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Abstract
Multi-layer perceptrons (MLP) have proven to
be effective scene encoders when combined with
higher-dimensional projections of the input, com-
monly referred to as positional encoding. How-
ever, scenes with a wide frequency spectrum re-
main a challenge: choosing high frequencies for
positional encoding introduces noise in low struc-
ture areas, while low frequencies result in poor
fitting of detailed regions. To address this, we
propose a progressive positional encoding, expos-
ing a hierarchical MLP structure to incremental
sets of frequency encodings. Our model accu-
rately reconstructs scenes with wide frequency
bands and learns a scene representation at pro-
gressive level of detail without explicit per-level
supervision. The architecture is modular: each
level encodes a continuous implicit representation
that can be leveraged separately for its respective
resolution, meaning a smaller network for coarser
reconstructions. Experiments on several 2D and
3D datasets show improvements in reconstruction
accuracy, representational capacity and training
speed compared to baselines.

1. Introduction
Neural Implicit Functions are gaining popularity as alter-
native 2D image and 3D shape representations. Using a
simple MLP encoder, these networks approximate a func-
tion mapping between spatial coordinates and a quantity of
interest such as colour, occupancy or SDF values. They have
proven to be very effective at fitting natural images (Tancik
et al., 2020; Martel et al., 2021) and 3D shapes (Mescheder
et al., 2019; Park et al., 2019; Chabra et al., 2020) and have
been applied to various computer vision tasks, including
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Figure 1. Method overview. The input coordinates are projected by
incremental sets of frequency encodings (top row) and processed
by a hierarchical MLP structure which produces reconstructions in
2D (row 2) and 3D (row 3 and 4) at progressive level of detail.

novel view synthesis (Niemeyer et al., 2020b; Mildenhall
et al., 2020) and generative shape modelling (Chen & Zhang,
2019).

However, as simple MLP encoders, Neural Implicit Func-
tions suffer from spectral bias (Rahaman et al., 2019; Basri
et al., 2020), which prevents them from learning high fre-
quency detail in signals. Projecting the input onto a man-
ifold containing high frequency components however, re-
duces the spectral bias (Rahaman et al., 2019). Recent works
(Mildenhall et al., 2020; Zhong et al., 2020) have demon-
strated this experimentally, mapping the input through a set
of sinusoidal functions (positional encodings). In a parallel
approach, (Sitzmann et al., 2020) use periodic activation
functions instead of ReLUs to enable MLPs to learn high fre-
quency content. (Tancik et al., 2020) propose an improved
positional encoding based on Fourier Features (Rahimi &
Recht, 2007) and show that one can essentially tune the
range of frequencies that can be learnt by an MLP through
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Figure 2. 2D reconstruction example. Left: image residuals predicted by the network. Right: progressive reconstruction levels obtained
from combining the base image c and the respective image residuals.

the frequencies in the positional encoding. However, MLPs
with these encodings struggle to fit signals with a wide
frequency spectrum: high frequencies in the encoding en-
able fitting small detail in a signal, but introduce noise in
smoother regions. To improve on that, (Hertz et al., 2021)
propose a training scheme based on a spatial mask, which
gradually introduces frequency encodings to the network.
Whilst achieving compelling results, this method requires
spatial masks, which don’t scale well and reduce training
speed, and its training scheme for unwrapping frequencies
is non-differentiable and requires manual hyperparameter
tuning.

We show that a continuous function can learn to reconstruct
signals with wide frequency ranges and in a progressive
fashion (see Figure 1): we partition the representation into
hierarchical levels, each receiving a subset of our positional
encoding, whereby lower layers process lower frequency
sets compared to higher layers. Our final reconstruction
is a simple composition of all intermediate levels. This
results in a model that is trainable end-to-end and we find
that our architecture naturally induces lower layers to learn
a coarser reconstruction while higher layers focus on adding
details to the scene (see Figure 2), without explicit per-level
supervision. Our method provides progressive level of detail
while yielding on par or superior reconstruction quality to
baselines. In addition, our architecture is modular - for a
coarser representation, one can drop the MLPs of higher
levels and reconstruct the scene with only a small portion of
the parameters. Overall our method provides:

• A multi-scale representation based on hierarchical im-
plicit functions with progressive positional encoding, pro-
viding incremental level of detail.

• Improved reconstruction quality, in particular for scenes
with a wide frequency spectrum.

• End-to-end trainable model without per-level supervision

2. Related Work
Neural Implicit Functions First introduced as novel
shape representations for occupancy (Mescheder et al.,

2019) and SDFs (Park et al., 2019), Neural Implicit Func-
tions have become a popular alternative to classical 3D
representations. Several works have used them for single-
view shape inference (Saito et al., 2019; Liu et al., 2019),
shape decomposition (Deng et al., 2020) and instance-aware
SLAM systems (Li et al., 2020). They have been shown to
support larger scene representations (Chabra et al., 2020;
Huang et al., 2020), when composed as a voxelgrid of
small implicit functions representing local detail. (Gen-
ova et al., 2020) demonstrate that compositional implicit
functions also yield improved reconstruction accuracy for
smaller shapes. Recent work has explored their use for im-
age synthesis as object-specific implicit fields (Niemeyer
& Geiger, 2021), as well as for dynamic scene graphs (Ost
et al., 2021). Combined with differentiable volumetric ren-
dering (Niemeyer et al., 2020a), neural implicit represen-
tations gave rise to an explosion of novel view synthesis
approaches (Mildenhall et al., 2020). Other works address
generalisation, conditioning the neural implicit representa-
tion on features extracted from images (Yu et al., 2021b) or
on latents that encode shape priors (Schwarz et al., 2020;
Jang & Agapito, 2021). A few approaches have focused on
improving training and rendering speed (Reiser et al., 2021;
Yu et al., 2021a) and the representation itself: to address
the spectral bias of Neural Implicit Functions based on a
simple MLP, periodic activation functions (Sitzmann et al.,
2020) and positional encodings (Rahaman et al., 2019; Tan-
cik et al., 2020; Hertz et al., 2021) were proposed. Similarly
to (Park et al., 2019), our method is designed as a scene
representation, in 2D and 3D. Instead of using a single MLP
for scene representation we propose a hierarchical structure
of small MLPs composing the scene at progressive level
of detail. Similarly to (Hertz et al., 2021), we use Fourier
Features as positional encodings, but instead of a spatial
frequency mask, we condition each of the MLPs in our
hierarchical structure on subsets of these encodings.

Multi-scale Neural Implicit Functions A few recent ap-
proaches propose to add hierarchical or multi-scale structure
to Neural Implicit Functions; they can be loosely divided
into those, that use a form of space partitioning and those,
that use a frequency based approach.
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Figure 3. Model architecture for 4 levels of detail.

Of the space partitioning methods, most approaches leverage
Octrees and have as primary goal a more efficient rendering
or training time (Yu et al., 2021a; Martel et al., 2021; Tang
et al., 2021). The method presented by (Chen et al., 2021)
generates a multi-scale representation: A feature encoder
generates a hierarchy of latent code grids, which represent
the scene at different resolutions in a lower dimensional
manifold. To reconstruct the scene at a specific resolution,
the latent grid is interpolated based on continuous coordi-
nate samples and decoded using a Neural Implicit Function.
(Skorokhodov et al., 2021) use a multi-scale representation
within their GAN-based image generation model, whereby
the image is first generated at a coarse resolution which is
then increased incrementally by subsequent layers.

The methods based on frequency decomposition add multi-
scale structure in continuous function space: (Barron et al.,
2021) introduce an integrated positional encoding to the
original NeRF model (Mildenhall et al., 2020), which allows
the scene to incorporate multi-scale information and has an
anti-aliasing effect on the rendered views. (Wang et al.,
2021b) use a composition of two SIREN models (Sitzmann
et al., 2020), to represent 3D shapes as implicit displace-
ment fields: a smooth base surface is refined with predicted
displacements along the surface normal of the base surface.
(Lindell et al., 2021) propose a multi-scale representation
based on multiplicative filter networks (MFN) (Fathony
et al., 2021), a simple linear combination of Fourier or Ga-
bor wavelet functions applied to the input. To reconstruct
at multiple resolutions, linear layers are added at different
depths of the MFN, to generate intermediate outputs. These
outputs, when supervised, generate reconstructions at in-
creasing level of detail. Similarly to the aforementioned
methods, we model our multi-scale representation in contin-
uous function space. However, unlike (Barron et al., 2021),
our architecture is based on a set of hierarchical MLPs, al-
lows for per-level modularity and the representation of each
reconstruction level is constrained through the frequencies
in the Fourier Feature encoding of the input. Compared to
(Sitzmann et al., 2020), our method is designed for multiple
levels of detail and contrary to (Lindell et al., 2021), our
intermediate levels compose the final reconstruction and do
not require supervision during training.

3. Preliminaries
Neural Implicit Functions encode signals in continuous
space using a neural network parametrisation. Often re-
ferred to as coordinate-based networks, they are defined as
a function mapping f : x → V , with x ∈ IR1,2,3; V is a
quantity of interest such as colour or occupancy. In 3D, the
surface is modelled as the levelset of a continuous function
f : f(x) = 0. By design, the representation predicts a
single point in the signal’s domain at a time and multiple
values can be obtained by querying the representation at the
corresponding set of coordinates {x1 . . . xN}.

Positional Encoding was first introduced in Natural Lan-
guage Processing (Vaswani et al., 2017) to inject informa-
tion about the relative position of word tokens into the
Transformer Model. In the context of Neural Implicit Func-
tions, positional encoding refers to the projection of the
input (spatial coordinates) to a higher dimensional space
P : IR1,2,3 → IRN (Mildenhall et al., 2020). Several
function mappings have been proposed, including simple
sinusoidal mappings to fit neural radiance fields (Milden-
hall et al., 2020) and reconstructing 3D protein structures
(Zhong et al., 2020), non-axis aligned Fourier basis func-
tions: ’Fourier Features’ (Tancik et al., 2020) and a posi-
tional encoding based on multi-scale B-Splines (Wang et al.,
2021a). Fourier Features have become a popular frame-
work for fast kernel method approximations (Li et al., 2019).
First proposed by (Rahimi & Recht, 2007), the approxi-
mation is based on Bochner’s theorem (Bochner, 1932),
which shows that any continuous shift-invariant kernel is
the Fourier Transform of a positive bounded measure (spec-
tral measure). The approach proposed by (Rahimi & Recht,
2007) approximates such a continuous kernel by its Monte-
Carlo estimate using samples from this spectral measure:
Fourier Features (Li et al., 2019). (Tancik et al., 2020)
relate this method to the frequency mapping applied to in-
puts of Neural Implicit Functions and propose Fourier Fea-
tures as an improved form of positional encoding: a set of
Fourier bases F : {cos(ωix+ bi) . . . cos(ωnx+ bn} where
ω and b are sampled from a parametric distribution (e.g
N (µ = 0, σ)). As a positional encoding, Fourier Features
map input coordinates to a higher dimensional manifold
as P : x ∈ IR1,2,3 → F(x) ∈ IRn. We choose a Fourier
Feature mapping as positional encoding for our progressive
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implicit representation and refer to it in the rest of this paper
as Fourier Features (FF).

(Tancik et al., 2020) show that the frequencies of the in-
put mapping function directly affect the spectral falloff of
the Neural Tangent Kernel: positional encoding influences
how fast, and if, specific frequencies of a signal can be
learnt. They show through parameter search that sampling
the frequencies of their proposed Fourier Feature encod-
ing at σ = 10 generates the best reconstruction of natural
images; however, no connection is made to the frequency
composition of the target signal. We perform a similar pa-
rameter search for σ (see Section 5.4) and provide a short
analysis relating σ to the frequency composition of the target
signal in Appendix B.

4. Method
4.1. Progressive Fourier Feature encoding

We formulate the task of reconstructing a scene S as a
composition of a base component c and a set of residuals
R1...L:

S(x) = c+

L∑
l=1

ωlRl(fl(x)), (1)

where x is a coordinate vector and each residual Rl is pa-
rameterised by an MLP. The contribution of Rl to the final
representation is controlled by wl, and c is a constant, set
according to the reconstruction task domain. Rl takes as
input a subset fl(x) of Fourier Feature mapping F with
a set F of frequencies sampled from a Gaussian distribu-
tion F ∼ N (0, σ). The sampled frequencies are sorted by
increasing value and divided into L subsets {f1...L}. By
definition, each subset fl now contains frequencies {k1...N}
and for any two adjacent subsets, fl and fl−1, it holds that
kl,1 > kl−1,N , whereby kl,1 and kl−1,N are the first and last
frequency of the subsets l and l − 1 respectively. Intermedi-
ate levels of reconstruction Sl can be obtained by composing
part of the residuals: Sl=2(x) =

∑l=2
l=0 ωlRl(fl(x)). Intu-

itively, the residual Rl learnt by one specific level is guided
by the frequency encodings it is exposed to. Given the struc-
ture of our progressive Fourier Feature encoding {f1...L},
the first residuals are encouraged to focus on low frequency
content while later residuals focus on high frequency content
in the scene.

Inspired by the fact that power spectral densities of natural
signals decay exponentially (i.e., larger proportions of the
signal come from lower frequency ranges) (Ricker, 2003),
we reduce the weight of higher levels compared to lower
levels for the final reconstruction. Empirically, we set w to
a decreasing geometric progression such that wl =

1
l+2 and

show that this leads to better results than equal weightings
of Rl in our ablation studies.

In 1D, our model maps x to y coordinates: S : x → y
and we set c = 0. In 2D, coordinates are mapped to pixel
values: S : x, y → P (x, y) and we set c to the image mean
m (detailed explanation provided in section 5.2). In 3D, our
model defines a levelset as V (τ) = {x : S(x) = τ} where
V is the volume containing the 3D shape whose surface lies
at V (0), x is a coordinate in V and S maps coordinates to
SDF values τ as S : IR3 → IR. Similarly to (Chen et al.,
2021), our residuals Rl are defined as Rl = Sl − Sl−1.
However, in our formulation, we set S0 to be a constant
c = 0.

4.2. Architecture

Our architecture is composed of multiple stacked small
MLPs M1...L, whereby each MLP receives as input a set
of FF mappings fl(x) and the output of the previous level
(level-conditioning). The first level receives as input f1(x)
and the raw coordinates x. The output of each level is a
feature tensor Tl:

Ml : fl(x), Tl−1 → Tl, l > 0

Ml : fl(x), x → Tl, l = 0
(2)

Each feature tensor Tl is then mapped to a residual Rl by an-
other MLP which shares weights across each level and acts
as a feature to domain mapping. Finally, the network out-
puts are composed into the final reconstruction according to
Equation 1. Using an intermediate feature representation Tl

at each level allows for a more expressive feature representa-
tion to be passed to the next level during level-conditioning.
We experimented with per-level domain mapping but found
no explicit benefit over using a single MLP with shared
weights. While the number of layers L as well as the num-
ber and range of frequencies F are selected before training,
we only apply a loss on the final reconstruction S, leaving it
up to the network how to decompose the scene representa-
tion into progressive levels.

Intuitively, our architecture motivates a decomposition into
progressive levels of detail by restricting the frequency range
each level-specific MLP has access to. We show in our ab-
lation studies that the conditioning of Ml on the previous
level Ml−1 yields higher reconstruction accuracy. Per-level
modularity The architecture design allows for each level of
reconstruction to be used independently at test time. For a
reconstruction at an intermediate level of detail Sl=2, MLPs
M3...L can be dropped and the reconstruction will be com-
puted as Sl=2(x) =

∑l=2
l=0 ωlRl(fl(x)). An overview of our

method and the architecture are provided in Figures 1 and 3.

4.3. Loss

To train our model, we apply a reconstruction loss Lr at
the final reconstruction S, as well as a regularisation loss
Lreg which encourages intermediate levels of detail Sl to
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Figure 4. Qualitative results on a 2D image regression task. We compare our model against baselines on images from the COCO 2017
validation set (Lin et al., 2014)

Figure 5. Fitting 1D periodic signals. Left to right: reconstruction levels 1-4 and original signal with training samples.

Figure 6. Qualitative results for a 3D regression task. We regress a TSDF and compare against SIREN models with two different σ and set
σ to 2 for our model and the baselines using Fourier Features.

be close to the ground truth scene Sg:

Lreg =

L∑
l=1

Lr(Sl(x), Sg). (3)

Our final loss is defined as Lr + ωLreg and we find that
a value of ω = 0.01 works well for our experiments. We
experiment with simple L1 and L2 norms for Lr, as well as
a perceptual loss based on VGG features. Perceptual losses
based on deep network features have to be regularised using
the L1 or L2 norm (Johnson et al., 2016) and we find that
although the perceptual loss yields slightly more pleasing
visual results for 2D regression tasks, the difference is not
significant enough to motivate the introduction of additional
hyperparameters. For our final experiments we therefore
use the L2 norm.

Note that our regularisation loss encourages intermediate
levels of detail to be similar to the final reconstruction, by
adding a small fraction of the difference between every inter-
mediate level Sl and the ground truth to the loss. However,
by adding this regularisation, no guidance is given to the
network for how to structure the residuals themselves, nor,
how close each intermediate level Sl should be to the final
reconstruction. In fact, it is possible to train without the
regularisation loss, which we demonstrate in our ablation
studies.

4.4. Training and implementation details

We use the Adam optimiser (Kingma & Ba, 2015) and a
standard learning rate of 1e−3 for all experiments. Unless
mentioned otherwise, we train on a uniformly sampled sub-
set of 50% of the image pixels for all 2D regression tasks.
For 3D shape regression, we train on an average of 456k
SDF samples per shape. For the presented experiments, un-
less specified, we train with 3 levels of detail, a hidden layer
size of 256 per level and σ = 15. We extend the baseline
architectures to have the same number and size of hidden
layers.

5. Experiments
We evaluate our method with several 1D, 2D and 3D regres-
sion tasks as well as in terms of representational capacity
and training time. We also provide a set of ablation studies
and an analysis on the relation between positional encoding
frequencies and signal frequencies. Baselines We compare
our method against 3 different baselines: 1) A simple MLP
with Fourier Feature encoding (FF Net) (Tancik et al., 2020)
2) SIREN, an MLP with sinusodial activations (Sitzmann
et al., 2020) 3) SAPE, an MLP with spatially-adaptive pro-
gressive encoding with a mask resolution of 64 (Hertz et al.,
2021) (the mask resolution is set to 64 to have similar con-
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Model ImageNet

MSE ↓ PSNR ↑ VGG f ↓
FF Nets 0.0048 ± 8.89e-5 74.5 ± 26.41 2.06 ± 0.56
SIREN 0.015 ± 8.4e-4 72.1 ± 49.69 2.36 ± 0.73

SAPE 0.0030 ± 8.6e-6 75.7 ± 26.26 1.85±0.58
Ours (nC) 0.0027±1.3e-5 76.5±24.4 1.92±0.59
Ours (eq) 0.0028±9.4e−6 75.9±24.82 1.91±0.54
Ours 0.0027±1.6e-6 75.9±23.49 1.89±0.49

DIV2K

MSE ↓ PSNR ↑ VGG f ↓
FF Nets 3.3e-3±3.4e−5 75.6±19.7 2.2±0.5
SIREN 3.1e-3±7.6e−6 74.5±13.3 2.4±0.4
SAPE 2.0e-3±2.2e−6 76.5±13.9 2.1±0.5
Ours (nC) 2.07e-3±2.87e-6 76.5±17.4 2.2±0.5
Ours (eq) 1.91e-3±2.46e-6 76.9±18.9 2.0±0.5
Ours 1.88e-3±2.26e-6 76.8±13.6 2.1±0.4

Table 1. Evaluation on DIV2K and ImageNet (100 imgs)

vergence time to PINs). For SIREN, we set their frequency
hyperparameter w to 30 as suggested by (Sitzmann et al.,
2020). We observe that for regressing 3D shapes, w = 30
leads to divergence and choose lower values between 5 and
10. We also observe SIREN to be unstable if optimising for
too many iterations and reduce the number of iterations to
achieve the best possible reconstruction.

5.1. 1D signal regression

In a first instance, we qualitatively evaluate our model on
periodic signals composed of multiple sinusoids. As can
be seen from the example in Figure 5, 1D signals are fit at
progressive level of detail by our model. Examples of the
target signals and more results are provided in Appendix C.

5.2. 2D image regression

We evaluate our method on natural image reconstruction
tasks with a subset of the ImageNet test dataset (Deng et al.,
2009), high resolution images from the DIV2K validation
dataset (Agustsson, 2017) and qualitatively, with images
from the 2017 COCO validation set (Lin et al., 2014). We
evaluate in terms of Mean-Squared-Error (MSE), Peak Sig-
nal to Noise Ratio (PSNR) as well as a perceptual loss based
on the L2 norm between VGG features (Johnson et al.,
2016). Our quantitative results (see Table 1) show that we
outperform SIREN and the FF Net baseline in all metrics;
SAPE outperforms our method on the perceptual loss for the
ImageNet dataset. Qualitative results can be found in Fig-
ures 1, 4, 2, 11 and Appendix C. Our method reconstructs
images with less noise, particularly for scenes with wide
frequency bands. Thanks to the continuous representation
of every level of detail, we are able to handle very fine de-
tail against plain backgrounds (see Figure 4). In contrast,
for such scenes, (Hertz et al., 2021) would require a very

high mask resolution to achieve noiseless reconstruction:
despite locally adapted frequency unwrapping, if the area of
one mask pixel includes both fine detail and smooth back-
ground, noise will be introduced. This effect is visible in
Figure 4. Although having a high enough mask resolution
is feasible for small images, it becomes intractable for large
images (see results of section 5.7). Sample sparsity We
qualitatively evaluate how our method reconstructs natural
images for different pixel sample densities. As can be seen
from Figure 11, our model outperforms baselines for low
sample densities and can achieve reasonable reconstruction
accuracy even when only training on 2% of the image pixels.

Learning the base component c For 1D and 3D regression
tasks, the scene representation is w.r.t. 0: A 1D sinusoid
oscillates around 0 and the SDF representation of a shape
consists in knowing the distance from the surface defined
at 0. For an image this is not the case, as negative RGB
values have no meaning; instead, we set c to the image mean.
We validate this choice with following experiment: For a
2D regression task, we set c to a trainable parameter in the
network and optimise it together with the network weights.
When initialised at different values, c always converges to
the image mean (see Appendix A for details).

5.3. 3D shape regression

We evaluate our method on a set of 3D regression tasks. We
compare against all baselines on 3D models from 3D Ware-
house (3DW) categories lamp, car, chair, sofa, motorbike,
bed and camera; quantitative results can be found in table 2,
qualitative results in Figures 1, 6 and 7. We observe SIREN
to easily diverge on some shapes, as already noted by others
(Wang et al., 2021b). This leads to a significantly higher
reconstruction error for some of the 3D shapes. Similarly to
our results in 2D, our model produces smoother reconstruc-
tions without losing detail. This is particularly visible in the
example shown in Figure 6.

5.4. Sampling Fourier Features at different σ

We evaluate how our model performs for different ranges of
sampled frequencies on 2D and 3D regression tasks (Figure
8). We evaluate for 10 natural images from DIV2K and 10
shapes of different categories taken from 3D Warehouse. We
compare to SAPE and FF Net which also use a Fourier Fea-
ture encoding. We find that for values below 30 our model
overall outperforms both SAPE and FF Net. For values
above 30, our model is on par with SAPE without the need
to mask out frequencies for smooth regions. Thanks to our
progressive architecture we achieve crisper representations
for low encoding frequencies and less noise is introduced
in smooth regions, even when high encoding frequencies
are present in the encoding (see Appendix D for qualitative
examples). Compared to the best performance for FF Net
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Model lamp (ChD ↓) car (ChD ↓) chair (ChD ↓) sofa (ChD ↓) motorbike (ChD ↓) bed (ChD ↓) camera (ChD ↓)
FF Nets 2.5±3.4e−3 2.1±4.8e−4 0.92±1.5e−4 1.5±5.6e−4 1.0±1.5e-5 2.83±5.2e−3 3.46±1.26e−2
SIREN 25.4±4.2e−3 2.2±5.2e−4 28.4±6.7e−3 1.6±5.5e−4 1.7±6.4e−4 3.22±6.9e−3 2.31±2.68e−3
SAPE 6.7±9.2e−2 2.2±6.6e−4 1.50±1.1e−3 6.6±0.42 2.8±3.9e-4 4.58±2.4e−2 4.38±2.7e−2
Ours 1.5±1.0e-4 2.0±5.1e-4 0.87±1.7e-4 1.48±5.4e-4 1.1±6.7e-5 2.79±4.7e-3 2.05±2.7e-3

Table 2. Evaluation on 3D models from 3D Warehouse (3DW) in terms of the bi-directional Chamfer Distance (mm)

Figure 7. Qualitative results for a 3D regression task. We regress a TSDF and compare against SIREN models with two different ω and
set σ to 2 for our model and the other baselines using Fourier Features.

found at σ = 10 (Tancik et al., 2020), we find that for our
model, a value of σ = 15 yields the best PSNR on natural
images. We attribute this to the progressive nature of our
architecture that allows for higher frequencies to be used
in the positional encoding without introducing noise in low
structure areas. For 3D shapes we observe that for high σ
values FF Net diverges resulting in a strong drop in recon-
struction accuracy. This is not the case for SAPE and our
method. Although the drop in reconstruction accuracy is not
significant across different values of σ, higher frequencies
visibly introduce noise in the reconstruction. This can be
seen in the qualitative examples presented in Appendix D.
We find σ = 3 to be the best value for the tested 3D shapes.

Figure 8. Sensitivity to σ (standard deviation) when sampling
Fourier Features for 2D regression tasks (left) and 3D regression
tasks (right).

5.5. Encoding feature density

We study how the encoding feature density (number of
sampled frequencies) affects the reconstruction quality of
images and 3D shapes. For a subset of 10 natural images
from the DIV2K dataset and 10 shapes (of different classes)
from 3D Warehouse, we plot the PSNR against the num-
ber of frequencies in the encoding (see Figure 10). We set
σ = 15 and σ = 3 for natural images and 3D shapes re-

spectively. We find that the reconstruction quality saturates
when using more than 100 frequencies in the encoding for
natural images and at about 30 frequencies for 3D shapes.

Figure 9. Forward pass time for 2D and 3D regression tasks at
different batch sizes.

Figure 10. Sensitivity to frequency density of the positional encod-
ing for 2D regression tasks (left) and 3D regression tasks (right).

5.6. Encoding Frequencies & Signal Frequencies

The presented experiments as well as previous approaches
(Tancik et al., 2020) provide empirical results for the best
values of σ for sampling the frequencies of Fourier Features.
We believe a more principled approach will select encoding
frequencies based on the frequency composition of the scene
itself and we provide a few initial experiments in Appendix
B to pave the road for future work.
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Figure 11. Fitting natural images with sparse sample sets of 10% (top row) and 2% (bottom row) of all image pixels.

5.7. Model size and training speed

We evaluate our architecture in terms of its representational
capacity and training speed on 2D and 3D regression tasks.
We fit a subset of the DIV2K dataset for different sizes of
our model (gradually increasing both network depth and
width). Our method outperforms SIREN for all tested sizes
and FF Net for sizes above 100k parameters. In particular,
note how all baselines experience a performance drop as
the number of parameters increases. We attribute this to
overfitting due to overparameterisation. For SIREN this
could also be due to instability at greater depth which we
noted leads to divergence. Our model’s accuracy steadily
increases for the tested model sizes, suggesting that the
architecture is less prone to overfitting. SAPE outperforms
us in representational capacity at lower sizes, however, it is
significantly slower in training speed (see Figure 9). SAPE’s
forward pass is slowed down by regular mask interpolation
and update steps. This is particularly noticeable for 3D
regression tasks. At the cost of a small increase in network
size, our architecture can achieve the same reconstruction
quality as SAPE, while training much faster and being more
robust to overfitting.

Figure 12. Reconstruction accuracy wrt. model size, evaluated on
a subset of the DIV2K dataset.

Figure 13. Reconstruction accuracy for different numbers of levels,
keeping overall network size fixed. Left: 2D regression task.
Right: 3D regression task.

5.8. Ablation studies

5.8.1. LEVEL COMPOSITION AND LEVEL CONDITIONING

We compare our model against an ablated version with equal
weights (Ours (eq)) in the level composition and note that
while using decreasing weights leads to a better MSE score,
no improvement can be seen for perceptual metrics; in fact,
equal weighting leads to a slightly higher mean for PSNR
and perceptual loss (see Table 1). However, removing the
level-conditioning of higher layers on lower layers (see
Equation 2) (Ours (nC)), leads to a more noticeable drop in
performance, in particular for the high resolution images of
the DIV2K dataset.

5.8.2. LEVEL DECOMPOSITION

We evaluate how level decomposition affects our model’s
performance. Keeping the number of parameters fixed, we
evaluate how the reconstruction accuracy varies with differ-
ent numbers of levels. We evaluate on 10 natural images
from the DIV2K dataset and 10 3D models of different cat-
egories from 3D Warehouse for model sizes of roughly 1m
and 600k parameters. (see Figure 13). We find that overall,
within the range of levels tested, reconstruction accuracy is
not strongly affected. However, we observe the following
trends: for fitting natural images, 3 levels of detail yield the
best result for both tested model sizes. The lower reconstruc-
tion accuracy for more levels of detail is most likely due to
the fact that each level has fewer parameters and is therefore
not able to fit each scene residual well. Fewer levels of detail
on the other hand may lack the representational advantage
introduced by our architecture design. For fitting 3D shapes
we find that for both networks, 2 levels of detail yields the
best reconstruction. The reconstruction accuracy degrades
faster for increasing levels for the smaller network. We
attribute this to the fact that fewer parameters are available
for each level which eventually leads to underfitting.

5.8.3. FREQUENCY ORDER

We validate our choice of increasing FF frequencies with
the following experiments: 1) To ensure that the progressive
nature of our results is not simply a result of the hierarchical
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MLP structure, we train an ablated model with randomly
sampled FF frequencies across all levels. 2) To validate the
importance of sorting encoding frequencies in increasing
order for obtaining a progressive scene representation, we
train an ablated version with decreasing frequencies in the
positional encoding (highest frequencies in the first level
and lowest frequencies in the last level). As can be seen
from an example in Figure 15, without sorted, increasing fre-
quencies in the positional encoding, the progressive nature
of the reconstruction is lost and the reconstruction is noisy
in smooth image regions. Results in Table 3 show that using
increasing frequencies yields overall better reconstruction
accuracy for a set of COCO images. Interestingly, we find
that decreasing frequencies produces better results than a
random order. This suggests that the structure introduced
by having a specific range of FF frequencies per MLP is
beneficial for reconstruction quality.

Figure 14. Fitting an image with (left) randomly sampled FF fre-
quencies, (center) decreasing FF frequencies and (right) FF fre-
quencies in the increasing order used in PINs.

5.8.4. REMOVING PER-LEVEL REGULARISATION

Our proposed loss function includes a per-level regularisa-
tion term, that encourages every level to be similar to the
final reconstruction. When training without this regularisa-
tion we observe a slight drop in convergence speed, but find
that the representation learnt by individual levels remains
comparable (see an example in Figure 15).

6. Limitations and Future Work
We demonstrate the advantages of our proposed representa-
tion, however, several questions remain open and we would
like to suggest directions for future work: 1) We select both

Figure 15. Fitting an image with 3 levels of detail, with (left) and
without (right) per-level regularisation. Top row: reconstruction.
Bottom row: residuals.

Loss Model ablation (different FF frequency order)

Random Decreasing Original (PINs)

PSNR ↑ 71.87 ± 4.6 71.96 ± 4.16 72.24 ± 6.22
VGG f ↓ 2.24 ± 0.16 2.20 ± 0.17 2.09 ± 0.17

Table 3. Evaluation on COCO’s validation set (16 images) using
uniformly sampled, unordered FF frequencies, a decreasing FF
frequency order and the original, increasing order.

the number of levels and the sampled frequency density
manually and provide empirical studies for the best values
of these hyperparameters in Sections 5.4 and 5.5. How-
ever, it would be interesting to evaluate to what extent these
parameters can be learnt as part of the representation. 2)
Similarly to (Tancik et al., 2020) we find the best value for σ
through parameter search, but our experiments in Appendix
B indicate a correlation between the frequency composition
of a scene and the frequencies of the input mapping that lead
to the best reconstruction. We believe that it could be bene-
ficial to infer a scene-specific input mapping based on this
correlation. 3) We did not experiment with generalisation to
novel scenes within the scope of this work but believe this
to be an interesting extension. 4) The proposed architecture
is in principle applicable to novel-view synthesis; e.g. for
every sample point, the individual residuals could be inte-
grated along their respective ray to yield the corresponding
pixel-residual. It would be interesting to extend PINs for
novel-view synthesis and compare it to related approaches
such as (Barron et al., 2021).

7. Conclusion
We introduce a novel multi-scale implicit representation
based on progressive positional encoding. Through condi-
tioning a hierarchical MLP structure on incremental Fourier
Features, our method learns to decompose a scene into pro-
gressive levels of detail without level-specific supervision.
We achieve higher reconstruction accuracy for 2D images
and 3D shapes compared to baselines, in particular, for
scenes with wide frequency spectra. The modularity of the
architecture allows to only use part of the network at infer-
ence time, if a coarser representation is sufficient. Overall,
our method provides a flexible, continuous and multi-scale
implicit representation with a simple, end-to-end training
scheme.
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We provide the following additional content: (A) Complementary graphs illustrating our analysis on learning the base
component c (B) An analysis relating encoding frequencies to signal frequencies (C) Additional qualitative examples for 1D
and 2D regression tasks (D) Qualitative examples for reconstructing at different values of σ.

A. Regressing the base component
In the main paper, we introduced the experiment which validates our choice for setting the base component c of our scene
composition to the image mean: we let the implicit network regress the base component as part of the optimisation. We
initialise c at different values 0.9, 0.1 and 0.5 and observe that it naturally converges to the image mean (Figure 16):

Figure 16. Regressing the base intensity for 3 different images. We set the base intensity as a learnable parameter and initialise it at
different values. We then optimise together with the network weights.

B. Encoding Frequencies & Signal Frequencies
The results presented in section 5.4 demonstrate that σ = 15 is a good value to reconstruct natural images. We believe that a
more principled approach to select positional encoding frequencies will leverage the frequency composition of the target
signal. To pave the road for future work, we explore the relationship between the frequencies in the positional encoding and
the frequencies of the signal with the following experiments: 1) For a set of synthetic 1D signals with one specific frequency
(see examples in Figure 17), we test for which value of σ the highest fitting accuracy is achieved. Not surprisingly, for
higher frequency signals, PSNR peaks at higher σ values (Figure 19, left). However, for these simple signals, the maximum
frequency present inside the Fourier Features yielding the highest PSNR is overall lower than the signal frequency itself
(Figure 19, right). 2) For a 2D regression task, we compute the DFT and visualise how the sampled Fourier basis from the
Fourier Feature encoding relate to the Fourier basis functions present in the images’ DFT. For a natural image, the (discrete)
Fourier Transform can be written as:

F (k, l) =

M−1∑
m=0

N−1∑
n=0

f [m,n]e−j2π( k
M m+ l

N n) (4)

where M and N are the image dimensions. Intuitively, the image is transformed into a set of M × N basis functions:
every pixel represents one basis. Frequencies in the DFT of an image of dimension M × N range from 0 to m

M and n
N

(Robert Fisher & Wolfart, 2003); the position m,n of a particular Fourier Feature frequency fFF in the DFT domain can be
computed as m = fFFM and n = fFFN . For a natural image from the DIV2K dataset we plot its DFT along with the
sampled Fourier Feature frequencies (Figure 22, top row) and display the respective reconstruction quality obtained from a
simple MLP with FF positional encoding (Figure 22, bottom row). As the plots illustrate, when sampling frequencies from
within the DFT of the image, the reconstruction is lacking high frequency detail. To obtain a detailed reconstruction, the
sampled frequencies in the positional encoding need to be up to 40 times higher than the highest pixel frequency present in
the image. A complete analysis is beyond the scope of this work, but we hope to motivate future work that will establish a
quantitative relationship between a signal’s frequency decomposition and the positional encoding required to reconstruct it.

C. Additional Qualitative Results (1D and 2D regression)
In Figure 23 we present additional qualitative results for regressing 1D periodic signals and Figure 20 shows additional
qualitative results on the 2017 COCO validation set for our method and baselines. In Figure 21 we display more examples
of the predicted residuals R1...3 by the network and the reconstructions S1...3 at progressive level of detail.
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Figure 17. Synthetic single frequency signals used in our analysis on relating positional encoding to signal frequency (Appendix B)

Figure 18. Fitting a 3D shape (3D Warehouse) with Fourier Features sampled at different values of σ.

Figure 19. Left: PSNR achieved for Fourier Features (FF) sampled at different σ for 1D synthetic signals (y = sin(bx)) of varying
frequencies. Right: highest frequency present in the FF encoding yielding the best PSNR vs. frequency of the 1D synthetic signal.

D. Qualitative Results for reconstructing with Fourier Features sampled at different σ
We provide qualitative results for reconstructing 2D and 3D scenes with Fourier Features sampled at different values of
σ. Note how our model provides overall crisper natural image reconstructions over a wide range of σ (Figure 24). For
3D shapes (Figure 18), our model has a reconstruction quality similar to that of SAPE, even for encodings with very high
frequencies (sampled at σ > 15). Compared to FF Net, the reconstruction does not diverge for high encoding frequencies
(see middle row at σ = 30). The reconstructions for high σ values remain noisy however and we experimentally find that
the best reconstructions are obtained for σ values between 3 and 5.
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Figure 20. Qualitative results on the 2017 COCO validation set.



PINs: Progressive Implicit Networks for Multi-Scale Neural Representations

Figure 21. Additional qualitative examples showing our models residual output as well as the incremental level reconstructions. Images
are taken from the COCO 2017 validation dataset (Lin et al., 2015).

Figure 22. How sampled FF frequencies relate to the Discrete Fourier Transform (DFT) of a natural image. Top: the DFT and FF samples
(orange). Bottom: the reconstruction .

Figure 23. Regressing 1D periodic signals composed of multiple sinusoids. Left to right: Reconstruction Levels 1-4 and original signal
with training samples.
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Figure 24. Regressing a 2D image (2017 COCO validation set) with Fourier Features sampled at different values of sigma


