
Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Mathieu Laurière * 1 Sarah Perrin * 2 Sertan Girgin * 3 Paul Muller 4 Ayush Jain 5 Theophile Cabannes 5

Georgios Piliouras 6 Julien Pérolat 4 Romuald Élie 4 Olivier Pietquin † 3 Matthieu Geist † 3

Abstract

Mean Field Games (MFGs) have been intro-
duced to efficiently approximate games with very
large populations of strategic agents. Recently,
the question of learning equilibria in MFGs has
gained momentum, particularly using model-free
reinforcement learning (RL) methods. One lim-
iting factor to further scale up using RL is that
existing algorithms to solve MFGs require the
mixing of approximated quantities such as strate-
gies or q-values. This is far from being trivial in
the case of non-linear function approximation that
enjoy good generalization properties, e.g. neural
networks. We propose two methods to address
this shortcoming. The first one learns a mixed
strategy from distillation of historical data into
a neural network and is applied to the Fictitious
Play algorithm. The second one is an online mix-
ing method based on regularization that does not
require memorizing historical data or previous
estimates. It is used to extend Online Mirror De-
scent. We demonstrate numerically that these
methods efficiently enable the use of Deep RL al-
gorithms to solve various MFGs. In addition, we
show that these methods outperform SotA base-
lines from the literature.

1. Introduction
Despite outstanding success of machine learning in numer-
ous applications (Goodfellow et al., 2016; 2020), learning
in games remains difficult because two or more agents re-
quire the consideration of non-stationary environments. In
particular, it is hard to scale in terms of number of agents

*Equal contribution 1NYU Shanghai, China 2Univ. Lille,
CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, France 3Google
Research 4DeepMind 5UC Berkeley, California, USA 6Singapore
University of Technology and Design, Singapore. Correspondence
to: Mathieu Lauriere <mathieu.lauriere@nyu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

because one has to keep track of all agents’ behaviors, lead-
ing to a prohibitive combinatorial complexity (Daskalakis
et al., 2006; Tuyls and Weiss, 2012). Recently, Mean Field
Games (MFGs) have brought a new perspective by replacing
the atomic agents by their distribution. Introduced concur-
rently by Lasry and Lions (2007) and Huang et al. (2006),
the mean field approximation relies on symmetry and ho-
mogeneity assumptions, and enables to scale to an infinite
number of agents. Solving MFGs is usually done by solving
a forward-backward system of partial (or stochastic) differ-
ential equations, which represent the dynamics of both the
state distribution and the value function. However, tradi-
tional numerical methods (see e.g. (Achdou and Capuzzo-
Dolcetta, 2010; Carlini and Silva, 2014; Briceño Arias et al.,
2018) and (Achdou and Laurière, 2020) for a survey) do not
scale well in terms of the complexity of the state and action
spaces. Recently, several deep learning methods for MFGs
have been developed to tackle high-dimensional problems
(see e.g. (Fouque and Zhang, 2020; Carmona and Laurière,
2019; Germain et al., 2022; Cao et al., 2020) and (Car-
mona and Laurière, 2022) for a survey). Nevertheless, these
methods require the model (dynamics and rewards) to be
completely known.

On the other hand, Reinforcement Learning (RL) has proved
very efficient to solve Markov Decision Processes (MDPs)
and games with complex structures, from e.g. chess Camp-
bell et al. (2002) to multi-agent systems (Lanctot et al.,
2017). To tackle problems with highly complex environ-
ments, RL algorithms can be combined with efficient func-
tion approximation. Deep neural networks with suitable
architectures are arguably the most popular choice, thanks
to their ease of use and their generalization capabilities.
Deep RL has brought several recent breakthrough results,
e.g., Go (Silver et al., 2016), atari (Mnih et al., 2013),
poker (Brown and Sandholm, 2018; Moravčı́k et al., 2017)
or even video games such as Starcraft (Vinyals et al., 2019).

Many recent works have combined MFGs with RL to lever-
age their mutual potential – albeit mostly without deep neu-
ral nets thus far. The intertwinement of MFGs and RL hap-
pens through an optimization (or learning) procedure. The
simplest algorithm of this type is the (Banach-Picard) fixed-
point approach, consisting in alternating a best response
computation against a given population distribution with an

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

update of this distribution (Huang et al., 2006). However,
this method fails in many cases by lack of contractivity as
proved by Cui and Koeppl (2021). Several other proce-
dures have thus been introduced, often inspired by game
theory or optimization algorithms. Fictitious Play (FP) and
its variants average either distributions or policies (or both)
to stabilize convergence (Cardaliaguet and Hadikhanloo,
2017; Elie et al., 2020; Perrin et al., 2020; Xie et al., 2021;
Perrin et al., 2022; 2021), whereas Online Mirror Descent
(OMD) (Hadikhanloo, 2017; Perolat et al., 2022) relies on
policy evaluation. Other works have leveraged regulariza-
tion (Anahtarci et al., 2022; Cui and Koeppl, 2021; Guo
et al., 2022) to ensure convergence, at the cost of biasing
the Nash equilibrium. These methods require to sum or
average some key quantities: FP needs to average the dis-
tributions, while OMD needs to sum Q-functions. This is a
key component of most (if not all) smoothing methods and
needs to be tackled efficiently. These operations are simple
when the state space is finite and small, and the underlying
objects can be represented with tables or linear functions.
However, there is no easy and efficient way to sum non-
linear approximations such as neural networks, which raises
a major challenge when trying to combine learning methods
(such as FP or OMD) with deep RL.

The main contribution of the paper is to solve this important
question in dynamic MFGs. We propose two algorithms.
The first one, that we name Deep Average-network Fictitious
Play (D-AFP), builds on FP and uses the Neural Fictitious
Self Play (NFSP) approach (Heinrich and Silver, 2016) to
compute a neural network approximating an average over
past policies. The second one is Deep Munchausen Online
Mirror Descent (D-MOMD), inspired by the Munchausen
reparameterization of Vieillard et al. (2020). We prove that
in the exact case, Munchausen OMD is equivalent to OMD.
Finally, we conduct numerical experiments and compare D-
AFP and D-MOMD with SotA baselines adapted to dynamic
MFGs. We find that D-MOMD converges faster than D-AFP
on all tested games from the literature, which is consistent
with the results obtained for exact algorithms (without RL)
in (Perolat et al., 2022; Geist et al., 2022).

2. Background
2.1. Mean Field Games

A Mean Field Game (MFG) is a strategic decision mak-
ing problem with a continuum of identical and anonymous
players. In MFGs, it is possible to select a representative
player and to focus on its policy instead of considering
all players individually, which simplifies tremendously the
computation of an equilibrium. We place ourselves in the
context of a game and are interested in computing Nash
equilibria. We stress that we consider a finite horizon set-
ting as it encompasses a broader class of games, which

needs time-dependant policies and distributions. We de-
note by NT the finite time horizon and by n a generic
time step. We focus on finite state space and finite ac-
tion space, denoted respectively by X and A. We denote
by ∆X the set of probability distributions on X . Each dis-
tribution can be viewed as a vector of length |X |. Then,
the game is characterized by one-step reward functions
rn : X × A × ∆X → R, and transition probability func-
tions pn : X ×A×∆X → ∆X , for n = 0, 1, . . . , NT . The
third argument corresponds to the current distribution of
the population. An initial distribution m0 of the population
is set and will remain fixed over the paper. The two main
quantities of interest are the policy of the representative
player π = (πn)n ∈ (∆XA)NT+1 and the distribution flow
(i.e. sequence) of agents µ = (µn)n ∈ ∆NT+1

X . Let us
stress that we denote the time of the game n and that π
and µ are thus time-dependant objects. Given a population
mean field flow µ, the goal for a representative agent is to
maximize over π the total reward:

J(π, µ) = Eπ
[NT∑
n=0

rn(xn, an, µn)
∣∣∣x0 ∼ m0

]
s.t.: an ∼ πn(·|xn), xn+1 ∼ pn(·|xn, an, µn), n ≥ 0.

Note that the reward rn together with the transition function
pn are functions of the population distribution at the current
time step µn, which encompasses the mean field interactions.
A policy π is called a best response (BR) against a mean
field flow µ if it is a maximizer of J(·, µ). We denote by
BR(µ) the set of best responses to the mean field flow µ.

Given a policy π, a mean field flow µ is said to be induced
by π if: µ0 = m0 and for n = 0, . . . , NT − 1,

µn+1(x) =
∑
x′,a′

µn(x′)πn(a′|x′)pn(x|x′, a′, µn),

which we can simply write µn+1 = Pµn,πnn µn, where
Pµn,πnn is the transition matrix of xn. We denote by µπ

or Φ(π) ∈ ∆NT+1
X the mean-field flow induced by π.

Definition 2.1. A pair (π̂, µ̂) is a (finite horizon) Mean
Field Nash Equilibrium (MFNE) if (1) π̂ is a BR against µ̂,
and (2) µ̂ is induced by π̂.

Equivalently, π̂ is a fixed point of the map BR ◦Φ. Given a
mean field flow µ, a representative player faces a traditional
MDP, which can be studied using classical tools. The value
of a policy can be characterized through the Q-function
defined as: Qπ,µNT+1(x, a) = 0 and for n ≤ NT ,

Qπ,µn (x, a) = E
[∑
n′≥n

rn′(xn′ , an′ , µn′)
∣∣∣(xn, an) = (x, a)

]
.

It satisfies the Bellman equation: for n ≤ NT ,

Qπ,µn (x, a) = rn(x, a, µn) + Ex′,a′ [Qπ,µn+1(x′, a′)], (1)

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

where x′ ∼ p(·|x, a, µn) and a′ ∼ πn(·|x, a, µn), with the
convention Qπ,µNT+1(·, ·) = 0. The optimal Q-function Q∗,µ

is the value function of any best response π∗ against µ. It is
defined as Q∗,µn (x, a) = maxπ Q

π,µ
n (x, a) for every n, x, a,

and it satisfies the optimal Bellman equation: for n ≤ NT ,

Q∗,µn (x, a) = rn(x, a, µn) + Ex′,a′ [max
a′

Q∗,µn+1(x′, a′)],

(2)
where Q∗,µNT+1(·, ·) = 0.

2.2. Fictitious Play

The most straightforward method to compute a MFNE is to
iteratively update in turn the policy π and the distribution
µ, by respectively computing a BR and the induced mean
field flow. The BR can be computed with the backward
induction of (2), if the model is completely known. We refer
to this method as Banach-Picard (BP) fixed point iterations.
See Alg. 6 in appendix for completeness. The convergence
is ensured as soon as the composition BR ◦ Φ is a strict
contraction (Huang et al., 2006). However, this condition
holds only for a restricted class of games and, beyond that,
simple fixed point iterations typically fail to converge and
oscillations appear (Cui and Koeppl, 2021).

To address this issue, a memory of past plays can be added.
The Fictitious Play (FP) algorithm, introduced by Brown
(1951) computes the new distribution at each iteration by
taking the average over all past distributions instead of the
latest one. This stabilizes the learning process so that con-
vergence can be proved for a broader class of games under
suitable assumptions on the structure of the game such as
potential structure (Cardaliaguet and Hadikhanloo, 2017;
Geist et al., 2022) or monotonicity (Perrin et al., 2020). The
method can be summarized as follows: after initializing Q0

n

and π0
n for n = 0, . . . , NT , repeat at each iteration k:

1. Distribution update: µk = µπ
k

, µ̄k = 1
k−1

∑k−1
i=1 µ

i

2. Q-function update: Qk = Q∗,µ̄
k

3. Policy update: πk+1
n (.|x) = argmaxaQ

k
n(x, a).

In the distribution update, µ̄k corresponds to the population
mean field flow obtained if, for each i = 1, . . . , k − 1, a
fraction 1/(k − 1) of the population follows the policy πi

obtained as a BR at iteration i. At the end, the algorithm
returns the latest mean field flow µk as well as a policy that
generates this mean field flow. This can be achieved either
through a single policy or by returning the vector of all past
BR, (πi)i=1,...,k−1, from which µ̄k can be recovered. See
Alg. 7 in appendix for completeness.

2.3. Online Mirror Descent

The aforementioned methods are based on computing a BR
at each iteration. Alternatively, we can follow a policy iter-
ation based approach and simply evaluate a policy at each

iteration. In finite horizon, this operation is less computa-
tionally expensive than computing a BR because it avoids a
loop over the actions to find the optimal one.

The Policy Iteration (PI) algorithm for MFG (Cacace et al.,
2021) consists in repeating, from an initial guess π0, µ0, the
update: at iteration k, first evaluate the current policy πk

by computing Qk+1 = Qπ
k,µk , then let πk+1 be the greedy

policy such that πk+1(·|x) is a maximizer of Qk(x, ·). The
evaluation step can be done with the backward induction (1),
provided the model is known. See Alg. 8 in appendix for
completeness.

Here again, to stabilize the learning process, one can rely on
information from past iterations. Using a weighted sum over
pastQ-functions yields the so-called Online Mirror Descent
(OMD) algorithm for MFG, which can be summarized as
follows: after initializing q0

n and π0
n for n = 0, . . . , NT ,

repeat at each iteration k:
1. Distribution update: µk = µπ

k

2. Q-function update: Qk = Qπ
k,µk

3. Regularized Q-function update: q̄k+1 = q̄k + 1
τQ

k

4. Policy update: πk+1
n (·|x) = softmax(q̄k+1

n (x, ·)).

For more details, see Alg. 9 in appendix. Although we focus
on softmax policies in the sequel, other conjugate functions
of steep regularizers could be used in OMD, see Perolat
et al. (2022).

This method is known to be empirically faster than FP, as
illustrated by Perolat et al. (2022). Intuitively, this can be
explained by the fact that the learning rate in FP is of the
order 1/k so this algorithm is slower and slower as the
number of iterations increases.

2.4. Deep Reinforcement Learning

Reinforcement learning aims to solve optimal control prob-
lems when the agent does not know the model (i.e., p and r)
and must learn through trial and error by interacting with an
environment. In a finite horizon MFG setting, we assume
that a representative agent is encoded by a policy π, either
explicitly or implicitly (through a Q-function) and can real-
ize an episode, in the following sense: for n = 0, . . . , NT ,
the agent observes xn (with x0 ∼ m0), chooses action
an ∼ πn(·|xn), and the environment returns a realization
of xn+1 ∼ pn(·|xn, an, µn) and rn(xn, an, µn). Note
that the agent does not need to observe directly the mean
field flow µn, which simply enters as a parameter of the
transition and cost functions pn and rn.

Based on such samples, the agent can approximately
compute the Q-functions Qπ,µ and Q∗,µ following (1)
and (2) respectively where the expectation is replaced by
Monte-Carlo samples. In practice, we often use trajectories
starting from time 0 and state x0 ∼ m0 instead of

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

starting from any pair (x, a). Vanilla RL considers infinite
horizon, discounted problems and looks for a stationary
policy, whereas we consider a finite-horizon setting with
non-stationary policies. To simplify the implementation, we
treat time as part of the state by considering (n, xn) as the
state. We can then use standard Q-learning. However, it is
important to keep in mind that the Bellman equations are not
fixed-point equation for some stationary Bellman operators.

When the state space is large, it becomes impossible to eval-
uate precisely every pair (x, a). Motivated by both memory
efficiency and generalization, we can approximate the Q-
functions by non linear functions such as neural networks,
say Qπ,µθ and Q∗,µθ , parameterized by θ. Then, the quanti-
ties in (1) and (2) are replaced by the minimization of a loss
to train the neural network parameters θ. Namely, treating
time as an input, one minimizes over θ the quantities

Ê
[∣∣∣Qπ,µθ,n (x, a)− rn(x, a, µn)−Qπ,µθt,n+1(x′, a′)

∣∣∣2]
Ê
[∣∣∣Q∗,µθ,n(x, a)− rn(x, a, µn)−max

a′
Q∗,µθt,n+1(x′, a′)

∣∣∣2] ,
where Ê is an empirical expectation based on Monte Carlo
samples and θt is the parameter of a target network.

3. Deep Reinforcement Learning for MFGs
To develop scalable methods for solving MFGs, a natural
idea consists in combining the above optimization methods
(FP and OMD) with deep RL. This requires summing or
averaging policies or distributions, and induces hereby a
major challenge as they are approximated by non linear
operators, such as neural networks. In this section, we
develop innovative and scalable solutions to cope with this.
In the sequel, we denote Qθ((n, x), a) with the time in the
input when we refer to the neural network Q-function.

3.1. Deep Average-network Fictitious Play

To develop a model-free version of FP, one first needs to
compute a BR at each iteration, which can be done using
standard deep RL methods, such as DQN (Mnih et al., 2013).
A policy that generates the average distribution over past
iterations can be obtained by simply keeping in memory
all the BRs from past iterations. This approach has already
been used successfully e.g. by Perrin et al. (2020; 2021).
However, it requires a memory that is linear in the number
of iterations and each element is potentially large (e.g., a
deep neural network), which does not scale well. Indeed, as
the complexity of the environment grows, we expect FP to
need more and more iterations to converge, and hence the
need to keep track of a larger and larger number of policies.

An alternative approach is to learn along the way the policy
generating the average distribution. We propose to do so by

Algorithm 1 D-AFP
1: Initialize an empty reservoir bufferMSL for supervised

learning of average policy
2: Initialize the parameters θ̄0

3: for k = 1, . . . ,K do
4: 1. Distribution: Generate µ̄k with π̄θ̄k−1

5: 2. BR: Train π̂θk against µ̄k−1, e.g. using DQN
6: Collect Nsamples state-action using π̂θk and add

them toMSL

7: 3. Average policy: Update π̄θ̄k by adjusting θ̄k

(through gradient descent) to minimize:

L(θ̄) = E(s,a)∼MSL
[− log (π̄θ̄(a|s))] ,

where π̄θ̄ is the neural net policy with parameters θ̄
8: end for
9: Return µ̄K , π̄θ̄K

keeping a buffer of state-action pairs generated by past BRs
and learning the average policy by minimizing a categorical
loss. To tackle potentially complex environments, we rely
on a neural network representation of the policy. This ap-
proach is inspired by the Neural Fictitious Self Play (NFSP)
method (Heinrich and Silver, 2016), developed initially for
imperfect information games with a finite number of play-
ers, and adapted here to the MFG setting. The proposed
algorithm, that we call D-AFP because it learns an average
policy, is summarized in Alg. 1. Details are in Appx. B.

This allows us to learn an approximation of the MFNE
policy with a single neural network instead of having it
indirectly through a collection of neural networks for past
BRs. After training, we can use this neural average policy
in a straightforward way. Although the buffer is not needed
after training, a drawback of this method is that during the
training it requires to keep a buffer whose size increases
linearly with the number of iterations. This motivates us
to investigate a modification of OMD which is not only
empirically faster, but also less memory consuming.

3.2. Deep Munchausen Online Mirror Descent

We now turn our attention to the combination of OMD and
deep RL. One could simply use RL for the policy evalua-
tion step by estimating the Q-function using equation (1).
However, it is not straightforward to train a neural network
to approximate the cumulative Q-function. To that end, we
propose a reparameterization allowing us to compute the
cumulative Q-function in an implicit way, building on the
Munchausen trick from Vieillard et al. (2020) for classical
RL (with a single agent and no mean-field interactions).

Reparameterization in the exact case. OMD requires
summing up Q-functions to compute the regularized Q-

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

function q̄. However, this quantity q̄ is hard to approximate
as there exists no straightforward way to sum up neural
networks. We note that this summation is done by Pero-
lat et al. (2021) via the use of the NeuRD loss. However,
this approach relies on two types of approximations, as one
must learn the correct Q-function, but also the correct sum.
This is why we instead transform the OMD formulation into
Munchausen OMD, which only relies on one type of ap-
proximation. We start by describing this reparameterization
in the exact case, i.e., without function approximation. We
show that, in this case, the two formulations are equivalent.

We consider the following modified Bellman equation:
Q̃k+1
NT+1(x, a) = 0

Q̃k+1
n−1(x, a) = r(x, a, µkn−1) +τ lnπkn−1(a|x)

+Ex′,a′
[
Q̃k+1
n (x′, a′)−τ lnπkn(a′|x′)

]
,

(3)

where x′ ∼ pn(·|x, a, µkn−1) and a′ ∼ πkn(·|x′). The red
term penalizes the policy for deviating from the one in the
previous iteration, πkn−1, while the blue term compensates
for this change in the backward induction, as we will explain
in the proof of Thm 3.1 below.

The Munchausen OMD (MOMD) algorithm for MFG is as
follows: after initializing π0, repeat for k ≥ 0: Distribution update: µk = µπ̃

k

Regularized Q-function update: Q̃k+1
n as in (3)

Policy update: π̃k+1
n (·|x) = softmax(1

τ Q̃
k+1
n (x, ·)).

Theorem 3.1. MOMD is equivalent to OMD in the sense
that π̃k = πk for every k.

As a consequence, despite seemingly artificial log terms,
this method does not bias the Nash equilibrium (in contrast
with, e.g., Cui and Koeppl (2021) and Xie et al. (2021)).
Thanks to this result, MOMD enjoys the same convergence
guarantees as OMD, see (Hadikhanloo, 2017; Perolat et al.,
2022).

Proof. Step 1: Softmax transform. We first replace this
projection by an equivalent viewpoint based on the Kullback-
Leibler (KL) divergence, denoted by KL(·‖·). We will

write Qk+1
n = Qπ

k,µπ
k

n for short and Q0
n = q̄0

n. We have:
q̄k+1
n = 1

τ

∑k+1
`=0 Q

`
n. We take π0

n as the uniform policy
over actions, in order to have a precise equivalence with the
following for q̄0

n = 0. We could consider any π0
n with full

support, up to a change of initialization q̄0
n. We have:

πk+1
n (·|x) = softmax

(
1

τ

k+1∑
`=0

Q`n(·|x)

)
= argmax

π∈∆A

(
〈π,Qk+1

n (x, ·)〉 − τKL(π‖πkn(·|x))
)
,

(4)

where 〈·, ·〉 denotes the dot product.

Indeed, this can be checked by induction, using the
Legendre-Fenchel transform: omitting n and x for brevity,

πk+1 ∝ πke 1
τ q
k+1

∝ πk−1e
1
τQ

k

e
1
τQ

k+1

= πk−1e
1
τ (Qk+Qk+1)

∝ ... ∝ eq̄
k+1

.

Step 2: Munchausen trick. Simplifying a bit notations,

πk+1 = argmax(〈π,Qk+1〉 − τKL(π‖πk))

= argmax(〈π,Qk+1 + τ lnπk︸ ︷︷ ︸
Q̃k+1

〉−τ〈π, lnπ︸ ︷︷ ︸
+τH(π)

〉)

= softmax
(1

τ
Q̃k+1

)
where H denotes the entropy and we defined Q̃k+1

n =
Qk+1
n + τ lnπkn. Since Qk+1

n satisfies the Bellman equa-
tion (1) with π replaced by πk and µ replaced by µk, we
deduce that Q̃k+1

n satisfies (3).

Remark: In OMD, 1
τ (denoted α in the original paper (Pero-

lat et al., 2022)), is homogeneous to a learning rate. In the
MOMD formulation, τ can be seen as a temperature.

Stabilizing trick. We have shown that MOMD is equiva-
lent to OMD. However, the above version of Munchausen
sometimes exhibits numerical instabilities. This is because,
if an action a is suboptimal in a state x, then πkn(a|x)→ 0 as
k → +∞, so Q̃k(x, a) diverges to −∞ due to the relation
Q̃k+1
n = Qk+1

n + τ lnπkn. This causes issues even in the tab-
ular setting when we get close to a Nash equilibrium, due to
numerical errors on very large numbers. To avoid this issue,
we introduce another parameter, denoted by α ∈ [0, 1] and
we consider the following modified Munchausen equation:

Q̌k+1
n−1(x, a) = rn−1(x, a, µkn−1) +ατ log(πk−1

n−1(a|x))

+ Ex′,a′
[
Q̃k+1
n (x′, a′)−τ lnπkn(a′|x′)

]
, (5)

where x′ ∼ pn(·|x, a, µkn−1) and a′ ∼ πkn(·|x′). In
fact, such iterations have a natural interpretation as they
can be obtained by applying OMD to a regularized prob-
lem in which, when using policy π, a penalty −(1 −
α)τ log(πn(·|xn)) is added to the reward rn(xn, an, µn).
Details are provided in Appx. C.

Deep RL version. Motivated by problems with large
spaces, we then replace the Munchausen Q-function at iter-
ation k, namely Q̌k, by a neural network whose parameters
θk are trained to minimize a loss function representing (5).

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Since we want to learn a function of time, we consider (n, x)
to be the state. To be specific, given samples of transitions{(

(ni, xi), ai, rni(xi, ai, µ
k
ni), (ni + 1, x′i)

)}NB
i=1

,

with x′i ∼ pni(xi, ai, µkni), the parameter θk is trained using
stochastic gradient descent to minimize the empirical loss:

1

NB

∑
i

∣∣∣Q̌θ((ni, xi), ai)− Ti∣∣∣2,
where the target Ti is:

Ti = −rni(xi, ai, µkni)−ατ log(πk−1(ai|(ni, xi)))

−
∑
a′

πk−1(a′|(ni + 1, x′i))
[
Q̌θk−1((ni + 1, x′i), a

′)

−τ log(πk−1(a′|(ni + 1, x′i)))
]
. (6)

Here the time n is passed as an input to the Q-network
along with x, hence our change of notation. This way of
learning the Munchausen Q-function is similar to DQN,
except for two changes in the target: (1) it incorporates
the penalization for deviating from the previous policy, and
(2) we do not take the argmax over the next action but
an average according to the previous policy. A simplified
version of the algorithm is presented in Alg. 2 and more
details are provided in Appx. B.

Algorithm 2 D-MOMD
1: Input: Munchausen parameters τ and α; numbers of

OMD iterations K and DQN estimation iterations L
2: Output: cumulated Q value function, policy π
3: Initialize the parameters θ0

4: Set π0(a|(n, x)) = softmax
(

1
τ Q̌θ0((n, x), ·)

)
(a)

5: for k = 1, . . . ,K do
6: 1. Distribution: Generate µk with πk−1

7: 2. Value function: Initialize θk

8: for ` = 1, . . . , L do
9: Sample a minibatch of NB transitions:{(

(ni, xi), ai, rni(xi, ai, µ
k
ni), (ni + 1, x′i)

)}NB
i=1

with ni ≤ NT , x′i ∼ pni(·|xi, ai, µkni) and ai is
chosen by an ε−greedy policy based on Q̌θk

10: Update θk with one gradient step of:

θ 7→ 1
NB

∑NB
i=1

∣∣∣Q̌θ((ni, xi), ai)− Ti∣∣∣2
where Ti is defined in (6)

11: end for
12: 3. Policy: for all n, x, a, let

πk(a|(n, x)) = softmax
(

1
τ Q̌θk((n, x), ·)

)
(a)

13: end for
14: Return Q̌θK , πK

4. Experiments
In this section, we first discuss the metric used to assess
quality of learning, detail baselines to which we compare
our algorithms, and finally present numerical results on
diverse and numerous environments. The code for Deep
Munchausen OMD is available in OpenSpiel (Lanctot et al.,
2019).1

4.1. Exploitability

To assess the quality of a learnt equilibrium, we check
whether, in response to the reward generated by the popula-
tion MF flow, a typical player can improve their reward by
deviating from the policy used by the rest of the population.
This is formalized through the notion of exploitability.

The exploitability of a policy π is defined as:

E(π) = max
π′

J(π′;µπ)− J(π;µπ),

where µπ is the mean field flow generated from m0 when
using policy π. Intuitively a large exploitability means that,
when the population plays π, any individual player can
be much better off by deviating and choosing a different
strategy, so π is far from being a Nash equilibrium policy.
Conversely, an exploitability of 0 means that π is an MFNE
policy. Similar notions are widely used in computational
game theory (Zinkevich et al., 2007; Lanctot et al., 2009).

In the sequel, we consider problems for which a BR can be
computed exactly given a mean-field flow. Otherwise an
approximate exploitability could be used as a good proxy to
assess convergence, see e.g. Perrin et al. (2021).

4.2. Baselines

To assess the quality of the proposed algorithms, we con-
sider three baselines from the literature: Banach-Picard (BP)
fixed point iterations, policy iterations (PI), and Boltzmann
iterations (BI). FP can be viewed as a modification of the
first one, while OMD as a modification of the second one.
They have been discussed at the beginning of Sec. 2.2 and
Sec. 2.3 respectively, in the exact case. Adapting them to
the model-free setting with deep networks can be done in a
similar way as discussed above for D-AFP and D-MOMD.
See Appx. B for more details. The third baseline has been
introduced recently by Cui and Koeppl (2021). It consists in
updating in turn the population distribution and the policy,
but here the policy is computed as a weighted softmax of
the optimal Q-values (and hence requires the resolution of
an MDP at each iteration). More precisely, given a refer-
ence policy πB , a parameter η > 0, and the Q-function Qk

1See https://github.com/deepmind/open_
spiel/blob/master/open_spiel/python/mfg/
algorithms/munchausen_deep_mirror_descent.
py.

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/algorithms/munchausen_deep_mirror_descent.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/algorithms/munchausen_deep_mirror_descent.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/algorithms/munchausen_deep_mirror_descent.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/mfg/algorithms/munchausen_deep_mirror_descent.py

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

computed at iteration k, the new policy is defined as:

πkn(a|x) =
πB,n(a|x) exp

(
Qkn(x, a)/η

)∑
a′ πB,n(a′|x) exp

(
Qkn(x, a′)/η

) .
In the plots, D-BP, D-AFP, D-PI, D-BI and D-MOMD re-
fer respectively to Deep Banach-Picard iterations, Deep
Average-network Fictitious Play, Deep Policy Iteration,
Deep Boltzmann Iteration, and Deep Munchausen OMD.

4.3. Numerical results

Epidemics model. We first consider the SIS model of Cui
and Koeppl (2021), which is a toy model for epidemics.
There are two states: susceptible (S) and infected (I). Two
actions can be used: social distancing (D) or going out (U).
The probability of getting infected increases if more peo-
ple are infected, and is smaller when using D instead of
U. The transitions are: p(S|I,D, µ) = p(S|I, U, µ) = 0.3,
p(I|S,U, µ) = 0.92 · µ(I), p(I|S,D, µ) = 0, the reward
is: r(s, a, µ) = −1I(s) − 0.5 · 1D(s), and the horizon is
NT = 50. Note that, although this model has only two
states, the state dynamics is impacted by the distribution,
which is generally challenging when computing MFG solu-
tions. As shown in Fig. 1, both D-MOMD and D-AFP gen-
erate an exploitability diminishing with the learning steps,
whereas the other baselines are not able to do so. Besides,
D-MOMD generates smooth state trajectories, as opposed to
the one observed in Cui and Koeppl (2021), that contained
many oscillations. For this example and the following ones,
we display the best exploitability curves obtained for each
method after running sweeps over hyperparameters. See
Appx. D for some instances of sweeps for D-MOMD.

0 50000 100000 150000 200000 250000 300000 350000 400000
step

10 1

100

101

ex
pl

oi
ta

bi
lit

y D-BP
D-AFP
D-PI
D-BI
D-MOMD

0 10 20 30 40 50
time

0.3

0.4

0.5

0.6

0.7

po
pu

la
tio

n

S
I

Figure 1. Left: exploitability. Right: evolution of the distribution
obtained by the policy learnt with D-MOMD.

Linear-Quadratic MFG. We then consider an example
with more states, in 1D: the classical linear-quadratic envi-
ronment of Carmona et al. (2015), which admits an explicit
closed form solution in a continuous space-time domain. We
focus on a discretized approximation (Perrin et al., 2020)
of the time grid {0, . . . , NT }, where the dynamics of the
underlying state process controlled by action an is given
by xn+1 = xn + an∆n + σεn

√
∆n , with (m̄n)n the av-

erage of the population states, ∆n the time step and (εn)n
i.i.d. noises on {−3,−2,−1, 0, 1, 2, 3}, truncated approxi-
mations ofN (0, 1) random variables. Given a set of actions

(an)n in state trajectory (xn)n and a mean field flow (µn)n,
the reward r(xn, an, µn) of a representative player is given
for n < NT by[
− 1

2
|an|2 + qan(m̄n − xn)− κ

2
|m̄n − xn|2

]
∆n ,

together with the terminal reward − cterm2 |m̄NT − xNT |2.
The reward penalizes high actions, while providing incen-
tives to remain close to the average state despite the noise
(εn)n. For the experiments, we used NT = 10, σ = 1,
∆n = 1, q = 0.01, κ = 0.5, cterm = 1 and |X | = 100.
The action space is {−3,−2,−1, 0, 1, 2, 3}.

In Figure 2 (top), we see that the distribution estimated by
D-MOMD concentrates, as is expected from the reward en-
couraging a mean-reverting behavior: the population gathers
as expected into a bell-shaped distribution. The analytical
solution (Appx. E in (Perrin et al., 2020)) is exact in a
continuous setting (i.e., when the step sizes in time, state
and action go to 0) but only approximate in the discrete one
considered here. Hence, we choose instead to use the dis-
tribution estimated by exact tabular OMD as a benchmark,
as it reaches an exploitability of 10−12 in our experiments.
Figure 2 (bottom right) shows that the Wasserstein distance
between the learnt distribution by D-MOMD and the bench-
mark decreases as the learning occurs. In Figure 2 (bottom
left), we see that D-MOMD and D-AFP outperform other
methods in minimizing exploitability.

State

0
20

40
60

80
100

Time

0
2

4
6

8
10
0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

101

102

103

Ex
pl

oi
ta

bi
lit

y

D-BP
D-AFP
D-PI
D-BI
D-MOMD

0 2000 4000 6000 8000 10000
Iteration

0.001

0.002

0.003

0.004

0.005

W
as

se
rs

te
in

 D
ist

an
ce

Figure 2. Top: Evolution of the distribution generated by the pol-
icy learnt by D-MOMD. Bottom left: Exploitability of different
algorithms on the Linear Quadratic environment. Bottom right:
Wasserstein distance between the solution learnt by D-MOMD and
the benchmark one, over its iterations.

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Exploration. We now increase the state dimension and
turn our attention to a 2-dimensional grid world example.
The state is the position. An action is a move, and valid
moves are: left, right, up, down, or stay, as long as the
agent does not hit a wall. In the experiments, we consider
10 × 10 states and a time horizon of NT = 40 time
steps. The reward is: r(x, a, µ) = rpop(µ(x)), where
rpop(µ(x)) = − log(µ(x)) discourages being in a crowded
area – which is referred to as crowd aversion. Note that
Ex∼µ(rpop(µ(x))) = H(µ), i.e., the last term of the reward
provides, in expectation, the entropy of the distribution.
This setting is inspired by the one considered by Geist
et al. (2022). The results are shown in Fig. 3. D-MOMD
and D-AFP outperform all the baselines. The induced
distribution matches our intuition: it spreads symmetrically
until filling almost uniformly the four rooms.

0.0 0.2 0.4 0.6 0.8 1.0
step 1e6

101

102

103

ex
pl

oi
ta

bi
lit

y

D-BP
D-FP
D-PI
D-BI
D-MOMD

0 5 10

0.0

2.5

5.0

7.5

10.0

12.5
0 5 10 0 5 10 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.008

0.009

0.010

0.011

Figure 3. Top: exploitability. Bottom: evolution of the distribution
obtained by the policy learnt with D-MOMD.

Crowd modeling with congestion. We consider the same
environment but with a maze, and a more complex reward
function:

r(x, a, µ) = rpos(x) + rmove(a, µ(x)) + rpop(µ(x)),

where rpos(x) = −dist(x, xref) is the distance to a target
position xref , rmove(a, µ(x)) = −µ(x)‖a‖ is a penalty for
moving (‖a‖ = 1) which increases with the density µ(x)
at x – which is called congestion effect in the literature.
The state space has 20× 20 states, and the time horizon is
NT = 100. We see in Fig. 4 that D-MOMD outperforms
the other methods.

Multi-population chasing. We finally turn to an extension
of the MFG framework, where agents are heterogeneous:
each type of agent has its own dynamics and reward func-
tion. The environment can be extended to model multiple
populations by simply extending the state space to include
the population index on top of the agent’s position. Follow-
ing Perolat et al. (2022), we consider three populations and

0 50000 100000 150000 200000 250000 300000
step

103

ex
pl

oi
ta

bi
lit

y

D-BP
D-AFP
D-PI
D-BI
D-MOMD

0 10 20

0

5

10

15

20
0 10 20 0 10 20 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200

Figure 4. Maze example. Top: exploitability. Bottom: evolution
of the distribution obtained by the policy learnt with D-MOMD.

rewards of the form: for population i = 1, 2, 3,

ri(x, a, µ1, µ2, µ3) = − log(µi(x)) +
∑
j 6=i

µj(x)r̄i,j(x).

where r̄i,j = −r̄j,i, with r̄1,2 = −1, r̄1,3 = 1, r̄2,3 = −1.
In the experiments, three are 5 × 5 states and the time
horizon is NT = 10 time steps. The initial distributions
are in the corners, the number of agents of each population
is fixed, and the reward encourages the agent to chase the
population it dominates and flee the dominating one. We
see in Fig. 5 that D-AFP outperform the baselines and D-
MOMD performs even better.

0 20000 40000 60000 80000 100000
step

0

5

10

15

20

25

30

35

ex
pl

oi
ta

bi
lit

y D-BP
D-AFP
D-PI
D-BI
D-MOMD

Figure 5. Multi-population chasing example. Top: Exploitability.
Bottom: evolution of the distributions for the three populations.

5. Conclusion
In this work, we proposed two scalable algorithms that can
compute Nash equilibria in various MFGs in the finite hori-
zon setting. The first one, D-AFP, is the first implementation
of Fictitious Play for MFGs that does not need to keep all

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

previous best responses in memory and that learns an aver-
age policy with a single neural network. The second one,
D-MOMD, takes advantage of a subtle reparameterization
to learn implicitly a sum of Q-functions usually required
in the Online Mirror Descent algorithm. We demonstrated
numerically that they both perform well on five benchmark
problems and that D-MOMD consistently performs better
than D-AFP as well as three baselines from the literature.

Related Work. Only a few works try to learn Nash equi-
libria in non-stationary MFGs. Guo et al. (2020) establish
the existence and uniqueness of dynamic Nash equilibrium
under strict regularity assumptions in their Section 9, but
their RL and numerical experiments are restricted to the sta-
tionary setting. Perolat et al. (2022) prove that continuous-
time OMD converges to the Nash equilibrium in monotone
MFGs, supported by numerical experiments involving tril-
lions of states; however, their approach is purely based
on the model and not RL. Mishra et al. (2020) propose
an RL-based sequential approach to dynamic MFG, but
this method relies on functions of the distribution, which
is not scalable when the state space is large. Perrin et al.
(2020) prove the convergence of FP for monotone MFGs
and provide experimental results with model-free methods
(Q-learning); however, they avoid the difficulty of mixing
policies by relying on tabular representations for small en-
vironments. Cui and Koeppl (2021) propose a deep RL
method with regularization to learn Nash equilibria in fi-
nite horizon MFGs; however, the regularization biases the
equilibrium and they were not able to make it converge
in complex examples, whereas D-MOMD outperforms the
baselines in all the games we considered. Perrin et al. (2022)
and Perrin et al. (2021) use another version of FP with neu-
ral networks, but their approach needs to keep in memory
all the BRs learnt during the iterations, which cannot scale
to complex MFGs. In our D-OMD algorithm the policy is
computed using a softmax, which is reminiscent of maxi-
mum entropy RL methods (Todorov, 2008; Toussaint, 2009;
Rawlik et al., 2012) which led to efficient deep RL methods
such as soft actor critic (Haarnoja et al., 2018). However
there is a crucial difference: here we use a KL divergence
with respect to the previous policy, as can be seen in (4).

Future work. We would like to include more complex ex-
amples, with larger state spaces or even continuous spaces.
Continuous state spaces should be relatively easy to address,
as neural networks can handle continuous inputs, while con-
tinuous actions would require some adjustments particularly
to compute argmax or softmax of Q-functions. Furthermore
continuous spaces require manipulating continuous popu-
lation distributions, raising additional questions related to
how to represent and estimate them efficiently.

Acknowledgements
We would like to thank the anonymous referees for their
helpful comments. This project was done while Mathieu
Laurière was a visiting faculty researcher at Google Brain.
This research project is supported in part by the National
Research Foundation, Singapore under its AI Singapore Pro-
gram (AISG Award No: AISG2-RP-2020-016), NRF 2018
Fellowship NRF-NRFF2018-07, NRF2019-NRF-ANR095
ALIAS grant, grant PIE-SGP-AI-2020-01, AME Program-
matic Fund (Grant No. A20H6b0151) from the Agency for
Science, Technology and Research (A*STAR) and Provost’s
Chair Professorship grant RGEPPV2101.

References
Yves Achdou and Italo Capuzzo-Dolcetta. Mean field

games: numerical methods. SIAM J. Numer. Anal., 48(3):
1136–1162, 2010.

Yves Achdou and Mathieu Laurière. Mean field games
and applications: Numerical aspects. Mean Field Games,
pages 249–307, 2020.

Berkay Anahtarci, Can Deha Kariksiz, and Naci Saldi.
Q-learning in regularized mean-field games. Dynamic
Games and Applications, pages 1–29, 2022.

Luis M. Briceño Arias, Dante Kalise, and Francisco J. Silva.
Proximal methods for stationary mean field games with
local couplings. SIAM J. Control Optim., 56(2):801–836,
2018.

George W Brown. Iterative solution of games by fictitious
play. Activity analysis of production and allocation, 13
(1):374–376, 1951.

Noam Brown and Tuomas Sandholm. Superhuman ai for
heads-up no-limit poker: Libratus beats top professionals.
Science, 359(6374):418–424, 2018.

Simone Cacace, Fabio Camilli, and Alessandro Goffi. A
policy iteration method for mean field games. ESAIM:
COCV, 27:85, 2021.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung
Hsu. Deep blue. Artificial intelligence, 134(1-2):57–83,
2002.

Haoyang Cao, Xin Guo, and Mathieu Laurière. Connecting
GANs, mean-field games, and optimal transport. arXiv
preprint arXiv:2002.04112, 2020.

Pierre Cardaliaguet and Saeed Hadikhanloo. Learning in
mean field games: the fictitious play. ESAIM Cont. Optim.
Calc. Var., 2017.

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Elisabetta Carlini and Francisco J. Silva. A fully discrete
semi-Lagrangian scheme for a first order mean field game
problem. SIAM J. Numer. Anal., 52(1):45–67, 2014.

René Carmona and Mathieu Laurière. Convergence anal-
ysis of machine learning algorithms for the numerical
solution of mean field control and games: II–the finite
horizon case. Forthcoming in Annals of Applied Proba-
bility (arXiv:1908.01613), 2019.

René Carmona and Mathieu Laurière. Deep learning for
mean field games and mean field control with applications
to finance. Machine Learning in Financial Markets: A
guide to contemporary practises, editors: A. Capponi
and C.-A. Lehalle, Cambridge University Press (Preprint
arXiv:2107.04568), 2022.

René Carmona, Jean-Pierre Fouque, and Li-Hsien Sun.
Mean field games and systemic risk. Communications in
Mathematical Sciences, 13(4):911–933, 2015.

Kai Cui and Heinz Koeppl. Approximately solving mean
field games via entropy-regularized deep reinforcement
learning. In proc. of AISTATS, 2021.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H.
Papadimitriou. The complexity of computing a Nash
equilibrium. In proc. of ACM Symposium on Theory of
Computing, 2006.

Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu
Geist, and Olivier Pietquin. On the convergence of model
free learning in mean field games. In proc. of AAAI, 2020.

Jean-Pierre Fouque and Zhaoyu Zhang. Deep learning meth-
ods for mean field control problems with delay. Frontiers
in Applied Mathematics and Statistics, 6:11, 2020.

Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald
Elie, Sarah Perrin, Olivier Bachem, Rémi Munos, and
Olivier Pietquin. Concave utility reinforcement learning:
the mean-field game viewpoint. In proc. of AAMAS, 2022.

Maximilien Germain, Joseph Mikael, and Xavier Warin.
Numerical resolution of McKean-Vlasov FBSDEs using
neural networks. Methodology and Computing in Applied
Probability, pages 1–30, 2022.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 2020.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. A
general framework for learning mean-field games. arXiv
preprint arXiv:2003.06069, 2020.

Xin Guo, Renyuan Xu, and Thaleia Zariphopoulou. En-
tropy regularization for mean field games with learning.
Mathematics of Operations Research, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In In-
ternational conference on machine learning, pages 1861–
1870. PMLR, 2018.

Saeed Hadikhanloo. Learning in anonymous nonatomic
games with applications to first-order mean field games.
arXiv preprint arXiv:1704.00378, 2017.

Johannes Heinrich and David Silver. Deep reinforcement
learning from self-play in imperfect-information games.
arXiv preprint arXiv:1603.01121, 2016.

Minyi Huang, Roland P. Malhamé, and Peter E. Caines.
Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equiva-
lence principle. Communications in Information & Sys-
tems, 6, 2006.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and
Michael Bowling. Monte Carlo sampling for regret min-
imization in extensive games. In proc. of NeurIPS, vol-
ume 22, pages 1078–1086, 2009.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Ange-
liki Lazaridou, Karl Tuyls, Julien Pérolat, David Silver,
and Thore Graepel. A unified game-theoretic approach
to multiagent reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau,
Vinicius Zambaldi, Satyaki Upadhyay, Julien Pérolat, Sri-
ram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan
Omidshafiei, et al. Openspiel: A framework for
reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field
games. Jpn. J. Math., 2007. ISSN 0289-2316.

Rajesh K Mishra, Deepanshu Vasal, and Sriram Vishwanath.
Model-free reinforcement learning for non-stationary
mean field games. In 2020 59th IEEE Conference on
Decision and Control (CDC), pages 1032–1037. IEEE,
2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisỳ,
Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh,

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Michael Johanson, and Michael Bowling. Deepstack:
Expert-level artificial intelligence in heads-up no-limit
poker. Science, 356(6337):508–513, 2017.

Julien Perolat, Remi Munos, Jean-Baptiste Lespiau,
Shayegan Omidshafiei, Mark Rowland, Pedro Ortega,
Neil Burch, Thomas Anthony, David Balduzzi, Bart
De Vylder, et al. From poincaré recurrence to conver-
gence in imperfect information games: Finding equilib-
rium via regularization. In proc. of ICML, 2021.

Julien Perolat, Sarah Perrin, Romuald Elie, Mathieu
Laurière, Georgios Piliouras, Matthieu Geist, Karl Tuyls,
and Olivier Pietquin. Scaling up mean field games with
online mirror descent. In proc. of AAAI, 2022.

Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu
Geist, Romuald Elie, and Olivier Pietquin. Fictitious
play for mean field games: Continuous time analysis and
applications. In proc. of NeurIPS, 2020.

Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu
Geist, Romuald Élie, and Olivier Pietquin. Mean field
games flock! The reinforcement learning way. In proc. of
IJCAI, 2021.

Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald
Élie, Matthieu Geist, and Olivier Pietquin. Generalization
in mean field games by learning master policies. In proc.
of AAAI, 2022.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar.
On stochastic optimal control and reinforcement learn-
ing by approximate inference. Proceedings of Robotics:
Science and Systems VIII, 2012.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587),
2016.

Emanuel Todorov. General duality between optimal con-
trol and estimation. In 2008 47th IEEE Conference on
Decision and Control, pages 4286–4292. IEEE, 2008.

Marc Toussaint. Robot trajectory optimization using approx-
imate inference. In Proceedings of the 26th annual in-
ternational conference on machine learning, pages 1049–
1056, 2009.

Karl Tuyls and Gerhard Weiss. Multiagent learning: Basics,
challenges, and prospects. AI Magazine, 2012.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Mun-
chausen reinforcement learning. In proc. of NeurIPS,
2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, and Andreea
Minca. Learning while playing in mean-field games:
Convergence and optimality. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139, pages
11436–11447. PMLR, 2021.

Martin Zinkevich, Michael Johanson, Michael Bowling, and
Carmelo Piccione. Regret minimization in games with
incomplete information. In proc. of NeurIPS, 2007.

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Algorithm 3 Forward update for the distribution
1: Parameter: policy π = (πn)n=0,...,NT

2: Output: mean field flow µ = (µn)n=0,...,NT = µπ = (µπn)n=0,...,NT

3: Let µ0 = m0

4: for n = 1 . . . , NT do
5: Let µπn = P

µπn−1,πn−1

n−1 µπn−1

6: end for
7: Return µ = (µn)n=0,...,NT

Algorithm 4 Backward induction for the value function evaluation
1: Parameters: policy π = (πn)n=0,...,NT , mean field flow µ = (µn)n=0,...,NT

2: Output: state-action value function Qπ,µ

3: Let QNT (x, a) = rNT (x, a, µNT)
4: for n = NT − 1, . . . , 0 do
5: Compute

Qn(x, a) = rn(x, a, µn) + Ex′∼pn(·|x,a,µn),a′∼πn(·|x′)[Qn+1(x′, a′)]

where the expectation is computed in an exact way using the knowledge of the transition:

E[Qn+1(x′, a′)] =
∑
x′

pn(x′|x, a, µn)
∑
a′

πn+1(a′|x′)Qn+1(x′, a′)

6: end for
7: Return Q = (Qn)n=0,...,NT

A. Algorithms in the exact case
In this section we present algorithms to compute MFG equilibria when the model is fully known.

A.1. Subroutines

The distribution computation for a given policy π is described in Alg. 3 using forward (in time) iterations. The evaluation of
the state-action value function for a given policy π and mean field flow µ is described in Alg. 4. The computation of the
optimal value function Q∗,µ for a given µ is described in Alg. 5. A best response against µ can be obtained by running this
algorithm and then taking an optimizer of Q∗,µn (x, ·) for each n, x.

Algorithm 5 Backward induction for the optimal value function
1: Parameters: mean field flow µ = (µn)n=0,...,NT

2: Output: optimal state-action value function Q∗,µ

3: Let QNT (x, a) = rNT (x, a, µNT)
4: for n = NT − 1, . . . , 0 do
5: Compute

Qn(x, a) = rn(x, a, µn) + Ex′∼pn(·|x,a,µn)[max
a′∈A

Qn+1(x′, a′)]︸ ︷︷ ︸
=
∑
x′ pn(x′|x,a,µn) maxa′ Qn+1(x′,a′)

where the expectation is computed in an exact way using the knowledge of the transition pn
6: end for
7: Output: Q = (Qn)n=0,...,NT

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

A.2. Main algorithms with fully known model

Banach-Picard Fixed point iterations are presented in Alg. 6. Fictitious Play is described in Alg. 7. Policy iteration (for
MFG) is presented in Alg. 8. Online Mirror Descent is described in Alg. 9.

Algorithm 6 Banach-Picard (BP) fixed point
1: Input: Number of iterations K; optional softmax temperature η
2: Initialize π0

3: for k = 0, . . . ,K do
4: Forward update: Compute µk = µπ

k−1

, e.g. using Alg. 3 with π = πk−1

5: Best response computation: Compute a BR πk against µk, e.g. by computing Q∗,µ
k

using Alg. 5 with µ = µk and
then taking πkn(·|x) as a(ny) distribution over argmaxQ∗,µ̄

k

n (x, ·) for every n, x; alternatively, compute a soft version:
πkn(·|x) = softmax(Q∗,µ

k

n (x, ·)/η)
6: end for
7: Output: µK = (µKn)n=0,...,NT and policy πK = (πKn)n=0,...,NT

Algorithm 7 Fictitious Play (FP)
1: Input: Number of iterations K
2: Initialize π0

3: for k = 0, . . . ,K do
4: Forward update: Compute µk = µπ

k−1

, e.g. using Alg. 3 with π = πk−1

5: Average distribution update: Compute µ̄k as the average of (µ0, . . . , µπ
k

):

µ̄kn(x) = 1
k

k∑
i=1

µin(x) = k−1
k µ̄k−1

n (x) + 1
kµ

k
n(x)

6: Best response computation: Compute a BR πk against µ̄k, e.g. by computing Q∗,µ̄
k

using Alg. 5 and then taking
πkn(·|x) as a(ny) distribution over argmaxQ∗,µ̄

k

n (x, ·) for every n, x
7: end for
8: Output: µ̄K = (µ̄Kn)n=0,...,NT and policy π̄K = (π̄Kn)n=0,...,NT generating this mean field flow

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

Algorithm 8 Policy Iteration (PI)
1: Parameters: softmax temperature η; number of iterations K
2: Initialize the sequence of tables (q̄0

n)n=0,...,NT , e.g. with q̄0
n(x, a) = 0 for all n, x, a

3: Let the projected policy be: π0
n(a|x) = softmax(q̄0

n(x, ·)/η)(a) for all n, x, a
4: for k = 1, . . . ,K do
5: Forward Update: Compute µk = µπ

k−1

, e.g. using Alg. 3 with π = πk−1

6: Backward Update: Compute Qk = Qπ
k−1,µk , e.g. using backward induction Alg. 4 with π = πk−1 and µ = µk and

then let πkn(·|x) be a(ny) distribution over argmaxQ∗,µ̄
k

n (x, ·) for every n, x; alternatively, compute a soft version:
πkn(·|x) = softmax(Qkn(x, ·)/η)

7: end for
8: Output: QK , πK

Algorithm 9 Online Mirror Descent (OMD)
1: Parameters: inverse learning rate parameter τ ; number of iterations K
2: Initialize the sequence of tables (q̄0

n)n=0,...,NT , e.g. with q̄0
n(x, a) = 0 for all n, x, a

3: Let the projected policy be: π0
n(a|x) = softmax(q̄0

n(x, ·))(a) for all n, x, a
4: for k = 1, . . . ,K do
5: Forward Update: Compute µk = µπ

k−1

, e.g. using Alg. 3 with π = πk−1

6: Backward Update: Compute Qk = Qπ
k−1,µk , e.g. using backward induction Alg. 4 with π = πk−1 and µ = µk

7: Update the regularized Q-function and the projected policy: for all n, x, a,

q̄kn(x, a) = q̄k−1
n (x, a) +

1

τ
Qkn(x, a)

πkn(a|x) = softmax(q̄kn(x, ·))(a)

8: end for
9: Return q̄K , πK

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

B. Deep RL Algorithms
We now present details on the deep RL algorithms used or developed in this paper. In this work, we focus on the use of deep
RL for policy computation from the point of view of a representative agent. We assume that this agent has access to an
oracle that can return rn(xn, an, µn) and a sample of pn(·|xn, an, µn) when the agent follows is in state xn and uses action
an. In fact, the collection of samples is split into episodes. At each episode, the agent start from some x0 sampled from m0.
Then it evolves by following the current policy, and the transitions are added to a replay buffer.

In order to focus on the errors due to the deep RL algorithm, we assume that the distribution is updated in an exact way
following Alg. 3.

For the Deep RL part, the approaches can be summarized as follows:

• Alg. 4: Intuitively, he updates are replaced by stochastic gradient steps so as to minimize the following loss with respect
to θ:∣∣∣Qθ((n, xn), an)− rn(xn, an, µn)− Êx′n+1∼pn(·|xn,an,µn),a′n+1∼πn+1(·|x′n+1)[q((n+ 1, x′n+1), a′n+1)]

∣∣∣2 , (7)

where Ê denotes an empirical expectation over a finite number of samples picked from the replay buffer and q is
replaced by a target network Qθ′ whose parameters are frozen while training θ and that are updated less frequently than
θ. Combined with Policy Iteration (Alg. 8), this leads to the algorithm referred to as Deep Policy Iteration (D-PI).

• Alg. 5: We can proceed similarly, except that the target becomes:

rn(xn, an, µn) + Êx′n+1∼pn(·|xn,an,µn)[max
a′

q((n+ 1, x′n+1), a′)].

In fact, in our implementation we use DQN (Mnih et al., 2013) as a subroutine for the BR computation. Combined
with Banach-Picard iterations (Alg. 6), this leads directly to the algorithm referred to as Deep Banach-Picard (D-BP).

• To obtain Deep Average-network Fictitious Play (D-AFP) (Algo. 1), at each iteration, the best response against
the current distribution is learnt using DQN (Mnih et al., 2013). This policy is used to generate trajectories, whose
state-action samples are added to a reservoir bufferMSL. This buffer stores state-actions generated using past policies
from previous iterations. Then, an auxiliary neural network for the logits representing the average policy is trained
using supervised learning usingMSL: stochastic gradient is used to find θ̄ minimizing approximately the loss:

L(θ̄) = E(s,a)∼MSL
[− log (π̄θ̄(a|s))]

In our implementation, for the representation of the average policy, we use a neural network ¯̀
ω with parameters ω for

the logits, and then we compute the policy as: π̄ = softmax(¯̀
ω). This step is reminiscent of Neural Fictitious Self

Play (NFSP) introduced in Heinrich and Silver (2016), which was used to solve Leduc poker and Limit Texas Hold’em
poker. However, the overall algorithm is different. Indeed, in NFSP as described in Algorithm 1 of Heinrich and Silver
(2016), the neural network for the average policy and the neural network for the Q-function are both updated at each
iteration. We reuse the idea of having a buffer of past actions but in our case, between each update of the average policy
network, we do two operations: first, we update the mean field (sequence of population distributions) and second, we
learn a best response against this mean field.

• To obtain Deep Munchausen Online Mirror Descent (D-MOMD) (Algo. 2), we can simply modify the target in (7)
as follows:∣∣∣Qθ((n, xn), an)− rn(xn, an, µn)−τ lnπn−1(an|xn)

− Êx′n+1∼pn(·|xn,an,µn),

∑
a′

πn(a′|xn)[q((n+ 1, x′n+1), a′n+1)−τ lnπn(a′|x′n+1)]
∣∣∣2,

where q = Qθ′ is a target network whose parameters θ′ are frozen while training θ. This is similar to equation (7)
of Vieillard et al. (2020) which introduced the Munchausen RL method. However, in our case the distribution µn
appears in the reward rn and in the transition leading to the new state x′n+1. So while Vieillard et al. (2020) simply
repeatedly update the Q-network, we intertwine the udpates of the cumulative Q-network with the updates of the
population distribution.

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

C. Details on the link between MOMD and regularized MDPs
Consider regularizing the MFG with only entropy, that is

J(π, µ) = Eπ

[
NT∑
n=0

(rn(sn, an, µn)− (1− α)τ lnπn(an|sn))

]
. (8)

Notice that we choose (1− α)τ here because it will simplify later, but it would work with any temperature (or learning rate
from the OMD perspective).

Now, let’s solve this MFG with OMD with learning rate (ατ)−1, adopting the KL perspective. The corresponding algorithm
is:

πk+1
n ∈ argmax〈πn, qkn〉 − ατKL(πn||πkn) + (1− α)τH(πn) (9){
qk+1
NT

= rk+1
NT

qk+1
n = rk+1

n + γP 〈πk+1
n+1, q

k+1
n+1 − (1− α)τ lnπk+1

n+1〉
(10)

Next, using Qkn = qkn + ατ lnπkn, we can rewrite the evaluation part as:

πk+1
n = softmax

(
Qkn
τ

)
(11){

Qk+1
NT

= rk+1
NT

+ ατ lnπk+1
NT

Qk+1
n = rk+1

n + ατ lnπk+1
n + γP 〈πk+1

n+1, Q
k+1
n+1 − τ lnπk+1

n+1〉
(12)

We remark that it corresponds to the “scaled” version of Munchausen OMD, meaning that it amounts to solving the MFG
regularized with (1− α)τH(π) with OMD. We retrieve with α = 1 the unscaled version of Munchausen OMD, addressing
the unregularized MFG. It also makes a connection with the Boltzmannn iteration method of Cui and Koeppl (2021), in
which a similar penalization except that the penalty involves a fixed policy instead of using the current policy. Their prior
descent method, in which the reference policy is updated from time to time, can thus be viewed as a first step towards
Munchausen OMD.

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

D. Hyperparameters sweeps

0 20000 40000 60000 80000 100000
step

101

102

ex
pl

oi
ta

bi
lit

y

[]
[32]
[64]
[128]
[256]
[32, 32]
[64, 64]
[128, 128]
[256, 256]

Figure 6. D-MOMD, Exploration game with four rooms: Sweep over the network size. The neural network architecture is feedforward
fully connected with one or two hidden layers, except for the curve with label [], which refers to a linear function. This illustrates in
particular that the policy can not be well approximated using only linear functions, hence the need for non-linear approximations, which
raises the difficulty of averaging or summing such approximations (here neural networks).

Scalable Deep Reinforcement Learning Algorithms for Mean Field Games

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.001 | tau = 1 learning_rate = 0.001 | tau = 5 learning_rate = 0.001 | tau = 10 learning_rate = 0.001 | tau = 50

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.01 | tau = 1 learning_rate = 0.01 | tau = 5 learning_rate = 0.01 | tau = 10 learning_rate = 0.01 | tau = 50

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.05 | tau = 1 learning_rate = 0.05 | tau = 5 learning_rate = 0.05 | tau = 10 learning_rate = 0.05 | tau = 50

0 10000 20000 30000 40000 50000 60000
step

101

102

103

ex
pl

oi
ta

bi
lit

y

learning_rate = 0.1 | tau = 1

0 10000 20000 30000 40000 50000 60000
step

learning_rate = 0.1 | tau = 5

0 10000 20000 30000 40000 50000 60000
step

learning_rate = 0.1 | tau = 10

0 10000 20000 30000 40000 50000 60000
step

learning_rate = 0.1 | tau = 50

alpha
0.5
0.9
0.95
0.99
1.0

Figure 7. D-MOMD, Exploration game with four rooms: Sweep over τ, α and learning rate.

