σS , σT are the std in the

k coordinates of S and T respectively.) We also set r0 is a
threshold for 0.4 of the examples, i.e. PrX∼χ2

k
[X < r0] =

0.4. We set α = 0.08, and κ = α
4(χ2+1) , and used the

privacy parameters of ϵ = 0.5 and δ = 0.0001. Follow-
ing similar calculations to before we set the bound on our
hypothesis set’s diameter as B = 0.006 and the Lipschitz
value of L = 0.1.

We succeeded to get from the SGD a hypothesis whose loss
is lower than α = 0.08 with β = 10−6

/T after 50M itera-
tions. So we run SGD with R = 50M , R = 75M , and
R = 100M iterations, repeating each experiment t = 50
time, to see their influence of them on the required number
of MW-iterations. Our calculations lead to a sample com-
plexity of n = 324, 700, 000 which we used in all runs. We
can see (in Figure 3b) that the number of MW-iterations
decreases as the iteration of SGD is increasing. In addition,
the loss on T starts higher as the SGD iterations decrease
(Figure 3c). However, in all these runs MW algorithm con-
verged to 2α (Figure 3a).

Due to the sample size, we were not able to experiment thor-
oughly with the private version of our algorithm, alas, our
experiments do show that we succeed in implementing the
algorithm. Furthermore, we also experimented with a SGD
version which minimized the Lasso-regularized version of
our algorithm. This version converged in a single iteration —

(a) Loss on T: The loss on distribution T until convergence.

(b) Iterations number: The iterations number until the conver-
gence.

(c) Loss on T along the run: the loss on T decreases with the
iterations.

Figure 2: Empirical Experiment Results
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(a) Loss on T: The loss on distribution T until convergence.

(b) Iterations number: The MW iterations number until conver-
gence decreases as SGD iterations increases.

(c) Loss on T along the run: the loss on T decreases with the
iterations.

Figure 3: Empirical Experiment Results

namely, it found the true separating coordinates on S. This
is similar in spirit to the work of Avent et al. (2017) which
also used the curator-agents to find the coordinates of the
regression.


