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Abstract
Despite recent promising results on semi-
supervised learning (SSL), data imbalance, partic-
ularly in the unlabeled dataset, could significantly
impact the training performance of a SSL algo-
rithm if there is a mismatch between the expected
and actual class distributions. The efforts on how
to construct a robust SSL framework that can ef-
fectively learn from datasets with unknown dis-
tributions remain limited. We first investigate the
feasibility of adding weights to the consistency
loss and then we verify the necessity of smoothed
weighting schemes. Based on this study, we pro-
pose a self-adaptive algorithm, named Smoothed
Adaptive Weighting (SAW). SAW is designed to
enhance the robustness of SSL by estimating the
learning difficulty of each class and synthesiz-
ing the weights in the consistency loss based on
such estimation. We show that SAW can com-
plement recent consistency-based SSL algorithms
and improve their reliability on various datasets in-
cluding three standard datasets and one gigapixel
medical imaging application without making any
assumptions about the distribution of the unla-
beled set.

1. Introduction
Although deep neural networks have repeatedly achieved
promising performance on various tasks (He et al., 2016;
Chen et al., 2019; Chan et al., 2019), their success heavily
relies on the accessibility of large annotated datasets that
typically involve labor-intensive labeling. The labeling cost
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could be even higher in medical imaging applications where
images are at gigapixel level (Lai et al., 2021) and specific
domain knowledge is required (Chan et al., 2019). Semi-
supervised learning (SSL) is one of the promising methods
to reduce the labeling cost by leveraging unlabeled data.

To leverage unlabeled data effectively, recent state-of-the-
art SSL algorithms (Arazo et al., 2020; Sohn et al., 2020;
Berthelot et al., 2020) produce pseudo labels on unlabeled
data, and then train the model by iteratively optimizing con-
sistency loss as a regularization via pseudo labels. These
SSL methods typically assume that labeled and unlabeled
data are balanced (i.e., equal representation from different
classes). One challenge for the wide-adoption of SSL is
that the performance may suffer from imbalanced training
set (Kim et al., 2020; Calderon-Ramirez et al., 2020; Pulido
et al., 2020), such as a long-tailed dataset from CIFAR-
10 shown in Figure 1(a) (Krizhevsky, 2009). Specifically,
the model’s predictions can be biased towards the major-
ity classes and away from minority classes that have few
samples (Dong et al., 2018). This affects the quality of
pseudo labels, which could subsequently make the model
even more biased with self-reinforcing errors (Tai et al.,
2021). Consider the example shown in Figure 1: using
FixMatch (Sohn et al., 2020) on the long-tailed CIFAR-10
dataset, Figure 1(c) shows that the numbers of pseudo labels
for minority classes {6, 7, 8, 9, 10} are significantly smaller
than the true distribution. In fact, the smallest class receives
no pseudo labels at all. Figure 1(b) shows that original SSL
model generates more pseudo labels for majority classes.
The bias in the pseudo label distribution has prolonged the
training and affected the classification performance.

In supervised learning (SL), re-weighting (Cao et al., 2019;
Tan et al., 2020) and re-sampling (Kang et al., 2020; 2019;
Chawla et al., 2002) based methods have shown their suc-
cess. However, they were designed for SL and require label
information of the entire dataset. Hence they may not be di-
rectly applicable in SSL settings where the majority samples
are unlabeled. A few recent studies (Kim et al., 2020; Yang
& Xu, 2020; Hyun et al., 2020; Wei et al., 2021) try to ad-
dress the issue in SSL settings, but all of these methods may
introduce additional heavy computations (e.g. complicated
re-sampling (Wei et al., 2021), pseudo label alignment (Kim
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Figure 1. Experimental results on CIFAR-10 under imbalanced ratio γ = 100. (a) Class distribution of labeled and unlabeled data. (b)
Estimated distribution of majority classes {1, 2, 3, 4, 5}. (c) Estimated distribution of minority classes {6, 7, 8, 9, 10}.

et al., 2020)) and have made assumptions about the distri-
bution of the unlabeled data. For example, CReST (Wei
et al., 2021) assumes that unlabeled data have almost the
same distribution as labeled data. DARP (Kim et al., 2020)
utilizes the confusion matrix from labeled data to estimate
unlabeled data distribution. However, in real-world scenar-
ios (such as in gigapixel pathology imaging problems (Lai
et al., 2021)), such prior information about the unlabeled
data is often unavailable. This is the second challenge SSL
faces in realistic tasks.

Contributions. As re-sampling based techniques may in-
troduce significant computational cost (Lee et al., 2021),
we focus on the feasibility of adapting re-weighting tech-
niques from SL to SSL settings. We first relax the second
challenge by following (Wei et al., 2021) to assume the
unlabeled data share similar distribution as the labeled data.
Under this setting, we verify the effectiveness and necessity
of smoothed weighting schemes on the consistency loss in
countering the class imbalance problem. We then turn to the
second challenge of unknown distribution of unlabeled data
and propose Smoothed Adaptive Weighting (SAW) that can
automatically estimate the learning difficulty for each class
and assign weights to the consistency loss per epoch.

We demonstrate the compatibility of SAW to any exist-
ing pseudo-label based SSL algorithms and the effective-
ness of SAW under various imbalanced degrees among the
labeled and unlabeled sets. SAW improves both ReMix-
Match (Berthelot et al., 2020) and FixMatch (Sohn et al.,
2020) by up to 30.0% and 40.5%, respectively, in terms of
absolute geometric mean scores (GM) gain. Furthermore,
SAW outperforms DARP (Kim et al., 2020), a recent work
that specifically tackles the imbalance issue in SSL, by up
to 10.9%. To demonstrate the robustness of SAW under
different distributions, we also evaluate it on a hold-out
test set that has completely different distribution from the
training set and achieve up to 15% of absolute performance
gain over DARP (Kim et al., 2020). Lastly, we test SAW
on a gigapixel-level pathology dataset (Lai et al., 2021) to
verify the applicability of our algorithm on a real use-case

in medical imaging. Our work differs from the prior work
in that it deals with multi-class problems without making or
relying on any assumptions about the unlabeled data.

2. Related works
Semi-supervised learning (SSL). One branch of SSL is
pseudo labeled-based methods (Sohn et al., 2020; Berthelot
et al., 2020; Arazo et al., 2020), which generate pseudo
labels for unlabeled samples and use them in the following
training loop. To promote consistency across predictions
over unlabeled samples, consistency regularization can be
applied across different augmented views of the same unla-
beled training samples (Tarvainen & Valpola, 2017; Miyato
et al., 2018). Recent state-of-the-art SSL algorithms such as
FixMatch (Sohn et al., 2020) and ReMixMatch (Berthelot
et al., 2020) combine both pseudo labels and consistency
regularization. However, all of these aforementioned meth-
ods assume balanced class distribution in both labeled and
unlabeled data and may face performance degradation in
real-world imbalanced datasets (Calderon-Ramirez et al.,
2020; Pulido et al., 2020).

Imbalanced supervised learning. Real-world datasets
are typically of “long-tailed” distribution (Liu et al., 2019;
Van Horn et al., 2018; Jamal et al., 2020; Liu et al., 2020).
Supervised learning on imbalanced distribution has been
widely studied. Popular methods to re-balance the class dis-
tributions include re-sampling the data (Chawla et al., 2002;
Buda et al., 2018; Pouyanfar et al., 2018; Kang et al., 2019)
and re-weighting the loss function (Aurelio et al., 2019;
Cao et al., 2019; Tan et al., 2020; Khan et al., 2017; Menon
et al., 2020). Although these methods perform effectively
on supervised learning where all samples are labeled, their
applicability to SSL is unclear considering the majority of
samples are unlabeled in SSL settings.

Imbalanced semi-supervised learning. For multi-class
classification, CReST (Wei et al., 2021) is a class-
rebalancing self-training framework to expand the labeled
data by adding pseudo-labeled samples. One obvious draw-
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Figure 2. Illustration of the SAW framework.
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Figure 3. The normalized weights generated from
setting different values of β by using the smoothing
function (4).

back is that it directly assumes labeled and unlabeled data
are of almost the same distribution, which may not be true
in realistic scenarios. DARP (Kim et al., 2020) introduced
a distribution aligning scheme to softly refine the pseudo
labels generated from the model. However, DARP also as-
sumes that labeled and unlabeled data can be sampled from
similar input distribution: they approximate the confusion
matrix of unlabeled data as that of labeled data. Another
limitation of these methods is that they may introduce sig-
nificantly additional computation cost.

3. Methodology
3.1. Preliminaries

Consider a multi-class classification problem with C classes
(C > 2). An input vector and corresponding one-hot label
are denoted x ∈ Rd and y ∈ {0, 1}C , respectively. Here d is
the dimension of the input. The training data contains m la-

beled instances D(l) =
{
(x

(l)
i , y

(l)
i )

}m

i=1
and n unlabeled

instances D(u) =
{
x
(u)
j

}n

j=1
, with m ≪ n. The number

of training labeled instances in D(l) of class k is denoted
as mk, i.e.,

∑C
k=1 mk = m. Similarly, we have nk for un-

labeled instances in D(u) of class k with
∑C

k=1 nk = n.
In general, the distribution of unlabeled data {nk}Ck=1 is
unknown. Without loss of generality, we assume {mk}
and {nk} are sorted by cardinality in descending order, i.e.,
m1 ≥ m2 ≥ · · · ≥ mC , and n1 ≥ n2 ≥ · · · ≥ nC . In a
class-imbalanced dataset, the class distribution is skewed,
i.e., m1 ≫ mC or n1 ≫ nC . Here we define γl = m1

mC

and γu = n1

nC
to measure the degree of class imbalance in

labeled and unlabeled data, respectively.

The goal of SSL is to train a classifier h(x; θ) : Rd →
[0, 1]C using the above training data. Here h(x; θ) is param-

eterized by θ ∈ Θ and its k-component h(x; θ)k ∈ [0, 1] is
the predictive probability for the k-th class given an input x.
The training process is to minimize the loss in both labeled
and unlabeled data

min
θ∈Θ

m∑
i=1

Ll(x
(l)
i , y

(l)
i ; θ) +

n∑
j=1

Ω(x
(u)
j ; θ), (1)

where Ll is the per-sample supervised loss (e.g., cross-
entropy) for labeled data and Ω is the per-sample regular-
ization for unlabeled data. Note that some SSL algorithms
(e.g., FixMatch (Sohn et al., 2020)) include both labeled
and unlabeled data in the regularization term, where we can
simply replace the second term of (1) by

∑n+m
j=1 Ω(xj ; θ),

for xj ∈ D(l) ∪D(u). One of the widely used regularization
is consistency loss (Tarvainen & Valpola, 2017; Sohn et al.,
2020; Miyato et al., 2018). This kind of regularization forces
SSL to predict consistency on different views of the same
sample. To utilizeD(u) effectively, many SSL algorithms in-
fer their labels by some pseudo labeling scheme p defined as{
p(x

(u)
j ; θ) ∈ [0, 1]C

∣∣∣ ∑C
k=1 p(x

(u)
j ; θ)k = 1

}n

j=1
. Then,

we can formulate the consistency loss as follow:

Lc(x; θ) :=

C∑
k=1

p(x; θ)k · log(h(pt(x); θ)k). (2)

Here pt(x) defines the specific augmentation scheme. In
VAT (Miyato et al., 2018), this operator is an adversarial
perturbation that disregards the input class distribution. Fix-
Match (Sohn et al., 2020) adopts strong and weak augmen-
tation as perturbations in pt(x) and p(x; θ), respectively.
Note that other consistency loss like the mean-square error
can also be used: ∥p(x; θ)− h(pt(x); θ)∥22. For simplicity,
in the following content, we will only consider consistency
loss (2) as the regularization term, i.e., Ω = Lc.
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Figure 4. Empirical illustration of the performance with smoothing weighting functions under FixMatch (Sohn et al., 2020) on CIFAR10-
LT (the imbalance ratio γ = 100). (a): The performance by using smoothing function (4) and setting different β. (b) The performance by
using smoothing function (5) and setting different ν.

3.2. A deeper look at weighting the consistency loss

In this subsection, we take a deeper look at the consistency
loss and investigate the feasibility of adding weights to
the consistency loss, which differs from traditional cross-
entropy loss studied in other imbalanced learning works.
Here we define a weighted consistency loss as

Lcw(x;w, θ) :=

C∑
k=1

wk ·p(x; θ)k ·log(h(pt(x); θ)k), (3)

where wk is the weight of the k-th class. In supervised
learning (SL), the assigned weights are associated with the
number of samples for each class (Aurelio et al., 2019; Cao
et al., 2019; Tan et al., 2020; Khan et al., 2017; Menon et al.,
2020). However, in SSL settings, such information for the
unlabeled set is typically unavailable. Before we fully ad-
dress this challenge, we first assume that the unlabeled data
share similar distribution as the labeled data and use this as
the prior assumption to study the weighting schemes for the
consistency loss. Then we will discuss how to synthesize the
weights when the distribution is inconsistent and unknown
in Section 3.3.

Assumption 3.1. Unlabeled data share similar distribution
as the labeled set, i.e., γl = γu.

The distribution of unlabeled data is assumed accessible un-
der this strong assumption to help us take a deeper analysis
on the feasibility of weighting the consistency loss and what
weighting schemes should be applied if it is feasible. A long-
tailed version of the CIFAR-10 (Krizhevsky, 2009) with a
class-imbalanced ratio γ := γl = γu = 100 is studied. We
test FixMatch (Sohn et al., 2020) with its consistency loss
replaced by Lcw. With such assumption, we first apply the
weights by strictly inverse the class frequency to the consis-
tency loss. As the imbalance ratio is severe here, we find

the gradients can be accumulated to be abnormally large
and result in unstable training (An et al., 2020; Cao et al.,
2019), which may even hurt the original model (as shown
in Figure 4(a) when β = 1).

Effective re-weighting (Cui et al., 2019) is one of a typi-
cal smoothed weighting schemes for supervised learning.
We adapt the corresponding weighting function into SSL
as one example to further investigate whether weighting
schemes are applicable to the consistency loss and what
type of weights should be assigned. In (Cui et al., 2019),
weights are set to be inversely proportional to the effective
number of samples for each class, i.e.,

wk ∝ 1/Ek, where Ek = (1− βnk)/(1− β). (4)

The degree of flattening is determined by the value of β
as β = 0 leads to uniform weights. When β goes to 1,
Ek → nk, which corresponds to the weights by strictly
inverse class frequency. The normalized weights with dif-
ferent values of β are shown in Figure 3. The perfor-
mance is evaluated by balanced accuracy (bACC) (Wang
et al., 2017; Huang et al., 2016) and geometric mean scores
(GM) (Branco et al., 2016; Kubat, 1997). In Figure 4(a), we
observe that selecting weights by either strictly inverse class
frequency or uniform weights produce the worst results
while smoothed versions of weights show some improve-
ments. This observation indicates the importance of the
smoothness for the weights added to consistency loss.

To further verify the necessity of smoothed weights in con-
sistency loss, we study other smoothing functions, such as

wk ∝
n

n+ ν · nk
, for k = 1, . . . , C, (5)

where ν is the hyper-parameter to describe the smoothing
degree. Figure 4(a) shows the results of Equation (4) and
Figure 4(b) shows the results of one alternative smoothing
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Algorithm 1 The SAW Framework
Data: Labeled data {(xi, yi)}mi=1, unlabeled data
{xj}nj=1, weight in supervised loss w(l), number of
classes C, learning rate η, max epoch T
Initialize uniform weights in consistency loss w(u) and
model parameter θ
while t < T do

for 1, . . .K do
Sample batches label data {x, y}
Sample batches unlabeled data {x}
Update θ ← θ − η · ∇L(θ, w(u))

end for
Compute pseudo labels p(x; θ) and estimate distribu-
tion (n1, n2, . . . , nC)
Adjust the distribution (n̂1, n̂2, . . . , n̂C)
Update weight w(u) based on smoothed weighting func-
tion

end while
Return: θ

function (5): both of them provide some improvements
when the weights are smoothed. Therefore, we verify the
effectiveness of smoothed weights when the assumption that
unlabeled data share similar distribution as the labeled data
holds true in this subsection.

3.3. SAW: Smoothed adaptive weighting against
unknown distribution data

In real-world scenarios, the distribution of unlabeled data
is unknown and Assumption 3.1 cannot hold true. For ex-
ample, in medical imaging applications (Lai et al., 2021;
Tang et al., 2019), the distribution of gigapixel pathology
images is unavailable unless the neuropathologists fully an-
notate the majority of samples. The weights in consistency
loss therefore cannot be directly inferred from labeled data
under this setting. In (Kim et al., 2020), the distribution of
unlabeled data is estimated from the confusion matrix of
a subset of labeled dataset. This estimation is limited as it
assumes that confusion matrices of labeled and unlabeled
datasets are similar. Besides, when labeled data are scarce,
the confusion matrix of a subset of labeled dataset may fail
to represent the whole dataset. In this subsection, we pro-
pose the learning difficulty to represent the whole dataset
and synthesize the weights for the consistency loss, which
does not rely on any assumptions about the unlabeled data.

Learning difficulty and adaptive weighting. A recent
work (Zhang et al., 2021) indicates that the learning effect of
a class can be reflected by the number of predicted samples.
When we take a deeper look into Figure 1(b) and (c), the
number of pseudo labels for minority classes is significantly
underestimated by FixMatch. Hence we follow the finding
from (Zhang et al., 2021) to use the number of pseudo labels

to reflect the the learning effect of each class during the
training process. Here we refer to the minority classes as
difficult classes and use the number of pseudo labels for one
class as the metric to measure the learning difficulty of the
model on that class. Fewer pseudo labels indicate that the
corresponding class is a difficult class for the model.

Instead of aligning the pseudo labels via estimating the
distribution, our aim is to alleviate the confirmation bias
of pseudo labels based on the estimated learning difficulty.
This can be implemented by adaptively synthesizing the
smoothed weight term w(u) for consistency loss, which will
encourage the model to focus on difficult classes. In general,
we utilize gradient descent methods or its variants, such
as Adam (Kingma & Ba, 2015), to update the θ in the
training process, i.e., θ ← θ − η · ∇L(θ, w(u)), where η is
the learning rate and L is the loss function: L(θ, w(u)) =∑m

i=1 Llw(x
(l)
i , y

(l)
i ;w(l), θ) +

∑n
j=1 Lcw(x

(u)
j ;w(u), θ).

The weight w(l) is fixed based on the distribution of the
labeled data, while the weight w(u) is initialized to be uni-
form. After training for one epoch, we compute the one-hot
pseudo label p(x, θ) via the updated θ. Then class distribu-
tions can be estimated by nk =

∑n
j=1 p(xj , θ)k, for k =

1, . . . , C. Take the effective re-weighting (Cui et al., 2019)
as one example here. The weights can be proportional to
(1 − β)/(1 − βnk). But singularity may rise when esti-
mated nk = 0. Here we adjust nk by n̂k = max(nk, 1).
Note that this weighting function (Cui et al., 2019) is not
a requisite and can be replaced by other smoothed weight-
ing functions described in Section 3.2. During the training
process, improved quality of pseudo labels could result in
a better estimation of distribution. We call this proposed
algorithm as smoothed adaptive weighting (SAW), which is
summarized in Algorithm 1 and Figure 2.

4. Experiments
In this section, we evaluate the efficacy of SAW on var-
ious class-imbalanced scenarios for SSL in multi-class
classification problems, including CIFAR-10, CIFAR-
100 (Krizhevsky, 2009), and STL-10 (Coates et al., 2011).
The evaluation criteria on these imbalanced classification
problems include balanced accuracy (bACC) (Huang et al.,
2016; Wang et al., 2017) and geometric mean scores
(GM) (Branco et al., 2016). We run each algorithm for
three trials to report the mean value and standard devia-
tion under each setting. All experiments use the same en-
coder (Wide ResNet-28-2 (Oliver et al., 2018)) and batch
size (64) under the same number of training iterations
(around 2.5 × 105). Lastly, we evaluate SAW on a gi-
gapixel pathology imaging dataset (Lai et al., 2021) to fur-
ther verify the applicability of SAW in practical settings
with unavailable distribution. Our codes can be found at
https://github.com/ZJUJeffLai/SAW SSL.

https://github.com/ZJUJeffLai/SAW_SSL
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Table 1. Comparison of classification performance on CIFAR10-LT under γ = γl = γu (hold-out test set is balanced). The evaluation
criterion is bACC/GM. The best results are in bold.

Algorithm SSL RB γ = 50 γ = 100 γ = 150

Wide ResNet-28-2 (Oliver et al., 2018) - - 65.2±0.05 / 61.1±0.09 58.8±0.13 / 51.0±0.11 55.6±0.43 / 44.0±0.98

Re-sampling (Japkowicz, 2000) - ✓ 64.3±0.48 / 60.6±0.67 55.8±0.47 / 45.1±0.30 52.2±0.05 / 38.2±1.49
LDAM-DRW (Cao et al., 2019) - ✓ 68.9±0.07 / 67.0±0.08 62.8±0.17 / 58.9±0.60 57.9±0.20 / 50.4±0.30
cRT (Kang et al., 2020) - ✓ 67.8±0.13 / 66.3±0.15 63.2±0.45 / 59.9±0.40 59.3±0.10 / 54.6±0.72

ReMixMatch (Berthelot et al., 2020) ✓ - 81.5±0.26 / 80.2±0.32 73.8±0.38 / 69.5±0.84 69.9±0.47 / 62.5±0.35
ReMixMatch + cRT (Kang et al., 2019) ✓ ✓ 86.8±0.50 / 86.5±0.49 81.4±0.41 / 80.7±0.45 78.9±0.84 / 77.8±0.94
ReMixMatch + DARP (Kim et al., 2020) ✓ - 82.1±0.14 / 80.8±0.09 75.8±0.09 / 72.6±0.24 71.0±0.27 / 64.5±0.68
ReMixMatch + DARP + cRT (Kim et al., 2020) ✓ ✓ 87.3±0.61 / 87.0±0.11 83.5±0.07 / 83.1±0.09 79.7±0.54 / 78.9±0.49
ReMixMatch + CReST (Wei et al., 2021) ✓ ✓ 85.2±0.19 / 84.9±0.25 76.2±0.31 / 75.1±0.28 71.4±0.23 / 67.5±0.40
ReMixMatch + SAW ✓ - 86.3±0.61 / 86.1±0.64 77.0±0.59 / 76.0±0.42 71.5±0.30 / 68.9±0.26
ReMixMatch + SAW + cRT (Kang et al., 2019) ✓ ✓ 87.6±0.21 / 87.4±0.26 85.4±0.32 / 83.9±0.21 79.9±0.15 / 79.9±0.12

FixMatch (Sohn et al., 2020) ✓ - 79.2±0.33 / 77.8±0.36 71.5±0.72 / 66.8±1.51 68.4±0.15 / 59.9±0.43
FixMatch + DARP (Kim et al., 2020) ✓ - 81.8±0.24 / 80.9±0.28 75.5±0.05 / 73.0±0.09 70.4±0.25 / 64.9±0.17
FixMatch + CReST (Wei et al., 2021) ✓ ✓ 83.0±0.39 / 81.5±0.17 75.7±0.38 / 72.7±0.85 70.8±0.25 / 64.5±0.31
FixMatch + CReST + & LA (Wei et al., 2021) ✓ ✓ 85.6±0.36 / 81.9±0.45 81.2±0.70 / 74.5±0.99 71.9±2.24 / 64.4±1.75
FixMatch + SAW ✓ - 84.0±0.10 / 83.6±0.12 77.5±0.63 / 76.3±0.80 71.6±0.35 / 69.7±0.46
FixMatch + SAW + & LA (Menon et al., 2020) ✓ ✓ 86.2±0.15 / 83.9±0.35 80.7±0.15 / 77.5±0.21 73.7±0.06 / 71.2±0.17

Table 2. Comparison of classification performance on CIFAR10-LT under γl = 100, γu ̸= γl (hold-out test set is balanced). The
evaluation criterion is bACC/GM. The best results are in bold.

Algorithm γu = 1 γu = 50 γu = 150

ReMixMatch (Berthelot et al., 2020) 48.3±0.14 / 19.5±0.85 75.1±0.43 / 71.9±0.77 72.5±0.10 / 68.2±0.32
ReMixMatch∗ (Berthelot et al., 2020) 85.0±1.35 / 84.3±1.55 77.0±0.12 / 74.7±0.04 72.8±0.10 / 68.8±0.21
ReMixMatch∗ + DARP (Kim et al., 2020) 89.7±0.15 / 89.4±0.17 77.4±0.22 / 75.0±0.25 73.2±0.11 / 69.2±0.31
ReMixMatch∗ + CReST (Wei et al., 2021) 45.9±1.27 / 20.1±1.99 70.2±0.45 / 65.8±0.71 65.4±0.34 / 62.9±0.15
ReMixMatch∗ + SAW 88.3±0.15 / 88.9±0.10 80.3±0.36 / 79.6±0.40 74.0±0.94 / 72.4±0.94

FixMatch (Sohn et al., 2020) 68.9±1.95 / 42.8±8.11 73.9±0.25 / 70.5±0.52 69.6±0.60 / 62.6±1.11
FixMatch + DARP (Kim et al., 2020) 85.4±0.55 / 85.0±0.65 77.3±0.17 / 75.5±0.21 72.9±0.24 / 69.5±0.18
FixMatch + CReST (Wei et al., 2021) 60.2±1.34 / 35.9±2.50 65.8±0.78 / 67.1±0.84 60.1±1.44 / 51.4±1.68
FixMatch + SAW 83.9±0.44 / 83.3±0.47 81.5±2.25 / 80.9±2.30 76.8±0.31 / 75.4±0.37

4.1. CIFAR10-LT

Setup. We evaluate SAW on a “synthetically long-tailed”
variant of CIFAR-10 (CIFAR10-LT) introduced in (Kim
et al., 2020; Cui et al., 2019; Cao et al., 2019). In the training
set, all images are randomly sampled based on the pre-
defined imbalance ratios: γl is for labeled data while γu is
for unlabeled data. We set m1 = 1500 and n1 = 3000, then
have mk = m1 · γϵk

l and nk = n1 · γϵk
l , where ϵk = − k−1

C−1 .
After that, we vary γl and γu to construct multiple CIFAR10-
LT to mimic different imbalanced scenarios. The hold-out
test set remains untouched and balanced (Kim et al., 2020).

Main results under γl = γu. Following (Kim et al., 2020),
we evaluate SAW assuming that labeled and unlabeled sets
are sampled from almost the same distributions by setting γ
at 50, 100, 150, respectively (Kim et al., 2020). To verify
the effectiveness of SAW, we apply it to the recent state-
of-the-art SSL algorithms: ReMixMatch (Berthelot et al.,

2020) and FixMatch (Sohn et al., 2020). To have a com-
prehensive comparison, we selected several benchmarks:
1) Wide ResNet-28-2 (Oliver et al., 2018) as a supervised
learning baseline without using any unlabeled data and re-
balancing algorithms; 2) Re-sampling (Japkowicz, 2000); 3)
Label distribution-aware margin (LDAM-DRW) (Cao et al.,
2019); 4) classifier Re-Training cRT (Kang et al., 2020).
We compare SAW with recent imbalanced SSL algorithms,
DARP (Kim et al., 2020) and CReST (Wei et al., 2021).
The results are summarized in Table 1. SAW consistently
improves both FixMatch and ReMixMatch on bACC and
GM for all evaluated settings. Specifically, SAW improves
the bACC of FixMatch up to 6% absolute bACC gain and
achieves up to 9.8% absolute GM gain compared to the orig-
inal FixMatch. Besides, it also improves up to 4.8%/6.5% at
absolute bACC/GM gain compared to ReMixMatch. SAW
consistently outperforms the recent imbalanced algorithm
(DARP) for both bACC and GM in all settings. In (Kim
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Table 3. Comparison of classification performance on CIFAR100-LT under γ = γl = γu, and STL-10 where the distribution of unlabeled
data is unknown. Hold-out test set is balanced. The evaluation criterion is bACC/GM. The best results are in bold.

CIFAR100-LT (γ = γl = γu) STL-10
Algorithm γ = 10 γ = 20 γl = 10 γl = 20

ReMixMatch (Berthelot et al., 2020) 59.2±0.03 / 52.1±0.13 53.5±0.03 / 42.3±0.13 67.8±0.45 / 61.1±0.92 60.1±1.18 / 44.9±1.52
ReMixMatch∗ + DARP (Kim et al., 2020) 59.8±0.20 / 52.9±0.41 54.4±0.07 / 44.2±0.07 79.4±0.07 / 78.2±0.10 70.9±0.44 / 67.0±1.62
ReMixMatch∗ + CReST (Wei et al., 2021) 59.6±0.32 / 52.5±0.24 53.9±0.15 / 43.9±0.19 65.3±0.23 / 59.3±0.41 55.8±2.05 / 40.2±2.39
ReMixMatch∗ + SAW 61.8±0.06 / 56.9±0.40 55.3±0.26 / 46.3±0.65 82.0±0.55 / 81.0±0.64 79.2±0.44 / 77.9±0.52

FixMatch (Sohn et al., 2020) 60.1±0.05 / 54.4±0.11 54.0±0.04 / 44.4±0.17 72.9±0.09 / 69.6±0.01 63.4±0.21 / 52.6±0.09
FixMatch + DARP (Kim et al., 2020) 61.1±0.23 / 56.4±0.28 54.9±0.05 / 46.4±0.41 77.8±0.33 / 76.5±0.40 69.9±1.77 / 65.4±3.07
FixMatch + CReST (Wei et al., 2021) 60.8±0.32 / 54.9±0.45 54.5±0.21 / 44.8±0.19 70.5±0.75 / 67.8±0.32 60.5±2.13 / 50.3±2.56
FixMatch + SAW 62.1±0.25 / 58.0±0.20 55.7±0.10 / 49.4±0.40 78.3±0.25 / 77.0±0.19 71.9±0.81 / 69.0±0.81

Table 4. Comparison of classification performance on CIFAR10-LT under γ = γl = γu (hold-out test set is of reversed distribution). The
evaluation criterion is bACC/GM. The best results are in bold.

Algorithm γ = 50 γ = 100 γ = 150

ReMixMatch (Berthelot et al., 2020) 71.0±0.55 / 83.5±0.29 54.7±0.51 / 74.4±0.47 41.5±1.69 / 66.4±1.22
ReMixMatch + DARP (Kim et al., 2020) 66.9±0.75 / 80.5±0.46 49.7±1.55 / 70.5±0.90 35.8±1.81 / 60.9±2.42
ReMixMatch + CReST (Wei et al., 2021) 64.3±0.25 / 75.7±0.34 51.2±0.92 / 72.1±0.85 39.2±1.46 / 65.8±1.88
ReMixMatch + SAW 86.3±0.61 / 86.1±0.64 77.0±0.59 / 76.0±0.42 71.5±0.30 / 68.9±0.26

FixMatch (Sohn et al., 2020) 70.5±0.26 / 82.2±0.31 51.0±1.65 / 71.5±1.24 38.5±1.15 / 63.4±0.31
FixMatch + DARP (Kim et al., 2020) 72.2±0.62 / 82.8±0.17 57.6±0.36 / 74.8±0.48 46.5±1.26 / 68.1±0.10
FixMatch + CReST (Wei et al., 2021) 69.4±0.35 / 80.1±0.41 52.4±0.32 / 70.3±0.28 42.9±1.45 / 67.4±1.07
FixMatch + SAW 78.7±0.77 / 84.2±0.36 64.3±1.96 / 76.4±0.88 57.5±2.83 / 70.5±1.50

et al., 2020), they showed the compatibility of DARP with
cRT (Kang et al., 2019) under ReMixMatch (Berthelot et al.,
2020); in (Wei et al., 2021) they showed the compatibility
of CReST with LA (Menon et al., 2020). Therefore, to
have a fair comparison, we follow their methodologies to
design experiments to evaluate the combination of SAW and
cRT/LA. We find SAW is compatible with cRT/LA and its
performance can be further improved.

Main results under γl ̸= γu. In real-world scenarios, it
is natural that unlabeled data have different distributions,
i.e., γl ̸= γu. Under this setting, traditional methods
(LA (Menon et al., 2020) and cRT (Kang et al., 2019))
designed for SL may not be applicable considering the un-
known distribution of unlabeled sets. We acknowledge that
CReST (Wei et al., 2021) is originally designed with the
assumption that the distribution of the unlabeled data is
similar to that of the labeled data, and hence may not work
well with the various scenarios we consider. However, we
include the baseline results for completion. In Table 2, SAW
shows its superiority when unlabeled data have different im-
balanced ratio from labeled data, especially when unlabeled
data are also severely imbalanced (such as γu = 50/150).
In these settings, SAW improves original ReMixMatch up
to 5.2% of bACC and 7.7% of GM. Meanwhile, it improves
original FixMatch up to 15% of bACC and 40.5% of GM.

Even compared to DARP, SAW outperforms up to 4.2% of
bACC and 5.9% of GM. Although the performance of SAW
on balanced unlabeled data is slightly lower than DARP, it
still improves original FixMatch and ReMixMatch signifi-
cantly. Considering the fact that DARP needs to explicitly
assume similar distribution between labeled and unlabeled
set (Kim et al., 2020), SAW has the potential to enhance the
practicability of SSL in the real-world datasets where the
distribution of unlabeled data is unavailable.

4.2. CIFAR100-LT and STL-10

Setup. Besides CIFAR10-LT, we also evaluate our
framework on CIFAR-100 (Krizhevsky, 2009) and STL-
10 (Coates et al., 2011). For CIFAR-100, we follow the
above process to set γ and prepare a long-tailed training set
as CIFAR100-LT, where we set m1 = 150 and n1 = 300.
For STL-10, we set m1 as 450 and construct a similar
“synthetically long-tailed” version of labeled data; all unla-
beled data are used since their class distribution is unknown.
Hence the imbalanced ratio of labeled data can be differ-
ent from that of unlabeled data (γl ̸= γu). Main results.
The results on CIFAR100-LT and STL-10 are summarized
in Table 3. Note that the gain of SAW is significant un-
der γl = 20 in STL-10: 19.1%/30.0% of improvements
at bACC/GM for ReMixMatch, 18.5%/16.4% of improve-
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Tissue Slide Ground Truth SL FixMatch FixMatch + SAW

Figure 5. Segmentation masks visualization: GM, WM, and background are indicated by cyan, yellow, and black, respectively. SL refers
to train supervised learning (U-Net (Oskal et al., 2019)) on all 20 pathology images with their annotations. The SSL results are only using
0.1% area of 2 pathology images selected from the training set.

ments at bACC/GM for FixMatch. When we compare it
with DARP, it still outperforms DARP up to 8.3%/10.9%
on ReMixMatch. This is due to the vast mismatch between
the distribution of labeled data and that of unlabeled data.
Therefore, the results here prove the superiority of SAW for
both matching and non-matching distributions between the
labeled and unlabeled data.

4.3. Empirical analysis on SAW

Stress-test. The previous sections report the results on a
balanced test set. In reality, if the training set is severely
imbalanced, the hold-out test set can also be imbalanced,
and even follow a totally different distribution compared to
the training set. We first evaluate all algorithms on a test set
that is of the same distribution as training set, but we find all
algorithms perform very well as expected. Thus, to further
stress-test these algorithms, we construct a hold-out test set
with a flipped distribution compared to the training data. Ta-
ble 4 summarizes the results on the situations where labeled
and unlabeled data are sampled from the same distribution.
Under this setting, DARP (Kim et al., 2020) even hurt the
performance of original ReMixMatch. SAW improves both
original SSL algorithms and outperforms DARP (Kim et al.,
2020). SAW improves ReMixMatch up to 30% at bACC
and 2.6% at GM. Similarly, SAW also improves original
FixMatch up to 19% at bACC and 7.1% at GM. We find
that DARP may degrade the performance of original ReMix-
Match while SAW consistently outperforms both DARP
and baselines. For the settings where unlabeled data have
different distributions (as shown in Appendix B.2), SAW
achieves more surprising improvements, with up to 15% of
absolute performance gain compared to DARP.

Computational complexity. In SAW, as we neither have
any resampling actions nor alignment optimization, the ad-

ditional running time constitutes only 5% of the original
SSL models as we simply add the weights. However, the ad-
ditional running time incurred by DARP due to the pseudo-
label alignment can be up to 20% of that of the original SSL
algorithms. For CReST, as it iteratively samples the training
data and re-initializes the classifier’s network, the additional
running time can be an order of magnitude longer than the
original SSL algorithms.

4.4. Additional evaluation on a real-world application

Besides above standard datasets, we further evaluate SAW
on a gigapixel pathology imaging dataset (Lai et al., 2021)
as a real-world application. In this dataset, each slide is at gi-
gapixel level and the goal is to segment white matter (WM)
from grey matter (GM). We follow the settings of a recent
work (Lai et al., 2021): 0.1% of regions from 2 slides are
labeled and the hold-out test set includes 10 slides. Figure 5
shows the segmentation masks from the SL (U-Net (Oskal
et al., 2019)) trained with all pathology images annotated
at pixel level, original FixMatch (Sohn et al., 2020), and
SAW without any prior information from the unlabeled data
by using only 0.1% regions from 2 slides as the labeled set.
Figure 5 clearly shows the performance gain of SAW on
WM (the minority class): original SSL algorithm has dif-
ficulty classifying WM while SAW improves significantly.
Statistically, for the minority class - WM, SAW improves
the IoU score (Rahman & Wang, 2016) by over 22%; for
the majority class - GM, it also achieves nearly 4% of im-
provement. For the DICE coefficient (Zou et al., 2004),
another metric, SAW brings up to 15.9% of improvement
on the minority class and 1.6% on the majority class. More
numerical results are in the Appendix B.8. Considering
the fact that we truly regard the dataset as unlabeled and
does not make any assumption on the unlabeled data, we
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have verified the applicability of SAW on a medical case.
We do not include the comparison with DARP (Kim et al.,
2020) and CReST (Wei et al., 2021) here as the distribu-
tion of the unlabeled set in this case is unavailable without
neuropathologists’ assessments.

5. Discussion
In this work, we have presented the effectiveness of
smoothed adaptive weighting scheme (SAW) on imbalanced
semi-supervised learning via various imbalanced scenarios
using several public datasets. We also evaluate SAW on
a pathology imaging dataset to show its reliability against
unknown distribution data. We verify the feasibility of
adding weights to the consistency loss and the necessity
of smoothed weights. Based on this, we estimate learning
difficulty of each class and synthesize the smoothed weights
based on this estimation, which can overcome the challenge
of unknown distribution in unlabeled data. When combined
with two leading SSL methods FixMatch and ReMixMatch,
SAW shows consistent improvements over the baselines
and those augmented with DARP in almost all experiment
settings. The two main advantages of SAW are: first, it does
not require any knowledge of the class distribution of the
unlabeled data and work well even in the case when the la-
beled data, unlabeled data and testing data all assume vastly
different distributions; second, it can be easily integrated
with any SSL algorithms that use consistency loss.
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Hüllermeier, E. Online F-measure optimization. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 28, 2015.

Calderon-Ramirez, S., Moemeni, A., Elizondo, D.,
Colreavy-Donnelly, S., Chavarria-Estrada, L. F., Molina-
Cabello, M. A., et al. Correcting data imbalance for semi-
supervised covid-19 detection using x-ray chest images.
arXiv preprint arXiv:2008.08496, 2020.

Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma,
T. Learning imbalanced datasets with label-distribution-
aware margin loss. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, 2019.

Chan, L., Hosseini, M. S., Rowsell, C., Plataniotis, K. N.,
and Damaskinos, S. Histosegnet: Semantic segmentation
of histological tissue type in whole slide images. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (CVPR), pp. 10662–10671, 2019.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. SMOTE: synthetic minority over-sampling tech-
nique. Journal of Artificial Intelligence Research, 2002.

Chen, W., Jiang, Z., Wang, Z., Cui, K., and Qian, X. Collab-
orative global-local networks for memory-efficient seg-
mentation of ultra-high resolution images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8924–8933, 2019.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In Pro-
ceedings of the fourteenth international conference on
artificial intelligence and statistics (AISTATS), 2011.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. Class-
balanced loss based on effective number of samples. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Dong, Q., Gong, S., and Zhu, X. Imbalanced deep learning
by minority class incremental rectification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2018.



SAW: Smoothed Adaptive Weighting for Imbalanced Semi-Supervised Learning

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

Huang, C., Li, Y., Change Loy, C., and Tang, X. Learn-
ing deep representation for imbalanced classification. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

Hyun, M., Jeong, J., and Kwak, N. Class-imbalanced semi-
supervised learning. arXiv preprint arXiv:2002.06815,
2020.

Jamal, M. A., Brown, M., Yang, M.-H., Wang, L., and Gong,
B. Rethinking class-balanced methods for long-tailed vi-
sual recognition from a domain adaptation perspective. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7610–7619,
2020.

Japkowicz, N. The class imbalance problem: Significance
and strategies. In Proceedings of the International Con-
ference on Artificial Intelligence (ICAI), 2000.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng,
J., and Kalantidis, Y. Decoupling representation and
classifier for long-tailed recognition. In International
Conference on Learning Representations, 2019.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng,
J., and Kalantidis, Y. Decoupling representation and
classifier for long-tailed recognition. In International
Conference on Learning Representations (ICLR), 2020.

Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A.,
and Togneri, R. Cost-sensitive learning of deep feature
representations from imbalanced data. IEEE transactions
on neural networks and learning systems, 29(8):3573–
3587, 2017.

Kim, J., Hur, Y., Park, S., Yang, E., Hwang, S. J., and
Shin, J. Distribution aligning refinery of pseudo-label
for imbalanced semi-supervised learning. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 33, pp. 14567–14579, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations (ICLR), 2015.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Department of Computer
Science, University of Toronto, 2009.

Kubat, M. Addressing the curse of imbalanced training sets:
One-sided selection. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 179–186,
1997.

Lai, Z., Wang, C., Oliveira, L. C., Dugger, B. N., Che-
ung, S.-C., and Chuah, C.-N. Joint semi-supervised and
active learning for segmentation of gigapixel pathology
images with cost-effective labeling. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 591–600, 2021.

Lee, H., Shin, S., and Kim, H. Abc: Auxiliary balanced
classifier for class-imbalanced semi-supervised learning.
Advances in Neural Information Processing Systems, 34,
2021.

Liu, J., Sun, Y., Han, C., Dou, Z., and Li, W. Deep repre-
sentation learning on long-tailed data: A learnable em-
bedding augmentation perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2970–2979, 2020.

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., and Yu, S. X.
Large-scale long-tailed recognition in an open world. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2537–2546,
2019.

Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit,
A., and Kumar, S. Long-tail learning via logit adjustment.
In International Conference on Learning Representations,
2020.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2018.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., and Good-
fellow, I. Realistic evaluation of deep semi-supervised
learning algorithms. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 3235–3246, 2018.

Oskal, K., Risdal, M., Janssen, E., Undersrud, E., and
Gulsrud, T. A U-net based approach to epidermal tis-
sue segmentation in whole slide histopathological im-
ages. SN Appl. Sci., 1:672, 06 2019. doi: 10.1007/
s42452-019-0694-y.

Pouyanfar, S., Tao, Y., Mohan, A., Tian, H., Kaseb, A. S.,
Gauen, K., Dailey, R., Aghajanzadeh, S., Lu, Y.-H., Chen,
S.-C., et al. Dynamic sampling in convolutional neural
networks for imbalanced data classification. In 2018
IEEE conference on multimedia information processing
and retrieval (MIPR), pp. 112–117. IEEE, 2018.

Pulido, J. V., Guleria, S., Ehsan, L., Fasullo, M., Lippman,
R., Mutha, P., Shah, T., Syed, S., and Brown, D. E. Semi-
supervised classification of noisy, gigapixel histology
images. In 2020 IEEE 20th International Conference on
Bioinformatics and Bioengineering (BIBE), pp. 563–568.
IEEE, 2020.



SAW: Smoothed Adaptive Weighting for Imbalanced Semi-Supervised Learning

Rahman, M. A. and Wang, Y. Optimizing intersection-over-
union in deep neural networks for image segmentation.
In International symposium on visual computing, pp. 234–
244. Springer, 2016.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
FixMatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 33, 2020.

Tai, K. S., Bailis, P., and Valiant, G. Sinkhorn label allo-
cation: Semi-supervised classification via annealed self-
training. In International Conference on Machine Learn-
ing (ICML), 2021.

Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., and
Yan, J. Equalization loss for long-tailed object recogni-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
11662–11671, 2020.

Tang, Z., Chuang, K. V., DeCarli, C., Jin, L.-W., Beck-
ett, L., Keiser, M. J., and Dugger, B. N. Interpretable
classification of alzheimer’s disease pathologies with a
convolutional neural network pipeline. Nature communi-
cations, 10(1):1–14, 2019.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C.,
Shepard, A., Adam, H., Perona, P., and Belongie, S. The
inaturalist species classification and detection dataset. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Wang, Y.-X., Ramanan, D., and Hebert, M. Learning to
model the tail. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2017.

Wei, C., Sohn, K., Mellina, C., Yuille, A., and Yang, F.
CReST: A class-rebalancing self-training framework for
imbalanced semi-supervised learning. arXiv preprint
arXiv:2102.09559, 2021.

Yang, Y. and Xu, Z. Rethinking the value of labels for im-
proving class-imbalanced learning. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33,
pp. 19290–19301, 2020.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. Flexmatch: Boosting semi-
supervised learning with curriculum pseudo labeling. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M.,
Kaus, M. R., Haker, S. J., Wells III, W. M., Jolesz, F. A.,
and Kikinis, R. Statistical validation of image segmenta-
tion quality based on a spatial overlap index1: scientific
reports. Academic radiology, 11(2):178–189, 2004.



SAW: Smoothed Adaptive Weighting for Imbalanced Semi-Supervised Learning

Appendix
A. Training details
A.1. Data source and compute resources

The three standard datasets we use are public:

• CIFAR-10 (Krizhevsky, 2009) can be downloaded at
https://www.cs.toronto.edu/ kriz/cifar.html;

• CIFAR-100 (Krizhevsky, 2009) can be downloaded at
https://www.cs.toronto.edu/ kriz/cifar.html;

• STL-10 (Coates et al., 2011) can be downloaded at
https://cs.stanford.edu/ acoates/stl10/.

We run our experiments on GPUs including: Nvidia Titan
XP, 2080Ti, Tesla T4, Titan RTX. We conduct all experi-
ments under an environment with Ubuntu 18.04 (x86) as
the OS, CUDA 10.0.130 and cuDNN 8 as the GPU drivers
and libraries. Our mainly used framework includes PyTorch
1.1.0 and Torchvision 0.3.0.

A.2. Training settings

General settings. We adopt a Wide ResNet-28-2 (Oliver
et al., 2018) as the encoder for all experiments in this work.
We use Adam (Kingma & Ba, 2015) as our optimizer with
the learning rate at 0.002. We also utilize an Exponential
Moving Average (EMA) with the weight decay of 0.999 dur-
ing the training process. Our baseline SSL models include
the most recent state-of-the-art algorithms: FixMatch (Sohn
et al., 2020), ReMixMatch (Berthelot et al., 2020). We
train each setting with 500 epochs and have three trials with
different random seeds.

FixMatch. We set the hyper-parameters of FixMatch by
following (Sohn et al., 2020; Kim et al., 2020). The details
are summarized in Table 5. The GitHub we refer to is
available at https://github.com/google-research/fixmatch.

Table 5. FixMatch settings.

Hyper-parameter Value

Confidence Threshold τ 0.95
Unlabeled loss weight λu 1
Ratio of unlabeled data in each mini-batch µ 2

ReMixMatch. We set the hyper-parameters of ReMixMatch
by following (Berthelot et al., 2020; Kim et al., 2020). The
details are summarized in Table 6. The GitHub we refer to is
available at https://github.com/google-research/remixmatch.

Table 6. ReMixMatch settings.

Hyperparameter Value

MixUp Beta Distribution α 0.75
Sharpening Temperature (T) 0.5
Weight on Unsupervised Loss λu 1.5
Weight on Rotation Loss λr 0.5
Weight on Un-Augmented Example λu 0.5

DARP. One of our baseline is the most recent imbalanced
algorithm, DARP (Kim et al., 2020). We follow their set-
tings strictly: α is set as 2.0, the number of warm-up epochs
is set as 200, the number of iterations for DARP conver-
gence is set as 10. The GitHub we refer to is available at
https://github.com/bbuing9/DARP.

Our codes. To protect the confidentiality of double blind
review, we will post our GitHub URL for all of our codes of
SAW after the review process.

B. Additional Experimental Results
B.1. Distribution estimation

We also plot the class frequency during the training process
to observe the role SAW plays in SSL algorithms. We set
the imbalance ratio of CIFAR10-LT as γl = γu = 50 and
use FixMatch as an example. The results are as shown in
Figure 6: for the majority class, SAW is able to drive it back
from biased prediction within a couple of epochs. For the
minority class, SAW shows its focus and encourages the
model to predict samples as miniorty class.

B.2. Stress-test

We also conduct stress-test experiments under the settings
of γl ̸= γu on the test set of reversed distributions. The re-
sults are summarized in Table 7. SAW achieves significant
improvements in all settings where the distribution of unla-
beled data is different from that of labeled data. Specifically,
SAW improves original FixMatch by up to 15.4% of bACC
and 35.1% of GM; SAW also improves original ReMix-
Match by up to 14.0% of bACC and 35.4% of GM. SAW
also shows its superiority compared to DARP, especially
considering SAW does not require any prior information
from the unlabeled data.

On the other hand, we study the scenarios where the hold-
out test set is imbalanced with the same distribution as the
labeled dataset in the training set. The results are summa-
rized in Table 9. We can see that all methods achieve good
performance since the test set has the same distribution as
the training set. However, CReST slightly hurts the original
performance of SSL.

After that, we also study more severe scenarios: when the
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Figure 6. Estimation of distribution: class frequency of class 2 (a), class 5 (b), and class 9 (c).

Table 7. Comparison of classification performance on CIFAR10-LT under γl = 100, γu ̸= γl (hold-out test set is of reversed distributions).
The evaluation criterion is bACC/GM. The best results are in bold.

CIFAR-10 (γl = 100)

Algorithm γu = 1 γu = 50 γu = 150

ReMixMatch (Berthelot et al., 2020) 70.0±1.39 / 48.3±0.53 61.4±0.21 / 77.3±0.41 48.6±1.62 / 71.3±0.67

ReMixMatch∗ + DARP (Kim et al., 2020) 67.3±1.63 / 49.5±2.01 54.5±1.30 / 72.6±0.58 44.6±1.69 / 67.7±1.16

ReMixMatch∗ + SAW 84.0±0.05 / 83.7±0.42 72.7±0.56 / 79.6±1.11 59.8±1.03 / 73.6±1.19

FixMatch (Sohn et al., 2020) 70.0±1.39 / 48.3±0.53 61.0±1.61 / 76.4±0.52 48.0±2.26 / 70.4±0.88

FixMatch + DARP (Kim et al., 2020) 68.1±0.37 / 48.5±1.46 59.5±1.41 / 75.2±1.08 55.1±1.31 / 73.8±0.43

FixMatch + SAW 84.0±0.39 / 83.4±0.42 76.4±6.71 / 81.5±1.97 63.3±0.37 / 75.4±1.23

training labeled data is perfectly balanced, but the unlabeled
data and hold-out data are imbalanced and flipped, we sum-
marize the results in Table 8: we find DARP even hurts the
original FixMatch while SAW still achieves performance
gain consistently.

Table 8. Comparison of bACC on CIFAR10-LT under γl = 1
(labaled set is balanced) but γu ̸= γl. The hold-out test set is of
the flipped distribution of the training unlabeled set.

CIFAR10-LT

γu 50 100 150
FixMatch (Sohn et al., 2020) 77.8±0.36 66.8±1.51 59.9±0.43

FixMatch + DARP (Kim et al., 2020) 68.4±1.36 55.6±3.22 52.1±2.07

FixMatch + SAW 82.4±0.49 75.2±1.46 70.1±0.94

B.3. Per-class performance

To show the source of our absolute performance gain, we
present per-class F1 score (Busa-Fekete et al., 2015) on the
balanced test set of CIFAR10-LT with γl = γu = 100 as
shown in Figure 7(a). We find SAW improves the F1 score
for almost every class, especially for minority classes (index
as 8,9,10). Specifically, SAW provides gain on the precision
of majority classes and the recall of minority classes without
much penalty on other metrics. This explains again why

Table 9. Comparison of bACC on CIFAR10-LT under γ = γl =
γu. The hold-out test set is of the same distribution of the training
set (imbalanced).

CIFAR10-LT

Algorithm γ = 50 γ = 100 γ = 150

FixMatch (Sohn et al., 2020) 89.2±0.59 85.4±0.59 83.1±0.33

FixMatch + DARP (Kim et al., 2020) 93.1±1.95 90.1±0.98 88.5±0.89

FixMatch + CReST (Wei et al., 2021) 86.7±1.98 84.3±1.20 82.4±1.46

FixMatch + SAW 94.7±1.23 92.4±0.35 90.5±0.47

SAW achieves significant gain in Table 4 where the distribu-
tion of hold-out test set is flipped based on unlabeled data’
distribution (the minority class in the training set becomes
the majority class in the test set). Figure 7 also shows the
comparison of the confusion matrix of original FixMatch
(Figure 7(b)) and SAW (Figure 7(c)) on the hold-out test set.
Similar to the estimated distributions shown in Figure 1(b)
and (c), we find that SAW provides robust re-weighting on
both the minority and majority classes due to the smoothed
weighting scheme, which is easily transferred to better gen-
eralization on a test set of totally different distributions.

We also compare the per-class performance during the train-
ing process between original FixMatch (Sohn et al., 2020)
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Figure 7. Per-class results on the balanced test set of CIFAR-10 under the imbalanced ratio γ = 100. (a) F1 score for each class. (b)
Confusion matrix of original FixMatch. (c) Confusion matrix of FixMatch with SAW.

and SAW. As shown in Figure 8, we plot the confusion
matrix after training 100, 200, and 300 epochs, respectively.
SAW improves the performance of minority classes quickly,
even 100 epochs make a difference compared to the original
FixMatch.

B.4. Alternative for smoothed weighting function

Besides the two mentioned in the main paper, we also stud-
ied

wk ∝ (n/nk)
α, for k = 1, . . . , C, (6)

as another smoothing weighting function. We use SAW 2 to
denote using Equation 6 as the smoothing function. We use
SAW 1 to denote using Equation 5. As shown in Table 10,
SAW 2 achieves 83.2%, 77.3%, and 71.5% of bACC when
γ = 50, 100, and 150, respectively in CIFAR 10-LT. These
results are comparable to the results of the other two func-
tions in Table 1. Hence we verify the necessity of smoothing
weights to SSL.

Table 10. Comparison of classification performance on CIFAR10-
LT under γ = γl = γu (hold-out test set is balanced). The
evaluation criterion is bACC.

CIFAR10-LT

Algorithm γ = 50 γ = 100 γ = 150

FixMatch (Sohn et al., 2020) 79.2±0.33 71.5±0.72 68.4±0.15
FixMatch + DARP (Kim et al., 2020) 81.8±0.24 75.5±0.05 70.4±0.25
FixMatch + CReST (Wei et al., 2021) 83.0±0.39 75.7±0.38 70.8±0.25
FixMatch + SAW 84.0±0.10 77.5±0.63 71.6±0.35
FixMatch + SAW 1 83.7±0.18 78.2±0.21 72.5±0.67
FixMatch + SAW 2 83.2±0.48 77.3±0.17 71.5±0.53

B.5. Effect of adaptive weighting

To investigate the effect of adaptive updating, we conduct a
sanity test: provide the true class distribution to the model
by replacing the estimated distribution with the true distribu-
tion. Here we test the CIFAR10-LT where the labeled and

unlabeled data share the same distribution. The true distri-
bution of unlabeled data can be directly estimated from la-
beled data. To distinguish from SAW, we call this smoothed
weighting without the adaptive scheme as SW. The results
are summarized in Table 11. With the true distribution for es-
timating β, our SW improves FixMatch up to 4.7% on bACC
when γ = 100. With the adaptive weighting scheme, our
algorithm SAW further improves the performance, which
proves the advantage of the adaptive weighting. SAW even
achieves better performance compared to CReST+ (Wei
et al., 2021) considering they have a strong pre-assumption
that unlabeled data are sample from the same distributions
as labeled data while SAW does not require any prior in-
formation from unlabeled data. In SW, where the weights
are calculated based on the true distribution, the weight for
each class is fixed and not adjustable during the training
process. The performance will be affected by the degree
of smoothing, i.e., the value of β. In SAW, the weight is
based on the pseudo-label distribution, which can make the
model adjustable and self-reinforcing. Hence SAW is less
sensitive to the value of β and may perform better than SW
when using non-optimal value of β. A similar observation
can be seen in Table 12. With an optimal value of beta and a
known distribution of unlabeled data, SW performs slightly
better than SAW.

Table 11. Comparison of classification performance on CIFAR10-
LT under γ = γl = γu (hold-out test set is balanced). The
evaluation criterion is bACC. The best results are in bold.

CIFAR10-LT

Algorithm γ = 50 γ = 100 γ = 150

FixMatch (Sohn et al., 2020) 79.2±0.33 71.5±0.72 68.4±0.15

FixMatch + DARP (Kim et al., 2020) 81.8±0.24 75.5±0.05 70.4±0.25

FixMatch + CReST (Wei et al., 2021) 83.0±0.39 75.7±0.38 70.8±0.25

FixMatch + CReST+ (Wei et al., 2021) 83.9±0.14 77.4±0.36 72.8±0.58

FixMatch + SW 82.7±0.58 76.2±0.06 70.8±0.26

FixMatch + SAW 84.0±0.10 77.5±0.63 71.6±0.35
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Figure 8. The confusion matrix comparison between original FixMatch (Sohn et al., 2020) and FixMatch + SAW during the training
progress. The top row is from original FixMatch while the bottom row denotes FixMatch + SAW.

Table 12. Comparison of classification performance on CIFAR10-
LT under γ = 100 (hold-out test set is of balanced) with a fixed
β = 0.99, 0.999, 0.9999. The evaluation criterion is bACC/GM.
The best results are in bold.

Algorithm β = 0.99 β = 0.999 β = 0.9999

FixMatch + SW 75.0±0.67 / 73.0±0.58 77.5±0.98 / 76.3±1.21 72.4±1.69 / 70.7±2.16

FixMatch + SAW 77.3±0.67 / 75.4±0.88 77.4±0.30 / 76.2±0.40 73.7±0.63 / 72.3±0.93

B.6. Effect of weights on supervised loss

The motivation on adding the weight in consistency loss
is to alleviate the bias in pseudo labels during the class-
imbalanced training. We have studied the function of weight-
ing in both supervised loss and consistency loss. We con-
clude that applying smoothed weights to both loss items
can result in the best performance based on our experiments.
Table 13 summarizes the results: the weights on consistency
loss are important, which is expected considering the fact
that the majority samples are unlabeled in SSL settings. We
also find that applying weights to the supervised loss can
further improve the performance. Thus we decide to apply
smoothed weights to both loss items, which is SAW.

Table 13. Comparison of classification performance on CIFAR10-
LT under γ = γl = γu (hold-out test set is balanced). The evalu-
ation criterion is bACC. SL W denotes only applying smoothed
weights to the supervised loss on labeled data, CL W denotes only
applying smoothed weights to the consistency loss.

CIFAR10-LT

Algorithm γ = 50 γ = 100 γ = 150

FixMatch (Sohn et al., 2020) 79.2±0.33 71.5±0.72 68.4±0.15

FixMatch + SL W 79.9±0.05 72.2±0.89 68.9±0.33

FixMatch + CL W 82.5±0.30 76.3±0.21 70.4±0.19

FixMatch + SAW 84.0±0.10 77.5±0.63 71.6±0.35

B.7. Effect of the parameter β

As discussed in Methodology, we heuristically select β =
(N − 1)/N , where N is updated after each epoch via N =∑C

k=1(mk + n̂k)/C. Here a sensitivity analysis on the
parameter β is provided. Similarly, we consider CIFAR10-
LT under γ = 100, and test both SW and SAW with a fixed
β ∈ {0.99, 0.999, 0.9999} in the training process. Table 12
shows that the trend is similar to the weighting function of ν,
indicating the effectiveness of smoothed weighting in SSL.
Moreover, SAW is less sensitive to the value of β. Therefore,
there is no need to specifically tune the parameter β for each
setting. The heuristic selection in SAW already brings the
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optimal result among these trials. Hence β = (N − 1)/N is
a parameter determining the degree of smoothing. In reality,
this parameter needs to be tuned as the data volume N is
unknown. However, the value of β is only sensitive to the
scale of N . We only provided a reference value of N , which
is the average number of samples per class. This can be
regarded as an approximate value to the optimal one. When
applying the proposed method to a new dataset, researchers
can fine-tune the value of beta from the initial reference one.

B.8. Additional evaluation on a pathology application

Besides three standard datasets (CIFAR-10, CIFAR-100,
and STL-10), we also select a gigapixel pathology
dataset (Lai et al., 2021) as an additional real-world case
to further evaluate the reliability of SAW in realistic appli-
cations. This main goal of this dataset is to segment white
matter (WM) from grey matter (GM). We follow the way
in (Lai et al., 2021) to use only 0.1% of regions as the la-
beled data and treat the remaining areas as unlabeled. This
is a common case in medical imaging applications where the
distribution of unlabeled data is unavailable as the gigapixel
resolution requires massive annotation efforts.

Table 14. IoU score comparison on the 10 hold-out slides.

Algorithm GM WM

FixMatch 80.7 43.0
FixMatch + SAW 84.6 65.4

Table 15. DICE coefficient comparison on the 10 hold-out slides.

Algorithm GM WM

FixMatch 89.4 61.3
FixMatch + SAW 91.0 77.2

Table 14 and Table 15 summarizes the results of two mea-
suring metrics on the hold-out test set: IoU score (Rahman
& Wang, 2016) and DICE coefficient (Zou et al., 2004). For
the minority class - WM, SAW improves the IoU score (Rah-
man & Wang, 2016) by over 22%; for the majority class -
GM, it also achieves nearly 4% of improvement. For the
DICE coefficient, another metric, SAW brings up to 15.9%
of improvement on the minority class and 1.6% on the ma-
jority class. From this case, we verify the reliability of SAW
on a real-world application when the distribution informa-
tion is unknown.


