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Abstract
Deep neural networks (DNNs) have revealed se-
vere vulnerability to adversarial perturbations,
beside empirical adversarial training for robust-
ness, the design of provably robust classifiers
attracts more and more attention. Randomized
smoothing methods provide the certified robust-
ness with agnostic architecture, which is fur-
ther extended to a provable robustness frame-
work using f-divergence. While these methods
cannot be applied to smoothing measures with
bounded support set such as uniform probabil-
ity measure due to the use of likelihood ratio
in their certification methods. In this paper, we
generalize the f -divergence-based framework to
a Wasserstein-distance-based and total-variation-
distance-based framework that is first able to an-
alyze robustness properties of bounded support
set smoothing measures both theoretically and
experimentally. By applying our methodology
to uniform probability measures with support set
lp(p = 1, 2,∞ and general) ball, we prove nega-
tive certified robustness properties with respect to
lq(q = 1, 2,∞) perturbations and present experi-
mental results on CIFAR-10 dataset with ResNet
to validate our theory. And it is also worth men-
tioning that our certification procedure only costs
constant computation time.

1. Introduction
Vulnerability to adversarial samples is a major obstacle that
various classifiers obtained by machine learning algorithms,
especially deep neural networks (DNNs), need to overcome
(Szegedy et al., 2013; Nguyen et al., 2015). For instance,
in computer vision applications, deliberately adding some
subtle perturbation δ that humans cannot perceive to the in-
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put image x will cause DNNs to give a wrong classification
output with high probability. Many empirical adversarial de-
fenses have been proposed, among which adversarial train-
ing (Madry et al., 2018) is the most effective one (Athalye
et al., 2018). However, it still faces stronger or adaptive at-
tacks to decrease its effectiveness to a certain degree (Croce
& Hein, 2020). This motivates research on certified robust-
ness: algorithms that are provably robust to the worst-case
attacks.

Some works propose algorithms to learn DNNs that are
provably robust against norm-bounded adversarial pertur-
bations by using some convex relaxation methods (Wong
et al., 2018; Wong & Kolter, 2018; Weng et al., 2018; Mir-
man et al., 2018; Wang et al., 2018; Singh et al., 2018;
Ryou et al., 2020; Zhang et al., 2018; Balunovic & Vechev,
2019; Xiao et al., 2018; Raghunathan et al., 2018; Dvi-
jotham et al., 2020b; Mirman et al., 2019; Dvijotham et al.,
2018a;b). However, these approaches are usually compu-
tationally expensive and require extensive knowledge of
classifier architecture.

Besides, randomized smoothing has received significant
attention in recent years for verifying the robustness of clas-
sifiers (Liu et al., 2018; Cao & Gong, 2017; Lecuyer et al.,
2019; Cohen et al., 2019; Salman et al., 2019; Zhai et al.,
2020). Based on this method, several papers have studied
which smoothing strategies perform better for specific lp
perturbations. Cohen et al. (2019) conclude that randomized
smoothing can be well understood for the l2 case by using
Gaussian probability measure for smoothing. And several
special cases of the conjecture have been proven for p < 2:
Li et al. (2018) show that l1 robustness can be achieved with
the Laplacian distribution, and Lee et al. (2019) show that
l0 robustness can be achieved with a discrete distribution.

Other papers start from the opposite perspective and focus
on studying under specific assumptions which perturbation
is provably difficult to handle and which smoothing meth-
ods are ineffective for particular disturbance. As for the
existence of a noise distribution that works for the case of
p > 2, Blum et al. (2020); Kumar et al. (2020) show hard-
ness results for random smoothing to achieve lp certified
robustness. And Yang et al. (2020) proved that the ”optimal”
smoothing distributions for any ”nice” norms have level sets
given by the norm’s Wulff Crystal.
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Notably, based on randomized smoothing strategy, Dvi-
jotham et al. (2020a) introduce a robustness framework
by utilizing convex relaxation technique for f -divergence.
Notice that the definition of f -divergence is related to the
likelihood ratio r(X) = ν(X)

ρ(X) , and r(X) is well-defined
only when the support set of ρ contains the support set of
ν. Thus, when the support set of reference measure ρ is
bounded, and ν takes even a small translation of ρ, the sup-
port set of ν will cross over the boundary of support set of ρ.
Therefore, the certification of smoothing probability mea-
sures with bounded support sets is beyond the discussion of
Dvijotham et al. (2020a)’s framework. In this paper, by us-
ing Wasserstein distance as well as total variation distance,
we provide a robustness certification framework that is first
able to analyze robustness properties of bounded support set
smoothing measures both theoretically and experimentally.
Our contributions are summarized as follows:

• We provide robustness certification results for
smoothed classifiers following the setting of Dvijotham
et al. (2020a)’s f -divergence-based framework. Here
we generalize their framework by taking into consider-
ation a relaxation from an intersection of Wasserstein-
distance-based and total-variation-distance-based balls
and derive a theoretical framework which is first able
to provide certification formulas for bounded support
set smoothing measures and hence able to verify ro-
bustness properties of bounded support set smoothing
measures by experiments.

• By applying our methodology to uniform probability
measures with l1 ball support set, we show theoretically
its bad performance for l2 and l∞ robustness certifica-
tion task in theorem 4.3; By applying our methodology
to uniform probability measures with l2 ball support
set, we obtain certified robustness properties with re-
spect to lq-perturbations in theorem 4.4 and theoreti-
cally predict its negative performance for lq(q > 2) ad-
versary; By applying our methodology to uniform prob-
ability measures with l∞ ball support set, we obtain
certified robustness properties with respect to l1, l2, l∞-
perturbations in theorem 4.5 and show theoretically its
poor performance for l2 and l∞ adversaries. Further-
more, we analyze the cases when smoothing measure
is taken as uniform probability measure with more
general support set lp ball and show the unavoidable
curse of dimension for the usage of such smoothing
measures.

• We present experimental results on CIFAR-10 dataset
with ResNet model to validate part of our theory about
uniform smoothing measures with l2 ball and l∞ ball
support set on l2 adversary and use Gaussian smooth-
ing measure as contrast. It is worth mentioning that our

certification procedure only costs constant computation
time.

2. Related Works
Certified Robustness for Conventional Networks. Many
recent works focus on certifying the robustness of learned
neural networks under any attack. Some works bounded
the certified radius of conventional neural networks layer
by layer by utilizing some convex relaxation methods,
including linear relaxation (Wong et al., 2018; Wong &
Kolter, 2018; Weng et al., 2018; Mirman et al., 2018; Wang
et al., 2018; Singh et al., 2018; Ryou et al., 2020; Zhang
et al., 2018; Balunovic & Vechev, 2019; Xiao et al., 2018),
semidefinite relaxation (Raghunathan et al., 2018; Dvi-
jotham et al., 2020b) and interval bound relaxation (IBP)
(Mirman et al., 2019; Dvijotham et al., 2018a;b). However,
such approaches encountered several drawbacks, such as
computationally expensive, incapability to deal with deep
and large models and loose bounds which results in unstable
training.

Randomized Smoothing. Randomized smoothing was first
proposed as a heuristic defense without any guarantees (Liu
et al., 2018; Cao & Gong, 2017). It followed that l1 and
l2 robustness guarantees for smoothing with Gaussian and
Laplace noise, respectively, was proposed by Lecuyer et al.
(2019) from a differential privacy perspective and a stronger
l2 robustness guarantees for Gaussian noise was proposed
by Li et al. (2018) based on information theory. Cohen et al.
(2019); Salman et al. (2019); Zhai et al. (2020) provided l2
robustness guarantees for Gaussian smoothed classifiers.

Curse of Dimensionality. Blum et al. (2020); Kumar et al.
(2020) show hardness results for randomized smoothing
to achieve certified robustness for lp(p > 2) perturbations.
Nevertheless, since these works provide hardness results
for every possible base classifier including those unusual
and even bizarre ones, hardness results given by these pa-
pers might be over-tight and attributed to taking into ac-
count classifiers that will never appear in real-world applica-
tions. From this perspective, the order of difficulty restricted
within the common classifiers subset still remains unre-
solved. Yang et al. (2020) proposed a theoretical framework
based on the norm’s Wulff Crystal and showed that random-
ized smoothing cannot achieve nontrivial certified accuracy
against perturbations of lp-norm Ω(min{1, d

1
p−

1
2 }) and per-

formed experiments comparing performance between Gaus-
sian, Laplace, Exponential, PowerLaw and Uniform smooth-
ing distribution for l1, l2, l∞ adversary.

F -divergence-based Framework. Notably, based on ran-
domized smoothing strategy, Dvijotham et al. (2020a) intro-
duce a provable robustness framework using f -divergence
as their convex relaxation technique. However, due to the
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use of likelihood ratio in their certification methods, the
framework cannot be applied to smoothing measures with
bounded support sets such as uniform probability measures.
Another related work is Zhang et al. (2020), which propose
a general framework of adversarial certification from a uni-
fied functional optimization perspective. In this paper, we
introduce a framework that is able to deal with robustness
properties of arbitrary smoothing measures, including those
with bounded support set, by using Wasserstein distance as
well as total variation distance.

3. Problem Setting
Given a binary base classifier h : Rd → Y = {±1} and
smoothing probability measure µ, the randomly smoothed
classifier hµ(x) is defined as follows.

Definition 1 (smoothed classifier, smoothing measure). The
smoothed version of a base binary classifier h producing
labels in set Y = {±1} is defined as

hµ(x) = arg max
y∈Y

PX∼x+µ[h(X) = y],

where µ ∈ P(X ) is called smoothing measure.

Another way to understand this definition is to say that
the smoothed classifier first scores point x as hµ,y(x) =
PX∼x+µ[h(X) = y] for each specific class y ∈ Y and then
outputs the class y∗ with the highest score. We want to
study the robustness of the smoothed classifier hµ against
adversarial perturbations of size at most ε with respect to
a given norm ‖ · ‖q. The question that whether a bounded
lq norm adversarial attack on a fixed input x satisfying
hµ(x) = +1 is successful or not can be formulated as
solving the optimization problem below:

min
‖x′−x‖q≤ε

PX∼x′+µ[h(X) = +1].

The attack is successful if and only if the minimum value is
smaller than 1

2 . Since we know little about the information
of the black-box classifier h, we follow the approach intro-
duced in Dvijotham et al. (2020a): rather than studying the
adversarial attack in the input space X , we study it in the
space of probability measures defined on input space P(X ),

min
‖x′−x‖q≤ε

PX∼x′+µ[h(X) = +1]

= min
ν∈Dx,ε,q

PX∼ν [h(X) = +1],

where Dx,ε,q := {x′ + µ : ‖x − x′‖q ≤ ε} represents
an lq-norm-based constraint set of radius ε for smoothing
measure µ centered at a particular sample point x. Then,
we follow the full-information robust certification frame-
work established in Dvijotham et al. (2020a) and analyze the
generalization of binary classifier h, which they called spec-
ification and denote it as φ : X ⊆ Rd → Z ⊆ R. Besides,

we define reference probability measure ρ as x + µ and a
collection of perturbed probability measures Dρ ⊆ P(X ),
where Dρ means that it is related to ρ. Checking whether a
given specification φ is robustly certified at ρ with respect
to Dρ or not is equivalent to estimating the optimal value of
following optimization problem is non-negative or not:

OPT (φ,Dρ) := min
ν∈Dρ

EX∼ν [φ(X)].

And certifying lp robustness on input x with output of
smoothed classifier hµ(x) = +1 is equivalent to verify
whether OPT (h, x+ µ,Dx,ε,q) ≥ 0 or not.

4. Certification Procedures
Since the set of measures Dx,ε,q constraint in optimization
problem OPT (h, x+ µ,Dx,ε,q) is intractable to deal with,
we consider relaxations of this by using Wasserstein distance
as well as total variation distance constraints between ν and
x + µ, i.e. Dx,ε,q ⊆ {ν : Wp(x + µ, ν) ≤ δ} := Dx,δ,p
which represents Wp-distance-based constraint set of radius
δ for smoothing measure µ centered at sample point x and
D ⊆ {ν : TV (x + µ, ν) ≤ ξ} := Dx,ξ which represents
TV-distance-based constraint set of radius ξ for smoothing
measure µ centered at sample point x. Combining the two
relaxations, we know Dx,ε,q ⊆ Dx,δ,p ∩ Dx,ξ and therefore

OPT (h, x+ µ,Dx,ε,q) ≥ OPT (h, x+ µ,Dx,δ,p ∩ Dx,ξ).

Thus, for a fixed input x, it suffices to consider the Wasser-
stein distance and total variation distance relaxed problem
and verify whether OPT (h, x + µ,Dx,δ,p ∩ Dx,ξ) ≥ 0 or
not. The analysis of this problem can be divided into three
parts: (1) Compute the Wasserstein distance relaxation mea-
sure set Dx,δ,p. And we obtain an δ for general probability
measure in section 4.1. (2) Compute the total variation dis-
tance relaxation measure set Dx,ξ. And we obtain several
ξ for Gaussian probability measure and simple examples
of uniform probability measure with l1, l2, l∞ and general
lp ball support set in section 4.2 for better understanding
of our framework; (3) Compute the Lagrange function as
well as dual problem of the relaxed optimization problem
OPT (h, x+µ,Dx,δ,p∩Dx,ξ) and consequently obtain certi-
fication formulas for Gaussian smoothing measure, uniform
smoothing measure with l2, l∞ ball support sets in table 1.
The details are discussed in the following three sections.

4.1. Relaxation Using Wasserstein Distance

In this section, we show the following relaxation from norm-
based constraint sets into Wasserstein-distance-based con-
straint sets for general smoothing measures as well as Gaus-
sian smoothing measure. For simplicity, we denote Wasser-
stein distance as W distance and denote Wasserstein distance
with specified parameter p as Wp distance. The main idea
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of this subsection can be formulated as follows:

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}
⊆{ν : Wp(x+ µ, ν) ≤ δ} = Dx,δ,p.

Note the difference of definition between Dx,ε,q and Dx,δ,p
that q is the norm of adversary and p is the parameter of
Wasserstein distance, while ε is the magnitude of lq adver-
sary and δ is the radius of Wasserstein relaxation set. We
want to find a δ as small as possible, which is related to
ε, q, p and satisfies the above inclusion relation.

4.1.1. GENERAL PROBABILITY MEASURE

Here, we want to find a δq(ε) such that

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}
⊆{ν : Wp(x+ µ, ν) ≤ δq(ε)}
=Dx,δq(ε),p for all µ ∈ P(X ).

Theorem 4.1. For all x ∈ Rd, ε > 0, q > 0, norm-
based constraint set Dx,ε,q can be relaxed into W-distance-
based constraint set Dx,δq(ε),p with radius δq(ε) =

max{ε, εd
1
2−

1
q }.

And this relaxation radius max{ε, εd
1
2−

1
q } works for any

Wasserstein distance parameter p > 0 as well as any
smoothing measure µ.

Note that for lq(q ≤ 2) adversarial perturbations, the relaxed
radius avoids the influence of dimension d, whereas for
lq(q > 2) adversarial perturbations, as q increases, 1

2 −
1
q in-

creases from 0 to 1
2 correspondingly. The fact that the radius

of Wq-distance constraint set grows with order Θ(d
1
2−

1
q )

provides us with an intuition that it is increasingly harder to
bound Dx,ε,q with larger q, therefore, W-distance-relaxation
works better for lq(q ≤ 2) norm perturbation. And this
relaxation radius is tight for W2 distance and Gaussian
smoothing measures which is proved in the appendix E
and therefore shows that W2-distance-relaxation works well
for Gaussian smoothing measure.

4.2. Relaxation Using Total Variation Distance

In this section, we show the following relaxation from norm-
based constraint sets into total-variation-distance-based con-
straint sets for Gaussian and uniform smoothing measures.
For simplicity, we denote total variation distance as TV dis-
tance. The main idea of this subsection can be formulated
as follows:

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}
⊆{ν : TV (x+ µ, ν) ≤ ξ} = Dx,ξ.

Note the difference of definition between Dx,ε,q and Dx,ξ
that ε is the norm of lq adversary and ξ is the radius of total

variation distance relaxation set. We want to find a ξ as
small as possible, which is related to ε, q and satisfies the
above inclusion relation.

4.2.1. GAUSSIAN PROBABILITY MEASURE

Here, we want to find a ξ(ε) for Gaussian measure µ =
N (0, σ2I) such that

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}
⊆{ν : TV (x+ µ, ν) ≤ ξ(ε)} = Dx,ξ(ε).

The magnitude of ξ(ε) is given by the following theorem.

Theorem 4.2. For Gaussian probability measure µ =
N (0, σ2I) on Euclidean space Rd and for all x ∈ Rd, ε >
0, q > 0, norm-based constraint set Dx,ε,q can be relaxed
into TV-distance-based constraint set Dx,ξ(ε) with radius

ξ(ε) = 2G
(max{ε,εd

1
2
− 1
q }

2σ

)
− 1 where G is the cumula-

tive distribution function for standard normal distribution
N (0, 1).

This theorem theoretically shows that TV distance relaxation
works effectively for lq(q ≤ 2) perturbation due to the
irrelevance of the radius to dimension d and increasingly
bad for lq(q > 2) perturbation because of the dependence
of the radius to dimension d as order Θ(d

1
2−

1
q ).

4.2.2. UNIFORM PROBABILITY MEASURE

Here, we want to find a ξ(ε) for uniform measure µ =
U(K), where K is a specific convex compact set in Rd,
and U(K) is a uniform probability measure supported on
K ⊆ Rd with density function fK(x) = 1

Vol(K)Ix∈K such
that

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}
⊆{ν : TV (x+ µ, ν) ≤ ξ(ε)} = Dx,ξ(ε).

In this paper, we mainly focus on the case when K is lp-
norm ball centered at original pointO with radius r. We give
following theorems about special cases when p = 1, 2,∞.

Theorem 4.3. When K is an l1 norm ball centered at O
with radius r in Rd and for all x ∈ Rd, ε > 0, q > 0, for
uniform probability measure U(K) on Euclidean space Rd,
we have

Dx,ε,q \
{
ν : TV (x+ µ, ν) ≤ 1− ξ′

}
6= ∅

for all q > 1 and arbitrarily small ξ′ > 0,

when ε ≥ 2rd
1
q−1.

Note that ε ≥ 2r√
d

for q = 2, which decays with order

Θ(d−
1
2 ), and ε ≥ 2r

d for q = ∞, which decays with order
Θ(d−1), this theorem theoretically shows that for uniform
smoothing measures with l1 ball support set, total variation
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distance fails to relax measure set Dx,ε,q effectively when
q = 2,∞. And this will consequently lead to bad perfor-
mance for l2 and l∞ robustness certification task, which can
be seen from the following section discussing the impor-
tance of TV-distance-based relaxation radius.

Theorem 4.4. When K is an l2 (Euclidean) ball centered
at O with radius r in Rd, for uniform probability measure
U(K) on Euclidean space Rd and for all x ∈ Rd, ε >
0, q > 0, when ε > min{2r, 2rd

1
q−

1
2 }, norm-based con-

straint setDx,ε,q failed to be relaxed into TV-distance-based
constraint set which can be formulated as

Dx,ε,q \
{
ν : TV (x+ µ, ν) ≤ 1− ξ′

}
6= ∅

for all q > 1 and arbitrarily small ξ′ > 0.

And when ε ≤ min{2r, 2rd
1
q−

1
2 }, norm-based constraint

set Dx,ε,q can be relaxed into valid TV-distance-based con-
straint set Dx,ξ(ε) with radius

ξ(ε) = 1−
∫ arccos

(
max{ε,εd1/2−1/q}

2r

)
0

sinn(t)dt
/∫ π

2

0

sinn(t)dt.

This theorem shows that for uniform smoothing measures
with l2 ball support set, when q ≤ 2, relaxation radius is
independent of dimension d, whereas when q > 2 relax-
ation radius starts to be bound up with dimension d and the
impact of d grows as q increases. To put it another way,
total variation distance relaxation performs well for uniform
smoothing measures with l2 ball support set when q ≤ 2
and increasingly poor when q > 2.

Theorem 4.5. WhenK is an l∞ cube centered atO with ra-
dius r, for uniform probability measure U(K) on Euclidean
space Rd and for all x ∈ Rd, ε > 0, q > 0, when ε > 2r,
norm-based constraint set Dx,ε,q failed to be relaxed into
TV-distance-based constraint set which can be formulated
as

Dx,ε,q \
{
ν : TV (x+ µ, ν) ≤ 1− ξ′

}
6= ∅

for all q > 0 and arbitrarily small ξ′ > 0.

And when ε ≤ 2r, norm-based constraint set Dx,ε,q can be
relaxed into valid TV-distance-based constraint set Dx,ξ(ε).

When q = 1, ξ(ε) can be taken as ε
2r .

When q = 2, ξ(ε) can be taken as 1 −
(
1 − ε

2d
1
2 r

)d
=

1 − e− ε
2r d

1
2 when 0 < ε ≤ 2tnr where

√
n−1
n ≤ tn < 1

and tn approaches 1 at an exponential rate.

When 2tnr < ε < 2r, ξ(ε) can be taken as 1 −(
d−1+

√
d( ε2r )2−d+1

d

)d−1( 1−
√
d( ε2r )2−d+1

d

)
.

When q =∞, ξ(ε) can be taken as 1−
(
1− ε

2r

)d
.

As for uniform smoothing measures with l∞ cube support
set, this theorem shows that the performance towards l1
perturbation turns out to be fine since TV distance relax-
ation radius ε

2r has nothing to do with dimension d and the
dimensional curse is avoided. However, in this case, TV
distance relaxation shows incapability to cope with l2 and
l∞ perturbation in some extent due to the rate of increasing

radius tending to 1 as Θ(ed
1
2 ) and Θ(ed).

After discussing the special cases when K is an l∞ cube or
an l2 Euclidean ball, we then consider the general case when
K is an lp ball centered at the original point with radius r
and give a lower bound for TV distance relaxation radius in
the following theorem.

Theorem 4.6. When K is an lp ball centered at O with ra-
dius r, for uniform probability measure U(K) on Euclidean
space Rd. Assume for all x ∈ Rd, ε > 0, q > 0, norm-based
constraint set Dx,ε,q can be relaxed into TV-distance-based
constraint set Dx,ξ(ε), then

ξ(ε) ≥ 2

∫ εd
1
p

4r(pe)
1
p Γ(1+ 1

p
)

0

exp

(
1

p
−e
(

2xΓ
(

1+
1

p

))p)
dx,

for all perturbation norm parameter q > 0 with high proba-
bility when d is sufficiently large.

A way to interpret this theorem is that as p increases and
K correspondingly translates from l1 norm cross-polytope
into l∞ norm cube, the dependence of integral upper limit

εd
1
p

4r(pe)
1
p Γ(1+ 1

p )
on dimension d is gradually reduced, which

theoretically shows by taking all kinds of lq perturba-
tions into consideration, when p > q, in average scale
U
(
Bp(O, r)

)
tends to perform better than U

(
Bq(O, r)

)
where Bp(O, r) denotes an lp ball in Rd centered at O
with radius r. From another perspective, we consider a
ball with a fixed radius r. As the dimension d of the base
Euclidean space increases, fixed proportion of mass con-
centrates within a slab of width Θ(d−

1
p ). Thus, intuitively,

it is increasingly difficult to bound the perturbed measure
set Dx,ε,q by using TV distance and certify as dimension
d enlarge and therefore the curse of dimension is unavoid-
able when we use uniform smoothing measure U(K) with
bounded support set.

4.3. Verifying Full-Information Robust Certification

Based on the above analysis, in this section, we are now pre-
pared to compute the Lagrange function and dual problem of
the relaxed optimization problem OPT (φ, x+ µ,Dx,δ,p ∩
Dx,ξ). Here we mainly focus on the case when reference
measure ρ = x + µ and perturbed probability measure ν
are absolutely continuous w.r.t. Lebesgue measure λ on Rd,
i.e., ρ, ν � λ and discard uncommon cases when ρ, ν are
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Figure 1. Graph of density function f(x) = exp
(
1
p
− e( 2

p
Γ( 1

p
))pxp

)
when p = 2, 4, 6 from left to right

discrete, single or mixed w.r.t. λ. Since ρ, ν � λ, assume
the density function of ρ and ν w.r.t. Lebesgue measure λ
are f(x) and g(x), x ∈ Rd respectively. Instead of using
likelihood ratio r(x), we consider the difference between
g(x) and f(x) and define it as q(x) := g(x) − f(x). The
objective function EX∼ν [φ(X)] of optimization problem
OPT (φ, ρ,D) can be rewritten in terms of difference func-
tion q(x). And we give the theorems below.

Theorem 4.7 (Wp distance relaxation with 0 < p ≤ 1). The
relaxed optimization problemOPT (φ, x+µ,Dx,δ,p∩Dx,ξ)
is equivalent to the convex optimization problem with only
one functional variable as below

inf
q∈L1(X )

∫
X
φ(x)q(x)dx+ EX∼x+µ[φ(X)],

s.t. sup
‖f‖L,p≤1

∫
f(x)q(x)dx ≤ δ,

∫
|q(x)|dx ≤ 2ξ,

(1)

where ‖f‖L,p := supx,y∈Rd,x 6=y
|f(x)−f(y)|
‖x−y‖p2

.

Theorem 4.8 (Wp distance relaxation with p > 1). When
smoothing measure µ possesses a convex compact sup-
port set K and R := supy∈K ‖y‖2, R∗ := ‖x‖2 +

R + max{ε, εd
1
2−

1
q }, the relaxed optimization problem

OPT (φ, x+ µ,Dx,δ,p ∩ Dx,ξ) can be further relaxed into
the convex optimization problem with only one functional
variable below

inf
q∈L1(X )

∫
X
φ(x)q(x)dx+ EX∼x+µ[φ(X)],

s.t. sup
‖f‖L≤p(2R∗)p−1

∫
f(x)q(x)dx ≤ δp + (p− 1)(2R∗)p−1,∫

|q(x)|dx ≤ 2ξ,

(2)
where ‖f‖L := supx,y∈Rd,x 6=y

|f(x)−f(y)|
‖x−y‖2 .

Theorem 4.9. The Lagrange function of optimization prob-
lem in (1) and (2) is

L(λ) = EX∼x+µ[φ(X)]− 2ξ − λC, (3)

where λ ≥ 0 is the dual variable w.r.t. con-
straint sup‖f‖L≤1

∫
f(x)q(x)dx ≤ δ or constraint

sup‖f‖L≤p(2R∗)p−1

∫
f(x)q(x)dx ≤ δp+(p−1)(2R∗)p−1

and C := δ when 0 < p ≤ 1 whereas C := δp + (p −
1)(2R∗)p−1 when p > 1.

Using the duality result, we know the optimal value in (1)
can be obtained by computing

max
λ≥0

EX∼x+µ[φ(X)]−ξ−λC = EX∼x+µ[φ(X)]−ξ, (4)

which is only related to the radius ξ of TV distance relax-
ation set. We can see from this formula the significance of
TV distance relaxation radius. By plugging the TV distance
relaxation radius given in theorem 4.4, 4.5 and 4.2 in dual
optimization problem, we obtain the certification objective
in Table 1 and we return certified for lp norm perturbation
with magnitude ε if the objective function has non-negative
value.

4.4. Relationship with Previous Work

The significance of this paper can be evaluated from two as-
pects. For the papers about curses of dimensionality (Blum
et al., 2020; Kumar et al., 2020), they give no certification
procedure and only hardness results which works for ev-
ery measurable base classifier. However, the classifiers in
real-world applications are greatly fewer than measurable
ones, which will severely weaken their hardness results. Un-
der such consideration, we provide certification formulas
related to base classifier, and in this way, a more practical
result can be obtained both theoretically and experimen-
tally. For the papers about the performance of different
smoothing measure w.r.t. l1, l2, l∞, lq adversary (Li et al.,
2018; Cohen et al., 2019; Lee et al., 2019; Dvijotham et al.,
2020a), the main contribution of our framework is the ca-
pability of obtaining certification formula for smoothing
measures with bounded support sets, including not only the
simplest uniform measures but also the domain-truncated
and normalized version of any probability measure µ.

Besides, by applying our methodology to Gaussian proba-
bility measure, we miraculously obtain the same certified
robustness properties provided in (Dvijotham et al., 2020a)
using as Hockey-stick divergence with β = 1.
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Table 1. Certification objectives and prerequisites.
Smoothing
Measure Perturbation Certification Objective Prerequisite

U(B2(O, r)) lq(q ≤ 2) EX∼x+µ[φ(X)]− 2
(

1−
∫ arccos( ε

2r
)

0 sinn(t)dt∫ π
2

0 sinn(t)dt

)
ε ≤ 2r

lq(q > 2) EX∼x+µ[φ(X)]− 2

(
1−

∫ arccos( εd
1/2−1/q

2r
)

0 sinn(t)dt∫ π
2

0 sinn(t)dt

)
ε ≤ 2rd

1
q−

1
2

U(B∞(O, r)) l1 EX∼x+µ[φ(X)]− ε
r ε ≤ 2r

l2 EX∼x+µ[φ(X)]− 2
(

1−
(
1− ε

2d
1
2 r

)d)
ε ≤ 2tnr

l∞ EX∼x+µ[φ(X)]− 2
(

1−
(
1− ε

2r

)d)
ε ≤ 2r

N (0, σ2I) lq(q ≤ 2) EX∼x+µ[φ(X)]− 2
(
2G( ε

2σ )− 1
)

-

lq(q > 2) EX∼x+µ[φ(X)]− 2
(
2G( εd

1
2
− 1
q

2σ )− 1
)

-

Theorem 4.10. When smoothing measure is taken as Gaus-
sian probability measure, the certificate EX∼x+µ[φ(X)]−
2
(
2G( ε

2σ )− 1
)

given in our paper is equivalent to the cer-
tificate εHS,1 ≤ [ θa−θb2 ]+ given in paper (Dvijotham et al.,
2020a).

Therefore, when applying both methodologies to Gaussian
measure, the formulas obtained are theoretically equivalent.
Despite the similarity in analyzing Gaussian measure, our
work covers cases with bounded support sets, which is our
main contribution.

Then, we discuss the relation with Yang et al. (2020)’s work.
As for l1 adversary, note that for uniform distribution with
l∞ support set, TV-distance-relaxation radius for l1 adver-
sary has nothing to do with the data dimension d and the
certification formula theoretically turns out to be fine, which
meets the conclusion in the paper Yang et al. (2020) proves
that the Wulff Crystal for the l1 ball is a cube and the experi-
ment result in figure 1 in their paper that uniform smoothing
distribution performs best among the distribution family
they list. As for l∞ adversary, the paper Yang et al. (2020)
proves that the Wulff Crystal of l∞ norm is the zonotope of
vectors {±1}d, which is a highly complex polytope hard to
sample from and indicates the hardness of dealing with l∞
adversary. And our paper shows that l∞ adversary magni-
tude ε we can verify must have ε ≤ 2rd−1 for smoothing
measure U(B1(O, r)) and ε ≤ 2rd−

1
2 for smoothing mea-

sure U(B2(O, r)), which decay at a polynomial rate w.r.t.
data dimension d.

5. Experiments
For our adversarial robustness certification task, we choose
the test set certified accuracy as our metric of interest, which
is defined as the fraction of test set that can be correctly clas-
sified with a prediction that is also certifiably robust within
an lq ball of an assigned radius r. To pass the robustness

certification at data point x, the smoothed classification re-
sults of all points within an lq ball centered at the test point
x must be consistent. In our experiment, we mainly focus
on l2 adversary in order to validate part of our theory about
the negative certified robustness properties of smoothing
measure U(B2(O, r)) and U(B∞(O, r)) in contrast with
Gaussian smoothing measure N (0, σ2I).

Algorithm 1 Certification Process
1: Input: T : test set, target(x): true class of image
x, f(x): base classifier, D(x): smoothing distri-
bution, n: sample amount, ε: perturbation radius,
cert(scorea, scoreb, ε): certification object

2: Output: acc: test set certified accuracy
3: certifiedCount← 0,allCount← 0
4: for all x ∈ T do
5: S ← {n samples from D(x)}
6: countc ← 0 for every class c
7: for all x′ ∈ S do
8: countf(x′) ← countf(x′) + 1
9: end for

10: scorec ← countc/card(S) for every class c
11: predict← arg maxc{scorec}
12: if predict = target(x) ∧ cert(scorec, 1 − scorec, ε)

then
13: certifiedCount← certifiedCount + 1
14: end if
15: allCount← allCount + 1
16: end for
17: return acc← certifiedCount/allCount

The certification procedure on the test set with assigned l2
perturbation radius is shown in the following Algorithm 1.
Note that the cert(scorea, 1 − scorea, ε) function returns
true if the certification objective is non-negative, otherwise
it returns false, and the objective is calculated using formu-
las in Table 1 with l2 perturbation smoothing distribution
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U(B2(O, r)),U(B∞(O, r)),N (0, σ2I). Since our frame-
work directly provides certification objective and involve no
iteration and optimization process, our certification proce-
dure only costs constant computation time, which is much
faster than Dvijotham et al. (2020a)’s f -divergence-based
framework.

We can achieve identical results with Dvijotham et al.
(2020a)’s f -divergence-based one w.r.t. Gaussian distribu-
tion under specific parameter settings, which is theoretically
proved in Section 4.4. However, there is no previous work
experimentally examining the properties of uniform smooth-
ing measure, so we mainly focus on comparing Gaussian,
l2, l∞ ball support set uniform distribution all utilizing our
framework.

5.1. Setups

We choose CIFAR-10 as our main dataset and ResNet-110
as our base classifier. We first train the base classifier on the
50000 image training set without smoothing and achieve
89.6% prediction accuracy on the 10000 image test set.
Then we run the certification process on the test set with
increasing perturbation radius r, test out smoothing distri-
butions as mentioned above and change the parameters σ, r
to further illustrate the performance of these distributions.
We try increasing the smoothing sample amount to exam-
ine the trade-off between computational cost and accuracy
improvement. We also run a brief experiment on MNIST
dataset to further validate our results, as shown in the left
part of Figure 2. The result has similar characteristics with
higher general certification rate than the result on CIFAR10
as shown in Figure 3, which will be described in detail in
the following section. All training, testing, and certification
are run on an NVIDIA RTX 3090.

5.2. Implementation of previous method

Before testing out our own method, we try implementing
the previous method introduced by Dvijotham et al. (2020a),
which uses iteration method to calculate the certification
criteria with Hockey-stick divergence. Since this paper
doesn’t provide codes, we use an implementation from
github (https://github.com/Unispac/F-divergence) as a sub-
ject of comparison. We use default settings with Gaussian
distribution N(x, 0.05) as smoothing distribution and sam-
ple amount n=100, and the optimizing iteration step is set
to 20 or 50 to examine its effect on certification accuracy
and computational cost.

The result is shown in right part of Figure 2. Our method
achieves better certification rate while costing less time. It
takes 10mins to run through 10000 samples test dataset
with our method while it takes 90 mins for Dvijotham et al.
(2020a)’s method with 20 optimizing steps and 3 hours with
50 steps.

Figure 2. Left: our method’s performance on MNIST dataset uti-
lizing l2 distribution. Right: result of Dvijotham et al. (2020a)’s
method with different optimizing steps on CIFAR10 dataset and
ours using W-distance.

5.3. Experiments for Different σ, r

We first implement our framework with Gaussian smoothing
measureN (x, σ2I) where σ = 0.025, 0.05, 0.1 and sample
amount n=100. As shown in Figure 3, there is a neat cut-off
for each setting where the perturbation gets too big, and no
data can pass the certification at this point. By changing the
variance of the smoothing distribution, we observe a clear
trend that the increase of variance leads to a drop of initial
certification accuracy but also stronger robustness that can
endure more significant perturbation; the decrease of the
variance leads to the opposite change accordingly.

Next, for smoothing process, we substitute Gaussian distri-
bution with l2, l∞ norm ball support set uniform distribu-
tion, with r = 0.025, 0.05, 0.1. In Figure 3, both experi-
ment results show almost identical characteristics as with
Gaussian distribution, but they bring along a critical issue:
the mismatch of the perturbation magnitude. Comparing
the perturbation radius at the cut-off point, shown in the
x-coordinate of Figure 3, we find that the radius of Gaussian
distribution is about 50 times larger than that of two uniform
distributions.

We assume that this phenomenon is caused by the decreasing
intersection of the support sets of smoothing distributions
before and after perturbation. For Gaussian distribution,
there is always an intersection no matter how large the per-
turbation radius gets, while for uniform distributions, the
support sets will separate quickly and become disjoint under
perturbation. Furthermore, the dimension of a 32× 32× 3
image is 3072, the square root of which is around 55.4,
very close to the cut-off radius’s 50 times ratio difference.
Such correlation may trace to the involvement of dimension
when calculating the finite support set volume of l2 and l∞
uniform distribution, while the support set volume of Gaus-
sian distribution is infinitely large. We conjecture that such
deficiency is inherent when using the uniform distribution,
which can hardly be further improved.

Although methods utilizing such distributions don’t achieve
satisfying results, our intention to extend the choice of
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Figure 3. Results of different smoothing distributions using our W-distance and TV-distance based framework. ’Sigma’ refers to parameter
σ for Gaussian distribution and parameter r for uniform distribution.

Figure 4. Results on sample amounts with different smoothing distributions using our W-distance and TV-distance based framework.

smoothing distribution is still well realized. Our frame-
work can accommodate more types of smoothing measures,
and as shown in the following section, our derivation results
can provide great efficiency improvement.

5.4. Experiments for Different Sampling Amounts

When calculating scores for each class in the smoothing
process, as we cannot classify all possible data points, we
shall only acquire approximate scores by sampling from the
smoothed data distribution. Thus such scores may differ
in multiple runs due to the randomness of sampling. How-
ever, through our experiments, we find that with a certain
amount of samples, we can already obtain sufficiently ac-
curate scores, which cannot be significantly improved by
increasing the sample amount.

We set the sample amount n to 100, 1000, and 10000 with
three different smoothing distributions, and they all obtain
similar results: it takes only 10 minutes to run through the
10000 images test set with 100 samples for each image,
30 minutes with 1000 samples and 3 hours with excessive
10000 samples. It is ten times faster than the 3 hours run-
ning time with the iteration-based method in Dvijotham et al.
(2020a) using just 100 samples. It is also worth noting in
Figure 4 that by increasing the sample amount, no signifi-
cant improvement is observed with Gaussian distribution.
However, there is minor progress made with both uniform
distributions when the samples are getting overly abundant.
We assume that the extra samples make up for the lack of
intersections of smoothing uniform distributions before and
after the perturbation, while Gaussian distribution has no
such issues.

6. Conclusion
We have introduced a framework based on Wasserstein dis-
tance and total variation distance relaxation as well as La-
grange duality that is first able to analyze robustness proper-
ties of bounded support set smoothing measures both theo-
retically and experimentally. And by applying our methodol-
ogy to the simplest bounded support set probability measure
example: U(Bp(O, r)), we prove their negative certified
robustness properties w.r.t. lq adversary and present experi-
mental results correspondingly.
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A. Notation
We use upper case letters such as K to denote a subset of Rd and Bp(O, r) to denote a lp norm ball subset of Rd centered at
original point and with radius r; We use P(X ) to denote the set of all probability measure on measurable space (X ,F) and
D to denote a subset of P(X ), and in our work X can be seen as a compact set K in Rd or more generally Rd. We use Greek
alphabets µ, ν, ρ to denote probability measure in P(X ); We use x+ µ to denote a new version of probability measure µ
with an displacement of x ∈ Rd; We use upper case letter X to denote a random variable following the Radon-Nikodym
derivative of probability measure µ, x+ µ, ν or ρ w.r.t. Lebesgue measure λ; We use Wp(µ, ν) and TV (µ, ν) to denote the
Wp distance and total variation distance between probability measures µ and ν; We use I to denote an indicator function
and Vol(·) to denote the volume w.r.t. Lebesgue measure on Rd. And note that throughout the paper, parameter q refer to lq
adversary and parameter p refer to lp norm ball support set smoothing measure; ε refer to the perturbation magnitude of lq
adversary.

B. Optimal Transport Theory
Assume µ, ν ∈ P(Rd). Besides, assume µ, ν are absolutely continuous w.r.t. Lebesgue measure λ and let density functions
be f and g.

Definition 2 (Push Forward). If T : Rd → Rd, then the distribution of T (X) is called the push-forward of P , denoted by
T#P . In other words,

T#P (A) = P (T (x) ∈ A) = P (T−1(A))

Definition 3 (Optimal Distance, Optimal Transport Map). The Monge version of the optimal transport distance is

inf
T :T#P=Q

∫
‖x− T (x)‖pdP (x)

A minimizer T ∗, if one exists, is called the optimal transport map.

Definition 4 (Wasserstein Distance, Earth Mover Distance, Optimal Transport Plan). Let Γ(µ, ν) denote all joint distribu-
tions γ for (X,Y ) that have marginals µ and ν. Then the Wasserstein distance is

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
‖x− y‖p2dγ(x, y)

) 1
p

where p ≥ 1 (5)

When p = 1, this is also called the Earth Mover distance. The minimizer γ∗ (which does exist) is called the optimal transport
plan.

Lemma B.1 (Dual Formulation of Wasserstein Distance When p ≤ 1). It can be shown that

W p
p (µ, ν) = sup

ψ,φ

∫
ψ(y)dν(y)−

∫
φ(x)dµ(x)

where ψ(y)− φ(x) ≤ ‖x− y‖p. In the special case when p = 1, we have the very simple representation

W1(µ, ν) = sup
ϕ∈F1

∫
ϕ(x)dµ(x)−

∫
ϕ(x)dν(x)

= sup
ϕ∈F1

∫
ϕ(x)d(µ− ν)(x) = sup

ϕ∈F1

∫
ϕ(x)(f − g)(x)dx

(6)

where F1 denotes all maps from Rd to R such that |f(x)− f(y)| ≤ ‖x− y‖ for all x, y. In the case when 0 < p < 1, we
have similar simple representation

Wp(µ, ν) = sup
ϕ∈Fp

∫
ϕ(x)dµ(x)−

∫
ϕ(x)dν(x)

= sup
ϕ∈Fp

∫
ϕ(x)d(µ− ν)(x) = sup

ϕ∈Fp

∫
ϕ(x)(f − g)(x)dx

(7)

where Fp denotes all maps from Rd to R such that |f(x)− f(y)| ≤ ‖x− y‖p for all x, y.
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Lemma B.2 (Dual Formulation of Wasserstein Distance When 1 < p <∞). In the case when 1 < p <∞ and the support
sets of measure µ and ν are included in a convex compact set K. Define R = supx∈K ‖x‖2, then we have slightly different
dual formulation

Wp(µ, ν)

≥ sup
ϕ∈Lip(p(2R)p−1)

(∫
ϕ(y)d(ν − µ)(y)− (p− 1)(2R)p−1

) 1
p

= sup
ϕ∈Lip(p(2R)p−1)

(∫
ϕ(y)(g − f)(y)dy − (p− 1)(2R)p−1

) 1
p

(8)

where Lip(p(2R)p−1) denotes all maps f from Rd to R such that |f(x)− f(y)| ≤ p(2R)p−1‖x− y‖2 for all x, y ∈ K.

Definition 5 (Total Variation Distance). The total variation distance between two probability distribution µ and ν on Rd is
defined by

‖µ− ν‖TV = max
{
|µ(A)− ν(A)| : A ⊆ Rd

}
where Rd is the set of all Borel subsets.

Lemma B.3. Let µ and ν be two probability distributions on Rd and absolutely continuous w.r.t. Lebesgue measure λ.
Assume the density function of measure µ and ν w.r.t. λ are f(x) and g(x). Then,

‖µ− ν‖TV =
1

2

∫
Rd

∣∣f(x)− g(x)
∣∣dx

C. Proof of Lemma B.2
Recall the dual form of Wasserstein distance

W p
p (µ, ν) = sup

ψ,φ∈C(Rd)

∫
ψ(y)dν(y)−

∫
φ(x)dµ(x)

where ψ(y)− φ(x) ≤ ‖x− y‖p.

For simplicity of the proof, consider equivalent form

W p
p (µ, ν) = sup

ψ,φ∈C(Rd)

∫
ψ(y)dν(y) +

∫
φ(x)dµ(x)

where ψ(y)− φ(x) ≤ ‖x− y‖p. First, we introduce a theorem in (Thorpe, 2018)

Theorem C.1 (Existence of a Maximiser to the Dual Problem). Let µ ∈ P(X), ν ∈ P(Y ), where X and Y are polish, and
c : X × Y → [0,+∞). Assume that there exists cX ∈ L1(µ), cY ∈ L1(ν) such that c(x, y) ≤ cX(x) + cY (y) for µ-almost
every x ∈ X and ν-almost every y ∈ Y . In addition, assume that

M :=

∫
X

cX(x)dµ(x) +

∫
Y

cY (y)dν(y) <∞

Then there exists (ϕ,ψ) ∈ Φc = {(ϕ,ψ) ∈ L1(µ)×L1(ν) : ϕ(x) + ψ(y) ≤ c(x, y)} where the inequality is understood to
hold for µ-almost every x ∈ X and ν-almost every y ∈ Y such that

sup
Φc

J = J(ϕ,ψ)

where J is defined by J : L1(µ)×L1(ν)→ R, J(ϕ,ψ) =
∫
X
ϕdµ+

∫
Y
ψdν. Futhermore we can choose (ϕ,ψ) = (ηcc, ηc)

for some η ∈ L1(µ). For η : X → R̄, the c-transforms ηc, ηcc are defined by

ηc : Y → R̄, ηc(y) = inf
x∈X

(c(x, y)− η(x))

ηcc : Y → R̄, ηcc(y) = inf
x∈X

(c(x, y)− ηc(x))
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Lemma C.2. For a, b ∈ R and 1 ≤ p <∞,

|a+ b|p ≤ 2p−1(|a|p + |b|p)

Proof. First, it’s easy to verify the cases when either of a = 0, b = 0, p = 1 holds. Then, Wlog, assume a, b ∈ R+

|a+ b|p ≤ 2p−1(|a|p + |b|p)
⇐⇒ (a+ b)p ≤ 2p−1(ap + bp)

⇐⇒ 2p−1

(( a

a+ b

)p
+
( b

a+ b

)p)
≥ 1

⇐⇒ 2p−1[xp + (1− x)p] ≥ 1,∀x ∈ (0, 1)

where the last inequality is easy to verify.

In our case, c(x, y) = ‖x− y‖p ≤ (‖x‖+ ‖y‖)p ≤ 2p−1(‖x‖p + ‖y‖p) and the requirement that M <∞ is exactly the
condition that µ and ν have finite pth moments which is easy to verify by noting that supp(µ) = supp(ν) = K is compact
set in Rd. Then, according to the theorem, there exists η ∈ L1(µ) such that

W p
p (µ, ν) = sup

η∈L1(µ)

∫
ηc(y)dν(y) +

∫
ηcc(x)dµ(x)

Note that ηc possesses Lipschitz continuous property stated below

Lemma C.3. For η ∈ L1(K) where K ⊆ Rd is a convex compact set, then ηcp is a p(2R)p−1-Lipschitz function where
R := supx∈K ‖x‖ and cp(x, y) = ‖x− y‖p, i.e.,

‖ηcp(x)− ηcp(y)‖ ≤ p(2R)p−1‖x− y‖, x, y ∈ K

Proof.

|ηcp(x)− ηcp(y)|

=
∣∣∣ inf
z1∈K

(
‖x− z1‖p − η(z1)

)
− inf
z2∈K

(
‖y − z2‖p − η(z2)

)∣∣∣ (9)

=
∣∣∣ inf
z1∈K

sup
z2∈K

((
‖x− z1‖p − ‖y − z2‖p

)
−
(
η(z1)− η(z2)

))∣∣∣
≤ sup
z∈K

∣∣∣(‖x− z‖p − η(z)
)
−
(
‖y − z‖p − η(z)

)∣∣∣ (10)

= sup
z∈K

∥∥|x− z‖p − ‖y − z‖p∣∣
where 9 is due to the definition of c-transform; 10 is obtained by taking a specific value of z1 as z2. Note that K
is a compact set and

∥∥|x − z‖p − ‖y − z‖p
∣∣ is a continuous function w.r.t. z, then there exists a point z∗ such that∥∥|x− z∗‖p−‖y− z∗‖p∣∣ = supz∈K

∥∥|x− z‖p−‖y− z‖p∣∣. According to the first order condition, z∗ satisfies the equation
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below

∇z(‖x− z‖p − ‖y − z‖p)
=∇z‖x− z‖p −∇z‖y − z‖p

=∇z‖z − x‖p −∇z‖z − x‖p

=p‖z − x‖
p
2−1(z − x)> − p‖z − y‖

p
2−1(z − y)> = 0 (11)

=⇒‖z − x‖
p
2−1(z − x)> = ‖z − y‖

p
2−1(z − y)>

=⇒(‖z − x‖
p
2−1 − ‖z − y‖

p
2−1)z>

= ‖z − x‖
p
2−1x> − ‖z − y‖

p
2−1y>

=⇒z =
‖z − x‖

p
2−1

‖z − x‖ p2−1 − ‖z − y‖ p2−1
x

− ‖z − y‖
p
2−1

‖z − x‖ p2−1 − ‖z − y‖ p2−1
y

where 11 is due to∇x‖x‖p = ∇x(x>x)
p
2 = p(x>x)

p
2−1x> = p‖x‖

p
2−1x>. And this equation shows that z∗ lie on the line

determined by x and y but does not lies on the part between x and y, which can be formulated as z∗ = λx+ (1− λ)y, λ ∈
R \ (0, 1). Note that

sup
λ∈R\(0,1)

∥∥∥|x− z∗‖p − ‖y − z∗‖p∣∣∣
= sup
λ∈R\(0,1)

∥∥∥|(1− λ)(x− y)‖p − ‖λ(y − x)‖p
∣∣∣

= sup
λ∈R\(0,1)

∥∥∥1− λ|p − |λ|p
∣∣∣ · ‖x− y‖p

=
(

sup
λ∈R\(0,1)

∥∥∥1− λ‖p − |λ|p
∣∣∣) · ‖x− y‖p

Then, we just need to optimize

sup
λ∈R\(0,1)

∥∥∥1− λ|p − |λ|p
∣∣∣

s.t. λx+ (1− λ)y ∈ K

Note that we can relax the constraint as below

λx+ (1− λ)y ∈ K
⇐⇒ λ(x− y) + y = (1− λ)(y − x) + x ∈ K
=⇒‖λ(x− y) + y‖ = ‖(1− λ)(y − x) + x‖ ≤ R (12)
=⇒‖λ(x− y)‖ ≤ R+ ‖y‖,

‖(1− λ)(y − x)‖ ≤ R+ ‖x‖ (13)
=⇒|λ| · ‖x− y‖ ≤ 2R, |1− λ| · ‖x− y‖ ≤ 2R (14)

=⇒1− 2R

‖x− y‖
≤ λ ≤ 2R

‖x− y‖
where 12 and 14 is due to the definition of R as supx∈K ‖x‖; 13 is due to triangular inequality.

Using the relaxed constraint, we can show that when λ ≥ 1,
∥∥∥1− λ|p − |λ|p

∣∣∣ = λp − (λ− 1)p is an increasing function
w.r.t. λ as p ≥ 1, then ∥∥∥1− λ|p − |λ|p

∣∣∣ = λp − (λ− 1)p

≤
(

2R

‖x− y‖

)p
−
(

2R

‖x− y‖
− 1

)p
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And when λ ≤ 0,
∥∥∥1− λ|p − |λ|p

∣∣∣ = (1− λ)p − (−λ)p is a decreasing function w.r.t λ as p ≥ 1, then∥∥∥1− λ|p − |λ|p
∣∣∣ = (1− λ)p − (−λ)p

≤
(

2R

‖x− y‖

)p
−
(

2R

‖x− y‖
− 1

)p
Note that (

2R

‖x− y‖

)p
−
(

2R

‖x− y‖
− 1

)p
=p

(
k ·
( 2R

‖x− y‖

)
+ (1− k) ·

( 2R

‖x− y‖
− 1
))p−1

(15)

=p

(
2R

‖x− y‖
+ (k − 1)

)p−1

≤ p
(

2R

‖x− y‖

)p−1

where 15 is due to the Differential Mean Value Theorem where k ∈ (0, 1).

Thus, we have

|ηcp(x)− ηcp(y)| ≤ p
(

2R

‖x− y‖

)p−1

· ‖x− y‖p

= p(2R)p−1‖x− y‖
i.e. ηcp(x) is a p(2R)p−1-Lipschitz function.

Using Lipschitz continuous property of ηc, we get

W p
p (µ, ν) = sup

η∈L1(µ)

∫
ηc(y)dν(y) +

∫
ηcc(x)dµ(x) (16)

≤ sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y) +

∫
ϕc(x)dµ(x)

= sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y) +

∫
ϕc(y)dµ(y) (17)

where Lip(p(2R)p−1) denotes the set of p(2R)p−1-Lipschitz functions. On the other hand, recall that

W p
p (µ, ν) = sup

ψ,φ∈C(Rd)

∫
ψ(y)dν(y) +

∫
φ(x)dµ(x)

where ψ(y) + φ(x) ≤ ‖x− y‖p. Keeping ψ(x) fixed and optimizing w.r.t. φ(y), then we just need to optimize
∫
φ(y)dµ(y)

under constraint φ(y) ≤ ‖x− y‖p − ψ(x). Then obviously we have φ∗(y) = infx∈K
(
‖x− y‖p − ψ(x)

)
= ψcp(y) where

cp(x, y) = ‖x− y‖p. The map (φ, ψ) ∈ C(K)2 7→ (ψcp , ψ) ∈ C(K)2 replaces dual potentials by ”better” ones improving
the dual objective W p

p (µ, ν).

Using c-transform, we can reformulate constrained problem into unconstrained convex problem over a single potential

W p
p (µ, ν) = sup

ψ∈C(Rd)

∫
ψ(y)dν(y) +

∫
ψcp(x)dµ(x)

= sup
ψ∈C(Rd)

∫
ψ(y)dν(y) +

∫
ψcp(y)dµ(y)

(18)

Combining 17 and 18, we know that when the support set of measure µ and ν supp(µ) = supp(ν) = K where K is a
convex compact set, we have

sup
ψ∈C(K)

∫
ψ(y)dν(y) +

∫
ψcp(y)dµ(y) = W p

p (µ, ν)

≤ sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y) +

∫
ϕc(y)dµ(y)

(19)
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Note that Lipschitz function must be continuous and therefore Lip(p(2R)p−1) ⊆ C(K). Then, we have

sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y) +

∫
ϕc(y)dµ(y)

≤ sup
φ∈C(K)

∫
ψ(y)dν(y) +

∫
ψcp(y)dµ(y)

(20)

Combining 19 and 20, we know the inequality in 19 changes into equality

W p
p (µ, ν) = sup

ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y) +

∫
ϕc(y)dµ(y) (21)

Note that for f(x) = xp − p(2R)p−1x, x ∈ R+ achieves its minimum when f ′(x) = pxp−1 − p(2R)p−1 = 0, i.e. x = 2R
and the minimum is f(2R) = −(p− 1)(2R)p−1. Then,

ϕcp(y) = inf
x∈K

(
‖x− y‖p − ϕ(x)

)
≥ inf
x∈K

(
‖x− y‖p − ϕ(y)− p(2R)p−1‖x− y‖

)
= −ϕ(y)− (p− 1)(2R)p−1

(22)

Thus, we attain a lower bound of W p
p (µ, ν)

W p
p (µ, ν)

= sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y) +

∫
ϕc(y)dµ(y) (23)

≥ sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y)−

∫ (
ϕ(y) + (p− 1)(2R)p−1

)
dµ(y) (24)

= sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)dν(y)−

∫
ϕ(y)dµ(y)− (p− 1)(2R)p−1

= sup
ϕ∈Lip(p(2R)p−1)

∫
ϕ(y)d(ν − µ)(y)− (p− 1)(2R)p−1

where 23 is due to 21 and 24 is due to 22.
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D. Proof of Theorem 4.1
Proof.

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε} (25)

Note that
sup

ν∈Dx,ε,q
Wp(µ, ν) = sup

‖x−x′‖q≤ε
Wp(x+ µ, x′ + µ)

= sup
‖z‖q≤ε

Wp(µ, z + µ)

where the first equality is due to the definition of Dx,ε,q and the second equality is due to the translation invariance property
of Wasserstein distance.

Then recall the Monge version of Wasserstein distance

Wp(µ, ν) ≤
(

inf
T :T#µ=ν

∫
‖x− T (x)‖pdµ(x)

) 1
p

Noticing the inf operator in the Monge version definition of Wp, we can get an upper bound for Wp(µ, ν) by specializing
a transport map T̃ satisfying T̃ µ = ν. In our case, we take T̃ : Rd → Rd, T̃ : x 7→ x + z, and it’s easy to verify that
T̃#µ = z + µ. Then we get the upper bound below

Wp(µ, z + µ) ≤
(

inf
T :T#µ=z+µ

∫
‖x− T (x)‖pdµ(x)

) 1
p

≤
(∫

‖x− T̃ (x)‖pdµ(x)

) 1
p

= ‖z‖

where the last equality is due to µ is a probability measure. This provides us with an intuition that the upper bound of
Wp(µ, z + µ) is determined by the Euclidean norm of displacement z. Using this upper bound,

sup
‖z‖q≤ε

Wp(µ, z + µ) ≤ sup
‖z‖q≤ε

‖z‖2

When 0 < q ≤ 2, using the lemma that when 0 < p < q <∞, ‖z‖q ≤ ‖z‖p,∀z ∈ Rd holds, we have sup‖z‖q≤ε ‖z‖2 ≤
sup‖z‖q≤ε ‖z‖q = ε. On the other hand, note that ‖εe1‖2 = ‖εe1‖q = ε, we have sup‖z‖q≤ε ‖z‖2 = ε. And when q > 2,
recall Holder’s Inequality below

Lemma D.1 (Holder’s Inequality for Rn). For {ai}1≤i≤n, {bi}1≤i≤n ⊆ R, r > 1, we have

n∑
i=1

|ai‖bi| ≤
( n∑
i=1

|ai|r
) 1
r
( n∑
i=1

|ai|
r
r−1

) r−1
r

Apply it to the case n = d, |ai| = |xi|2, |bi| = 1 and r = q
2 > 1,

d∑
i=1

|xi|2 =

d∑
i=1

|xi|2 · 1

≤
( d∑
i=1

(|xi|2)
q
2

) 2
q
( d∑
i=1

1
q
q−2

) q−2
q

=

( d∑
i=1

|xi|q
) 2
q

d1− 2
q

‖x‖2 =

( d∑
i=1

|xi|2
) 1

2

≤
( d∑
i=1

|xi|q
) 1
q

d
1
2−

1
q = ‖x‖qd

1
2−

1
q
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Thus,
sup
‖z‖q≤ε

‖z‖2 ≤ sup
‖z‖q≤ε

‖x‖qd
1
2−

1
q = εd

1
2−

1
q .

On the other hand, note that ∥∥∥ ε

n
1
q

d∑
i=1

ei

∥∥∥
q

= ε,
∥∥∥ ε

n
1
q

d∑
i=1

ei

∥∥∥
2

= εd
1
2−

1
q ,

we have
sup
‖z‖q≤ε

‖z‖2 = εd
1
2−

1
q .

Combining the case when 0 < q ≤ 2 and q > 2, we have

sup
‖x−x′‖q≤ε

Wp(x+ µ, x′ + µ) = sup
‖z‖q≤ε

Wp(µ, z + µ) ≤

{
ε when 0 < q ≤ 2

εd
1
2−

1
q when q > 2

= max{ε, εd
1
2−

1
q }
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E. W2 distance relaxation is tight for Gaussian Probability Measure
Here, we show that W2 distance relaxation for Gaussian probability measure is tight.

Theorem E.1. When µ = N (0, σ2I) and p = 2, the relaxation in ?? is tight. In other words,

Dx,ε,q ⊆ D
x,max{ε,εd

1
2
− 1
q },2

but Dx,ε,q \ D
x,max{ε,εd

1
2
− 1
q }−δ,2

6= ∅

for any sufficiently small δ > 0.

(26)

Proof. Note that (Dowson & Landau, 1982) established the formula of Wasserstein distance between two Gaussian measures.

Theorem E.2. For Gaussian probability measures µ = N (µ1,Σ1) and ν = N (µ2,Σ2), W2-distance between µ and ν
have closed form formula

W2(µ, ν)2 = ‖µ1 − µ2‖2 + tr
(
Σ1 + Σ2 − 2(Σ1Σ2)

1
2

)
(27)

Using above theorem, we yield following tight relaxation between norm-based constraint set Dx,ε,q and W2-distance based
constraint sets Dx,δ,2 for Gaussian smoothing measures centered at origin, i.e. µ = N (0, σ2I)

sup
ν∈Dx,ε,q

W2(µ, ν) = sup
‖x−x′‖q≤ε

W2(x+ µ, x′ + µ) (28)

= sup
‖z‖q≤ε

W2(µ, z + µ)

= sup
‖z‖q≤ε

‖z‖2 = max{ε, εd
1
2−

1
q } (29)

where 29 is due to theorem E.2 and equality D. And generalization of above theorem when µ = N (0,Σ) can be proved in
the same way.
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F. Proof of Theorem 4.2
Proof. First, we introduce the lemma below.

Lemma F.1. Let X be a random variable that follows d-dimensional Gaussian distribution with density function

f(x;µ,Σ) =
1

(2π)
d
2 |Σ| 12

e−
1
2 (x−µ)TΣ−1(x−µ)

where x, µ ∈ Rd and Σ ∈ Sd++. Let H : xTw + b = 0 be a hyperplane in the d-dimensional Euclidean space Rd, where
w ∈ Rd and b ∈ R. The hyperplane H defines two half-spaces:

Ω+ = {x ∈ Rd|xTw + b ≥ 0},
Ω− = {x ∈ Rd|xTw + b < 0}

Define the integral over half-space Ω+ as

P =

∫
Ω+

f(x;µ,Σ)dx

=

∫
Ω+

1

(2π)
d
2 |Σ| 12

e−
1
2 (x−µ)TΣ−1(x−µ)dx

Since Σ is positive definite symmetric, there exist an orthogonal matrix U and a diagonal matrix D with positive diagonal
elements such that Σ = UTDU . Let x0 = − µ>w+b

‖
√
DUw‖2

and hence P =
∫∞
x0

1√
2π
e−

1
2x

2

dx.

(The proof of this lemma is credit to https://math.stackexchange.com/questions/556977/
gaussian-integrals-over-a-half-space.)

Recall the definition of lp-norm constraint set of probability measures

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}

Note that

sup
ν∈Dx,ε,q

TV (µ, ν) = sup
‖x−x′‖q≤ε

TV (x+ µ, x′ + µ)

= sup
‖z‖q≤ε

TV (µ, z + µ)

where the first equality is due to the definition of Dx,ε,q and the second equality is due to the translation invariance property
of total variation distance.

Define hyperplane H1 : xT z − ‖z‖
2
2

2 = 0 and H2 : xT z +
‖z‖22

2 = 0. The hyperplane H1 defines two half-spaces:

Ω1
+ = {x ∈ Rd|xT z − ‖z‖

2
2

2 ≥ 0} and Ω1
− = {x ∈ Rd|xT z − ‖z‖

2
2

2 < 0}. And the hyperplane H2 defines two half-spaces:

Ω2
+ = {x ∈ Rd|xT z +

‖z‖22
2 ≥ 0} and Ω2

− = {x ∈ Rd|xT z +
‖z‖22

2 < 0}. Applying lemma F.1 and lemma B.3, we know

https://math.stackexchange.com/questions/556977/gaussian-integrals-over-a-half-space
https://math.stackexchange.com/questions/556977/gaussian-integrals-over-a-half-space
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that

sup
‖z‖q≤ε

TV (µ, z + µ)

= sup
‖z‖q≤ε

1

2

∫
1

(2π)
d
2 σd

∣∣∣e− xT x2σ2 − e−
(x−z)T (x−z)

2σ2

∣∣∣dx (30)

=
1

2
sup
‖z‖q≤ε

∫
Ω1

+

1

(2π)
d
2 σd

∣∣∣e− xT x2σ2 − e−
(x−z)T (x−z)

2σ2

∣∣∣dx
+

∫
Ω1
−

1

(2π)
d
2 σd

∣∣∣e− xT x2σ2 − e−
(x−z)T (x−z)

2σ2

∣∣∣dx (31)

=
1

2
sup
‖z‖q≤ε

∫
Ω1

+

1

(2π)
d
2 σd

(
e−

(x−z)T (x−z)
2σ2 − e−

xT x
2σ2

)
dx

+

∫
Ω1
−

1

(2π)
d
2 σd

(
e−

xT x
2σ2 − e−

(x−z)T (x−z)
2σ2

)
dx (32)

=
1

2
sup
‖z‖q≤ε

∫
Ω1

+

d(z + µ)−
∫

Ω1
+

dµ+

∫
Ω1
−

dµ−
∫

Ω1
−

d(z + µ)

=
1

2
sup
‖z‖q≤ε

∫
Ω2

+

dµ−
∫

Ω1
+

dµ+

∫
Ω1
−

dµ−
∫

Ω2
−

dµ (33)

=
1

2
sup
‖z‖q≤ε

∫ ∞
−‖z‖2

2σ

1√
2π
e−

1
2x

2

dx−
∫ ∞
‖z‖2
2σ

1√
2π
e−

1
2x

2

dx

+

∫ ‖z‖2
2σ

−∞

1√
2π
e−

1
2x

2

dx−
∫ − ‖z‖22σ

−∞

1√
2π
e−

1
2x

2

dx (34)

=
1

2
sup
‖z‖q≤ε

(
G
(‖z‖2

2σ

)
−G

(
− ‖z‖2

2σ

)
+G

(‖z‖2
2σ

)
−G

(
− ‖z‖2

2σ

))
(35)

=
1

2
sup
‖z‖q≤ε

2

(
2G
(‖z‖2

2σ

)
− 1

)
(36)

= 2G
(max{ε, εd

1
2−

1
q }

2σ

)
− 1 (37)

where 30 is due to lemma B.3; 32 is due to the consistency of sign of integrand function on Ω1
+ and Ω1

−; 33 is due to the
transformation formula of space coordinates; 34 is due to lemma F.1; 35 and 37 is due to the definition and central symmetry
property of G as the cumulative density function of standard normal distribution; 37 is due to D.
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G. Proof of Theorem 4.3
Proof. Recall the definition of lp-norm constraint set of probability measures

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}

Note that
sup

ν∈Dx,ε,q
TV (µ, ν) = sup

‖x−x′‖q≤ε
TV (x+ µ, x′ + µ)

= sup
‖z‖q≤ε

TV (µ, z + µ)

where the first equality is due to the definition of Dx,ε,q and the second equality is due to the translation invariance property
of total variation distance. Next, compute the value of TV (µ, z + µ).

Lemma G.1. K is a l1 norm ball centered at original point of radius r, then K ∩ (z +K) = ∅ if and only if ‖z‖1 > 2r.

Proof. First, we prove the if part and assume ‖z‖1 > 2r. Consider arbitrarily taken x ∈ (z + K), i.e. ‖x − z‖1 ≤ r.
According to the triangular inequality with respect to l1 norm, we have

‖x‖1 = ‖z − (x− z)‖1 ≥ ‖z‖1 − ‖x− z‖1 > 2r − r = r (38)

which shows that x /∈ K and therefore K ∩ (z +K) = ∅.
Then we prove the only if part by using reduction to absurdity and assume ‖z‖1 ≤ 2r. Take y = 1

2z, then ‖y‖1 = 1
2‖z‖1 ≤ r

and ‖y − z‖1 = 1
2‖z‖1 ≤ r which shows that y ∈ K ∩ (z + K) and therefore K ∩ (z + K) 6= ∅ which leads to a

contradiction.

According to lemma G.1, we know that when
{
z
∥∥|z‖q ≤ ε, ‖z‖1 ≥ 2r

}
6= ∅, we have

sup
ν∈Dx,ε,q

TV (µ, ν) = sup
‖z‖q≤ε

TV (µ, z + µ) = 1

Define z̄ = 2r
d

∑d
i=1 ei, and it’s easy to verify that ‖z̄‖1 = 2r and ‖z̄‖q = 2rd

1
q−1 for q > 1. Thus, when ε > 2rd

1
q−1, we

have
sup

ν∈Dx,ε,q
TV (µ, ν) = sup

‖z‖q≤ε
TV (µ, z + µ) = 1

H. Proof of Theorem 4.4
Proof. First, we introduce the lemmas below for the convenience of later proof.

Lemma H.1 (Volume Formula of d-dimensional spherical cap). The volume of a d-dimensional hyperspherical cap of
height h and radius r is given by:

V =
π
d−1

2 rd

Γ(d+1
2 )

∫ arccos( r−hr )

0

sind(t)dt

where we define h as the value shown in figure 5 and Γ (the gamma function) is given by Γ(z) =
∫∞

0
tz−1e−tdt.

Lemma H.2 (Volume formula of d-dimensional Euclidean ball). The volume of d-dimensional Euclidean ball of radius r is
given by

V =
π
d
2 rd

Γ(d2 + 1)

Recall the definition of lp-norm constraint set of probability measures

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}
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Figure 5. An example of a spherical cap in blue

Note that

sup
ν∈Dx,ε,q

TV (µ, ν) = sup
‖x−x′‖q≤ε

TV (x+ µ, x′ + µ)

= sup
‖z‖q≤ε

TV (µ, z + µ)

where the first equality is due to the definition of Dx,ε,q and the second equality is due to the translation invariance property
of total variation distance.

Lemma H.3. K is a l2 norm ball centered at original point of radius r, then K ∩ (z +K) = ∅ if and only if ‖z‖2 > 2r.

According to this lemma, we know that when q ≤ 2 and ε > 2r, we have

1 ≥ sup
‖z‖q≤ε

TV (µ, z + µ)

≥ TV (µ, εe1 + µ) =
Vol(K∆(εe1 +K))

2Vol(K)
= 1

where the last equality is due to ‖εe1‖2 = ε > 2r and applying lemma H.3. And when q > 2 and ε > 2rd
1
q−

1
2 , we have

1 ≥ sup
‖z‖q≤ε

TV (µ, z + µ) ≥ TV (µ,
ε

d
1
q

d∑
i=1

ei + µ)

=
Vol
(
K∆

(
ε

d
1
q

∑d
i=1 ei +K

))
2Vol(K)

= 1

where the last equality is due to ‖ ε

d
1
q

∑d
i=1 ei‖2 = εd

1
2−

1
q > 2r and applying lemma H.3. Combining the results for q ≤ 2

and q > 2, we have

sup
‖z‖q≤ε

TV (µ, z + µ) = 1 when ε > min{2r, 2rd
1
q−

1
2 }
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Next, consider the case when ε ≤ min{2r, 2rd
1
q−

1
2 }. Applying H.1, lemma H.2 and lemma B.3, we have

sup
‖z‖q≤ε

TV (µ, z + µ)

= sup
‖z‖q≤ε

1

2

∫ ∣∣∣ 1

Vol(K)
Ix∈K −

1

Vol(K)
Ix∈z+K

∣∣∣dx (39)

= sup
‖z‖q≤ε

1

2Vol(K)

∫
Ix∈K∆(z+K)dx

= sup
‖z‖q≤ε

Vol(K∆(z +K))

2Vol(K)

= sup
‖z‖q≤ε

Vol(K)− 2π
d−1

2 rd

Γ( d+1
2 )

∫ arccos(
‖z‖2
2r )

0
sind(t)dt

Vol(K)

= sup
‖z‖q≤ε

1−
2π

d−1
2 rd

Γ( d+1
2 )

∫ arccos(
‖z‖2
2r )

0
sind(t)dt

Vol(K)
(40)

= sup
‖z‖q≤ε

1−
2π

d−1
2 rd

Γ( d+1
2 )

∫ arccos(
‖z‖2
2r )

0
sind(t)dt

π
d
2

Γ( d2 +1)
rd

= sup
‖z‖q≤ε

1−
2Γ(d2 + 1)

π
1
2 Γ(d+1

2 )

∫ arccos(
‖z‖2
2r )

0

sind(t)dt (41)

= 1−
2Γ(d2 + 1)

π
1
2 Γ(d+1

2 )

∫ arccos(
max{ε,εd

1
2
− 1
q }

2r )

0

sind(t)dt (42)

where 39 is due to lemma B.3; 40 is due to lemma H.1; 41 is due to lemma H.2; 42 is due to D. Because of the computation
difficulty (overflow), we have to simplify the term Γ( d2 +1)

Γ( d+1
2 )

.

When d is even, assume d = 2k, k ∈ N and note that Γ(1) = 1,Γ( 1
2 ) = π

1
2 , then

Γ(d2 + 1)

Γ(d+1
2 )

=
Γ(k + 1)

Γ(k + 1
2 )

=
k!Γ(1)

Πk
i=1(i− 1

2 )Γ( 1
2 )

=
k!

π
1
2 Πk

i=1(i− 1
2 )

=
(2k)!!

π
1
2 (2k − 1)!!

Recall the Wallis integral lemma that when d is even

∫ π
2

0

sind(t)dt =

∫ π
2

0

cosd(t)dt

=
π

2
· (d− 1)!!

d!!
, d = 2k ∈ N

Thus,

Γ(d2 + 1)

Γ(d+1
2 )

=
(2k)!!

π
1
2 (2k − 1)!!

=
1

2π−
1
2 · (π2 ·

(2k−1)!!
(2k)!! )

=
1

2π−
1
2

∫ π
2

0
sin2k(t)dt

=
1

2π−
1
2

∫ π
2

0
sind(t)dt
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When d is odd, assume d = 2k + 1, k ∈ N and note that Γ(1) = 1,Γ( 1
2 ) = π

1
2 , then

Γ(d2 + 1)

Γ(d+1
2 )

=
Γ(k + 3

2 )

Γ(k + 1)
=

Πk
i=0(i+ 1

2 )Γ( 1
2 )

k!Γ(1)

=
π

1
2 Πk

i=0(i+ 1
2 )

k!
=
π

1
2 (2k + 1)!!

2 · (2k)!!

Recall the Wallis integral lemma that when d is odd∫ π
2

0

sind(t)dt =

∫ π
2

0

cosd(t)dt =
(d− 1)!!

d!!
, d = 2k + 1 ∈ N

Thus,
Γ(d2 + 1)

Γ(d+1
2 )

=
π

1
2 (2k + 1)!!

2 · (2k)!!
=

1

2π−
1
2 · ( (2k)!!

(2k+1)!! )

=
1

2π−
1
2

∫ π
2

0
sin2k+1(t)dt

=
1

2π−
1
2

∫ π
2

0
sind(t)dt

To sum up, for all d ∈ N, we have
Γ(d2 + 1)

Γ(d+1
2 )

=
1

2π−
1
2

∫ π
2

0
sind(t)dt

(43)

Then we avoid the computation of Γ(d2 + 1),Γ(d+1
2 ) and transfer it into the computation of an integral. Applying formula

43, we have
sup
‖z‖q≤ε

TV (µ, z + µ)

=1− 1∫ π
2

0
sind(t)dt

∫ arccos(
max{ε,εd

1
2
− 1
q }

2r )

0

sind(t)dt
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I. Proof of Theorem 4.5
Proof. Recall the definition of lp-norm constraint set of probability measures

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}

Note that
sup

ν∈Dx,ε,q
TV (µ, ν) = sup

‖x−x′‖q≤ε
TV (x+ µ, x′ + µ)

= sup
‖z‖q≤ε

TV (µ, z + µ)

where the first equality is due to the definition of Dx,ε,q and the second equality is due to the translation invariance property
of total variation distance.

When ε ≥ 2r,
1 ≥ sup

‖z‖q≤ε
TV (µ, z + µ) ≥ TV (µ, εe1 + µ) = 1

where the first inequality is due to the fact that µ and z + µ are probability measures; the second inequality is due to
supp(µ) ∩ supp(εe1 + µ) = ∅. Thus, in this case,

sup
‖z‖q≤ε

TV (µ, z + µ) = 1

When ε < 2r,

sup
‖z‖q≤ε

TV (µ, z + µ)

= sup
‖z‖q≤ε

1

2

∫ ∣∣∣ 1

Vol(K)
Ix∈K −

1

2Vol(K)
Ix∈z+K

∣∣∣dx
= sup
‖z‖q≤ε

1

2Vol(K)

∫
Ix∈K∆(z+K)dx

= sup
‖z‖q≤ε

Vol(K∆(z +K))

2Vol(K)

= sup
‖z‖q≤ε

1− Vol(K ∩ (z +K))

Vol(K)

= sup
‖z‖q≤ε

1− Πd
i=1(2r − |zi|)

(2r)d

= sup
‖z‖q≤ε

1−Πd
i=1

(
1− |zi|

2r

)
First, we study typical cases when q = 1, 2,∞. When q = 1, we need to solve the following optimization problem

inf
‖z‖1≤ε

Πd
i=1(2r − |zi|)

Here we use mathematical induction to prove that

inf
‖z‖1≤ε

Πd
i=1(2r − |zi|) = (2r)d−1(2r − ε)

When d = 2,

inf
‖z‖1≤ε

Πd
i=1(2r − |zi|) = inf

|z1|+|z2|≤ε
(2r − |z1|)(2r − |z2|)

= inf
|z2|≤ε

(2r − ε+ |z2|)(2r − |z2|)

= inf
0≤z2≤ε

(2r − ε+ z2)(2r − z2)

= inf
0≤z2≤ε

z2(ε− z2) + 2r(2r − ε)

= 2r(2r − ε)
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Thus, induction hypothesis holds for d = 2. Then, assume induction hypothesis holds for d = n. When d = n+ 1,

inf
‖z‖1≤ε

Πn+1
i=1 (2r − |zi|)

= inf∑n+1
i=1 |zi|≤ε

Πn+1
i=1 (2r − |zi|)

= inf∑n
i=1 |zi|≤ε−|zn+1|

(
Πn
i=1(2r − |zi|)

)
(2r − |zn+1|)

= inf
|zn+1|≤ε

(2r)n−1(2r − ε+ |zn+1|)(2r − |zn+1|) (44)

= (2r)n(2r − ε) = (2r)d−1(2r − ε) (45)

where 44 is due to the induction hypothesis when d = n; 45 is due to the induction hypothesis when d = 2. Therefore, we
have already proved that

inf
‖z‖1≤ε

Πd
i=1(2r − |zi|) = (2r)d−1(2r − ε),∀d ∈ N

Plugging in this result, it follows that

sup
‖z‖1≤ε

TV (µ, z + µ) = sup
‖z‖1≤ε

1− Πd
i=1(2r − |zi|)

(2r)d

=1− (2r)d−1(2r − ε)
(2r)d

=
ε

2r

When q = 2, we need to solve the following optimization problem

inf
‖z‖2≤ε

Πd
i=1(2r − |zi|) (46)

When d = 2,

inf
‖z‖2≤ε

Πd
i=1(2r − |zi|) = inf

|z1|2+|z2|2≤ε2
(2r − |z1|)(2r − |z2|)

= inf
|z2|≤ε

(
2r − (ε2 − z2

2)
1
2

)
(2r − |z2|)

= inf
0≤z2≤ε

(
2r − (ε2 − z2

2)
1
2

)
(2r − z2)

Define f(z2) = ln
(

2r − (ε2 − z2
2)

1
2

)
+ ln (2r − z2), then

f ′(z2) =
z2(ε2 − z2

2)−
1
2

2r − (ε2 − z2
2)

1
2

− 1

2r − z2

=
2rz2(ε2 − z2

2)−
1
2 − z2

2(ε2 − z2
2)−

1
2 − 2r + (ε2 − z2

2)
1
2(

2r − (ε2 − z2
2)

1
2

)
(2r − z2)

Define g(z2) = 2rz2(ε2 − z2
2)−

1
2 − z2

2(ε2 − z2
2)−

1
2 − 2r + (ε2 − z2

2)
1
2 , then

g′(z2) = (2z3
2 − 3ε2z2 + 2rε2)(ε2 − z2

2)−
3
2

Define h(z2) = 2z3
2 − 3ε2z2 + 2rε2, then h′(z2) = 6z2

2 − 3ε2 = 6(z2 − ε√
2
)(z2 + ε√

2
). Thus, when 0 ≤ z2 ≤ ε√

2
,

h′(x) ≤ 0; when ε√
2
< z2 ≤ ε, h′(x) > 0. Thus, the minimum value of h(x) on interval [0, ε] is h( ε√

2
) =
√

2ε2(
√

2r − ε).

Therefore, function f(z2) behaves differently when 0 < ε ≤
√

2r and when
√

2r < ε < 2r.

When 0 < ε ≤
√

2r, h(z2) ≥ h( ε√
2
) =
√

2ε2(
√

2r−ε) ≥ 0 on interval [0, ε] and therefore g′(z2) = h(z2)(ε2−z2
2)−

3
2 ≥ 0.

Note that g(0) = ε− 2r < 0, g( ε√
2
) = 0, g(ε−) =∞ and therefore f ′(z2) ≤ 0 when 0 ≤ z2 ≤ ε√

2
while f ′(z2) > 0 when

ε√
2
< z2 ≤ ε. Thus, f(z2) takes its minimum when z2 = ε√

2
. In this case,

inf
0≤z2≤ε

(
2r − (ε2 − z2

2)
1
2

)
(2r − z2) = (2r − ε√

2
)2 (47)
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When
√

2r < ε < 2r, we have h(0) = 2rε2 > 0, h( ε√
2
) =

√
2ε2(
√

2r − ε) < 0, h(ε) = ε2(2r − ε) > 0. Assume
h(t1) = h(t2) = 0, 0 < t1 < ε√

2
< t2 < ε, then when 0 ≤ z2 ≤ t1 or t2 ≤ z2 ≤ ε, h(z2) ≥ 0 and when

t1 < z2 < t2, h(z2) < 0. Therefore, g′(z2) ≥ 0 when 0 ≤ z2 ≤ t1 or t2 ≤ z2 ≤ ε; g′(z2) < 0 when t1 < z2 < t2.

Note that g(z2) = 0 ⇐⇒ (2z2
2 − ε2)

(
2(z2 − r)2 + 2r2 − ε2

)
= 0, therefore when 0 ≤ z2 ≤ r −

√
ε2

2 − r2 or

ε√
2
≤ z2 ≤ r +

√
ε2

2 − r2, g(z2) ≤ 0; when r −
√

ε2

2 − r2 < z2 < ε√
2

or r +
√

ε2

2 − r2 < z2 < ε, g(z2) > 0.

Thus, when 0 ≤ z2 ≤ r −
√

ε2

2 − r2 or ε√
2
≤ z2 ≤ r +

√
ε2

2 − r2, f ′(x) ≤ 0; when r −
√

ε2

2 − r2 < z2 <
ε√
2

or

r +
√

ε2

2 − r2 < z2 < ε, f ′(x) > 0. Thus, f(z2) takes its minimum when z2 = r −
√

ε2

2 − r2 or z2 = r +
√

ε2

2 − r2. In
this case,

inf
0≤z2≤ε

(
2r − (ε2 − z2

2)
1
2

)
(2r − z2)

=
(
r −

√
ε2

2
− r2

)(
r +

√
ε2

2
− r2

)
= 2r2 − ε2

2

(48)

inf
‖z‖2≤ε

Πd
i=1(2r − |zi|) = inf∑n+1

i=1 z
2
i≤ε2

Πn+1
i=1 (2r − |zi|)

= inf∑n
i=1 z

2
i≤ε2−z2

n+1

(
Πn
i=1(2r − |zi|)

)
(2r − |zn+1|)

By then, we have understand clearly the optimization problem when d = 2.

Then, consider the case when d = 3. When d = 3,

inf
‖z‖2≤ε

Πd
i=1(2r − |zi|)

= inf
z2
1+z2

2+z2
3≤ε2

(2r − |z1|)(2r − |z2|)(2r − |z3|)
(49)

When 0 < ε ≤
√

2r, assume the optimal point is z∗. We will prove that each coordinate of z∗ has the same value. Here we
use reduction to absurdity, and wlog assume z∗1 6= z∗2 . By fixing the value of z∗3 , the optimization problem 46 is equivalent to

inf
z2
1+z2

2≤ε2−(z∗3 )2
(2r − |z1|)(2r − |z2|)

And (z∗1 , z
∗
2) should be an optimal point of above problem. Note that ε2 − (z∗3)2 ≤ ε2 ≤ 2r2 and applying 47, we know that

z∗1 = z∗2 which is a contradiction. Thus, z∗1 = z∗2 = z∗3 = c. And

inf
‖z‖2≤ε

Πn
i=1(2r − |zi|) = inf

c≤ ε√
3

(2r − c)3 =
(

2r − ε√
3

)3

When
√

2r < ε ≤
√

3r, it’s obvious that the optimal point z∗ of optimization problem 49 must lie on the boundary of
feasible region, i.e. (z∗1)3 + (z∗2)3 + (z∗3)3 = ε2. Wlog, assume (z∗3)3 ≥ ε2

3 and (z∗1)2 + (z∗2)2 ≤ 2ε2

3 ≤ 2r3. By fixing the
value of z∗3 and following similar deduction procedure as above we know that z∗1 = z∗2 = c∗, where c∗ is the optimal point
of following optimization problem.

inf
0≤c≤ ε√

3

(2r − c)2(2r −
√
ε2 − 2c2) (50)

Define f(x) = 2 ln (2r − x) + ln (2r −
√
ε2 − 2x2) where 0 ≤ x ≤ ε√

3
, then

f ′(x) =
2(3x2 − 2rx− ε2 + 2r

√
ε2 − 2x2)

(x− 2r)(2r −
√
ε2 − 2x2)

√
ε2 − 2x2

It’s obvious that the denominator of f ′(x) is negative. As for the numerator, define g(x) = 3x2 − 2rx − ε2 where
0 ≤ x ≤ ε√

3
. Note that

g(x) ≤ max
{
g(0), g

( ε√
3

)}
= max

{
− ε2,−2rε√

3

}
≤ 0
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Thus, we have the following equivalent relationship

3x2 − 2rx− ε2 + 2r
√
ε2 − 2x2 ≤ 0

⇐⇒ 3x2 − 2rx− ε2 ≤ −2r
√
ε2 − 2x2 ≤ 0

⇐⇒ (3x2 − 2rx− ε2)2 ≥
(
− 2r

√
ε2 − 2x2

)2 ≥ 0

⇐⇒ (3x2 − ε2)(3x2 − 4rx+ 4r2 − ε2) ≥ 0

⇐⇒ 3x2 − 4rx+ 4r2 − ε2 ≤ 0

⇐⇒


∅,
√

2r < ε ≤ 2

√
2

3
r

2r −
√

3ε2 − 8r2

3
≤ x ≤ 2r +

√
3ε2 − 8r2

3
, 2

√
2

3
r < ε ≤

√
3r

where the last equivalent relationship is due to the discriminant of the quadratic equation 3x2−4rx+4r2−ε2 is ∆ = 4(3ε2−
8r2). Therefore, when

√
2r < ε ≤ 2

√
2
3r, f

′(x) ≤ 0,∀0 ≤ x ≤ ε√
3

and hence the optimal point c∗ in the optimization

problem 50 takes value ε√
3

, whereas when 2
√

2
3r < ε ≤

√
3r, f ′(x) ≤ 0 for 0 ≤ x ≤ 2r−

√
3ε2−8r2

3 , 2r+
√

3ε2−8r2

3 ≤ x ≤
ε√
3

and f ′(x) > 0 for 2r−
√

3ε2−8r2

3 ≤ x ≤ 2r+
√

3ε2−8r2

3 and note that f( 2r−
√

3ε2−8r2

3 ) < f( ε√
3
) hence the optimal point

c∗ in the optimization problem takes value 2r−
√

3ε2−8r2

3 . To sum up, when
√

2r < ε ≤ 2
√

2
3r, the optimal point z∗ of

optimization problem 49 satisfies z∗1 = z∗2 = z∗3 = ε√
3

. And when 2
√

2
3r < ε ≤

√
3r, the optimal point z∗ of optimization

problem 49 satisfies z∗1 = z∗2 = 2r−
√

3ε2−8r2

3 , z∗3 = 4r+
√

3ε2−8r2

3 or one of its permutations.

When
√

3r < ε < 2r, similarly we have (z∗1)3 + (z∗2)3 + (z∗3)3 = ε2. If there exists 1 ≤ i ≤ 3 such that (z∗i )2 ≥ ε2 − 2r2,
wlog assume (z∗3)2 ≥ ε2 − 2r2. By substituting the value range of x from [0, ε√

3
] into [0, r], following similar deduction

procedure and noticing that f( 2r−
√

3ε2−8r2

3 ) < f(r), we know that the optimal point z∗ in this case satisfies z∗1 = z∗2 =
2r−
√

3ε2−8r2

3 , z∗3 = 4r+
√

3ε2−8r2

3 or one of its permutations. On the other hand, if (z∗i )2 < ε2 − 2r2 for all 1 ≤ i ≤ 3, then

(z∗1)2 + (z∗2)2 = ε2 − (z∗3)2 > 2r2. Applying 48 and taking z∗1 = r −
√

ε2−(z∗3 )2

2 − r2, z∗2 = r +

√
ε2−(z∗3 )2

2 − r2, we
know the optimization problem is equivalent to

inf
0≤z3<

√
ε2−2r2

(
2r2 − ε2 − z2

3

2

)
(2r − z3)

According to monotonicity analysis of the cubic function above, the optimal point z∗3 is either 2r−
√

3ε2−8r2

3 or
√
ε2 − 2r2.

And it’s easy to verify that f( 2r−
√

3ε2−8r2

3 ) < f(
√
ε2 − 2r2) and therefore z∗3 = 2r−

√
3ε2−8r2

3 . However, (z∗2)2 > ε2− 2r2

which leads to a contradiction.

In summary, considering the case d = 3, when 0 < ε ≤ 2
√

2
3r, the optimal point z∗ of original optimization problem

satisfies z∗1 = z∗2 = z∗3 = ε√
3

and the optimal value is (2r − ε√
3
)3 and when

√
3r < ε < 2r, the optimal point z∗, the

optimal point z∗ of original optimization problem satisfies z∗1 = z∗2 = 2r−
√

3ε2−8r2

3 , z∗3 = 4r+
√

3ε2−8r2

3 or one of its
permutations.

Next, consider the general case when d = n ≥ 4. In the first place, we point out and prove two useful properties of the
optimal point z∗ which help simplify our later discussion a lot.

• All coordinates of optimal point z∗ takes at most two different values.

• If the coordinates of an optimal point z∗ takes exactly two different values c1 and c2, then the number of coordinates
equal to c1 must be n− 1 or 1.

Proof. On one hand, by using reduction to absurdity, wlog assume z∗1 , z
∗
2 , z
∗
3 take three different values. Fixing the value of

the other n− 3 coordinates, we know that (z∗1 , z
∗
2 , z
∗
3) is the optimal point of a special case of original problem when d = 3.
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And note that for all the optimal points of d = 3, there must exist two coordinates taking the same value, which leads to a
contradiction. Thus, the first property is satisfied.
On the other hand, similarly, by applying reduction to absurdity, wlog assume z∗1 = z∗2 = c1 and z∗3 = z∗4 = c2 where
c1 6= c2. Fixing z∗2 , z

∗
4 and the value of the other n− 4 coordinates and aware of the fact that (z∗1)2 + (z∗3)2 ≤ ε2

2 < 2r2, we
know that (z∗1 , z

∗
3) is the optimal point of a special case of original problem when d = 2, ε <

√
2r and therefore z∗1 = z∗3 ,

which leads to a contradiction. Thus, the second property is satisfied.

Using the two properties above, we know that the optimal point z∗ has only two possible forms: z∗ =
(
ε√
n
, · · · , ε√

n

)
and

z∗ =
(
c, · · · , c,

√
ε2 − (n− 1)c2

)
or one of its permutations where 0 ≤ c ≤ ε√

n−1
, c 6= ε√

n
, which can be unified into

one form: z∗ =
(
c, · · · , c,

√
ε2 − (n− 1)c2

)
or one of its permutations where 0 ≤ c ≤ ε√

n−1
. Thus, the original problem

can be simplified into following optimization problem with one degree of freedom:

inf
0≤c≤ ε√

n−1

(2r − c)n−1
(
2r −

√
ε2 − (n− 1)c2

)
Define f(x) = (n− 1) ln (2r − x) + ln (2r −

√
ε2 − (n− 1)x2) where 0 ≤ x ≤ ε√

n−1
, then

f ′(x) =
(n− 1)

(
nx2 − 2rx− ε2 + 2r

√
ε2 − (n− 1)x2

)
(x− 2r)

(
2r −

√
ε2 − (n− 1)x2

)√
ε2 − (n− 1)x2

,

where 0 ≤ x < ε√
n− 1

It’s obvious that the denominator of f ′(x) is negative. As for the numerator, define g(x) = nx2 − 2rx − ε2 where
0 ≤ x ≤ ε√

n−1
. Note that

g(x) ≤ min

{
g(0), g

( ε√
n− 1

)}
= max

{
0,
ε(ε− 2

√
n− 1r)

n− 1

}
≤ 0

where the last inequality is due to ε < 2r < 2
√
n− 1r. Thus, when 0 ≤ x ≤ ε√

n−1
,

nx2 − 2rx− ε2 + 2r
√
ε2 − (n− 1)x2 ≤ 0

⇐⇒ nx2 − 2rx− ε2 ≤ −2r
√
ε2 − (n− 1)x2 ≤ 0

⇐⇒ (nx2 − 2rx− ε2)2 ≥
(
− 2r

√
ε2 − (n− 1)x2

)2
⇐⇒ (nx2 − ε2)(nx2 − 4rx+ 4r2 − ε2) ≥ 0

⇐⇒
(
x− ε√

n

)
(nx2 − 4rx+ 4r2 − ε2) ≥ 0

⇐⇒



x ≥ ε√
n

when 0 < ε < 2

√
n− 1

n
r

x ≥ ε√
n
,

2r −
√
nε2 − 4(n− 1)r2

n
≤ x

≤
2r +

√
nε2 − 4(n− 1)r2

n
when 2

√
n− 1

n
r ≤ ε < 2r

where the last equivalence relationship is due to the discriminant of the quadratic equation nx2 − 4rx+ 4r2 − ε2 = 0 is

∆ = 4
(
nε2 − 4(n− 1)r2

)
< 0 ⇐⇒ 0 < ε < 2

√
n− 1

n
r

Thus, if 0 < ε < 2
√

n−1
n r, then f ′(x) ≥ 0 when ε√

n
≤ x ≤ ε√

n−1
and f ′(x) < 0 when 0 ≤ x < ε√

n
. Thus, f(x) takes its

minimum when x = ε√
n

and therefore c∗ = ε√
n

.
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Figure 6. Graphs of functions f1(t) =
(
1− t√

n

)n
, f2(t) =

(
(n−1)+

√
nt2−(n−1)

n

)n−1( 1−
√

nt2−(n−1)

n

)
when n = 4, 16, 64 from left

to right. According to the figure, on interval
[√

n−1
n
, 1
]
, f2(t) is greater than f1(t) at first and then f2(t) exceeds f1(t). Furthermore, as

n increases, the horizontal coordinate of the intersection point converge to 1, which can be seen intuitively from the figure above.

If 2
√

n−1
n r ≤ ε < 2r, then f ′(x) ≥ 0 when 2r−

√
nε2−4(n−1)r2

n ≤ x ≤ 2r+
√
nε2−4(n−1)r2

n or ε√
n
≤ x ≤ ε√

n−1
and

f ′(x) < 0 when 0 ≤ x < 2r−
√
nε2−4(n−1)r2

n or 2r+
√
nε2−4(n−1)r2

n < x < ε√
n

. In this case, f(x) takes its minimum when

x =
2r−
√
nε2−4(n−1)r2

n or x = ε√
n

. For the convenience of analysis, assume t = ε
2r ,
√

n−1
n ≤ t < 1 and it follows that

e
f( ε√

n
)

= (2r)n
(

1− t√
n

)n

ef
(

2r−
√
nε2−4(n−1)r2

n

)
=(2r)n

(
(n− 1) +

√
nt2 − (n− 1)

n

)n−1

·
(

1−
√
nt2 − (n− 1)

n

)

We can prove that there exists tn ∈
[√

n−1
n , 1

)
such that c∗ = ε√

n
when 2

√
n−1
n r ≤ ε ≤ 2tnr and c∗ =

2r−
√
nε2−4(n−1)r2

n when 2tnr < ε < 2r while tn converge to 1 at an exponential rate as shown in figure 6.

In conclusion, for the case d = n ≥ 4, when 0 < ε ≤ 2tnr, c∗ = ε√
n

and therefore

inf
‖z‖2≤ε

Πn
i=1(2r − |zi|)

=(2r − c∗)n−1
(
2r −

√
ε2 − (n− 1)(c∗)2

)
=
(

2r − ε

n
1
2

)n
=
(

2r − ε

d
1
2

)d
Plugging in this result, it follows that

sup
‖z‖2≤ε

TV (µ, z + µ)

= sup
‖z‖2≤ε

1− Πd
i=1(2r − |zi|)

(2r)d

=1−

(
2r − ε

d
1
2

)d
(2r)d

=1−
(

1− ε

2d
1
2 r

)d
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and when 2tnr < ε < 2r, c∗ =
2r−
√
nε2−4(n−1)r2

n and therefore

inf
‖z‖2≤ε

Πn
i=1(2r − |zi|)

= (2r − c∗)n−1
(
2r −

√
ε2 − (n− 1)(c∗)2

)
=

(
2(n− 1)r +

√
nε2 − 4(n− 1)r2

n

)n−1(
2r −

√
nε2 − 4(n− 1)r2

n

)
=

(
2(d− 1)r +

√
dε2 − 4(d− 1)r2

n

)n−1(
2r −

√
dε2 − 4(d− 1)r2

d

)
Plugging in this result, it follows that

sup
‖z‖2≤ε

TV (µ, z + µ)

= sup
‖z‖2≤ε

1− Πd
i=1(2r − |zi|)

(2r)d

= 1−

(
2(d−1)r+

√
dε2−4(d−1)r2

d

)d−1( 2r−
√
dε2−4(d−1)r2

d

)
(2r)d

= 1−
(d− 1 +

√
d( ε

2r )2 − d+ 1

d

)d−1(1−
√
d( ε

2r )2 − d+ 1

d

)
When q =∞, it’s easy to verify that

inf
‖z‖∞≤ε

Πd
i=1(2r − |zi|) = (2r − ε)d

Plugging in the formula above, it follows

sup
‖z‖∞≤ε

TV (µ, z + µ) = sup
‖z‖∞≤ε

1− Πd
i=1(2r − |zi|)

(2r)d

=1− (2r − ε)d

(2r)d
= 1−

(
1− ε

2r

)d

J. Proof of Theorem 4.6
Proof. Recall the definition of lp-norm constraint set of probability measures

Dx,ε,q = {x′ + µ : ‖x− x′‖q ≤ ε}

Assume Dx,ε,q ⊆ Dx,ξ(ε), then

ξ(ε) ≥ sup
ν∈Dx,ε,q

TV (µ, ν) = sup
‖x−x′‖q≤ε

TV (x+ µ, x′ + µ)

= sup
‖z‖q≤ε

TV (µ, z + µ) ≥ TV (µ, εe1 + µ)

which indicates that TV (µ, εe1 + µ) provides a lower bound for ξ(ε). Thus, we only need to estimate the value of
TV (µ, εe1 + µ). According to lemma B.3, we have

TV (µ, εe1 + µ) =
Vol(K∆(εe1 +K))

2Vol(K)
= 1− Vol(K ∩ (εe1 +K))

Vol(K)
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Note that

K ∩ (εe1 +K)

=
{
x ∈ Rd

∥∥∥x1|p + · · ·+ |xd|p ≤ rp, |x1 − ε|p + |x2|p + · · ·+ |xd|p ≤ rp
}

=
{
x ∈ Rd

∣∣∣ε− (rp − (|x2|p + · · ·+ |xd|p|))
1
p ≤ x1 ≤ (rp − (|x2|p + · · ·+ |xd|p|))

1
p

}
=
{
x ∈ Rd

∣∣∣ε− (rp − (|x2|p + · · ·+ |xd|p))
1
p ≤ x1 ≤

ε

2

}
∪
{
x
∣∣∣ ε
2
≤ x1 ≤ (rp − (|x2|p + · · ·+ |xd|p|))

1
p

}
:= Ω1 ∪ Ω2 where Ω1 ∩ Ω2 = ∅

It’s easy to verify that Vol(Ω1) = Vol(Ω2) according to integration by substitution and therefore Vol(K ∩ (εe1 +K)) =
2Vol(Ω2). To estimate the volume of Ω2, we first introduce several lemmas below for the convenience of later discussion.

Lemma J.1 (Volume formula of d-dimensional lp norm ball). The volume of d-dimensional lp ball of radius r is given by

V (d)
p = (2r)d

Γ(1 + 1
p )d

Γ(1 + d
p )

Lemma J.2. The d-dimensional lp ball of volume 1 has radius about d
1
p

2(pe)
1
p Γ(1+ 1

p )
.

Proof. When dimension d is big enough, we can obtain an asymptotic volume estimation of lp norm ball with radius r.

V (d)
p =(2r)d

Γ(1 + 1
p )d

Γ(1 + d
p )
≈ (2r)d

Γ(1 + 1
p )d√

2π dp

(
d
pe

) d
p

=

√
p

2πd

(
2r(pe)

1
pΓ(1 + 1

p )

d
1
p

)d
where the first equality is due to lemma J.1 and the approximate equality is due to Stirling’s formula about the estimation of

gamma function that Γ(z + 1) ≈
√

2πz
(
z
e

)z
. Thus, when V (d)

p = 1, we have

r ≈ d
1
p

2(pe)
1
pΓ(1 + 1

p )
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Figure 7. Comparing the volume of a ball with that of its central slice

Then we estimate the volume of lp norm ball cap by studying the asymptotic property of the mass distribution of lp norm
ball. To begin with, let’s estimate the (d− 1)-dimensional volume of a slice through the center of the lp ball of volume 1.
Note that the ball has radius r = (V

(d)
p )−

1
d . The slice is an (d− 1)-dimensional ball of this radius, so its volume is

V (d−1)
p rd−1 = V (d−1)

p (V (d)
p )−

d−1
d

= 2d−1
Γ(1 + 1

p )d−1

Γ(1 + d−1
p )

(
2d

Γ(1 + 1
p )d

Γ(1 + d
p )

)− d−1
d

Using Stirling’s formula again, when d is sufficiently large, we have

V (d−1)
p rd−1

= 2d−1
Γ(1 + 1

p )d−1

Γ(1 + d−1
p )

(
2d

Γ(1 + 1
p )d

Γ(1 + d
p )

)− d−1
d

= 2d−1
Γ(1 + 1

p )d−1√
2π d−1

p

(
d−1
pe

) d−1
p

(
2d

Γ(1 + 1
p )d√

2π dp

(
d
pe

) d
p

)− d−1
d

=
1√

2π d−1
p

(
d−1
pe

) d−1
p

· 1(√
2π dp

(
d
pe

) d
p
)− d−1

d

=
1

( 2π
p )

1
2d (d− 1)

d−1
p + 1

2 d−
d−1
p −

d−1
2d

=
(1 + 1

d−1 )
d−1
p + 1

2

( 2πd
p )

1
2d

≈ e
1
p

where the second equality is due to Stirling’s formula for Γ(1 + d−1
p ) and Γ(1 + d

p ); the third equality just eliminate the

exponential of 2 and Γ(1 + 1
p ). Thus, we conclude that the slice has volume about e

1
p when d is large.

Then, consider the (d− 1)-dimensional volumes of parallel slices. The slice at distance x from the center is an (d− 1)-
dimensional ball whose radius is (rp − xp)

1
p , so the volume of the smaller slice is about

e
1
p

(
(rp − xp)

1
p

r

)d−1

= e
1
p

(
1−

(x
r

)p) d−1
p
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Since r is roughly d
1
p

2(pe)
1
p Γ(1+ 1

p )
, this is about

e
1
p

(
1−

(2x(pe)
1
pΓ(1 + 1

p )

d
1
p

)p) d−1
p

=e
1
p

(
1−

pe(2xΓ(1 + 1
p ))p

d

) d−1
p

≈ exp
(1

p
− e(2xΓ(1 +

1

p
))p
)

Thus, if we project the mass distribution of the lp ball of volume 1 onto a single coordinate direction, we get a distribution
with density function f(x) = exp( 1

p − e(2xΓ(1 + 1
p ))p) = exp

(
1
p − e(

2
pΓ( 1

p ))pxp
)
.

Thus, for an lp ball centered at original point O with volume 1 and approximate radius d
1
p

2(pe)
1
p Γ(1+ 1

p )
, then we can use the

integral 2
∫ s

0
exp

(
1
p − e(2xΓ(1 + 1

p ))p
)
dx to estimate the volume between two parallel slices at the same distance s from

the center. Then the volume of lp ball cap corresponding to the slice at distance s from the center can be approximated

by 1
2 −

∫ s
0

exp
(

1
p − e(2xΓ(1 + 1

p ))p
)
dx. Note that the ratio k of slice’s distance d from center to radius r is about

s
/

d
1
p

2(pe)
1
p Γ(1+ 1

p )
=

2s(pe)
1
p Γ(1+ 1

p )

d
1
p

, i.e. s = kd
1
p

2(pe)
1
p Γ(1+ 1

p )
. Thus, the volume of cap can be represented as

1

2
−
∫ kd

1
p

2(pe)
1
p Γ(1+ 1

p
)

0

exp
(1

p
− e(2xΓ(1 +

1

p
))p
)
dx

which is only related to the ratio k. Then, we can conclude that for a lp ball with radius r, when dimension d is large enough
and its cap corresponding to the slice at distance h form the center, then the volume ratio of cap to ball is approximately

1

2
−
∫ sd

1
p

2r(pe)
1
p Γ(1+ 1

p
)

0

exp
(1

p
− e(2xΓ(1 +

1

p
))p
)
dx

Thus,

Vol(Ω2)

Vol(K)
=

1

2
−
∫ εd

1
p

4r(pe)
1
p Γ(1+ 1

p
)

0

exp
(1

p
− e(2xΓ(1 +

1

p
))p
)
dx

and therefore

TV (µ, εe1 + µ)

=1− Vol(K ∩ (εe1 +K))

Vol(K)
= 1− 2Vol(Ω2)

Vol(K)

=2

∫ εd
1
p

4r(pe)
1
p Γ(1+ 1

p
)

0

exp
(1

p
− e(2xΓ(1 +

1

p
))p
)
dx
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K. Proof of theorem 4.7
Proof. Note that f(x) and g(x) are respectively density functions of reference measure ρ = x+ µ and perturbed measure ν
and q(x) is defined as g(x)− f(x). Therefore

EX∼ν [φ(X)] =

∫
φ(x)g(x)dx

=

∫
φ(x)

(
g(x)− f(x)

)
dx+

∫
φ(x)f(x)dx

=

∫
φ(x)q(x)dx+

∫
φ(x)f(x)dx

=

∫
φ(x)q(x)dx+ EX∼x+µ[φ(X)]

where the first term contains all the uncertainty in one functional variable q(x) and the second term is a constant when
sample point x, smoothing measure µ and specification φ are fixed. And when ν ∈ Dx,δ,p or equivalently Wp(ν, x+µ) ≤ δ,
applying the dual form of Wp distance given in formula 6 and 7, we have

W1(ν, x+ µ) = sup
ϕ∈F1

∫
ϕ(x)(f − g)(x)dx

= sup
ϕ∈F1

∫
ϕ(x)(g − f)(x)dx

= sup
ϕ∈F1

∫
ϕ(x)q(x)dx

= sup
‖f‖L≤1

∫
f(x)q(x)dx ≤ δ (51)

And when ν ∈ Dx,ξ or equivalently TV (ν, x+ µ) ≤ ξ, applying lemma B.3 for absolutely continuous measure, we have

TV (ν, x+ µ) =
1

2

∫
|f(x)− g(x)|dx =

1

2

∫
|q(x)|dx ≤ ξ (52)

It follows that OPT (φ, x + µ,Dx,δ,p ∩ Dx,ξ) is equivalent to minν∈Dx,δ,p∩Dx,ξ E[φ(X)] according to the definition and
therefore equivalent to optimization problem 1 which is obviously convex according to 51 and 52.

L. Proof of theorem 4.8
Recall the following result proved in the section before

EX∼ν [φ(X)] =

∫
φ(x)q(x)dx+ EX∼x+µ[φ(X)]

When ν ∈ Dx,δ,p or equivalently Wp(ν, x+ µ) ≤ δ, applying the dual form of Wp distance given in formula 8 and noticing
that supy∈spt(ν)∪spt(x+µ) ‖y‖2 = ‖x‖2 +R+ max{ε, εd

1
2−

1
q } := R∗, we have(

sup
ϕ∈Lip(p(2R∗)p−1)

∫
ϕ(y)(g − f)(y)dy − (p− 1)(2R∗)p−1

) 1
p

≤Wp(ν, x+ µ) ≤ δ
or equivalently

sup
ϕ∈Lip(p(2R∗)p−1)

∫
ϕ(y)(g − f)(y)dy

= sup
‖f‖L≤p(2R∗)p−1

∫
f(x)q(x)dx ≤ δp + (p− 1)(2R∗)p−1

(53)

where Lip
(
p(2R∗)p−1

)
denotes all maps f from Rd to R such that |f(x)− f(y)| ≤ p(2R∗)p−1‖x− y‖ for all x, y ∈ K.

Note OPT (φ, x+ µ,Dx,δ,p ∩ Dx,ξ) is equivalent to minν∈Dx,δ,p∩Dx,ξ E[φ(X)] according to the definition and therefore
can be relaxed into optimization problem which is obviously convex according to 53 and 52.
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M. Proof of theorem 4.9
Proof. For 0 < p ≤ 1, the optimization over q can be solved using Lagrangian duality as follows: we dualize the constraints
on q and obtain

L(λ) = inf
‖q‖1≤2ξ

(∫
φ(x)q(x)dx+ EX∼x+µ[φ(X)] + λ

(
sup

‖f‖L,p≤1

∫
f(x)q(x)dx− δ

))
=EX∼x+µ[φ(X)] + inf

‖q‖1≤2ξ
sup

‖f‖L,p≤1

(∫
φ(x)q(x)dx+ λ

(
sup
‖f‖L≤1

∫
f(x)q(x)dx− δ

))
=EX∼x+µ[φ(X)] + inf

‖q‖1≤2ξ
sup

‖f‖L,p≤1

∫ (
φ(x) + f(x)

)
q(x)dx− λδ

=EX∼x+µ[φ(X)] + sup
‖f‖L,p≤1

inf
‖q‖1≤2ξ

∫ (
φ(x) + f(x)

)
q(x)dx− λδ

=EX∼x+µ[φ(X)] + sup
‖f‖L,p≤1

inf
‖q‖1≤2ξ

−
∫ ∣∣(φ(x) + f(x)

)
q(x)

∣∣dx− λδ (54)

=EX∼x+µ[φ(X)]− inf
‖f‖L,p≤1

sup
‖q‖1≤2ξ

∫ ∣∣(φ(x) + f(x)
)
q(x)

∣∣dx− λδ
=EX∼x+µ[φ(X)]− 2ξ inf

‖f‖L,p≤1

∣∣∣∣φ(x) + f(x)
∣∣∣∣
∞ − λδ (55)

=EX∼x+µ[φ(X)]− 2ξ − λδ (56)

where 54 is due to the choice of q(x) such that sgn(q(x)) = sgn(φ(x) + f(x)); 55 is due to Holder inequality when
q = 1, p =∞; 56 is due to the fact that inf‖f‖L≤1

∣∣∣∣φ(x) + f(x)
∣∣∣∣
∞ = 1 since the range of φ(x) is {±1} in applications

and f cannot change suddenly when crossing the decision region boundary of φ due to the Lipschitz constant constraint.
Similarly, for p > 1, we have

L(λ)

= inf
‖q‖1≤2ξ

(∫
φ(x)q(x)dx+ EX∼x+µ[φ(X)] + λ

(
sup

‖f‖L≤p(2R∗)p−1

∫
f(x)q(x)dx−

(
δp + (p− 1)(2R∗)p−1

)))
= EX∼x+µ[φ(X)]

+ inf
‖q‖1≤2ξ

sup
‖f‖L≤p(2R∗)p−1

(∫
φ(x)q(x)dx+ λ

(
sup

‖f‖L≤p(2R∗)p−1

∫
f(x)q(x)dx−

(
δp + (p− 1)(2R∗)p−1

)))
= EX∼x+µ[φ(X)] + inf

‖q‖1≤2ξ
sup

‖f‖L≤p(2R∗)p−1

∫ (
φ(x) + f(x)

)
q(x)dx− λ

(
δp + (p− 1)(2R∗)p−1

)
= EX∼x+µ[φ(X)] + sup

‖f‖L≤p(2R∗)p−1

inf
‖q‖1≤2ξ

∫ (
φ(x) + f(x)

)
q(x)dx− λ

(
δp + (p− 1)(2R∗)p−1

)
= EX∼x+µ[φ(X)] + sup

‖f‖L≤p(2R∗)p−1

inf
‖q‖1≤2ξ

−
∫ ∣∣(φ(x) + f(x)

)
q(x)

∣∣dx− λ(δp + (p− 1)(2R∗)p−1
)

= EX∼x+µ[φ(X)]− inf
‖f‖L≤p(2R∗)p−1

sup
‖q‖1≤2ξ

∫ ∣∣(φ(x) + f(x)
)
q(x)

∣∣dx− λ(δp + (p− 1)(2R∗)p−1
)

= EX∼x+µ[φ(X)]− 2ξ inf
‖f‖L≤p(2R∗)p−1

∣∣∣∣φ(x) + f(x)
∣∣∣∣
∞ − λ

(
δp + (p− 1)(2R∗)p−1

)
= EX∼x+µ[φ(X)]− 2ξ − λ

(
δp + (p− 1)(2R∗)p−1

)
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N. Proof of theorem 4.10
Recall the certificate by using Hockey-stick divergence provided in table 4 in (Dvijotham et al., 2020a) as below

εHS,β ≤
[β(θa − θb)− |β − 1|

2

]
+

When β = 1, it follows that

εHS,1 ≤
[θa − θb

2

]
+

Besides, recall the relaxation radius using Hockey-stick divergence as below

εHS,1 = G
( ε

2σ

)
−G

(
− ε

2σ

)
= 2G

( ε

2σ

)
− 1

And plug it in above inequality, we have

εHS,1 = 2G(
ε

2σ
)− 1 ≤

[θa − θb
2

]
+

And recall the definition of θa and θb, we have

EX∼x+µ[φ(X)] = θa − θb

Thus, our certificate EX∼x+µ[φ(X)]− 2
(
2G( ε

2σ )− 1
)
≥ 0 is equivalent to

2G(
ε

2σ
)− 1 ≤ θa − θb

2

Thus, the equivalence relation holds.


