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Abstract
We propose efficient Langevin Monte Carlo algo-
rithms for sampling distributions with nonsmooth
convex composite potentials, which is the sum of
a continuously differentiable function and a pos-
sibly nonsmooth function. We devise such algo-
rithms leveraging recent advances in convex anal-
ysis and optimization methods involving Bregman
divergences, namely the Bregman–Moreau en-
velopes and the Bregman proximity operators, and
in the Langevin Monte Carlo algorithms reminis-
cent of mirror descent. The proposed algorithms
extend existing Langevin Monte Carlo algorithms
in two aspects—the ability to sample nonsmooth
distributions with mirror descent-like algorithms,
and the use of the more general Bregman–Moreau
envelope in place of the Moreau envelope as a
smooth approximation of the nonsmooth part of
the potential. A particular case of the proposed
scheme is reminiscent of the Bregman proximal
gradient algorithm. The efficiency of the proposed
methodology is illustrated with various sampling
tasks at which existing Langevin Monte Carlo
methods are known to perform poorly.

1. Introduction
The problem of sampling efficiently from high-dimensional
log-Lipschitz-smooth and (strongly) log-concave target dis-
tributions via discretized Langevin diffusions has been ex-
tensively studied in the machine learning and statistics liter-
ature lately. A thorough understanding of the nonasymptotic
convergence properties of Langevin Monte Carlo (LMC)
has been developed, where the log-Lipschitz-smoothness
and (strong) log-concavity of the density play a vital role
in characterizing its convergence rates. However, such con-
ditions are not always satisifed in applications and there is
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recent effort to move beyond such scenarios. On the other
hand, since the efficiency of LMC algorithms in the stanard
Euclidean space heavily hinges on the shape of the target
distributions, algorithms based on Riemannian Langevin
diffusions (Girolami & Calderhead, 2011) are considered in
the case of ill-conditioned target distributions to exploit the
local geometry of the log-density. However, algorithms de-
rived by discretizing such Riemannian Langevin diffusions
are notoriously hard to analyze, depending on the choice of
the Riemannian metric.

In this paper, we propose two Riemannian LMC algorithms
based on Bregman divergences to efficiently sample from
high-dimensional distributions whose potentials (i.e., neg-
ative log-densities) are possibly not strongly convex nor
(globally) Lipschitz smooth in the standard Euclidean geom-
etry, but only strongly convex and Lipschitz smooth relative
to a Legendre function subsequent to a smooth approxima-
tion. To be more precise, potentials can take the form of the
sum of a relatively smooth part and a nonsmooth part (which
includes the convex indicator function of a closed convex
set) in the standard Euclidean geometry. A smooth approxi-
mation of the nonsmooth part based on the Bregman diver-
gence is used and we instead sample from the smoothened
distribution. By tuning a parameter of the smooth approxi-
mation, such a smoothened distribution is sufficiently close
to the original target distribution. On the other hand, moti-
vated by the connection between Langevin algorithms and
convex optimization, the proposed algorithms can be viewed
as the sampling analogue of the Bregman proximal gradi-
ent algorithm (Van Nguyen, 2017; Bauschke et al., 2017;
Bolte et al., 2018; Bùi & Combettes, 2021; Chizat, 2021)
(cf. mirror descent in the smooth case), in which Rieman-
nian structures of the algorithms are induced by the Hessian
of some Legendre function. This specific choice of the Rie-
mannian metric also offers us a principled way to analyze
the behavior of the proposed algorithms.

1.1. Langevin and Mirror-Langevin Monte Carlo
Algorithms

We consider the problem of sampling from a probability
measure π on (Rd,B(Rd)) which admits a density, with
slight abuse of notation, also denoted by π, with respect to
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the Lebesgue measure

(∀x ∈ Rd) π(x) = e−U(x)

/∫
Rd

e−U(y) dy , (1)

where the potential U : Rd → R∪{+∞} is measurable and
we assume that 0 <

∫
U

e−U(y) dy < +∞ for U := domU .
We also write π ∝ e−U for (1). Usually, the number of
dimensions d� 1.

To perform such a sampling task, the LMC algorithm (see
e.g., Dalalyan, 2017b) is arguably the most widely-studied
gradient-based MCMC algorithm, which takes the form

(∀k ∈ N) xk+1 = xk − γ∇U(xk) +
√

2γ ξk, (2)

where ξk
i.i.d.∼ Nd(0, Id) for all k ∈ N and γ > 0 is a step

size. Possibly with varying step sizes, the LMC algorithm is
also referred to as the unadjusted Langevin algorithm (ULA;
Durmus & Moulines, 2017) in the literature, while applying
a Metropolis–Hastings correction step at each iteration of (2)
the algorithm is often referred to as the Metropolis-adjusted
Langevin algorithm (MALA; Roberts & Tweedie, 1996).
ULA is the discretization of the overdamped Langevin dif-
fusion, which is the solution to the stochastic differential
equation (SDE)

(∀t ∈ [0,+∞[) dXt = −∇U(Xt) dt+
√

2 dWt, (3)

where {Wt}t∈[0,+∞[ is a d-dimensional standard Wiener
process (a.k.a. Brownian motion). When U is Lipschitz
smooth and strongly convex, it is well known that π has
the unique invariant measure, which is the Gibbs measure
X∞ ∝ e−U . Under such (or weaker) conditions of U ,
nonasymptotic error bounds of ULA in terms of various dis-
imilarity measures of probability measures, e.g., total varia-
tion and Wasserstein distances, and KL, χ2- and Rényi diver-
gences, are well studied and established (see e.g., Dalalyan,
2017a; Durmus & Moulines, 2017; 2019; Durmus et al.,
2019; Vempala & Wibisono, 2019). To move beyond the
Lipschitz smoothness assumption, we consider the case of a
possibly nonsmooth composite potential U , which takes the
following form

(∀x ∈ Rd) U(x) := f(x) + g(x), (4)

where f ∈ Γ0(Rd) is continuously differentiable but pos-
sibly not globally Lipschitz smooth (i.e., do not admit a
globally Lipschitz gradient) and g ∈ Γ0(Rd) is possibly
nonsmooth (see Section 1.4 for the definition of Γ0(Rd)).

To demonstrate the sampling counterpart of mirror descent,
we consider the smooth case (i.e., g = 0) which is well stud-
ied in the literature. Introduced in Zhang et al. (2020), under
certain assumptions on U , the mirror-Langevin diffusion
(MLD) takes the form: for t ∈ [0,+∞[,{

Xt = ∇ϕ∗(Yt),
dYt = −∇U(Xt) dt+

√
2
[
∇2ϕ(Xt)

]1/2
dWt,

(5)

where ϕ is a Legendre function and ϕ∗ is the Fenchel con-
jugate of ϕ (see Definition 2.2). An Euler–Maruyama dis-
cretization scheme yields the Hessian Riemannian LMC
(HRLMC) algorithm: for k ∈ N,

xk+1 = ∇ϕ∗
(
∇ϕ(xk)− γ∇U(xk)

+
√

2γ
[
∇2ϕ(xk)

]1/2
ξk

)
. (6)

This is the main discretization scheme considered in Zhang
et al. (2020) and an earlier draft of Hsieh et al. (2018), and
further studied in Li et al. (2022), which is a specific instance
of the Riemannian LMC reminiscent of the mirror descent
algorithm. Ahn & Chewi (2021) consider an alternative
discretization scheme motivated by the mirrorless mirror
descent (Gunasekar et al., 2021), called the mirror-Langevin
algorithm (MLA):

(∀k ∈ N)
xk+1/2 = ∇ϕ∗(∇ϕ(xk)− γ∇U(xk)),

xk+1 = ∇ϕ∗(Yγk),
(7)

where{
dYt =

√
2
[
∇2ϕ∗(Yt)

]−1/2
dWt

Y0 = ∇ϕ
(
xk+1/2

)
= ∇ϕ(xk)− γ∇U(xk).

(8)

However, the mirror descent-type Langevin algorithms in
Hsieh et al. (2018); Zhang et al. (2020); Ahn & Chewi
(2021) can only handle relatively smooth potentials (to a
Legendre function; see Definition 2.7) but not potentials
with relatively smooth plus nonsmooth parts (4) where g 6=
0.

1.2. Contributions

We fill this void by extending HRLMC in the following
aspects: (i) the target potential U takes the form (4), i.e.,
U = f +g, where f is continuously differentiable but possi-
bly not Lipschitz smooth yet smooth relative to a Legendre
function ϕ, and g is possibly nonsmooth; (ii) the nonsmooth
part g is enveloped by its continuously differentiable approx-
imation, which is the Bregman–Moreau envelope (Kan &
Song, 2012; Bauschke et al., 2018; Laude et al., 2020; Sou-
eycatt et al., 2020; Bauschke et al., 2006; Chen et al., 2012),
in the same vein as using the Moreau envelope (Moreau,
1962; 1965) in Brosse et al. (2017); Durmus et al. (2018);
Luu et al. (2021), so that we can adapt recent convergence
results for mirror-Langevin algorithms for relatively smooth
potentials (Zhang et al., 2020; Ahn & Chewi, 2021; Li et al.,
2022; Jiang, 2021).

The proposed sampling algorithm can be viewed as a gener-
alized version of the Moreau–Yosida Unadjusted Langevin
Algorithm (MYULA; Durmus et al., 2018; Brosse et al.,
2017), and we recover MYULA if both the mirror map
and the Legendre function in the smooth approximation are
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chosen as ‖ · ‖2/2. Similar to the resemblance of MYULA
to the proximal gradient algorithm with specific choice of
step sizes, the proposed discretized algorithms is also rem-
iniscent of the Bregman proximal gradient algorithm or
the Bregman forward-backward algorithm (Van Nguyen,
2017; Bauschke et al., 2017; Bolte et al., 2018; Bùi & Com-
bettes, 2021, see Section 3.3 for details). The proposed
schemes, however, are able to change the geometry of the
potential through a mirror map. On the theoretical front,
our convergence results reveal a biased convergence guar-
antee with a bias which vanishes with the step size and
the smoothing parameter of the Bregman–Moreau enve-
lope. Numerical experiments also illustrate the efficiency of
the proposed algorithms. We perform various nonsmooth
(composite) and/or constrained sampling tasks, including
sampling from the nonsmooth anisotropic Laplace distribu-
tions, at which MYULA is known to underperform ascribed
to the anisotropy. To the best of our knowledge, the pro-
posed algorithms are the first gradient-based Monte Carlo
algorithms based on the overdamped Langevin dynamics
which are able to sample nonsmooth composite distributions
while adapting to the geometry of such distributions.

1.3. Related Work

1.3.1. MIRROR DESCENT-TYPE SAMPLING
ALGORITHMS

In addition to Zhang et al. (2020); Ahn & Chewi (2021),
Hsieh et al. (2018) introduce the mirrored-Langevin algo-
rithm, which is also reminiscent of mirror descent, but only
with Id instead of∇2ϕ in (5), which entails a standard Gaus-
sian noise in (6). Their convergence guarantee is also based
on the assumption that ϕ is strongly convex. Chewi et al.
(2020) analyze the continuous-time MLD (5) and specialize
their results to the case when the mirror map is equal to
the potential, known as the Newton–Langevin diffusion due
to its resemblance to the Newton’s method in optimization.
Li et al. (2022) improve upon the analysis of Zhang et al.
(2020), establishing a vanishing bias with the step size of the
mirror Langevin algorithm under more relaxed assumptions.

1.3.2. NONSMOOTH SAMPLING

Sampling efficiently from nonsmooth distributions remains
a crucial problem in machine learning, statistics and imaging
sciences. In particular, a significant amount of work borrows
tools from convex/variational analysis and proximal opti-
mization, i.e., the Moreau envelope and proximity operator,
attributing their use to the connection between sampling and
optimization, see e.g., Pereyra (2016); Brosse et al. (2017);
Bubeck et al. (2018); Durmus et al. (2019; 2018); Mou
et al. (2019); Wibisono (2019); Luu et al. (2021); Lee et al.
(2021); Lehec (2021); Liang & Chen (2021). Nonasymp-
totic convergence guarantees are generally obtained from

the (Metropolis-adjusted) Langevin algorithms for smooth
potentials. A notable exception which does not use the
Moreau envelope as a smooth approximation is Chatterji
et al. (2020), which applies Gaussian smoothing instead.

1.3.3. BREGMAN DIVERGENCES IN CONVEX ANALYSIS,
OPTIMIZATION AND MACHINE LEARNING

The origin of convex analysis results involving Bregman
divergences (Bregman, 1967) and related optimization
methods date backs to more than four decades ago (see
e.g., Bauschke & Borwein, 1997; Bauschke & Lewis,
2000; Bauschke et al., 2001; Bauschke & Borwein, 2001;
Bauschke, 2003; Bauschke et al., 2003; 2006; 2009; Ne-
mirovski, 1979; Nemirovski & Yudin, 1983). The work
by Bauschke et al. (2017) is a major recent breakthrough
which revives much interest in developing new optimization
algorithms involving Bregman divergences and their con-
vergence results (see e.g., Bùi & Combettes, 2021; Bolte
et al., 2018; Bauschke et al., 2019; Dragomir et al., 2021b;a;
Hanzely et al., 2021; Teboulle, 2018; Takahashi et al., 2021;
Chizat, 2021). Bauschke et al. (2017) relax the globally
Lipschitz gradient assumption commonly required in gradi-
ent descent or proximal gradient for convergence, by intro-
ducing the relative smoothness condition (Definition 2.7).
Our proposed sampling algorithms also rely on such an in-
sightful condition. Another long line of work studies the
generalization of the notions of the classical Moreau en-
velope and the proximity operators (Moreau, 1962; 1965;
Rockafellar & Wets, 1998; Bauschke & Combettes, 2017)
in convex analysis using Bregman divergences, see e.g.,
Bauschke et al. (2003; 2006); Chen et al. (2012); Kan &
Song (2012); Bauschke et al. (2018); Laude et al. (2020);
Soueycatt et al. (2020). This line of work motivates our use
of the Bregman–Moreau envelopes as smooth approxima-
tions of the nonsmooth part of the potential. While there is
an extensive amount of literature regarding the applications
of Bregman divergences in machine learning other than mir-
ror descent (Bubeck, 2015), we refer to Blondel et al. (2020)
which includes useful results for sampling distributions on
various convex polytopes such as the probability simplex
based on our proposed schemes.

1.4. Notation

We denote by Id ∈ Rd×d the d × d identity matrix. We
also define R := R ∪ {+∞}. Let Sd++ denote the set of
symmetric positive definite matrices of Rd×d. Let H be
a real Hilbert space endowed with an inner product 〈·, ·〉
and a norm ‖ · ‖. The domain of a function f : H → R is
dom f := {x ∈ H : f(x) < +∞}. The set Γ0(Rd) denotes
the class of lower-semicontinuous convex functions from
Rd to R with a nonempty domain (i.e., proper). The convex
indicator function ιC(x) of a closed convex set C 6= ∅ at x
equals 0 if x ∈ C and +∞ otherwise. We denote by B(Rd)
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the Borel σ-field of Rd. For two probability measures µ and
ν on B(Rd), the total variation distance between µ and ν is
defined by ‖µ − ν‖TV = supA∈B(Rd) |µ(A) − ν(A)|. For
k ∈ N, we denote by C k the set of k-times continuously
differentiable functions f : Rd → R. If f is a Lipschitz
function, i.e., there exists L > 0 such that for all x, y ∈ Rd,
|f(x) − f(y)| 6 L‖x − y‖, then we denote ‖f‖Lip :=
inf{|f(x)− f(y)|/‖x− y‖ |x, y ∈ Rd, x 6= y}.

2. Preliminaries
In this section, we give definitions of important notions
from convex analysis (Rockafellar, 1970; Rockafellar &
Wets, 1998; Bauschke & Combettes, 2017), and state some
related properties of such notions. In this section, we let
ϕ ∈ Γ0(Rd) and X := int domϕ.
Definition 2.1 (Legendre functions). A function ϕ is called
(i) essentially smooth, if it is differentiable on X 6= ∅ and
‖∇ϕ(xn)‖ → +∞ whenever xn → x ∈ bdry domϕ ; (ii)
essentially strictly convex, if it is strictly convex on X; (iii)
Legendre, if it is both essentially smooth and essentially
strictly convex.
Definition 2.2 (Fenchel conjugate). The Fenchel conju-
gate of a proper function f is defined by f∗(x) :=
supy∈Rd {〈y, x〉 − f(y)}. For a Legendre function ϕ, it
is well known that ∇ϕ : X → X∗ := int domϕ∗ with
(∇ϕ)−1 = ∇ϕ∗.
Definition 2.3 (Bregman divergence). The Bregman diver-
gence between x and y associated with a Legendre function
ϕ is defined through

Dϕ : Rd × Rd → [0,+∞] : (x, y) 7→{
ϕ(x)− ϕ(y)− 〈∇ϕ(y), x− y〉, if y ∈ X,
+∞, otherwise.

(9)

We now assume that ϕ is a Legendre function in the remain-
ing part of this section.
Definition 2.4 (Bregman–Moreau envelopes). For λ > 0,
the left and right Bregman–Moreau envelopes of g ∈ Γ0(Rd)
associated with ϕ are respectively defined by

←−envϕλ,g(x) := inf
y∈Rd

{
g(y) +

1

λ
Dϕ(y, x)

}
, (10)

and

−→envϕλ,g(x) := inf
y∈Rd

{
g(y) +

1

λ
Dϕ(x, y)

}
. (11)

Definition 2.5 (Bregman proximity operators). For λ >
0, the left and right Bregman proximity operators of g ∈
Γ0(Rd) associated with ϕ are respectively defined by

←−
P ϕ
λ,g(x) := argmin

y∈Rd

{
g(y) +

1

λ
Dϕ(y, x)

}
, (12)

and

−→
P ϕ
λ,g(x) := argmin

y∈Rd

{
g(y) +

1

λ
Dϕ(x, y)

}
. (13)

We omit the arrows and write envϕλ,g and Pϕλ,g when there is
no need to distinguish the left and right Bregman–Moreau
envelopes or Bregman proximity operators. When ϕ =
‖ · ‖2/2, we recover the classical Moreau envelope and the
Moreau proximity operator (Moreau, 1962; 1965). Note
that envϕλ,g envelops g from below and is decreasing in λ,
in a sense that inf g(Rd) 6 envϕλ,g(x) 6 envϕκ,g(x) 6 g(x)
for any x ∈ X and 0 < κ < λ < +∞ (Bauschke et al.,
2018, Proposition 2.2).

Definition 2.6 (Legendre strongly convex). A function f is
α-Legendre strongly convex with respect to ϕ if there exists
a constant α > 0 such that f − αϕ is convex on X.

Definition 2.7 (Relative smoothness). A function f is β-
smooth relative to ϕ if there exists β > 0 such that βϕ− f
is convex on X.

3. Bregman Proximal LMC Algorithms
In the case of nonsmooth composite potentials, the mirror-
Langevin algorithms (6) and (7) no longer work since the
gradient of the nonsmooth part is not available. Based on the
mirror Langevin algorithms for relatively smooth potentials
(Zhang et al., 2020; Ahn & Chewi, 2021), we devise two
possible Bregman proximal LMC algorithms involving the
Bregman–Moreau envelopes and the Bregman proximity
operators.

3.1. Assumptions and Related Properties

Instead of directly sampling from π, we propose to sample
from distributions whose potentials being smooth surrogates
of U , defined by

←−
U ψ
λ := f +←−envψλ,g and

−→
U ψ
λ := f +−→envψλ,g, (14)

where ψ ∈ Γ0(Rd) is a Legendre function possibly different
from the Legendre function ϕ in MLD (5) to allow full
flexibility, and λ > 0. Then the corresponding surrogate
target densities are

←−π ψλ ∝ exp
(
−←−U ψ

λ

)
and −→π ψλ ∝ exp

(
−−→U ψ

λ

)
. (15)

We again omit the arrows and write Uψλ and πψλ when we do
not need to distinguish the left and right Bregman–Moreau
envelopes. In this section, after introducing some required
assumptions, we show that they are well-defined (i.e., in
]0,+∞[), as close to π by adjusting the (sufficiently small)
approximation parameter λ > 0, Legendre strongly log-
concave, and relatively smooth. We also give some extra
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assumptions of the specific algorithms (Assumption 3.8).
Then, with all the assumptions of algorithms originally de-
signed for the relatively smooth potentials satisfied by (14),
we enable the capabilities of these algorithms for approxi-
mate nonsmooth sampling.

We write F := dom f ⊆ Rd and G := dom g ⊆
Rd. Throughout the whole paper, we assume that X :=
int domϕ and Y := int domψ such that (intF) ∩ Y ⊆ X,
(intF) ∩ Y ∩ X 6= ∅ and G ∩ Y 6= ∅. Let us recall that the
potential U has the form f + g. We make the following as-
sumptions on the functions f and g, the Legendre functions
ϕ and ψ, and their associated Bregman divergences Dϕ and
Dψ .

Assumption 3.1. The function f : Rd → R is (i) in Γ0(Rd),
lower bounded and differentiable (i.e., of C 1) but may not
admit a globally Lipschitz gradient; (ii) βf -smooth relative
to ϕ.

Assumption 3.2. The function g : Rd → R is (i) in Γ0(Rd),
lower bounded and possibly nonsmooth; either (ii†) such
that e−g is integrable with respect to the Lebesgue measure,
or (ii‡) Lipschitz.

Assumption 3.3. The function ϕ ∈ Γ0(Rd) is (i)
Legendre; (ii) of C 3 on X; (iii) supercoercive, i.e.,
lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞; (iv) Mϕ-modified self-
concordant (Zhang et al., 2020; Li et al., 2022, (A1)),
i.e., there exists Mϕ ∈ [0,+∞[ such that for any
(x, x̃) ∈ X × X,

∣∣∣∣∣∣(∇2ϕ(x))
1/2 − (∇2ϕ(x̃))

1/2
∣∣∣∣∣∣

F
6√

Mϕ‖∇ϕ(x)−∇ϕ(x̃)‖, where ||| · |||F is the Frobenius
norm. (v) very strictly convex, i.e., ∇2ϕ(x) ∈ Sd++ for all
x ∈ X 6= ∅ (Bauschke & Lewis, 2000).

Assumption 3.4. The function ψ ∈ Γ0(Rd) is (i) Legendre;
(ii) of C 3 on Y; (iii) supercoercive.

Assumption 3.5. The Bregman divergence associated with
ψ satisfy the following assumptions: (i)Dψ is jointly convex,
i.e., convex on Rd × Rd; (ii) (∀y ∈ Y) Dψ(y, ·) is strictly
convex on Y, continuous on Y, and coercive, i.e., (∀y ∈
Y) Dψ(y, z)→ +∞ as ‖z‖ → +∞.

Assumptions 3.1 to 3.4 are required for the convergence
of the proposed algorithms. Assumption 3.2(ii) is required
for (15) to be well-defined. Assumption 3.5 consists of the
standard assumptions required for the well-posedness of the
Bregman–Moreau envelopes and the Bregman proximity op-
erators of ψ (Bauschke et al., 2018). Proposition 3.6 below
implies that the densities (15) are well-defined and as close
to the target density π as required when λ is sufficiently
small (in total variation distance). We also provide a com-
putable error bound when evaluating exactly the expectation
with respect to (15) as opposed to the true target distribution
π.

Proposition 3.6. Suppose that Assumptions 3.1, 3.2, 3.4
and 3.5 hold. Then the following statements hold.

(a) Let λ > 0. If either (i) Assumption 3.2(ii†) holds or (ii)
Assumption 3.2(ii‡) holds and ψ is ρ-strongly convex,
then←−π ψλ and−→π ψλ define proper densities of probability

measures on Rd, i.e., exp
(
−←−U ψ

λ

)
and exp

(
−−→U ψ

λ

)
are integrable w.r.t. the Lebesgue measure.

(b) πψλ converges to π as λ ↓ 0, i.e., ‖πψλ − π‖TV → 0 as
λ ↓ 0.

(c) If Assumption 3.2(ii‡) holds and ψ is ρ-strongly con-
vex, then for all λ > 0, ‖πψλ − π‖TV 6 λ‖g‖2Lip/ρ.
In addition, for any π- and πψλ -integrable function
h : Rd → R,∣∣∣Eπψλ h− Eπh

∣∣∣ 6 (eλ‖g‖
2
Lip/ρ − 1

)
·min

{
Eπψλ
|h|,Eπ|h|

}
.

All proofs are postponed to Appendix A. Next we show
that the surrogate potentials (14) are indeed continuously
differentiable approximations of U under certain conditions.
Their gradients and the conditions for them to be Lipschitz
are also given. We also assert that the Bregman–Moreau
envelopes envψλ,g(y) have desirable asymptotic behavior as
λ goes to 0.

Proposition 3.7. Suppose that Assumptions 3.2, 3.4 and 3.5
hold and λ > 0. The following statements hold.

(a) The left and right Bregman–Moreau envelopes are dif-
ferentiable on Y and

∇←−envψλ,g(y) =
1

λ
∇2ψ(y)

(
y −←−P ψ

λ,g(y)
)
, (16)

and

∇−→envψλ,g(y) =
1

λ

(
∇ψ(y)−∇ψ

(−→
P ψ
λ,g(y)

))
, (17)

for any y ∈ Y, respectively.

(b) IfDψ(y, ·) is continuous and convex on Y for all y ∈ Y,
and ∇ψ is Lipschitz on Y, then ∇←−envψλ,g and ∇−→envψλ,g
are Lipschitz on Y.

(c) As λ ↓ 0, we have←−envψλ,g(y) ↑ g(y) and −→envψλ,g(y) ↑
g(y) for all y ∈ Y.

Finally, we make the following extra assumptions on Uψλ , ϕ
and ψ.

Assumption 3.8. We assume the following: For λ > 0, (i)←−
U ψ
λ and

−→
U ψ
λ are α-Legendre strongly convex with respect

to ϕ; (ii)←−envψλ,g and −→envψλ,g are βg-smooth relative to ϕ.

Assumption 3.8 is a set of rather generic assumptions but
gives us guidance to choose ψ and ϕ. Note that if f is
α-Legendre strongly convex with respect to ϕ, then Assump-
tion 3.8(i) is automatically satisfied. Also note that the
constants α and βg can be different for the left and right
versions of their corresponding quantities.
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Remark 3.9. Let us define β := βf+βg . Assumption 3.1(iv)
and Assumption 3.8(ii) implies Uψλ is β-smooth relative to
ϕ. Then, Uψλ satisfies (A2) and (A3) of Li et al. (2022),
which are required for the convergence of HRLMC.

We propose two mirror-Langevin algorithms which use dif-
ferent discretizations of the mirror-Langevin diffusion. We
give the details of the algorithm based on HRLMC in the
main text. The algorithm based on MLA, which is essen-
tially (7) with U replaced by Uψλ , coined the Bregman–
Moreau mirrorless mirror-Langevin algorithm (BMMMLA),
is given in Appendix C.

3.2. The Bregman–Moreau Unadjusted
Mirror-Langevin Algorithm

Let x0 ∈ Y. A discretization scheme for the case of
composite potentials similar to HRLMC (6), called the
Bregman–Moreau unadjusted mirror-Langevin algorithm
(BMUMLA), iterates, for k ∈ N,

xk+1 = ∇ϕ∗
(
∇ϕ(xk)− γ∇Uψλ (xk)

+
√

2γ
[
∇2ϕ(xk)

]1/2
ξk

)
. (18)

More specifically, when ϕ = ψ = ‖·‖2/2, then we have
∇ϕ = Id, ∇ϕ∗ = (∇ϕ)−1 = Id, ∇2ϕ = Id, and
(∇ϕ+ λ∂g)

−1
= (Id + λ∂g)−1 = proxλg, so that

BMUMLA (18) reduces to MYULA (Durmus et al., 2018).
Furthermore, letting yk = ∇ϕ(xk) for all k ∈ N, then the
BMUMLA in the dual space∇ϕ(X) takes the form

yk+1 = yk − γ∇Uψλ ◦ ∇ϕ∗(yk)

+
√

2γ
[
∇2ϕ∗(yk)

]1/2
ξk. (19)

Recent results by Li et al. (2022) show that HRLMC indeed
has a vanishing bias with the step size γ, as opposed to what
was conjectured in Zhang et al. (2020). An advantage of
applying HRLMC over MLA is that an exact simulator of
the Brownian motion of varying covariance is not needed,
which is usually approximated by inner loops of Euler–
Maruyama discretization in practice (Ahn & Chewi, 2021).
It is however worth noting that the use of the Bregman–
Moreau envelope still incurs bias in our proposed algorithms,
but can be controlled via the smoothing parameter λ (see
Section 4).

3.3. Reminiscence of Bregman Proximal Gradient
Algorithm via Right BMUMLA

The proposed BMUMLA can be simplified by specifying
ψ = ϕ, regarding the iterates and the assumptions. In

particular, the right BMUMLA reduces to

∇ϕ(xk+1) =
(

1− γ

λ

)
∇ϕ(xk)− γ∇f(xk)

+
γ

λ
∇ϕ
(−→

P ϕ
λ,g(xk)

)
+
√

2γ
[
∇2ϕ(xk)

]1/2
ξk, (20)

which can be viewed as the generalization of MYULA (Dur-
mus et al., 2018) with the right Bregman–Moreau envelope,
but with a diffusion term of varying covariance. Further-
more, if we let γ = λ, then (20) becomes

xk+1 = ∇ϕ∗
(
∇ϕ
(−→

P ϕ
λ,g(xk)

)
− λ∇f(xk)

+
√

2γ
[
∇2ϕ(xk)

]1/2
ξk

)
, (21)

which roughly resembles the iterates of the Bregman proxi-
mal gradient algorithm (Van Nguyen, 2017; Bauschke et al.,
2017; Bolte et al., 2018; Bùi & Combettes, 2021; Chizat,
2021), which takes the form

xk+1 =
←−
P ϕ
λ,g(∇ϕ∗(∇ϕ(xk)− λ∇f(xk))), (22)

or

zk+1 = ∇ϕ∗
(
∇ϕ
(←−

P ϕ
λ,g(zk)

)
− λ∇f

(←−
P ϕ
λ,g(zk)

))
, (23)

if we write zk = ∇ϕ∗(∇ϕ(xk)− λ∇f(xk)). The differ-
ences between (23) and (21), other than the diffusion term,
are the use of different Bregman–Moreau envelopes and the
argument of the gradient of the smooth part.

Another advantage of using the same mirror map is that
Assumption 3.8 can be made more precise. In particular,
regarding Assumption 3.8(ii), since −→envϕλ,g is λ−1-smooth
relative to ϕ (Laude et al., 2020, Proposition 3.8(ii)), for the
right BMUMLA with ψ = ϕ, i.e., (20), Assumption 3.8(ii)
is made precise with a relative smoothness constant βg =
λ−1 for −→envϕλ,g .

4. Convergence Analysis
We now state the main convergence results derived from Li
et al. (2022). To quantify the convergence, we introduce
a modified Wasserstein distance previously introduced by
Zhang et al. (2020) and further applied in the analysis of Li
et al. (2022).

Definition 4.1. For two probability measures µ and ν on
B(X), the (squared) modified Wasserstein distance under
the mirror map∇ϕ from µ to ν is defined by

W2
2,ϕ(µ, ν) := inf

u∼µ,v∼ν
E
[
‖∇ϕ(u)−∇ϕ(v)‖2

]
.

Note that if µ̃ := (∇ϕ)]µ and ν̃ := (∇ϕ)]ν are the push-
forward measures of µ and ν by ∇ϕ respectively, then
W2

2,ϕ(µ, ν) = W2
2(µ̃, ν̃) := inf ũ∼µ̃,ṽ∼ν̃ E

[
‖ũ− ṽ‖2

]
.
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The main convergence result is given as follows.

Theorem 4.2. Let Assumptions 3.1 to 3.5 and 3.8 hold
and Mϕ < α/2. Let xk ∼ µk be the iterates
of (18) with step size γ ∈ ]0, γmax], where γmax =
O
(
(α− 2Mϕ)2/

(
β2(1 + 8Mϕ)2

))
. Then, from any x0 ∼

µ0, we have

W2,ϕ(µk, π
ψ
λ ) 6

√
2e−(α−2Mϕ)γkW2,ϕ(µ0, π

ψ
λ )

+ C
√

2γ, (24)

where C = O
(
β(1 + 8Mϕ)

√
d/(α− 2Mϕ)

)
is a constant.

Furthermore, if the stronger Assumption 3.2(ii‡) rather than
(ii†) holds and ψ is ρ-strongly convex, then

W2,ϕ(µk, π) 6
√

2e−(α−2Mϕ)γkW2,ϕ(µ0, π)

+ C
√

2γ +
(

1 +
√

2e−(α−2Mϕ)γk
)ηλ
ρ
‖g‖2Lip, (25)

where η := sup(u,v)∈X×X ‖∇ϕ(u)−∇ϕ(v)‖2.

From Theorem 4.2, we can derive a mixing time bound for
(18) similar to Corollary 3.2 of Li et al. (2022).

Corollary 4.3. Suppose that Assumptions 3.1, 3.3 to 3.5
and 3.8 and Assumption 3.2(ii‡) rather than (ii†) hold, ψ is
ρ-strongly convex, and Mϕ < α/2. Then, for any target ac-
curacy ε > 0, in order to achieve W2(µ̃k, π̃) 6 ε, it suffices
to run BMUMLA in the dual space (19) with step size γ =
ε2/(18C2) and smoothing parameter λ = ρε/(3η̃‖g‖2Lip)
for k iterations, where

k >
1

(α− 2Mϕ)γ
log

(
3
√

2[W2(µ̃0, π̃
ψ
λ ) + η̃λ‖g‖2Lip/ρ]

ε

)

= Õ

(
β2(1 + 8Mϕ)2d

(α− 2Mϕ)3ε2

)
, (26)

where η̃ := sup(u,v)∈X×X ‖u− v‖2.

Assuming all other constants including α, β, Mϕ, η, ρ and
‖g‖Lip are independent of d, then, similar to Li et al. (2022)
for the relatively smooth case, (18) has a biased convergence
guarantee with a bias incurred by the algorithm which scales
as O(

√
dγ). Since essentially we are sampling from the

surrogate distribution πψλ which is different from π, this
incurs an additional bias. From (25), this bias attributed to
smoothing with the Bregman–Moreau envelope scales as
O(λ) for large enough k and η < +∞. We then obtain the
same mixing time bound of Õ(d/ε2) for BMUMLA as the
one for MLA in Li et al. (2022). Note that the appearance of
η limits the choice of mirror maps in (18) as some choices
of ϕmight not give a bounded η (see Jiang, 2021, for related
discussion).

5. Numerical Experiments
We perform numerical experiments of sampling anisotropic
Laplace distributions which have nonsmooth potentials.
Other additional numerical experiments are given in Ap-
pendix D. In this section, we use bold lower case letters
θ = (θi)

>
16i6d ∈ Rd to denote vectors. All numerical im-

plementations can be found at https://github.com/
timlautk/bregman_prox_langevin_mc.

For such a nonsmooth sampling task, inspired by
Vorstrup Goldman et al. (2021); Bouchard-Côté et al. (2018),
we consider the case where f = 0 and g(θ) = ‖α� θ‖1 =∑d

i=1 αi|θi| with α = (1, 2, . . . , d)>. This is an example
in which MYULA is known to perform poorly due to the
anisotropy (Vorstrup Goldman et al., 2021, §4.1): with a
relatively small step size, MYULA mixes fast for the nar-
row marginals, whereas it mixes slowly in the wide ones. To
alleviate this issue, the mirror map in our proposed scheme
allows to adapt to the geometry of the potential, while the
square root of the Hessian of ϕ serves as a preconditioner
of the diffusion term. We choose ϕ to be the β-hyperbolic
entropy (hypentropy; Ghai et al., 2020), defined by

ϕβ(θ) :=

d∑
i=1

[
θi arsinh(θi/βi)−

√
θ2
i + β2

i

]
,

where θ ∈ Rd and β ∈ [0,+∞[
d. We allow βi’s to vary

across different dimensions to enhance flexibility. The hy-
pentropy interpolates between the squared Euclidean dis-
tance and the Boltzmann–Shannon entropy as β varies. We
choose the associated Legendre function of the Bregman–
Moreau envelope to be ψ(θ) = 1

2‖θ‖2M = 1
2 〈θ,Mθ〉,

whereM = Diag(α/2), so that ψ is strongly convex.

We apply the proposed algorithms BMUMLA and BM-
MMLA, and compare their performance with that of
MYULA. We consider d = 100, draw K = 105 sam-
ples, with a tight Bregman–Moreau envelope using a small
smoothing parameter λ = 10−5 and a small step size
γ = λ/2. The parameter of the hyperbolic entropy is
β = (2

√
d− i+ 1)>16i6d. Further implementation details

and verification of assumptions are given in Appendix B.
The marginal empirical densities are given in Figure 1 (Fig-
ure D.4 for BMMMLA in Appendix B).

In this example, MYULA does not mix fast for the wide
marginals (the lower dimensions, even at the 10th dimen-
sion), whereas BMUMLA and BMMMLA are able to mix
equally fast across different dimensions. Although our pro-
posed methods require knowledge of the target distribution,
we expect even better mixing when β is better tuned or adap-
tively learned using certain auxiliary procedures. Moreover,
a quick comparison with methods in Vorstrup Goldman et al.
(2021, Figure 2) indicates that, despite being asymptotically
biased (since γ and λ are chosen as constants), our pro-

https://github.com/timlautk/bregman_prox_langevin_mc
https://github.com/timlautk/bregman_prox_langevin_mc
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Figure 1. Histograms of samples (blue) from MYULA (1st row), BMUMLA (2nd row) and the true densities (orange).

posed algorithms also appear to be comparable to or even
outperform some of the asymptotically exact algorithms
such as pMALA (Pereyra, 2016) and the bouncy particle
sampler (Bouchard-Côté et al., 2018). We however leave
a comprehensive comparison with other classes of MCMC
algorithms as future work.

6. Discussion
In this paper, we propose two efficient Bregman proximal
Langevin algorithms for efficient sampling from nonsmooth
convex composite potentials. Our proposed schemes en-
hance the flexibility of existing (overdamped) LMC algo-
rithms in two aspects: the use of Bregman divergences
in (i) altering the geometry of the problem and hence the
algorithm; (ii) imposing the smooth approximation. The-
oretically, our proposed schemes have a vanishing bias
with the step size and the smoothing parameter of the
Bregman–Moreau envelope, while numerically they out-
perform MYULA in sampling nonsmooth anisotropic distri-
butions.

There are several interesting directions to extend the cur-
rent work. Full gradients can be replaced by stochastic
or mini-batch gradients in Langevin algorithms (see e.g.,
Welling & Teh, 2011; Durmus et al., 2019; Salim et al.,
2019; Salim & Richtárik, 2020; Nemeth & Fearnhead, 2021)
to avoid costly computation of the full gradient in high
dimensions. Our proposed algorithm also has potential
implications for nonconvex potentials or nonconvex opti-
mization algorithms based on Langevin dynamics (Man-
goubi & Vishnoi, 2019; Cheng et al., 2018a; Raginsky
et al., 2017; Vempala & Wibisono, 2019), as the Bregman
proximial gradient algorithm is able to solve nonconvex
optimization algorithms (Bolte et al., 2018). We also re-
fer to recent results of the Bregman–Moreau envelopes of
nonconvex functions (Laude et al., 2020) and the use of

Moreau envelope in nonsmooth sampling algorithms for
computing the Exponential Weighted Aggregation (EWA)
estimators (Luu et al., 2021). Recently, Jiang (2021) lever-
ages the assumption of an isoperimetric inequality called
the mirror log-Sobolev inequality for the target density in
mirror Langevin algorithms, which is weaker than assum-
ing a Legendre strongly convex potential. It is however
unclear to see how Bregman–Moreau envelopes in the po-
tential would satisfy this assumption and other weaker no-
tions of relative smoothness of the potential introduced in
this paper. A natural extension is to consider sampling
schemes based on the underdamped Langevin dynamics
(Cheng et al., 2018b) or Hamiltonian dynamics (Neal, 1993)
with the Bregman–Moreau enveloped potentials, and to in-
clude the Metropolis–Hastings adjustment step to accelerate
mixing. Other than the Bregman–Moreau envelope, the
Bregman forward-backward envelope (Ahookhosh et al.,
2021) can also be used to envelop the whole composite
potential; see the recent work by Eftekhari et al. (2022)
in a similar spirit using the forward-backward envelope
with the overdamped Langevin algorithm. More sophisti-
cated discretization scheme such as the explicit stabilized
SK-ROCK scheme (Abdulle et al., 2018) in Pereyra et al.
(2020) could also constitute new sampling schemes based
on MLD. It is also interesting to compare our proposed
schemes with gradient-based MCMC algorithms based on
piecewise-deterministic Markov processes for nonsmooth
sampling as in Vorstrup Goldman et al. (2021), e.g., the zig-
zag sampler (Bierkens et al., 2019) and the bouncy particle
sampler (Bouchard-Côté et al., 2018).
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APPENDIX

A. Proofs of Main Text
A.1. Proof of Proposition 3.6

Proposition 3.6 includes statements similar to those in Durmus et al. (2018, Proposition 3.1) and Vorstrup Goldman et al.
(2021, Theorem 3). We provide the proofs here for self-containedness. In particular, we further need ψ to be ρ-strongly
convex in (c).

Proposition A.1. Let ψ be a Legendre function and ρ-strongly convex (ρ > 0), then

(∀(y, ỹ) ∈ Y× Y)
ρ

2
‖y − ỹ‖2 6 Dψ(y, ỹ). (A.1)

Proof of Proposition A.1. By definition, ψ is ρ-strongly convex if and only if

(∀(y, ỹ) ∈ Y× Y) ψ(y) > ψ(ỹ) + 〈∇ψ(ỹ), y − ỹ〉+
ρ

2
‖y − ỹ‖2

⇔ (∀(y, ỹ) ∈ Y× Y) ψ(y)− ψ(ỹ)− 〈∇ψ(ỹ), y − ỹ〉 > ρ

2
‖y − ỹ‖2.

Then the result follows from the definition of the Bregman divergence (9).

Proof of Proposition 3.6.

(a) (i) We first suppose that Assumption 3.2(ii†) holds. By Bauschke et al. (2018, Proposition 2.2), U > Uψλ , which
implies

0 <

∫
Rd

e−U(x) dx <

∫
Rd

e−U
ψ
λ (x) dx.

It suffices to prove that e−envψλ,g is integrable (with respect to the Lebesgue measure) which in turn implies e−U
ψ
λ

is integrable since f is lower bounded. By Assumption 3.2(i) and Durmus et al. (2018, Lemma A.1), there exist
ρg > 0, xg ∈ Rd and M1 ∈ R such that for all x ∈ Rd,

g(x)− g(xg) >M1 + ρg‖x− xg‖.

Then, by Definitions 2.4 and 2.5, for any x ∈ Rd, we have

←−envψλ,g(x)− g(xg) = g
(←−

P ψ
λ,g(x)

)
− g(xg) +

1

λ
Dψ

(←−
P ψ
λ,g(x), x

)
>M1 + ρg

∥∥∥←−P ψ
λ,g(x)− xg

∥∥∥+
1

λ
Dψ

(←−
P ψ
λ,g(x), x

)
>M1 + inf

y∈Rd

{
ρg‖y − xg‖+

1

λ
Dψ(y, x)

}
>M1 +←−envψλ,h(x), (A.2)

where h : Rd → R : x 7→ ρg‖x− xg‖. Likewise, using the right Bregman–Moreau envelope, we have

−→envψλ,g(x)− g(xg) = g
(−→

P ψ
λ,g(x)

)
− g(xg) +

1

λ
Dψ

(
x,
−→
P ψ
λ,g(x)

)
>M1 + ρg

∥∥∥−→P ψ
λ,g(x)− xg

∥∥∥+
1

λ
Dψ

(
x,
−→
P ψ
λ,g(x)

)
>M1 + inf

y∈Rd

{
ρg‖y − xg‖+

1

λ
Dψ(x, y)

}
>M1 +−→envψλ,h(x). (A.3)
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Next, using Definition 2.4 again, for all x ∈ Rd,

←−envψλ,h(x) = h
(←−

P ψ
λ,h(x)

)
+

1

λ
Dψ

(←−
P ψ
λ,h(x), x

)
> h

(←−
P ψ
λ,h(x)

)
= ρg

∥∥∥←−P ψ
λ,h(x)− xg

∥∥∥,
−→envψλ,h(x) = h

(−→
P ψ
λ,h(x)

)
+

1

λ
Dψ

(
x,
−→
P ψ
λ,h(x)

)
> h

(−→
P ψ
λ,h(x)

)
= ρg

∥∥∥−→P ψ
λ,h(x)− xg

∥∥∥.
It follows that there exists M2 ∈ R such that for all x ∈ Rd,

min
{←−envψλ,h(x),−→envψλ,h(x)

}
> ρg‖x− xg‖+M2.

Combining this with (A.2) and (A.3) yields the desired result.
(ii) Now we suppose that Assumption 3.2(ii‡) holds and ψ is ρ-strongly convex, then for any λ > 0,

sup
x∈Rd

{
g(x)− envψλ,g(x)

}
6

λ

2ρ
‖g‖2Lip. (A.4)

If (A.4) holds, then

(∀x ∈ Rd) Uψλ (x) := f(x) + envψλ,g(x) > f(x) + g(x)− λ

2ρ
‖g‖2Lip,

which implies ∫
Rd

e−U
λ
ψ(x) dx 6 eλ‖g‖

2
Lip/(2ρ)

∫
Rd

e−U(x) dx < +∞.

Since Assumption 3.2(ii‡) holds, we have

(∀x ∈ Rd) g(x)−←−envψλ,g(x) = g(x)− inf
y∈Rd

{
g(y) +

1

λ
Dψ(y, x)

}
= sup
y∈Rd

{
g(x)− g(y)− 1

λ
Dψ(y, x)

}
6 sup
y∈Rd

{
‖g‖Lip · ‖x− y‖ −

1

λ
Dψ(y, x)

}
6 sup
y∈Rd

{
‖g‖Lip · ‖x− y‖ −

ρ

2λ
‖y − x‖2

}
by (A.1)

6
λ

2ρ
‖g‖2Lip, (A.5)

since the maximum of u 7→ au− bu2 for a ∈ [0,+∞[ and b ∈ ]0,+∞[ is a2/(4b). Likewise, we also have the
same bound for the right Bregman–Moreau envelope

(∀x ∈ Rd) g(x)−−→envψλ,g(x) 6
λ

2ρ
‖g‖2Lip.

(b) Recall that π has a density with respect to the Lebesgue measure and Uψλ (x) 6 U(x) for all x ∈ Rd. Then we have∫
Rd

e−U(x) dx 6
∫

Rd
e−U

ψ
λ (x) dx. (A.6)

This implies that, for all x ∈ Rd,

π(x) 6
π(x)

∫
Rd e−U(y) dy∫

Rd e−U
ψ
λ (y) dy

=
e−U(x)∫

Rd e−U
ψ
λ (y) dy

=
e−U

ψ
λ (x)∫

Rd e−U
ψ
λ (y) dy

· e−U(x)+Uψλ (x) = πψλ · eenvψλ,g(x)−g(x) 6 πψλ (x), (A.7)
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since envψλ,g(x) 6 g(x) for all x ∈ Rd. Then for any λ > 0, we have

‖πψλ − π‖TV = sup
A∈B(Rd)

∣∣∣∣∫
A

πψλ (x)− π(x) dx

∣∣∣∣ 6 sup
A∈B(Rd)

∫
A

∣∣∣πψλ (x)− π(x)
∣∣∣ dx

6
∫

Rd

∣∣∣πψλ (x)− π(x)
∣∣∣dx

=

∫
Rd

(
πψλ (x)− π(x)

)+

+
(
πψλ (x)− π(x)

)−
dx

= 2

∫
Rd

(
πψλ (x)− π(x)

)+

dx

= 2

∫
Rd
πψλ (x)− π(x) dx by (A.7)

6 2

∫
Rd
πψλ (x)− π(x)

∫
Rd e−U(y) dy∫

Rd e−U
ψ
λ (y) dy

dx by (A.6)

= 2

[
1∫

Rd e−U
ψ
λ (x) dx

∫
Rd

e−U
ψ
λ (x) − e−U(x) dx

]

= 2

∫
Rd
πψλ (x)

(
1− eenvψλ,g(x)−g(x)

)
dx (A.8)

= 2

(
1−

∫
Rd e−U(x) dx∫

Rd e−U
ψ
λ (x) dx

)
→ 0,

as λ ↓ 0, since, using Proposition 3.7(c) and the monotone convergence theorem, we have

lim
λ→0

Uψλ (x) = U(x) ⇒ lim
λ→0

∫
Rd

e−U
ψ
λ (x) dx =

∫
Rd

e−U(x) dx.

(c) Since envψλ,g(x) 6 g(x) for all x ∈ Rd and 1− e−u 6 u for all u ∈ [0,+∞[, by (A.8), if Assumption 3.2(ii‡) holds,
then

‖πψλ − π‖TV 6 2

∫
Rd
πψλ (x)

(
g(x)− envψλ,g(x)

)
dx 6

λ

ρ
‖g‖2Lip,

where the last inequality follows from (A.5).

Now we let CU :=
∫

Rd e−U(x) dx. For the second part, we will make use of the inequalities Equation (A.6) and

(A.5) ⇒ (∀x ∈ Rd) − Uψλ (x) 6 −U(x) +
λ

2ρ
‖g‖2Lip, (A.9)

which implies ∫
Rd

e−U
ψ
λ (x) dx 6

∫
Rd

e−U(x) · eλ‖g‖2Lip/(2ρ) dx = CUeλ‖g‖
2
Lip/(2ρ). (A.10)

Suppose that h > 0. Then (A.10) and Uψλ (x) 6 U(x) for all x ∈ Rd imply

Eπψλ
h =

∫
Rd
h(x)

e−U
ψ
λ (x)∫

Rd e−U
ψ
λ (y) dy

dx

> C−1
U e−λ‖g‖

2
Lip/(2ρ)

∫
Rd
h(x)e−U

ψ
λ (x) dx

> C−1
U e−λ‖g‖

2
Lip/(2ρ)

∫
Rd
h(x)e−U(x) dx

= e−λ‖g‖
2
Lip/(2ρ)

∫
Rd
h(x)π(x) dx

= e−λ‖g‖
2
Lip/(2ρ)Eπh. (A.11)



Bregman Proximal Langevin Monte Carlo via Bregman–Moreau Envelopes

On the other hand, (A.5) and (A.9) imply

Eπψλ
h 6 C−1

U

∫
Rd
h(x)e−U

ψ
λ (x) dx 6 C−1

U eλ‖g‖
2
Lip/(2ρ)

∫
Rd
h(x)e−U(x) dx

= eλ‖g‖
2
Lip/(2ρ)

∫
Rd
h(x)π(x) dx = eλ‖g‖

2
Lip/(2ρ)Eπh. (A.12)

Combining (A.11) and (A.12) yields

e−λ‖g‖
2
Lip/(2ρ)Eπh 6 Eπψλ

h 6 eλ‖g‖
2
Lip/(2ρ)Eπh. (A.13)

Then, applying (A.13) gives

−
(

eλ‖g‖
2
Lip/(2ρ) − 1

)
Eπh = −max

{
eλ‖g‖

2
Lip/(2ρ) − 1, 1− e−λ‖g‖

2
Lip/(2ρ)

}
Eπh

= min
{

1− eλ‖g‖
2
Lip/(2ρ), e−λ‖g‖

2
Lip/(2ρ) − 1

}
Eπh

6
(

e−λ‖g‖
2
Lip/(2ρ) − 1

)
Eπh

6 Eπψλ
h− Eπh

6
(

eλ‖g‖
2
Lip/(2ρ) − 1

)
Eπh

6 max
{

eλ‖g‖
2
Lip/(2ρ) − 1, 1− e−λ‖g‖

2
Lip/(2ρ)

}
Eπh

=
(

eλ‖g‖
2
Lip/(2ρ) − 1

)
Eπh,

which implies that, for any h > 0, ∣∣∣Eπψλ h− Eπh
∣∣∣ 6 (eλ‖g‖

2
Lip/ρ − 1

)
Eπh. (A.14)

Now, for any general integrable function h, we can write h = h+ − h−, where h+ > 0 and h− > 0. We also have
|h| = h+ + h−. Consequently, we have∣∣∣Eπψλ h− Eπh

∣∣∣ =
∣∣∣(Eπψλ

h+ − Eπh
+
)
−
(

Eπψλ
h− − Eπh

−
)∣∣∣

6
∣∣∣Eπψλ h+ − Eπh

+
∣∣∣+
∣∣∣Eπψλ h− − Eπh

−
∣∣∣

=
(

eλ‖g‖
2
Lip/ρ − 1

)
Eπh

+ +
(

eλ‖g‖
2
Lip/ρ − 1

)
Eπh

− by (A.14)

=
(

eλ‖g‖
2
Lip/ρ − 1

)
Eπ|h|. (A.15)

If we switch the role of πψλ and π in (A.13), i.e.,

e−λ‖g‖
2
Lip/(2ρ)Eπψλ

h 6 Eπh 6 eλ‖g‖
2
Lip/(2ρ)Eπψλ

h,

then we get the following inequality similar to (A.15):∣∣∣Eπψλ h− Eπh
∣∣∣ 6 (eλ‖g‖

2
Lip/ρ − 1

)
Eπψλ
|h|. (A.16)

Combining (A.15) and (A.16) yields the desired result.
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A.2. Proof of Proposition 3.7

(a) Recall that g is lower bounded. Then by Bauschke et al. (2018, Fact 2.6), g(·) + 1
λDψ(·, y) and g(·) + 1

λDψ(y, ·) are
both coercive for all y ∈ Y. Then the gradient formulas of the Bregman–Moreau envelopes follow from Bauschke et al.
(2018, Proposition 2.19), which in turn follows from Bauschke et al. (2018, Remark 2.14) and Bauschke et al. (2006,
Proposition 3.12).

(b) The Lipschitz continuity of the gradient of the left Bregman–Moreau envelope follows from Soueycatt et al. (2020,
Theorem 3.5), whereas the Lipschitz continuity of the gradient of the right Bregman–Moreau envelope holds because,
assuming that ∇ψ is Lipschitz, y 7→ ∇yDψ(y, x) = ∇ψ(y) − ∇ψ(x) is Lipschitz and we use the fact that the
composition of Lipschitz maps is also Lipschitz. We also remark that if we further assume that ψ is very strictly convex,
then∇ψ is Lipschitz (Bauschke & Lewis, 2000, Proposition 2.10; Laude et al., 2020, Lemma 2.3(iii)).

(c) The asymptotic behavior of the Bregman–Moreau envelopes follow from Bauschke et al. (2018, Theorem 3.3).

2

A.3. Proof of Theorem 4.2

Note that (24) follows from Theorem 3.1 of Li et al. (2022), i.e.,

W2,ϕ(µk, π
ψ
λ ) 6

√
2e−(α−2Mϕ)γkW2,ϕ(µ0, π

ψ
λ ) + C

√
2γ,

where γ ∈ ]0, γmax], with γmax = O
(

(α−2Mϕ)2

(β2(1+8Mϕ)2)

)
and C = O

(
β(1+8Mϕ)

√
d

(α−2Mϕ)

)
.

By Gibbs & Su (2002, Theorem 4) with d(x, y) = ‖∇ϕ(x) − ∇ϕ(y)‖2, we have the following inequality between the
Wasserstein distance and the total variation distance:

W2,ϕ(µ, ν) 6 η‖µ− ν‖TV, (A.17)

where η := supu∼µ,v∼ν ‖∇ϕ(u)−∇ϕ(v)‖2.

Invoking the triangle inequality, (24) and (A.17), we have

W2,ϕ(µk, π) 6 W2,ϕ(µk, π
ψ
λ ) + W2,ϕ(πψλ , π)

6
√

2e−(α−2Mϕ)γkW2,ϕ(µ0, π
ψ
λ ) + C

√
2γ + η‖πψλ − π‖TV. (A.18)

Recall from Proposition 3.6(c) that if Assumption 3.2(ii‡) holds and ψ is ρ-strongly convex, then

‖πψλ − π‖TV 6
λ

ρ
‖g‖2Lip.

Hence, we obtain

W2,ϕ(πψλ , π) 6 η‖πψλ − π‖TV 6
ηλ

ρ
‖g‖2Lip. (A.19)

Then (A.18) becomes

W2,ϕ(µk, π) 6
√

2e−(α−2Mϕ)γkW2,ϕ(µ0, π
ψ
λ ) + C

√
2γ +

ηλ

ρ
‖g‖2Lip. (A.20)

On the other hand, applying the triangle inequality again and (A.19), we have

W2,ϕ(µ0, π
ψ
λ ) 6 W2,ϕ(µ0, π) + W2,ϕ(πψλ , π) 6 W2,ϕ(µ0, π) +

ηλ

ρ
‖g‖2Lip.

Plugging into (A.20) yields the desired result (25)

W2,ϕ(µk, π) 6
√

2e−(α−2Mϕ)γkW2,ϕ(µ0, π) + C
√

2γ +
(

1 +
√

2e−(α−2Mϕ)γk
)ηλ
ρ
‖g‖2Lip.
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A.4. Proof of Corollary 4.3

(26) simply follows from (25) with certain algebraic manipulations.

B. Details of Numerical Experiments
More notation. For any x = (x1, . . . , xd)

> ∈ Rd, Diag(x) ∈ Rd×d is the diagonal matrix whose diagonal entries are
x1, . . . , xd. We also write JdK := {1, . . . , d}.
With the choice of

ϕβ(θ) =

d∑
i=1

[
θi arsinh(θi/βi)−

√
θ2
i + β2

i

]
,

and ψ(θ) = 1
2‖θ‖2M withM ∈ Sd++, simple calculation yields

∇ϕβ(θ) = (arsinh(θi/βi))16i6d,

∇2ϕβ(θ) = Diag

((
(θ2
i + β2

i )−
1/2
)

16i6d

)
,

ϕ∗β(θ) =

d∑
i=1

βi cosh(θi),

∇ϕ∗β(θ) = (βi sinh(θi))16i6d,

∇2ϕ∗β(θ) = Diag((βi cosh(θi))16i6d),

and

∇ψ(θ) = Mθ,

∇2ψ(θ) = M .

Note that for f = 0 and g(θ) =
∑d
i=1 αi|θi|, F = G = X = Y = Rd. It is straightforward to see that Assumptions 3.1

and 3.2(i), (ii†), (ii‡) are satisfied. For Assumption 3.3, we check the modified self-concordance condition since the
other assumptions are obvious. Since ϕβ(θ) is separable in a sense that it is in the form

∑d
i=1 φβi(θi), where φβ(θ) :=

θ arsinh(θ/β) −
√
θ2 + β2 with β > 0, it suffices to show that φβ is a modified self-concordant function. As noted in

Zhang et al. (2020), it suffices to check that [(φ∗β)′′]−
1/2 is Lipschitz.

Since [(φ∗β(θ))′′]−
1/2 = β−

1/2
√

sech(θ), we have 1√
(φ∗β(θ))′′

′ = − 1

2
√
β

sinh(θ) sech
3/2(θ) ⇒

∣∣∣∣∣∣
 1√

(φ∗β(θ))′′

′∣∣∣∣∣∣ 6 1√
2 · 33/4

.

Hence, [(φ∗β)′′]−
1/2 is Lipschitz.

It is also obvious to see that ψ satisfies Assumption 3.4.

For M ∈ Sd++, the Bregman divergence associated to 1
2‖ · ‖2M is given by Dψ(θ,ϑ) = 1

2‖θ − ϑ‖2M , which is indeed a
distance since it is symmetric in its arguments.

The choice of ψ implies its associated Bregman divergence Dψ satisfies all of Assumption 3.5. According to Bauschke &
Borwein (2001, Corollary 7.2 and Example 7.3), since [∇2ψ(θ)]−1 = M−1 is constant for all θ ∈ Rd, and thus trivially
matrix-concave. Hence Dψ is jointly convex. In addition, the gradient and Hessian of Dψ in the second argument are

∇ϑDψ(θ,ϑ) = M(ϑ− θ),

∇2
ϑDψ(θ,ϑ) = M .

SinceM ∈ Sd++, for any θ ∈ Rd, Dψ(θ, ·) is strictly convex on Rd. Obviously, for any θ ∈ Rd, Dψ(θ, ·) is also continuous
on Rd and coercive.
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To check Assumption 3.8, we first compute the expressions of P
1
2m(·)2

λ,α|·| . Then the expressions of
←−
P ψ
λ,g(θ) and

−→
P ψ
λ,g(θ) are

given by
←−
P ψ
λ,g(θ) =

(←−
P

1
2m(·)2

λ,αi|·| (θi)
)

16i6d
and

−→
P ψ
λ,g(θ) =

(−→
P

1
2m(·)2

λ,αi|·| (θi)
)

16i6d
,

attributed to the separable structures of g and Dψ . Note that
←−
P ψ
λ,g =

−→
P ψ
λ,g since Dψ is symmetric in its arguments.

Simple manipulation yields

P
1
2m(·)2

λ,α|·| (θ) = argmin
ϑ∈R

{
α|ϑ|+ m

2λ
(θ − ϑ)2

}
= argmin

ϑ∈R

{
λα

m
|ϑ|+ 1

2
(θ − ϑ)2

}
= proxλα|·|/m(θ),

where proxµ|·|(θ) = sign(θ) max{|θ| − µ, 0} is the soft-thresholding operator, for θ ∈ R and µ > 0. Consequently, we
have

Pψλ,g(θ) = (sign(θi) max{|θi| − λαi/mi, 0})16i6d.

It remains to check Assumption 3.8. It appears that Uψλ = envψλ,g in this case is Legendre strongly convex with α = 0 (i.e.,
convex but not strongly convex), which does not satisfy the required assumption that Mϕ < α/2. However, for practical
purpose, this choice of ψ works well. We will give

We then check that envψλ,g is βg-smooth relative to ϕ. We check this via the equivalent second-order characterization:
βg∇2ϕβ(θ)−∇2envψλ,g(θ) � 0 for all θ ∈ Rd.

Let i ∈ JdK. Then we have

[
∇2envψλ,g(θ)

]
i,i

=

{
mi/λ if θi ∈ [−λαi/mi, λαi/mi],
0 otherwise.

Since

∇2ϕβ(θ) = Diag

((
1√

θ2
i + β2

i

))
16i6d

,

we can choose

βg = sup
i∈JdK

sup
θi∈[−λαi/mi,λαi/mi]

{
mi

√
θ2
i + β2

i

λ

}
.

Given the choice mi = αi/2 for all i ∈ JdK, we then have

βg = sup
i∈JdK

sup
θi∈[−2λ,2λ]

{
αi
√
θ2
i + β2

i

2λ

}
= sup
i∈JdK

sup
θi∈[0,2λ]

{
αi
√
θ2
i + β2

i

2λ

}
= sup
i∈JdK

αi
√

4λ2 + β2
i

2λ
< +∞,

which implies that←−envψλ,g is βg-smooth relative to ϕ.

B.1. Different Bregman–Moreau Envelopes

To find Bregman–Moreau envelopes which also satisfy Assumption 3.8, we let ψ = ψσ be also the hyperbolic entropy
parameterized by σ. By slight abuse of notation, we also write ψσ(θ) = (ψσi(θi))16i6d.

We have the following expression of the associatedl left Bregman proximity operator.

Proposition B.1. The left Bregman proximity operator of α| · | associated to the Legendre function ψσ for α > 0 is

←−
P ψσ
λ,α|·|(θ) =


σ sinh(arsinh(θ/σ)− αλ) if θ > σ sinh(αλ),

σ sinh(arsinh(θ/σ) + αλ) if θ < σ sinh(−αλ),√
θ2 + β2 otherwise.
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Proof of Proposition B.1. According to Definition 2.5,

←−
P exp
λ,α|·|(θ) = argmin

ϑ∈R

{
λα|ϑ|+ ϑ(arsinh(ϑ/σ)− arsinh(θ/σ))−

√
ϑ2 + σ2 +

√
θ2 + σ2

}
.

First-order conditions give {
αλ+ arsinh(ϑ/σ)− arsinh(θ/σ) = 0 if ϑ > 0,
−αλ+ arsinh(ϑ/σ)− arsinh(θ/σ) = 0 if ϑ < 0,

which implies

ϑ? =

{
σ sinh(arsinh(θ/σ)− αλ) if ϑ? > 0,
σ sinh(arsinh(θ/σ) + αλ) if ϑ? < 0

=

{
σ sinh(arsinh(θ/σ)− αλ) if θ > σ sinh(αλ),
σ sinh(arsinh(θ/σ) + αλ) if θ < σ sinh(−αλ).

(B.1)

On the other hand, if ϑ = 0, then

argmin
ϑ∈R

{
λα|ϑ|+ ϑ(arsinh(ϑ/σ)− arsinh(θ/σ))−

√
ϑ2 + σ2 +

√
θ2 + σ2

}
= argmin

ϑ∈R

{
−
√
σ2 +

√
θ2 + σ2

}
=
√
θ2 + σ2 − σ, (B.2)

which corresponds to the range [σ sinh(−αλ), σ sinh(αλ)] for θ. Combining (B.1) and (B.2) yields the desired result.

The closed-form expression of the right Bregman proximity operator is much more complicated and is not given.

We show that←−envψσ

λ,g − αϕβ is convex for some λ ∈ ]0,+∞[, β ∈ Rd+, σ ∈ Rd+ and α > 2Mϕβ
. Also, recall that∣∣∣∣∣∣

 1√
(φ∗β(θ))′′

′∣∣∣∣∣∣ 6 1√
2 · 33/4

⇒ Mϕβ
=

(
2 · 33/2 · min

i∈JdK
βi

)−1

.

In particular, if we choose λ = 10−5, β = (2
√
d− i+ 1)>16i6d, σ = (d, d− 1, . . . , 1)> and α = 2Mϕβ

+ 10−1, then we
plot the following:

Figure B.1 shows that the above choices give a convex←−envψσ

λ,g − αϕβ.

Similarly, we also show graphically that βgϕβ −←−envψσ

λ,g is convex for some βg > 0, e.g., βg = 2500 (not tight).

Since all Assumptions 3.1 to 3.5 and 3.8 are satisfied, g is Lipschitz and ψ is strongly convex, the convergence results in the
main text, i.e., Theorem 4.2 and Corollary 4.3, hold.

C. The Bregman–Moreau Mirrorless Mirror-Langevin Algorithm
In this section, we give the details of the Bregman–Moreau mirrorless mirror-Langevin algorithm (BMMMLA), whose
results are mostly taken from Ahn & Chewi (2021).

C.1. Assumptions

We first state the assumptions required in Ahn & Chewi (2021). Instead of the modified self-concordance condition, the
Legenedre function ϕ has to be Mϕ-self-concordant (Nesterov, 2018, §5.1.3), i.e., for any x ∈ X, there exists Mϕ > 0 such
that

∣∣∇3ϕ(x)[u, u, u]
∣∣ 6 2Mϕ‖u‖3∇2ϕ(x) for all u ∈ Rd. Furthermore, in addition to the α-relative convexity (to ϕ) and

β-relative smoothness (to ϕ) assumption, Uψλ also has to be L-Lipschitz relative to ϕ, which is defined as follows.

Definition C.1 (Relative Lipschitz continuity). A function f ∈ C 1 is L-Lipschitz relative to a very strictly convex (see
Assumption 3.3(iii)) Legendre function ϕ if there exists L > 0 such that ‖∇f(x)‖[∇2ϕ(x)]−1 6 L for all x ∈ int dom f .

It is worth noting that it is difficult to verify that Bregman–Moreau envelopes would satisfy such a relative Lipschitzness
condition in general.
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Now we let x0 ∈ Y. Similar to MLA (7) in Ahn & Chewi (2021), the Bregman–Moreau mirrorless Mirror-Langevin
algorithm (BMMMLA) iterates

xk+1/2 = ∇ϕ∗
(
∇ϕ(xk)− γ∇Uψλ (xk)

)
,

xk+1 = ∇ϕ∗(Yγ),
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where {
dYt =

√
2
[
∇2ϕ∗(Yt)

]−1/2
dWt

Y0 = ∇ϕ
(
xk+1/2

)
= ∇ϕ(xk)− γ∇Uψλ (xk).

(C.1)

C.2. Convergence Results

We suppose that the assumptions in Appendix C.1 hold. We define the mixture distribution µK := 1
K

∑K
k=1 µk, and let

β′ := β + 2MϕL. Then we have the following convergence results.

Theorem C.2 (Convex). Assume α = 0 and β′ > 0. Let Xk ∼ µk be generated by (C.1) with step size γ =
min{ε/(2β′d), 1/β′}. Then for all ε > 0, there exists λ > 0 such that DKL(µK ||πψλ ) 6 ε for

K >
4dβ′Dϕ(π, µ0)

ε2
max

{
1,

ε

2d

}
.

Theorem C.3 (Legendre strongly convex). Assume α > 0 and β′ > 0. Suppose that X0 ∼ µ0 satisfies Dϕ(π, µ0) 6 ε. Let
Xk ∼ µk be generated by (C.1) with step size γ = min{ε/(2β′d), 1/β′}. Then for all ε > 0, there exists λ > 0 such that
DKL(µK ||πψλ ) 6 ε for

K >
4β′d

ε
max

{
1,

ε

2d

}
.

The results follow from Ahn & Chewi (2021, Theorems 1 and 2(b)). Similar bounds on the total variation distance follows
from Pinsker’s inequality: ‖P −Q‖2TV 6 1

2DKL(P ||Q), and also bounds on the total variation distance between µK and
the target distribution π instead of the surrogate distribution πψλ . 2

Note also that convergence in the Bregman transport cost also holds (Ahn & Chewi, 2021, Theorem 2(a)), where the
Bregman transport cost is defined as follows.

Definition C.4 (Bregman transport cost). For two probability measures µ and ν on B(Rd), the Bregman transport cost
(Cordero-Erausquin, 2017) from µ to ν with respect to the Bregman divergence associated with a Legendre function ϕ is
defined by

Dϕ(µ, ν) := inf
π∼Π(µ,ν)

∫
Rd×Rd

Dϕ(x, y) dπ(x, y).

We also refer to Ahn & Chewi (2021, Theorem 2.1) for convergence results in terms of the Bregman transport cost
(Cordero-Erausquin, 2017). By Pinsker’s inequality, we can also obtain similar results in terms of the total variation distance.

Finally, we give the Bregman–Moreau mirrorless mirror-Langevin algorithm (C.1) with an Euler–Maruyama discretization
for the second step.

Algorithm 1 The Bregman–Moreau Mirrorless Mirror-Langevin Algorithm (BMMMLA)

Initialize: Legendre functions ϕ and ψ, θ0 ∈ Rd, step size γ ∈ ]0,+∞[, number of samples to be drawn K ∈ N∗,
number of inner steps of Euler–Maruyama discretization N ∈ N∗.
for k = 0, 1, 2, . . . ,K − 1 do
θk+1/2 = ∇ϕ∗

(
∇ϕ(θk)− γ∇Uψλ (θk)

)
y0 = ∇ϕ

(
θk+1/2

)
= ∇ϕ(θk)− γ∇Uψλ (θk)

for n = 0, 1, 2, . . . , N do
ξn ∼ Nd(0d, Id)

yn+1 = yn +
√

2γ/N
[
∇2ϕ∗(yn)

]−1/2
ξn

end for
θk+1 = ∇ϕ∗(yN+1)

end for

We also give the experimental results of the Bregman–Moreau mirrorless mirror-Langevin algorithm in Appendix D.
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D. Additional Numerical Experiments
D.1. Anisotropic Laplace Distribution

We first give more plots of different dimensions for the experiment in Section 5.
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Figure D.1. Histograms of samples (blue) from MYULA and the true densities (orange).
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Figure D.2. Histograms of samples (blue) from BMUMLA and the true densities (orange).

We also give the experimental results using a different (left) Bregman–Moreau envelope introduced in Appendix B.1, using
the same step size γ = 5× 10−6 in Figure D.3.

On the other hand, for practical purpose, we also perform the same set of experiments with another Bregman–Moreau
envelope associated to the Legendre function ψ(θ) =

∑d
i=1 eθi . This is chosen particularly because we can compute the

corresponding closed form expressions of both of its associated left and right Bregman proximity operators. To do so, we
compute the following left and right Bregman proximity operators associated to the exponential function.
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Figure D.3. Histograms of samples (blue) from LBMUMLA and the true densities (orange) with a different Bregman–Moreau envelope.

Proposition D.1. The left Bregman proximity operator of α| · | associated to the Legendre function exp for α > 0 is

←−
P exp
λ,α|·|(θ) =


log(eθ − αλ) if θ > log(1 + αλ),

log(eθ + αλ) if θ < log(1− αλ),

1− eθ(1 + θ) otherwise.

The right Bregman proximity operator of α| · | associated to the Legendre function exp for α > 0 is

−→
P exp
λ,α|·|(θ) =


W (−αλe−θ) + θ if θ > αλ,

W (αλe−θ) + θ if θ < −αλ,

eθ − (1 + θ) otherwise,

where W is the Lambert W function (Lambert, 1758; Corless et al., 1996), i.e., the inverse of ξ 7→ ξeξ on [0,+∞[.

Proof of Proposition D.1. According to Definition 2.5,

←−
P exp
λ,α|·|(θ) = argmin

ϑ∈R

{
λα|ϑ|+ eϑ − eθ − eθ(ϑ− θ)

}
.

First-order conditions give {
αλ+ eϑ − eθ = 0 if ϑ > 0,

−αλ+ eϑ − eθ = 0 if ϑ < 0,

which implies

ϑ? =

{
log(eθ − αλ) if ϑ? > 0,

log(eθ + αλ) if ϑ? < 0
=

{
log(eθ − αλ) if θ > log(1 + αλ),

log(eθ + αλ) if θ < log(1− αλ).
(D.1)

On the other hand, if ϑ = 0, then

argmin
ϑ∈R

{
λα|ϑ|+ eϑ − eθ − eθ(ϑ− θ)

}
= argmin

ϑ∈R

{
1− eθ + θeθ

}
= 1− eθ(1 + θ), (D.2)

which corresponds to the range [log(1− αλ), log(1 + αλ)] for θ. Combining (D.1) and (D.2) yields the first desired result.
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Again, according to Definition 2.5,

−→
P exp
λ,α|·|(θ) = argmin

ϑ∈R

{
λα|ϑ|+ eθ − eϑ − eϑ(θ − ϑ)

}
.

First-order conditions give{
αλ− eϑ(θ − ϑ) = 0 if ϑ > 0,

−αλ− eϑ(θ − ϑ) = 0 if ϑ < 0
⇔
{

(ϑ− θ)eϑ−θ = −αλe−θ if ϑ > 0,

(ϑ− θ)eϑ−θ = αλe−θ if ϑ < 0,

which implies

ϑ? =

{
W (−αλe−θ) + θ if ϑ? > 0 and −αλe−θ > −e−1,

W (αλe−θ) + θ if ϑ? < 0

=

{
W (−αλe−θ) + θ if θ > αλ and θ > log(αλ) + 1,

W (αλe−θ) + θ if θ < −αλ.

=

{
W (−αλe−θ) + θ if θ > αλ,

W (αλe−θ) + θ if θ < −αλ.
(D.3)

since u > log u+ 1 for any u > 0. Notice that the condition −αλe−θ > −e−1 is required for the Lambert W function to
be defined for a negative value.

On the other hand, if ϑ = 0, then

argmin
ϑ∈R

{
λα|ϑ|+ eθ − eϑ − eϑ(θ − ϑ)

}
= argmin

ϑ∈R

{
eθ − 1− θ

}
= eθ − (1 + θ), (D.4)

which corresponds to the range [−αλ, αλ] for θ. Combining (D.3) and (D.4) yields the second desired result.

The corresponding experiments are illustrated in Figure D.4. BMMMLA (Figure D.5) are also used in this setting. We
observe that the right variants perform comparably to the left ones, both outperforming MYULA at the wide marginals (i.e.,
the lower dimensions).
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Figure D.4. Histograms of samples (in blue) from left BMUMLA (1st row), right BMUMLA (2nd row) and the true densities (in orange).
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Figure D.5. Histograms of samples (in blue) from left BMMMLA (1st row), right BMMMLA (2nd row) and the true densities (in orange).

D.2. Anisotropic Uniform Distribution

We consider the task of sampling from an anisotropic uniform distribution over the set C :=
∏d
i=1[ai, bi], where a =

(ai)
>
16i6d ∈ Rd and b = (bi)

>
16i6d ∈ Rd. To perform this task using our proposed algorithm, we let f = 0 and g = ιC.

Note that the original mirror Langevin algorithm cannot apply to sampling uniform distributions, as mentioned in Li et al.
(2022), as f = 0. However, by suitably choosing a Bregman–Moreau envelope, we can still perform approximate sampling
(as opposed to exact sampling) using the BMMMLA.

Note that when g = ιC with C ⊆ Rd being a closed convex set, the Bregman proximity operators of g are the Bregman
projections (or projectors) onto C, as illustrated in the following definition (Bauschke et al., 2018).

Definition D.2 (Bregman projections). Let C ⊆ Rd be a closed convex set such that X ∩ C 6= ∅, then
←−
P ϕ
C

:=
←−
P ϕ
ιC

and
−→
P ϕ
C

:=
−→
P ϕ
ιC

are the left and right Bregman projections onto C respectively.

For simplicity, we choose ψ = 1
2‖·‖

2
2. Then the Bregman projection onto C boils down to the Euclidean projection onto C,

which is given by ←−
P ϕ
C (θ) =

−→
P ϕ
C (θ) = projC(θ) = (min{bi,max{ai, θi}})>16i6d.

In the experiment, we consider the case where ai = −i and bi = i for all i ∈ JdK, so that the target uniform distribution on
C = [−1, 1]× [−2, 2]× · · · × [−d, d] is anisotropic, varying significantly across different dimensions. We use γ = 0.01,
λ = 1 and β = (2

√
d− i+ 1)>16i6d, and give the experimental results in Figures D.6 and D.7. We observe that BMUMLA

outperforms MYULA at higher dimensions with wide marginals, where most samples lie in the desired ranges. Also
note that all of Assumptions 3.1 to 3.5 and 3.8 hold. See Figure D.8 as a graphical verification of Assumption 3.8, with
α = 2Mϕβ

+ 0.1 and βg = 250.

D.3. Bayesian Sparse Logistic Regression

We compare the performance of MYULA and BMUMLA in Bayesian sparse logistic regression. Suppose that we observe
the samples {(xn, yn)}Nn=1, where xn ∈ Rd and yn ∈ {0, 1}. In Bayesian logistic regression, the data are assumed to
follow the model

yn
i.i.d.∼ Bernoulli

(
exp(〈θ,xn〉)

1 + exp(〈θ,xn〉)

)
, (D.5)

for each n ∈ JNK. The parameter θ = (θi)
>
16i6d ∈ Rd is a random variable with a prior density p with respect to Lebesgue

measure. Then, the posterior distribution of θ takes the form

p(θ | {(xn, yn)}Nn=1) ∝ p(θ) exp

{
N∑
n=1

(yn〈θ,xn〉 − log(1 + exp(〈θ,xn〉)))
}
.
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Figure D.6. Histograms of samples (blue) from MYULA and the true densities (orange) for uniform distribution on C.
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Figure D.7. Histograms of samples (blue) from BMUMLA and the true densities (orange) for uniform distribution on C.

We are particularly concerned with the case with a prior in the form of a combination of an anisotropic Laplace distribution
(which is sparsity-inducing) and a Gaussian distribution, where the unadjusted Langevin algorithm is no longer viable due to
the nonsmoothness induced by the anisotropic Laplace distribution. In general, such a prior takes the form:

p(θ) := p(θ |α1, α2) ∝ exp

{
−

d∑
i=1

α1,i|θi| −
α2

2

d∑
i=1

θ2
i

}
,

where α1 = (α1,i)
>
16i6d ∈ [0,+∞[

d and α2 ∈ [0,+∞[.

Then, the resulting posterior distribution has a potential of the following form:

U(θ) =

N∑
n=1

[log(1 + exp(〈θ,xn〉))− yn〈θ,xn〉] + α2‖θ‖22︸ ︷︷ ︸
=:f(θ)

+ ‖α1 � θ‖1︸ ︷︷ ︸
=:g(θ)

.
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Figure D.8. Plots of y = envλ,C(x)− αφβi(x) (left) and y = βgφβi(x)− envλ,C(x) (right), for i ∈ {1, 10, 40, 70, 100}.

We take d = 100, N = 1000 and θ? = (0>10, 0.1 · 1>10, 0.2 · 1>10, . . . , 0.9 · 1>10)> ∈ R100 as the ground truth. Then, each
xn,i is generated from a standard Gaussian distribution and each yn is sampled following (D.5) with θ = θ?. In addition,
we choose α1 = (10 · 1>10, 9 · 1>10, . . . , 1 · 1>10)> and α2 = 0.1. Again, we use the hypentropy functions ϕβ (for the mirror
map) and ψσ (for the Bregman–Moreau envelope), with β = (2i

1/4 · 1>10)>16i610 and σ = (α2
1,i)
>
16i6d. We also use a step

size γ = 5× 10−4 and a smoothing parameter λ = 0.01. Note that all of Assumptions 3.1 to 3.5 and 3.8 hold in this case.
In particular, for Assumption 3.8, notice that f is indeed strongly convex.

We compare the performance of MYULA and BMUMLA by estimating the posterior means of θ (as a whole or compo-
nentwise) and ‖θ‖22/d. We generate 30 samples (indexed by s) using each algorithm for 4000 iterations and average the
samples to obtain estimates θk = 1

30

∑30
s=1 θk,s and ‖θk‖22/d for the posterior means. From Figure D.9, we observe that

the proposed left BMUMLA outperforms MYULA in the estimation of both posterior means.
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Figure D.9. Plots of estimation errors of the posterior means ‖θk − θ?‖2 (left) and
∣∣‖θk‖22 − ‖θ?‖22∣∣/d (right).

We also plot the estimation errors of the posterior means of some components of θ. Figure D.10 reveals that MYULA gives
smaller estimation errors than LBMUMLA at lower dimensions but high estimation errors at higher dimensions. However,
we expect that the performance of BMUMLA would be further improved if β and σ are more carefully picked or tuned, in
order to fully adapt to the geometry of the posterior potential.
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Figure D.10. Plots of estimation errors of the posterior means |θk,i − θ?i | for i ∈ {1, 25, 50, 75, 100}.


