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Abstract
Probabilistic solvers for ordinary differential equa-
tions (ODEs) have emerged as an efficient frame-
work for uncertainty quantification and infer-
ence on dynamical systems. In this work, we
explain the mathematical assumptions and de-
tailed implementation schemes behind solving
high-dimensional ODEs with a probabilistic nu-
merical algorithm. This has not been possible
before due to matrix-matrix operations in each
solver step, but is crucial for scientifically rele-
vant problems—most importantly, the solution
of discretised partial differential equations. In a
nutshell, efficient high-dimensional probabilistic
ODE solutions build either on independence as-
sumptions or on Kronecker structure in the prior
model. We evaluate the resulting efficiency on
a range of problems, including the probabilistic
numerical simulation of a differential equation
with millions of dimensions.

1. Introduction
Problem Statement This paper discusses a class of algo-
rithms that computes the solution of initial value problems
based on ordinary differential equations (ODEs), i.e. finding
a function y that satisfies

ẏ(t) = f(y(t), t), (1)

for all t ∈ [t0, tmax], as well as the initial condition y(t0) =
y0 ∈ Rd. Usually, f is non-linear, in which case the solu-
tion of Equation (1) cannot generally be derived in closed
form and has to be approximated numerically. We continue
the work of probabilistic numerical algorithms for ODEs
(Schober et al., 2019; Tronarp et al., 2019; Kersting et al.,
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2020b; Tronarp et al., 2021; Bosch et al., 2021; Krämer
& Hennig, 2020). Like other filtering-based ODE solvers
(“ODE filters”), the algorithm used herein translates the
numerical approximation of ODE solutions to a problem of
probabilistic inference. The resulting (approximate) poste-
rior distribution quantifies the uncertainty associated with
the unavoidable discretisation error (Bosch et al., 2021) and
provides a language that integrates well with other data
inference schemes (Kersting et al., 2020a; Schmidt et al.,
2021). The main difference to prior work is that we focus
on the setting where the dimension d of the ODE is high,
that is, say, d ≫ 100. (It is not clearly defined at which
point an ODE counts as high-dimensional, but d ≈ 100 is al-
ready a scale of problems in which previous state-of-the-art
probabilistic ODE solvers faced computational challenges.)

Motivation and Impact High-dimensional ODEs de-
scribe the interaction of large networks of dynamical sys-
tems and appear in many disciplines in the natural sciences.
The perhaps most prominent example is the simulation of
discretised partial differential equations. There, the dimen-
sion of the ODE equals the number of grid points used to
discretise the problem (with e.g. finite differences; Schiesser,
2012). More recently, ODEs gained popularity in machine
learning through the advent of neural ODEs (Chen et al.,
2018) or physics-informed neural networks (Raissi et al.,
2019). With the growing complexity of the model, each of
the above can quickly become high-dimensional. If such use
cases shall gain from probabilistic solvers, fast algorithms
for large ODE systems are crucial.

Prior Work and State-of-the-Art Many non-
probabilistic ODE solvers, for example, explicit
Runge–Kutta methods, have a computational com-
plexity linear in the ODE dimension d (Hairer et al.,
1993). Explicit Runge–Kutta methods are often the default
choices in ODE solver software packages. Compared to
the efficiency of the methods provided by DifferentialE-
quations.jl (Rackauckas & Nie, 2017), SciPy (Virtanen
et al., 2020), or Matlab (Shampine & Reichelt, 1997),
probabilistic methods have lacked behind so far. Intuitively,
ODE filters are a fusion of ODE solvers and Gaussian
process models—two classes of algorithms that suffer from
high dimensionality. More precisely, the problem is that
probabilistic solvers require matrix-matrix operations at
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Figure 1. Simulating a high-dimensional ODE: Probabilistic solution of a discretised FitzHugh–Nagumo PDE model (Ambrosio &
Françoise, 2009). Means (a-e) and standard-deviations (f-j), t0 = 0 (left) to tmax = 20 (right). The patterns in the uncertainties match
those in the solution. The simulated ODE is 125k-dimensional. A detailed description of the experiment is provided in Appendix E.1.

each step. The matrices have O(d2) entries, which leads to
O(d3) complexity for a single solver step and has made the
solution of high-dimensional ODEs impossible. ODE filters
are essentially nonlinear, approximate Gaussian process
inference schemes (with a lot of structure). As in the GP
community (e.g. Quiñonero-Candela & Rasmussen, 2005),
the path to low computational cost in these models is via
factorisation assumptions. But, perhaps surprisingly, the
necessary assumptions are minimal, in the sense that they
are already fulfilled by existing ODE filtering literature.

Contributions Our main contribution is to prove in which
settings ODE filters admit an implementation in O(d) com-
plexity. Thereby, they become a class of algorithms com-
parable to explicit Runge–Kutta methods not only in esti-
mation performance (error contraction as a function of eval-
uations of f ; Kersting et al., 2020b; Tronarp et al., 2021)
but also in computational complexity (cost per evaluation
of f ). The resulting algorithms deliver uncertainty quantifi-
cation and other benefits of probabilistic ODE solvers on
high-dimensional ODEs (see Figure 1; the ODE from this
figure will be explored in more detail in Section 5). The key
novelties of the present work are threefold:

1. Acceleration via independence: A-priori, ODE filters
commonly assume independent ODE dimensions (e.g.
Kersting et al., 2020b). We single out those inference
schemes that naturally preserve independence. Iden-
tification of independence-preserving ODE solvers is
helpful because each ODE dimension can be updated
separately. The performance implications are that a

single matrix-matrix operation with O(d2) entries is
replaced with d matrix-matrix operations with O(1)
entries. In other words, O(d) instead of O(d3) com-
plexity for a single solver step (Proposition 3.3).

2. Calibration of multivariate output-scales: A single
ODE system often models the interaction between
states that occur on different scales. It is useful to
acknowledge differing output scales in the “diffusiv-
ity” of the prior (details below). We generalise the
calibration result by Bosch et al. (2021) to the class of
solvers that preserve the independence of the dimen-
sions (Proposition 3.2).

3. Acceleration via Kronecker structure: Sometimes,
prior independence assumptions may be too restric-
tive. For instance, one might have prior knowledge of
correlations between ODE dimensions (Example 4.1 in
Section 4). Fortunately, a subset of probabilistic ODE
solvers can exploit and preserve Kronecker structure in
the system matrices of the state space. Preserving the
Kronecker structure brings over the performance gains
from above to dependent priors (Proposition 4.3).

To demonstrate how the independence and the Kronecker
structure imply extreme scalability of the resulting algo-
rithm, the experiments in Section 5 showcase simulations
of ODEs with dimension d ∼ 107.
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2. ODE Filter Setup
The following section details the technical setup of an ODE
filter, including the prior (Section 2.1), information model
(Section 2.2), and practical considerations (Section 2.3).

2.1. Prior Model

The following is standard for probabilistic ODE solvers,
and therefore essentially identical to the presentation by
e.g. Schober et al. (2019). Herein, however, we place
a stronger emphasis on Kronecker- and independence-
structures in the system matrices compared to prior work.
Both are important for the theoretical statements below.
Särkkä (2013) or Särkkä and Solin (2019) provide a compre-
hensive explanation of the mathematical concepts regarding
inference in state-space models.

Stochastic Process Prior on the ODE Solution Let Y :=
(Y i)di=1 =

(
Y i
0 , . . . , Y

i
ν

)d
i=1

solve the linear, time-invariant
stochastic differential equation (SDE)

dY (t) = AY (t) dt+B dW (t), (2)

subject to a Gaussian initial condition

Y (t0) ∼ N (m0, C0) (3)

for some m0 and C0 := Γ⊗ C̆0; e.g., m0 = 0, C̆0 = I . The
SDE is driven by a d-dimensional Wiener process W with
diffusion Γ ∈ Rd×d, and governed by the system matrices

A := Id ⊗ Ă, Ă :=

ν−1∑
q=0

eqe
⊤
q+1, B := Id ⊗ eν , (4)

where eq ∈ Rν+1 is the q-th basis vector. The zeroth compo-
nent of Y , (Y i

0 )
d
i=1, is an integrated Wiener process. With

such A and B, the q-th component (Y i
q )

d
i=1 models the

q-th derivative of the integrated Wiener process. Similar
SDEs can be written down for e.g. the integrated Ornstein-
Uhlenbeck process or the Matérn process (the only differ-
ences would be additional non-zero entries in Ă). If Γ were
diagonal, the Kronecker structure in A and B would imply
prior pairwise independence between Y i and Y j , i ̸= j.
Section 3 uses the diagonality assumption to reveal the effi-
cient implementation of a class of ODE filters. Section 4 al-
lows Γ to be any symmetric, positive definite matrix, which
is why we do not make strong assumptions on Γ yet.

Discretisation Let T = (t0, ..., tN ) be some time-grid
with step-size hn := tn+1 − tn. While for the presentation,
we assume a fixed grid, practical implementations choose
tn adaptively. Reduced to T, due to the Markov property,
the process Y becomes

Y (tn+1) | Y (tn) ∼ N (Φ(hn)Yn,Σ(hn)) (5)

for matrices

Φ(hn) := exp(Ahn), (6a)

Σ(hn) :=

∫ hn

0

Φ(hn − τ)BΓB⊤Φ(hn − τ)⊤ dτ. (6b)

The definition of Φ(hn) uses the matrix exponential. Φ(hn)
inherits the block diagonal structure from A,

Φ = Id ⊗ Φ̆(hn), Φ̆(hn) := exp(Ăhn), (7)

and Σ has a Kronecker factorisation similar to C0,

Σ(hn) = Γ⊗ Σ̆(hn), (8a)

Σ̆(hn) :=

∫ hn

0

Φ̆(hn − τ)eνe
⊤
ν Φ̆(hn − τ)⊤ dτ. (8b)

The discretisation allows efficient extrapolation from tn to
tn+1. Let Y (tn) ∼ N (mn, Cn). Then,

Y (tn+1) ∼ N (m−
n+1, C

−
n+1) (9)

with mean and covariance

m−
n+1 = Φ(hn)mn, (10a)

C−
n+1 = Φ(hn)CnΦ(hn)

⊤ +Σ(hn). (10b)

For improved numerical stability, probabilistic ODE solvers
compute this prediction in square root form, which means
that only square root matrices of Cn and C−

n+1 are propa-
gated without ever forming full covariance matrices (Krämer
& Hennig, 2020; Grewal & Andrews, 2014). Appendix A
recalls square root implementations of ODE filters.

2.2. Information Model

Information Operator The information operator

I(Y )(t) := Y1(t)− f(Y0(t), t) (11)

(recall Yq ≈ y(q)), known as the local defect (Gustafsson,
1992), captures “how well (a sample from) Y0 solves the
ODE”. If this value is large, the current state is an inaccu-
rate approximation, and if it is small, Y0 provides a good
estimate of the truth. Loosely speaking, the goal is to make
the defect as small as possible over the entire time domain.

Artificial Data The local defect I can be kept small by
conditioning Y on I(Y )(t)

!
= 0 on “many” grid-points.

Due to the regular prior and the regularity-preserving infor-
mation operator I, conditioning the prior on a zero-defect
leads to an accurate ODE solution (Tronarp et al., 2021).
Altogether, the probabilistic ODE solver targets

p
(
Y
∣∣∣ {I(Y )(tn) = 0}Nn=0 , Y0(t0) = y0

)
. (12)
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(Recall from Equation (2) that lower indices in Y refer to
the derivative, i.e. Y0 is the integrated Wiener process, and
Yq its q-th derivative.) We call the posterior in Equation (12)
the probabilistic ODE solution. Unfortunately, a nonlinear
vector field f implies a nonlinear information operator I.
Thus, the exact posterior is intractable.

Linearisation A tractable approximation of the proba-
bilistic ODE solution is available through linearisation. Lin-
earising f indirectly linearises I, and the corresponding
probabilistic ODE solution arises via Gaussian inference.
Let Fy be (an approximation of) the Jacobian of f with
respect to y. One can approximate the ODE vector field
with a Taylor series

f(y) ≈ f̂ξ(y) := f(ξ) + Fy(ξ)(y − ξ) (13)

at some ξ ∈ Rd. Let Eq := Id ⊗ eq be the projection
matrix that extracts the q-th derivative from the full state
Y . In other words, Ẏ0 = E1Y . Equation (13) implies a
linearisation of I at some η ∈ Rd(ν+1),

I(Y )(t) ≈ Îη(Y )(t) := H(t)Y (t) + b(t), (14)

with linearisation matrices

H(t) := E1 − Fy(E0η, t)E0, (15a)
b(t) := Fy(E0η, t)E0η − f(E0η, t). (15b)

Îη is linear in Y (t). Therefore, the approximate probabilis-
tic ODE solution becomes tractable with Gaussian filter-
ing and smoothing once Îη is plugged into Equation (12)
(Särkkä, 2013; Tronarp et al., 2019). At time tn, the lineari-
sation point η is usually chosen as the predicted mean m−

n ,
which yields the extended Kalman filter (Särkkä, 2013). For
ODE filters, there are three relevant versions of Fy: EK0,
EK1, and the diagonal EK1.

EK0 Approximate the Jacobian as Fy ≡ 0, which has
been a common choice since early work on ODE filters
(Schober et al., 2019; Kersting et al., 2020b), and implies a
zeroth-order approximation of f (Tronarp et al., 2019).

EK1 Use the full Jacobian Fy = ∇yf , which amounts
to a first-order Taylor approximation of the ODE vector
field (Tronarp et al., 2019). It is more stable than the EK0
(Tronarp et al., 2019), but in its general form, the EK1
does not fit the assumptions made below and thus does not
immediately scale to high dimensions. Instead, we introduce
the diagonal EK1.

Diagonal EK1 Use only the diagonal of the full Jacobian,
Fy = diag(∇yf). This choice conserves the efficiency of
the EK0 to a solver that uses Jacobian information. The
diagonal EK1 is another minor contribution of the present
work. Section 5 empirically investigates how much stability
using only the diagonal of the Jacobian provides.

Measurement and Correction A probabilistic ODE
solver step consists of an extrapolation, measurement, and
correction phase. Extrapolation has been explained in Equa-
tions (9) and (10) above. Denote

Y −
n+1 := Y (tn+1) ∼ N (m−

n+1, C
−
n+1). (16)

The measurement phase approximates

Zn+1 := Îm−
n+1

(Y −
n+1)(tn+1) ≈ I(Y −

n+1)(tn+1) (17)

by exploiting the linearisation matrices H and b,

Zn+1 ∼ N (zn+1, Sn+1), (18a)

zn+1 := H(tn+1)m
−
n+1 + b(tn+1), (18b)

Sn+1 := H(tn+1)C
−
n+1H(tn+1)

⊤. (18c)

Zn+1 will be used for calibration (details below). The ex-
trapolated random variable is then corrected as

Yn+1 ∼ N (mn+1, Cn+1), (19a)

mn+1 := m−
n+1 − C−

n+1H(tn+1)
⊤S−1

n+1zn+1, (19b)

Cn+1 := ΞC−
n+1 Ξ

⊤, (19c)

Ξ := I − C−
n+1H(tn+1)

⊤S−1
n+1H(tn+1). (19d)

The update in Equations (19c) and (19d) is the Joseph update
(Bar-Shalom et al., 2004). In practice, we never form the full
Cn+1 but compute only the square root matrix by applying
Ξ to the square root matrix of C−

n+1. It is not a Cholesky
factor (because it is not lower triangular), but generic square
root matrices suffice for numerically stable implementation
of probabilistic ODE solvers (Krämer & Hennig, 2020).

2.3. Practical Considerations

Let us conclude with brief pointers to further practical con-
siderations that are important for probabilistic ODE solvers.

Initialisation The state space models a stack of a y and the
first ν derivatives. The stability of the ODE filter depends
on the accurate initialisation of all derivatives (Krämer &
Hennig, 2020). We initialise the solver by inferring

p(Y (t0) | Y0(τm) = ŷ(τm),m = 0, ..., ν) (20)

on ν+1 small steps τ0, ..., τν where the ŷ(τm) are computed
with e.g. a Runge–Kutta method. This is a slight general-
isation of the strategy used by Schober et al. (2019) (also
refer to Schober et al. (2014); Gear (1980)), in the sense that
we formulate this initialisation as probabilistic inference in-
stead of setting the first few means manually. An alternative
strategy would be (Taylor-mode) automatic differentiation
(Krämer & Hennig, 2020; Griewank & Walther, 2008).
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Error Estimation Comprehensive explanation of error
estimation and step-size adaptation, and its effect on the esti-
mation quality and calibration of probabilistic ODE solvers,
is out of scope for the present work; we refer the reader to
Schober et al. (2019) and Bosch et al. (2021).

3. Independence Accelerates ODE Filters
This section establishes the main idea of the present work:
filtering-based probabilistic ODE solvers are fast and effi-
cient when the prior models each dimension independently.

3.1. Assumptions

Independent dimensions stem from a diagonal Γ.

Assumption 3.1. Assume that the diffusion Γ of the Wiener
process in Equation (2) is a diagonal matrix.

Assumption 3.1 implies that the initial covariance C0 (Equa-
tion (3)) is the Kronecker product of a diagonal matrix with
another matrix, thus block diagonal. Assumption 3.1 is
not very restrictive; in prior work on ODE filters, Γ was
always either Γ = γ2I for some γ > 0 (Schober et al.,
2019; Tronarp et al., 2019; Kersting et al., 2020b; Bosch
et al., 2021; Tronarp et al., 2021; Krämer & Hennig, 2020),
or diagonal (Bosch et al., 2021).

3.2. Calibration

Tuning the diffusion Γ is crucial to obtain accurate posterior
uncertainties. As announced in Section 2, the mathematical
assumptions for calibrating Γ coincide with those that lead
to an efficient ODE filter. Thus, we discuss Γ before proving
the linear complexity of ODE filters under Assumption 3.1.

Four Approaches Recall the observed random variable
Zn (Equation (17)). ODE filters calibrate Γ with quasi-
maximum-likelihood-estimation (quasi-MLE): Consider the
prediction error decomposition (Schweppe, 1965),

p({Zn}Nn=0) = p(Z0)

N−1∏
n=0

p(Zn+1 | Zn) (21a)

≈ N (z0, S0)

N−1∏
n=0

N (zn+1, Sn+1). (21b)

Γ is a quasi-MLE if it maximises Equation (21b). The spe-
cific choice of calibration depends on the respective model
for Γ, and reduces to one of four approaches: on the one
hand, fixing and calibrating a time-constant Γ versus al-
lowing a time-varying Γ; on the other hand, choosing a
scalar diffusion Γ = γ2I versus choosing a vector-valued
diffusion Γ = diag(γ1, ..., γd). Roughly speaking, a time-
varying, vector-valued diffusion allows for the greatest flex-
ibility in the probabilistic model. One contribution of the

present work is to extend the vector-valued diffusion results
by Bosch et al. (2021) to a slightly broader class of solvers
(Proposition 3.2 below). Scalar diffusion will reappear in
Section 4. Appendix B addresses time-constant diffusion.

Time-Varying Diffusion Allowing Γ to change over time,
all measurements before time tn are independent of Γn.
Under the assumption of an error-free previous state (which
is common for hyperparameter calibration in ODE solvers),
a local quasi-MLE for Γn = γ2

nI is (Schober et al., 2019)

γ̂2
n :=

1

d
zn
[
H(tn)Σ(hn)H(tn)

⊤]−1
zn. (22)

This can be extended to a quasi-MLE for the EK0 with
vector-valued Γn = diag(γ1

n, ..., γ
d
n) (Bosch et al., 2021)

(γ̂i
n)

2 := (zin)
2/[H(tn)Σ(hn)H(tn)

⊤]ii, (23)

for all i = 1, ..., d. In this work, we generalise the EK0
requirement to Assumption 3.1 and a diagonal Jacobian.

Proposition 3.2. Under Assumption 3.1 and for diagonal
Fy , the estimators (γ̂i

n)i in Equation (23) are quasi-MLEs.

Sketch of the proof. Two ideas are relevant: (i) a diagonal
Jacobian implies a block diagonal H(tn) and a diagonal
H(tn)Σ(hn)H(tn)

⊤ (which will be proved formally in
Proposition 3.3 below); (ii) the local evidence, i.e. the proba-
bility ofN (zn, Sn) being zero, decomposes into a sum over
the coordinates. Maximising each summand with respect to
γi
n yields the claim.

A very similar case can be made for time-constant diffusion
(see Appendix B). Proposition 3.2 is a generalisation of
the results by Bosch et al. (2021) in the sense that Proposi-
tion 3.2 is not restricted to the EK0.

3.3. Complexity

Now, with calibration in place, we can discuss the compu-
tational complexity of ODE filters under Assumption 3.1.
The following proposition establishes that for diagonal Ja-
cobians, a single solver step costs O(d).

Proposition 3.3. Suppose that Assumption 3.1 is in place.
If the Jacobian of the ODE is (approximated as) a diagonal
matrix, then a single step with a filtering-based probabilistic
ODE solver costs O(dν3) in floating-point operations, and
O(dν2) in memory.

Proof. Let Yn ∼ N (mn, Cn). Assume that Cn is block di-
agonal. We show that block diagonality is preserved through
a step, and since by Assumption 3.1, C0 is block diagonal,
we do not lose generality. Recall Φ(hn) and Σ(hn) from
Equations (5) and (6). Φ(hn) is block diagonal, and since
Γn is diagonal, Σ(hn) is block diagonal.
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(i) Extrapolate mean: The mean is extrapolated according to
Equation (10a), which costs O(dν2) due to the block diago-
nal Φ(hn). Each dimension is extrapolated independently.

(ii) Evaluate ODE: Next, H = H(tn+1) and b = b(tn+1)
from Equation (15) are assembled, which involves evaluat-
ing f and Fy at ξ := E0m

−
n+1 (E0 is a projection matrix

and can be implemented as array indexing, so ξ comes at
negligible cost). Fy = diag(F 1

y , ...F
d
y ) is diagonal, thus

H = blockdiag(H1, ...,Hd) (24)

is block diagonal with blocks

Hi := e1 − e0F
i
y, i = 1, ..., d (25)

(recall the basis vectors eq from Equation (4)). The block
diagonal H has been pre-empted in Proposition 3.2 above.

(iii) Calibrate Γ: The cost of assembling the quasi-MLE for
Γn+1 according to Equation (22) or Equation (23) is O(d),
because the matrix to be inverted is diagonal.

(iv) Extrapolate the covariance: The covariance can be ex-
trapolated dimension-by-dimension as well, because Cn,
Φ(hn), and Σ(hn) are all block diagonal with the same
block structure: d square blocks with ν + 1 rows and
columns; recall Equation (10b). In reality, the matrix-matrix
multiplication is replaced by a QR decomposition; we re-
fer to Appendix A.1 for details on square root implemen-
tation. Using either strategy—square root or traditional
implementation—extrapolating the covariance costs O(dν3)
and C−

n+1 is block diagonal.

(v) Measure: Computing the mean of Zn+1 (recall Equa-
tions (17) and (18)) costs O(d). The covariance Sn+1 of
Zn+1 is diagonal, since H and C−

n+1 are block diagonal.
Thus, assembling and inverting Sn+1 costs O(d).

(vi) Correct mean and covariance: The mean is corrected ac-
cording to Equation (19b), which—since Sn+1 is diagonal—
costs O(dν). The covariance is corrected according to Equa-
tions (19c) and (19d), the complexity of which hinges on the
structure of Ξ (Equation (19d)): due to the block diagonal
C−

n+1, H , and Sn+1, Ξ is block diagonal again, and correct-
ing the covariance costs O(dν3). The square root of Cn+1

arises by multiplying Ξ with the “left” square root matrix
of C−

n+1. The complexity does not change (asymptotically;
QR decompositions cost more than matrix multiplications).

All in all, ODE filter steps preserve block-diagonal structure
in the covariances. The expensive phases are the covariance
extrapolation and correction in O(dν3) floating-point oper-
ations. The maximum memory demand is O(dν2) for the
block diagonal covariances.

While it may seem restrictive to use only the diagonal of
the Jacobian, Proposition 3.3 includes the EK0, one of the

central ODE filters. The O(d) complexity puts the EK0
and the diagonal EK1 into the complexity class of explicit
Runge–Kutta methods. Usually, ν < 12 holds, so ν can be
treated as some constant (Krämer & Hennig, 2020).

4. EK0 Preserves Kronecker Structure
As hinted in Section 1, scalar or diagonal diffusion may be
too restrictive in certain situations (Krämer et al., 2022).
Example 4.1. Consider a spatio-temporal Gaussian process
model u(t, x) ∼ GP(0, γ2kt ⊗ kx), where kt is the co-
variance kernel that directly corresponds to an integrated
Wiener process prior (Särkkä & Solin, 2019). Such a spatio-
temporal model could be a useful prior distribution for
applying an ODE solver to problems that are discretised
PDEs, because kx encodes spatial dependency structures.
Restricted to a spatial grid X := {x1, ..., xG}, y := u(t,X )
satisfies the prior model in Equations (2) to (3)1, but with
Γ = γ2kx(X ,X ) (Solin, 2016), which is usually dense.

4.1. Assumptions

Despite the lack of independence in Example 4.1, fast ODE
solutions remain possible with the EK0. In the remainder of
this section, let Γ = γ2Γ̆ for some matrix Γ̆ and some scalar
γ. Calibrating the scalar γ allows preserving Kronecker
structure in the system matrices that appear in an ODE filter
step (Proposition 4.3 below). Tronarp et al. (2019) show
how for Γ = γ2Γ̆, a time-constant quasi-MLE γ̂ arises in
closed form and also, that the posterior covariances all look
like Cn = γ2C̆n: calibration can happen entirely post-hoc.

Constraints The following statement about linear com-
plexity of ODE filters is only valid under two constraints:
one can ignore (i) the quadratic costs of multiplying the
posterior covariances with the quasi-MLE, and (ii) the cubic
costs of solving a linear system involving Γ. The system
matrices Φ,Σ, C0 are all Kronecker products of a Rd×d

(“left”) and a Rν×ν factor (“right”). The first constraint
is thus avoided by scaling the “right” Kronecker factor of
the covariances with γ2 in O(ν2). (ODE filters preserve
Kronecker structure; see below.) The second one becomes
the following assumption.
Assumption 4.2. Assume that the inverse of Γ is readily
available and cheap to apply; that is, the quantity x⊤Γ−1x
can be computed in O(d).

Naturally, Assumption 4.2 holds for diagonal or at least suf-
ficiently sparse matrices Γ. There are also settings in which
Assumption 4.2 holds even if Γ is dense. For instance, if Γ is
the covariance of a Gauss–Markov random field, the sparsity
structure in Γ−1 implies adjacency of grid nodes (Lindgren
et al., 2011; Sidén & Lindsten, 2020). In Example 4.1 with

1Technically, the stack of y and its ν derivatives does.
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Figure 2. Runtime of a single ODE filter step: Run time (wall-clock) of a single step of ODE filter variations on the Lorenz96 problem (a)
for increasing ODE dimension and ν = 2, 4, 6 (b-d). The traditional implementations cost O(d3) per step, the diagonal EK1 and diagonal
EK0 are O(d) per step, just like the Kronecker version of the EK0. The Kronecker EK0 is faster than the diagonal solvers, because
covariance operations involve a single (ν + 1)× (ν + 1) matrix instead of a batch of d such matrices (further details: Appendix C).

a spatial Matern kernel, for example, inverse Gram matrices
can be approximated efficiently using the stochastic partial
differential equation formulation (Lindgren et al., 2011).

4.2. Computational Complexity

Under Assumption 4.2, a single EK0 step costs O(d):

Proposition 4.3. Under Assumption 4.2, and if a time-
constant diffusion model Γ = γ2Γ̆ is calibrated via γ, a
single step of the EK0 costs O(ν3 + dν2) floating point
operations, and O(dν + d2 + ν2) memory.

The proof parallels that of Proposition 3.3 (details are in
Appendix C). It hinges on computing everything only in the
“right” factor of each Kronecker matrix. The proposition can
be extended to time-varying diffusion if one tracks γ in the
“right” Kronecker factor instead of the “left” one. Since this
obfuscates the notation, we prove the claim in Appendix D.
The O(d2) memory requirement is entirely due to the cost of
storing Γ. If Γ or Γ−1 are sparse, it reduces to O(dν + ν2).

5. Empirical Evaluation
The remainder evaluates the efficiency of the proposals.
Next to everything detailed above, our implementation uses
the preconditioner suggested by Krämer & Hennig (2020).
Its complexity is neglibible in light of Propositions 3.3
and 4.3, because all preconditioners are diagonal matrices.
The full code for the solver implementation and experiments
is publicly available on GitHub.2

2
https://github.com/pnkraemer/

million-dimension-prob-ode-solver-experiments

Single ODE Filter Step We begin by evaluating the cost
of a single step of the ODE filter variations on the Lorenz96
problem (Lorenz, 1996). This is a chaotic dynamical system
and recommends itself for the first experiment, as its dimen-
sion can be increased freely. Appendix E.2 contains a more
detailed description of the ODE model. We time a single
ODE filter step for increasing ODE dimension d and dif-
ferent solver orders ν ∈ {2, 4, 6}. The results are depicted
in Figure 2. The traditional EK0 and EK1 become infea-
sible due to their cubic complexity in the dimension. The
diagonal EK1 and the diagonal EK0 exhibit their O(d) cost.
The Kronecker EK0 is cheaper than the independence-based
solvers. A step with the Kronecker EK0 takes∼1 second for
a 16 million-dimensional ODE on a consumer-level CPU.
Figure 2 confirms Propositions 3.3 and 4.3.

Full Simulation Next, we evaluate whether the perfor-
mance gains for a single ODE filter step translate into a
reduced overall runtime (including initialisation, step-size
adaptation and calibration) on a medium-dimensional prob-
lem: the Pleiades problem (Hairer et al., 1993). It describes
the motion of seven stars in a plane and is commonly solved
as a system of 28 first-order ODEs. Appendix E.3 describes
the ODE dynamics and the experimental setup in more detail.
The results are in Figure 3. Pleiades reveals the increased
efficiency of the ODE filters. The probabilistic solvers are
as fast as Radau, only by a factor ∼10 slower than SciPy’s
RK45 (Virtanen et al., 2020), but 100 times faster than their
reference implementations. (It should be noted that the ODE
filters use just-in-time compilation for some components,
whereas SciPy does not.) These findings confirm how the
practical considerations (initialisation, step-size adaptation,
etc.) scale sufficiently well to higher-dimensional settings.

https://github.com/pnkraemer/million-dimension-prob-ode-solver-experiments
https://github.com/pnkraemer/million-dimension-prob-ode-solver-experiments
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Figure 3. Runtime efficiency of fast ODE filters: Run time per
root mean-square error of the ODE filters (a) on the Pleiades
problem (b). The figure also shows two reference ODE filters,
EK0 and EK1 in the traditional implementation, and Scipy’s RK45
(explicit) and Radau (implicit). On the 28-dimensional Pleiades
problem, the improved implementation accelerates the ODE filter
implementations significantly.

102 103 104 105 106 107

ODE dimension

100

101

102

103

104

105

Ru
n 

tim
e 

[s
]

a. Run time vs. ODE dimension

b. FHN

EK0 (Diag.)
EK1 (Diag.)
EK0 (Kron.)
EK0 (Kron., GPU)
DOP853 (SciPy)

Figure 4. High-dimensional PDE discretisation: Run-time of ODE
filters on the discretised FitzHugh–Nagumo model for increasing
ODE dimension (i.e. increasing spatial resolution) including cal-
ibration and adaptive time-steps. SciPy’s DOP853 for reference.
Simulating ≫ 106-dimensional ODEs takes ≈ 3h.

High-Dimensional Setting To evaluate how well the im-
proved efficiency translates to extremely high dimensions,
we solve the discretised FitzHugh–Nagumo PDE model on
high spatial resolution (which translates to high-dimensional
ODEs); details on the experiment setup can be found in Ap-
pendix E.4. The results are in Figure 4. The main takeaway
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Figure 5. Stability: Number of steps taken by an ODE filter (a) for
an increasingly stiff Van der Pol system (b). The diagonal EK1 is
more stable than the EK0, but less stable than the EK1 (which is
expected because it uses strictly less Jacobian information).

is that ODEs with millions of dimensions can now be solved
probabilistically within a realistic time frame (hours), which
has not been possible before. GPUs improve the runtime for
extremely high-dimensional problems (d≫ 105).

Stability of the Diagonal EK1 How much do we lose by
ignoring off-diagonal elements in the Jacobian? To evaluate
the loss (or preservation) of stability against the A-stable
EK1 (Tronarp et al., 2019), we solve the Van der Pol system
(Guckenheimer, 1980). (The reference solver requires a
low-dimensional ODE.) It includes a free parameter µ > 0,
whose magnitude governs the stiffness of the problem: the
larger µ, the stiffer the problem, and for e.g. µ = 106, Van
der Pol is a famously stiff equation. For further details see
Appendix E.5. The results are in Figure 5. We observe
how the diagonal EK1 is less stable than the traditional
EK1 for an increasing stiffness constant, but also that it is
significantly more stable than the EK0. It is a success that
the diagonal EK1 solves the Van der Pol equation for large
µ.

Uncertainty Calibration of the Diagonal EK1 It has
previously been shown by Bosch et al. (2021) that the EK0,
diagonal EK0 and EK1 are similarly-well calibrated, with
the EK1 having a tendency to be underconfident. Here, we
investigate the calibration of the diagonal EK1. We evaluate
the chi-squared statistic

χ2(t) := ∥m(t)− y(t)∥2C(t)−1 , (26)

which measures the ratio of the error in the mean m ∈ Rd

of Y0, which approximates the ODE solution y, normalised
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Figure 6. Uncertainty calibration: Chi-squared statistics and root-
mean-square errors (RMSEs) over a range of tolerance levels. The
gray area shows the 99% confidence intervals for the chi-squared
statistic and the black horizontal line denotes perfect calibration
(χ2 = d). While the traditional EK1 shows underconfidence
(χ2 ≪ d), the diagonal EK1 is more similar in calibration to the
EK0 variants.

by the covariance C ∈ Rd×d of Y0, for a range of error-
tolerance levels, on a non-stiff Van der Pol system. The
results are in Figure 6. While the traditional EK1 tends to
be underconfident, the calibration of the diagonal EK1 is
more comparable to that of the EK0 variants. In particular,
the diagonal approximation of the Jacobian does not seem
to have a negative impact on the uncertainty calibration in
terms of what is measured by the chi-squared statistic.

6. Conclusion
For probabilistic ODE solvers to capitalize on their theo-
retical advantages, their computational cost has to come
close to that of their non-probabilistic, point-estimate coun-
terparts (which benefit from decades of optimization). High-
dimensional problems are one obstacle on this path, which
we cleared here. We showed that independence assump-
tions in the underlying state-space model, or preservation
of Kronecker structures, can bring the computational com-
plexity of a large subset of known ODE filters close to
non-probabilistic, explicit Runge–Kutta methods. As a re-
sult, probabilistic simulation of extremely large systems of
ODEs is now possible, opening up opportunities to exploit
the advantages of probabilistic ODE solvers on challenging
real-world problems.
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abilistic solutions to ordinary differential equations as
nonlinear Bayesian filtering: a new perspective. Statistics
and Computing, 29(6):1297–1315, 2019.
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A. Square-Root Implementation of Probabilistic ODE Solvers
The following two sections detail the square-root implementation of the transitions underlying the probabilistic ODE solver.
The whole section is a synopsis of the explanations by Krämer & Hennig (2020). See also the monograph by Grewal &
Andrews (2014) for additional details.

A.1. Extrapolation

The extrapolation step

C−
n+1 = Φ(hn)CnΦ(hn)

⊤ +Σ(hn) (27)

does not lead to stability issues further down the line (i.e. in calibration/correction/smoothing steps) if carried out in square
root form. Square-root form means that instead of tracking and propagating covariance matrices C, only square root matrices
C =

√
C
√
C

⊤
are used for extrapolation and correction steps without forming the full covariance.

This is possible by means of QR decompositions. The matrix square root
√

C−
n+1 arises from

√
Cn through the QR

decomposition of

Q

(
R
0

)
←
(√

CnΦ(hn)
⊤√

Σ(hn)⊤

)
,
√

C−
n+1 ← R⊤ (28)

because

R⊤R =

(
R
0

)⊤

Q⊤Q

(
R
0

)
=

(√
CnΦ(hn)

⊤√
Σ(hn)⊤

)⊤(√
CnΦ(hn)

⊤√
Σ(hn)⊤

)
= Φ(hn)CnΦ(hn)

⊤ +Σ(hn). (29)

QR decompositions of a rectangular matrix M ∈ Rm×n, m > n costs O(mn2), which implies that the covariance square
root correction costs O(d3ν3). The QR decomposition is unique up to orthogonal row-operations (e.g. multiplying with
±1). Probabilistic ODE solvers require only any square root matrix, so this equivalence relation can be safely ignored – they
all imply the same covariance.

A.2. Correction

The correction follows a similar pattern. Recall the linearised observation model

I(y) ≈ Î(y) = Hy + b (30)

where H contains the vector field information and the Jacobian information (potentially, depending on linearisation style).
There are two ways of performing square root corrections: the conventional way, and the way that is tailored to probabilistic
ODE solvers, which builds on Joseph form corrections.

Conventional Way Let
√
C− be a matrix square root of the current extrapolated covariance (we drop the n+ 1 index for

improved readability). Let 0n be the n × n zero matrix, and 0n×m the n ×m zero matrix. The heart of the square root
correction is another QR decomposition of the matrix

Q

(
R11 R12

0d(ν+1)×d R22

)
←

(√
C−⊤

H⊤
√
C−⊤

0d 0d×d(ν+1)

)
(31)

with R11 ∈ Rd×d, R12 ∈ Rd×d(ν+1), and R22 ∈ Rd(ν+1)×d(ν+1). The Rij matrices contain the relevant information about
the covariance matrices involved in the correction:

⋄
√
S := R⊤

11 is the matrix square root of the innovation covariance

⋄
√
C := R⊤

22 is the matrix square root of the posterior covariance

⋄ K := R12(R11)
−1 is the Kalman gain and can be used to correct the mean

This QR decomposition costs O(d3ν3) again, but the matrix involved is larger than the stack of matrices in the extrapolation
step (it has d more columns), so for high-dimensional problems, the increased overhead becomes significant. However, if
only any square root matrix is desired, this step can be circumvented.
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Joseph Way Again, let
√
C− be the square root matrix of the current extrapolated covariance which results from the

extrapolation step in square root form. Next, the full covariance is assembled (which goes against the usual grain of avoiding
full covariance matrices, but works well in the present case) as C− =

√
C−
√
C−⊤

. Since in the probabilistic solver, C− is
either a Kronecker matrix Id ⊗ C̆− or a block diagonal matrix blockdiag((C−)1, ..., (C−)d), this is sufficiently cheap. The
innovation covariance itself then becomes

S = HC−H⊤ (32a)

= (E1 − FxE0)C
−(E1 − FxE0)

⊤ (32b)

= E1C
−E⊤

1 − FxE0C
−E⊤

1 − E1C
−E⊤

0 F⊤
x + FxE0C

−E⊤
0 F⊤

x (32c)

which can be computed rather efficiently because EiC
−E⊤

j only involves accessing elements, not matrix multiplication.
The only non-negligible cost here is multiplication with the Jacobian of the ODE vector field (which is often sparse in
high-dimensional problems). Then, the Kalman gain

K = C−H⊤S−1 (33)

can be computed from S which implies that the covariance correction reduces to
√
C = (I −KH)

√
C− (34)

which is the “left half” of the Joseph correction. The resulting matrix is square, and a matrix square root of the posterior
covariance, but not triangular thus no valid Cholesky factor. If the sole purpose of the square root matrices is improved
numerical stability, generic square root matrices suffice.

B. Independence and Fast ODE Filters for Time-Constant Diffusion
A similar result to Proposition 3.2 can be formulated for vector-valued, time-constant diffusion models.

Proposition B.1. Under Assumption 3.1 and for diagonal Fy, a quasi-maximum likelihood estimate (MLE) for a vector-
valued, time-constant diffusion model Γ = diag((γ1)2, ..., (γd)2) is given by the estimator

(γ̂i)2 :=
1

N

N∑
i=1

(zin)
2

[Sn]ii
, i = 1, . . . , d, (35)

where Sn := H(tn)Σ(hn)H(tn)
⊤ is the diagonal covariance matrix of the measurement Zn (recall Section 2.2).

Proof. The proof is structured as follows. First, we show that an initial covariance

C0 = blockdiag((γ1)2C̆0, . . . , (γ
d)2C̆0) (36)

implies covariances

C−
n = blockdiag

(
(γ1)2(C1

n)
−, . . . , (γd)2(Cd

n)
−) , (37a)

Cn = blockdiag
(
(γ1)2C1

n, . . . , (γ
d)2Cd

n

)
, (37b)

Sn = diag
(
(γ1)2s1n, . . . , (γ

d)2sdn
)
. (37c)

Then, for measurement covariances Sn of such form, we can compute the (quasi) maximum likelihood estimate Γ̂. Because
every covariance depends multiplicatively on γ, calibration can happen entirely post-hoc.

Block-Wise Scalar Diffusion Recall from Section 2.1 that the transition matrix and the process noise covariance are of
the form Φ(hn) = Id ⊗ Φ̆(hn) and Σ(hn) = Γ⊗ Σ̆(hn). Thus, for a diagonal diffusion Γ = diag((γ1)2, ..., (γd)2), both
Φ(hn) and Σ(hn) are block diagonal. Assuming a block diagonal covariance matrix that depends multiplicatively on γ,

Cn−1 = blockdiag
(
(γ1)2C1

n−1, . . . , (γ
d)2Cd

n−1

)
, (38)
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the extrapolated covariance is also of the form

C−
n = blockdiag

(
(γ1)2(C1

n)
−, . . . , (γd)2(Cd

n)
−) , (39a)

(Ci
n)

− := Φ̆(hn)C
i
n−1Φ̆(hn)

⊤ + Σ̆(hn), i = 1, . . . , d. (39b)

The diagonal Jacobian Fy implies a block diagonal linearisation matrix

Hn = E1 − FyE0 = blockdiag
(
H1

n, . . . ,H
d
n

)
, (40a)

Hi
n := e1 − [Fy]i,ie0, i = 1, . . . , d. (40b)

The measurement covariance Sn is therefore given by a diagonal matrix and depends multiplicatively on γ, as

Sn = HnC
−
n H⊤

n = diag
(
(γ1)2s1n, . . . , (γ

d)2sdn
)
, (41a)

sin := Hi
n(C

i
n)

−(Hi
n)

⊤, i = 1, . . . , d. (41b)

This implies a block diagonal Kalman gain

Ξn = I − C−
n H(tn)

⊤S−1
n H(tn) = blockdiag

(
Ξ1
n, . . .Ξ

d
n

)
, (42a)

Ξi
n := Iν+1 − (C−

n )i(Hi
n)

⊤Hi
n/s

i
n i = 1, . . . , d. (42b)

Finally, we obtain the corrected covariance

Cn = blockdiag
(
(γ1)2C1

n, . . . , (γ
d)2Cd

n

)
, (43a)

Ci
n := Ξi

n(C
i
n)

−(Ξi
n)

⊤ i = 1, . . . , d. (43b)

This concludes the first part of the proof.

Computing The Quasi-MLE It is left to compute the (quasi) MLE Γ̂ = diag((γ̂1)2, ..., (γ̂d)2) by maximizing the
log-likelihood log p(z1:N ) = log

∏N
n=1N (0; zn, Sn). Since Sn = diag

(
(γ1)2s1n, . . . , (γ

d)2sdn
)

is a diagonal matrix, we
obtain

Γ̂ = argmax
Γ

N∑
n=1

logN (0; zn, Sn) (44a)

= argmax
Γ

d∑
i=1

(
−N log(γ̂i)2

2
−

N∑
n=1

(zn)
2
d

2sin(γ̂
i)2

)
. (44b)

By taking the derivative and setting it to zero, we obtain the quasi-MLE from Equation (35).

C. Proof of Proposition 4.3
Proof. Let Yn ∼ N (mn, Cn). Assume Cn = Γ⊗ C̆n which is no loss of generality, because such a Kronecker structure is
preserved through the ODE filter step as shown below.

(i) Extrapolate mean: The mean extrapolation costs O(dν2) like in the proof of Proposition 3.3.

(ii) Evaluate the ODE: Evaluation of H and b is essentially free—recall that we only consider the EK0 in this setting, which
uses the projection H(tn) = E1. Matrix multiplication with H consists of a projection, which costs O(1).

(iii) Calibrate: Calibration of a time-constant γ2 costs O(d) under Assumption 4.2.

(iv) Extrapolate covariance: In the time-constant diffusion model, Σ(hn) and Cn are both Kronecker matrices and share the
left Kronecker factor: Γ. Thus, the extrapolation of the covariance can be carried out “in the right Kronecker factor”, which
costs O(ν3) in traditional as well as square root implementation. Denote the extrapolated covariance by C−

n+1 := Γ⊗ C̆−
n+1.
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(v) Measure: Recall H(tn) = E1 = I ⊗ e1. The mean of the measured random variable Zn ∼ N (zn, Sn) comes at
negligible cost. The covariance

Sn+1 = H(tn+1)C
−
n+1H(tn+1)

⊤ = Γ⊗
[
e1C̆

−
n+1e

⊤
1

]
(45)

requires a single element in C̆−
n+1. The Kalman gain

K := C−
n+1H(tn+1)

⊤S⊤
n+1 = I ⊗ K̆, (46)

with K̆ := e1C̆
−
n+1/

[
e1C̆

−
n+1e

⊤
1

]
involves dividing the first row of C̆−

n+1 by a scalar. Its cost is O(ν + 1).

(v) Correct mean and covariance: The mean is corrected in O(dν2) as in the proof of Proposition 3.3. Due to the Kronecker
structure in K, the “left” Kronecker factor of Cn+1 must be Γ again. Therefore, we need to correct only the “right”
Kronecker factor in O(ν3).

All in all, under the assumption of cheap calibration, a single step with the EK0 costs O(dν2) and the expensive steps are (as
before) the covariance extrapolation and the covariance correction. The total memory costs are the requirements of storing
Γ, the mean(s) in O(νd), and the “right” Kronecker factor(s) in O(ν2).

D. Kronecker Structure and Fast ODE Filters for Time-Varying Diffusion
In the following we extend the results of Proposition 4.3 to time-varying diffusion models.
Proposition D.1. Under Assumption 4.2, and if a time-varying diffusion model Γn = γ2

nΓ̆ is calibrated via γn, a single step
of the EK0 costs O(ν3 + dν2) floating point operations, and O(dν + d2 + ν2) memory.

Proof. The proof of Proposition 4.3 shown in Appendix C depends on the specific time-fixed diffusion model only in
the calibration (iii) and the extrapolation of the covariance (iv). In the following, we discuss these two steps for a time-
varying diffusion Γn = γ2

nΓ̆. We show that Kronecker structure is preserved and we obtain the same complexities as in
Proposition 4.3.

(iii) Calibrate: Calibration of a time-varying γ2
n+1 is done with

γ̂2
n+1 : =

1

d
z⊤n+1

[
H(tn+1)Σ(hn+1)H(tn+1)

⊤]−1
zn+1 (47a)

=
1

d
z⊤n+1

(
Γ̆n+1 ·

[
Σ̆−

n+1

]
11

)−1

zn+1 (47b)

=
1

d
z⊤n+1

(
Γ̆n+1

)−1

zn+1

/[
Σ̆−

n+1

]
11

, (47c)

where we used that H(tn) = I ⊗ e1. With Assumption 4.2, this computation costs O(d).

(iv) Extrapolate covariance: Assume a covariance of the form Cn =
(
γ2
nΓ̆
)
⊗ C̆n. Since scalars can be moved between the

Kronecker factors, the covariance matrix can be written with the diffusion matrix Γn+1 = γ2
n+1Γ̆, as

Cn =
(
γ2
n+1Γ̆

)
⊗
(

γ2
n

γ2
n+1

C̆n

)
. (48)

Then, since Σn+1 =
(
γ2
n+1Γ̆

)
⊗ Σ̆n+1, the prediction step can be written as

C−
n+1 = Φ(hn+1)CnΦ(hn+1)

⊤ +Σ(hn+1) (49a)

=
(
Id ⊗ Φ̆(hn+1)

)((
γ2
n+1Γ̆

)
⊗
(

γ2
n

γ2
n+1

C̆n

))(
Id ⊗ Φ̆(hn+1)

)⊤
+
((

γ2
n+1Γ̆

)
⊗ Σ̆n+1

)
(49b)

=
(
γ2
n+1Γ̆

)
⊗
(

γ2
n

γ2
n+1

Φ̆(hn+1)C̆nΦ̆(hn+1)
⊤ + Σ̆n+1

)
(49c)

=:
(
γ2
n+1Γ̆

)
⊗ C̆−

n+1. (49d)
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With a Kalman gain of the form K = I ⊗ K̆, the corrected covariance can be written as Cn+1 = (γ2
n+1Γ̆)⊗ C̆n+1, thus

confirming our assumption on the Kronecker structure of covariance matrices. Since all matrix multiplications happen only
“in the right Kronecker factor”, extrapolating the covariance costs O(ν3).

All other parts of the proof can be reproduced as in Appendix C to obtain the specified complexities.

E. Additional Details on the Empirical Evaluation
E.1. Figure 1: Simulating a high-dimensional ODE

The considered FitzHugh–Nagumo PDE is provided in Appendix E.4. For this first visualization, the PDE solved on the
time span t ∈ [0, 20] and in a spatial domain x ∈ [−1.25, 1.25]2, discretized in intervals ∆x = 0.01. The probabilistic
numerical solution is computed with a diagonal EK1 solver with a 2-times integrated Wiener process (IWP(2)) prior and a
time-varying scalar diffusion model. Adaptive steps are chosen with tolerance levels τabs = 10−3, τrel = 10−1.

E.2. Single ODE Filter Step

Lorenz96 The Lorenz96 model describes a chaotic dynamical system for which the dimension can be chosen freely
(Lorenz, 1996). It is given by a system of N ≥ 4 ODEs

ẏ1 = (y2 − yN−1)yN − y1 + F, (50a)
ẏ2 = (y3 − yN )y1 − y2 + F, (50b)
ẏi = (yi+1 − yi−2)yi−1 − yi + F i = 3, . . . , N − 1, (50c)
ẏN = (y1 − yN−2)yN−1 − yN + F, (50d)

with forcing term F = 8, initial values y1(0) = F + 0.01 and y>1(0) = F , and time span t ∈ [0, 30].

E.3. Full Simulation

Pleiades The Pleiades system describes the motion of seven stars in a plane, with coordinates (xi, yi) and masses mi = i,
i = 1, . . . , 7 (Hairer et al., 1993, Section II.10). It can be described with a system of 28 ODEs

ẋi = vi (51a)
ẏi = wi (51b)

v̇i =
∑
j ̸=i

mj(xj − xi)/rij , (51c)

ẇi =
∑
j ̸=i

mj(yj − yi)/rij , (51d)

where rij =
(
(xi − xj)

2 + (yi − yj)
2
)3/2

, for i, j = 1, . . . , 7. It is commonly solved on the time span t ∈ [0, 3] and with
initial locations

x(0) = [3, 3,−1,−3, 2,−2, 2], (52a)
y(0) = [3,−3, 2, 0, 0,−4, 4], (52b)
v(0) = [0, 0, 0, 0, 0, 1.75,−1.5], (52c)
w(0) = [0, 0, 0,−1.25, 1, 0, 0]. (52d)

Further Details All considered probabilistic numerical solvers use a 4-times integrated Wiener process (IWP(4)) prior,
as well as a time-varying scalar diffusion. The SciPy solutions and the fast PN solutions shown in Figure 3 correspond
to absolute and relative tolerance levels τabs, τrel ∈ {10−i}12i=3; PN solutions in their traditional implementation are only
computed for tolerances τabs, τrel ∈ {10−i}10i=3. The references solution is computed with the LSODA solver and with
absolute and relative tolerances of τabs = 10−12, τrel = 10−12.
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E.4. High-Dimensional Setting

FitzHugh–Nagumo PDE Let ∆ =
∑d

i=1
∂2

∂x2
i

be the Laplacian. The FitzHugh–Nagumo partial differential equation
(PDE) is (Ambrosio & Françoise, 2009)

∂

∂t
u(t, x) = a∆u(t, x) + u(t, x)− u(t, x)3 − v(t, x) + k, (53a)

∂

∂t
v(t, x) =

1

τ
(b∆v(t, x) + u(t, x)− v(t, x)), (53b)

for some parameters a, b, k, τ , and initial values u(t0, x) = h0(x), v(t0, x) = h1(x). In our experiments, we chose
a = 208 · 10−4, b = 5 · 10−3, k = −5 · 10−3, τ = 0.1. As initial values, we used random samples from the uniform
distribution on (0, 1). We solve the PDE from t0 = 0 to tmax = 20 on a range of spatial domains x ∈ [0,W ]× [0,W ] ⊆ R2,
with W ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50}. To turn the PDE into a system of ODEs, we discretised the Laplacian with
central, second-order finite differences schemes on a uniform grid. The mesh size of the grid determines the number of grid
points, which controls the dimension of the ODE problem.

Further Details PN solutions are computed with a 3-times integrated Wiener process (IWP(3)) prior, a time-varying
scalar diffusion, and with step-size adaptation for chosen tolerances τabs = 10−3, τrel = 10−1. The DOP853 solutions are
computed with tolerance levels τabs = 10−6, τrel = 10−3.

E.5. Stability of the Diagonal EK1

Van der Pol The Van der Pol system is often employed to evaluate the stability of stiff ODE solvers (Wanner & Hairer,
1996). It is given by a system of ODEs

ẏ1(t) = y2(t), ẏ2(t) = µ
((
1− y21(t)

)
y2(t)− y1(t)

)
, (54)

with stiffness constant µ > 0, time span t ∈ [0, 6.3], and initial value y(0) = [2, 0].

Further Details All considered probabilistic numerical solutions are computed with a 5-times integrated Wiener process
(IWP(5)) prior, a time-varying scalar diffusion model, and with step-size adaptation for tolerances τabs = 10−6, τrel = 10−3.


