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Abstract
We study the entropic Gromov-Wasserstein and
its unbalanced version between (unbalanced)
Gaussian distributions with different dimensions.
When the metric is the inner product, which we
refer to as inner product Gromov-Wasserstein
(IGW), we demonstrate that the optimal trans-
portation plans of entropic IGW and its unbal-
anced variant are (unbalanced) Gaussian distribu-
tions. Via an application of von Neumann’s trace
inequality, we obtain closed-form expressions for
the entropic IGW between these Gaussian distri-
butions. Finally, we consider an entropic inner
product Gromov-Wasserstein barycenter of mul-
tiple Gaussian distributions. We prove that the
barycenter is a Gaussian distribution when the
entropic regularization parameter is small. We
further derive a closed-form expression for the
covariance matrix of the barycenter.

1. Introduction
The recent advance in computation of optimal transport (Cu-
turi, 2013; Bonneel et al., 2015; Kolouri et al., 2016;
Altschuler et al., 2017; Dvurechensky et al., 2018; Lin
et al., 2019; Deshpande et al., 2019; Nguyen et al., 2021a)
has led to a surge of interest in using optimal transport
for applications in machine learning and statistics. These
applications include generative modeling (Arjovsky et al.,
2017; Tolstikhin et al., 2018; Salimans et al., 2018; Genevay
et al., 2018; Liutkus et al., 2019), unsupervised learning (Ho
et al., 2017; 2019), domain adaptation (Courty et al., 2016;
Damodaran et al., 2018; Le et al., 2021), mini-batch compu-
tation (Fatras et al., 2020; Nguyen et al., 2021b), and other
applications (Solomon et al., 2016; Nguyen et al., 2021c). In
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these above applications, optimal transport has been used to
quantify the discrepancy of the locations and mass between
two probability measures which must be in the same space.

When probability measures lie in different spaces, their lo-
cations are not comparable, their inner structures become
the main concern. In this case, the Gromov-Wasserstein dis-
tance is adopted to measure the discrepancy between their
inner structures. The main idea of Gromov-Wasserstein
distance is to consider the transportation of similarity ma-
trices of points which are in the same spaces. However,
such formulation of Gromov-Wasserstein distance is com-
putationally expensive as we need to solve a quadratic pro-
gramming problem. To reduce the computational cost of
Gromov-Wasserstein distance, (Peyré et al., 2016) propose
to regularize the objective function of Gromov-Wasserstein
based on the entropy of the transportation plan, which we re-
fer to as entropic Gromov-Wasserstein. The entropic regular-
ization idea had also been used earlier in optimal transport
and had been shown to improve greatly the computation
of optimal transport (Cuturi, 2013; Altschuler et al., 2017;
Dvurechensky et al., 2018; Lin et al., 2019). The improve-
ment in approximation of Gromov-Wasserstein distance via
the entropic regularization has led to an increasing interest of
using that divergence to several applications, including deep
generative models (Bunne et al., 2019), computer graph-
ics (Solomon et al., 2016; Xu et al., 2019; Chen et al., 2020),
and natural language processing (Alvarez-Melis & Jaakkola,
2018; Grave et al., 2019). When measures are not probabil-
ity measures and unbalanced, i.e., they may have different
total masses, unbalanced version of Gromov-Wasserstein,
named unbalanced Gromov-Wasserstein, via the idea of un-
balanced optimal transport (Chizat et al., 2018) had been
introduced in the recent work of (Séjourné et al., 2020). The
entropic unbalanced Gromov-Wasserstein has been used in
robust machine learning applications (Séjourné et al., 2020).
Despite their practicalities, theoretical understandings of
entropic (unbalanced) Gromov-Wasserstein are still nascent.
The recent work of (Salmona et al., 2021) studied the closed-
form expression of Gromov-Wasserstein between Gaussian
distributions in different dimensions. However, to the best
of our knowledge, the full theoretical analysis of entropic
Gromov-Wasserstein and its unbalanced version between
(unbalanced) Gaussian distributions in different dimensions
has remained poorly understood.
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Our contribution. In this paper, we present a compre-
hensive study of the entropic Gromov-Wasserstein and its
unbalanced version between (unbalanced) Gaussian distri-
butions when inner product is considered as a cost function,
which we refer to as entropic (unbalanced) inner product
Gromov-Wasserstein (IGW). We also study its correspond-
ing barycenter problem among multiple Gaussian distribu-
tions. Our work complements the works of (Gelbrich, 1990),
(Janati et al., 2020) and (Salmona et al., 2021) when we
give an explicit explanation of the effect of the entropic
regularization on the OT and the geometric structure of an
optimal transport plan between Gaussians. More particu-
lar, our contribution is four-fold and can be summarized as
follows:

1. Balanced Gaussian measures: We first provide a closed-
form expression of the entropic inner product Gromov-
Wasserstein between Gaussian probability measures with
zero means. We demonstrate that the expression depends
mainly on eigenvalues of the covariance matrices of the two
measures. Furthermore, an associate optimal transportation
plan is shown to be also a zero-mean Gaussian measure.
Our analysis hinges upon an application of von Neuman’s
trace inequality (Kristof, 1969; Horn & Johnson, 1991) for
singular values of matrices.

2. Unbalanced Gaussian measures: Second, by relaxing
marginal constraints via Kullback-Leibler (KL) divergence,
we further study the entropic unbalanced IGW between two
unbalanced Gaussian measures with zero means. The main
challenge comes from the two KL terms that add another
level of constraint in the objective function. To overcome
that challenge, we show that the objective function can be
broken down into several sub-problems that can be solved
explicitly through some cubic and quadratic equations. That
leads to an almost closed-form formulation of an optimal
Gaussian transport plan of the entropic unbalanced IGW
between the unbalanced Gaussian measures.

3. Barycenter problem: Finally, we investigate the (en-
tropic) Gromov-Wasserstein barycenter problems with inner
product cost, which we refer to as (entropic) IGW barycen-
ter, among zero-mean balanced Gaussian measures. We
prove that the barycenter of zero-mean Gaussian distribu-
tions is also a zero-mean Gaussian distribution with a diago-
nal covariance matrix. Reposing on that Gaussian barycen-
ter, we can directly obtain a closed-form expression for the
barycenter problem when the regularized parameter is suffi-
ciently small, which is also the setting people widely use in
practice.

4. Revisiting entropic optimal transport between Gaus-
sian distributions. We note in passing that based on the
new proof technique introduced for computing the entropic
Gromov-Wasserstein between Gaussian distributions, we
revisit the entropic Wasserstein between (unbalanced) Gaus-

sian distributions in Appendix F and provide a simpler proof
than that in (Janati et al., 2020) to derive the closed-form
expression for that problem.

Paper organization. The paper is organized as follows. In
Section 2, we provide backgrounds for the (unbalanced)
inner product Gromov-Wasserstein and its corresponding
entropic version. Next, we establish a closed-form expres-
sion of the entropic IGW between two balanced Gaussian
distributions in Section 3 while proving that the entropic un-
balanced IGW between unbalanced Gaussian measures also
has a closed form in Section 4. Subsequently, we present
our study of the (entropic) IGW barycenter problem among
multiple Gaussian distributions in Section 5. In Section 6,
we carry out empirical studies to investigate the behavior of
algorithms solving the entropic Gromov-Wasserstein before
concluding with a few discussions in Section 7. Additional
proofs and auxiliary results are presented in the supplemen-
tary material.

Notation. We use the following notations throughout the
paper. For a non-negative definite matrix A, if we do not
specify the spectral decomposition ofA, then generally, λa,i
or λi(A) denotes the i-th largest eigenvalues of A. For ran-
dom vectors X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn),
let Kxy be the covariance matrix between X and Y , which
means that

(
Kxy

)
i,j

= Cov(Xi, Yj). For square matrices
A and B, we write A � B or B � A if A − B is non-
negative definite. For a positive integer n, we denote by
Idn the identity matrix of size n × n while [n] stands for
the set {1, 2, . . . , n}. For any real number a, [a]+ indicates
max{a, 0}. Lastly, we denote byM+(X ) the set of all pos-
itive measures in a space X and by N (γ,Σ) the Gaussian
distribution in Rd with mean γ and covariance matrix Σ
where d will be specified in each case.

2. Preliminaries
In this section, we first provide background for the Gromov-
Wasserstein distance between two probability distributions
and discuss its properties when using `2-norm as a cost func-
tion. Then, we present the formulation of an inner product
Gromov-Wasserstein problem between two (unbalanced)
Gaussian measures with a discussion about its geometric
properties.

2.1. Gromov-Wasserstein distance

Let µ and ν be two probability measures on two Polish
spaces (X , dX ) and (Y, dY), and let cX : X × X → R and
cY : Y × Y → R be two measurable functions. Then, with
p ≥ 1, the p-Gromov-Wasserstein distance between µ and
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ν, denoted by GWp(µ, ν), is defined as follows:(
inf

π∈Π(µ,ν)
Eπ⊗π

∣∣cX (X,X ′)− cY(Y, Y ′)
∣∣p) 1

p

, (1)

where (X,Y ) and (X ′, Y ′) are independent and identically
distributed with probability distribution π that belongs to the
set of joint probability distributions Π(µ, ν), in which their
marginal distributions are the corresponding distributions µ
and ν.

Although the above problem always admits an optimal so-
lution (Vayer, 2020), it is computationally expensive as we
need to solve a quadratic optimization problem. For exam-
ple, when the dimensions of X and Y are m and n, respec-
tively, the complexity of solving the Gromov-Wasserstein
minimization problem isO(m2n+n2m) (Peyré et al., 2016;
Vincent-Cuaz et al., 2022).

2.2. Gromov-Wasserstein distance using `2-norm

Similar to the Wasserstein distance, there is no closed-form
expression for the Gromov-Wasserstein distance between
general distributions. Even in the important and specific
cases when the input distributions are Gaussian, we still do
not know if an optimal transport plan needs to be Gaussian
or not (Salmona et al., 2021). However, there are some
certain understandings of the Gromov-Wasserstein distance
when the cost functions are Euclidean norms (Salmona et al.,
2021; Vayer, 2020; Gelbrich, 1990),(

inf
π∈Π(µ,ν)

Eπ⊗π
∣∣‖X −X ′‖2m − ‖Y − Y ′‖2n∣∣2) 1

2

, (2)

where ‖ · ‖m and ‖ · ‖n are Euclidean norms on Rm and Rn,
respectively.
Theorem 2.1. (Salmona et al., 2021) Let µ ∼ N (m0,Σ0)
and ν ∼ N (m1,Σ1) where m0 ∈ Rm,m1 ∈ Rn are two
vector means and Σ0 ∈ Rm×m and Σ1 ∈ Rn×n are the
corresponding non-degenerated covariance matrices. Let
P0, D0 and P1, D1 be respective diagonalizations of Σ0

and Σ1. Let us define T0 : x ∈ Rm → P>0 (x −m0) and
T1 : y ∈ Rn → P>1 (y − m1). The Gromov-Wasserstein
problem in equation (2) is equivalent to

sup
X∼T0#µ,T1#ν

∑
i,j

Cov(X2
i , Y

2
j ) + 2

∥∥Cov(X,Y )
∥∥2

F

where X = (X1, . . . , Xm)>, Y = (Y1, . . . , Yn)> and
‖.‖F is the Frobenius norm.

This theorem shows that the `2-norm Gromov-Wasserstein
problem is equivalent to first shifting two input distribu-
tions to have mean zeros and then comparing covariance
structures of the shifted distributions. After the shifting
step, the translation invariant property is no longer needed
and the problem is reduced to finding a match between the
covariance structures.

2.3. Inner product Gromov-Wasserstein

In this section, we will provide background on the inner
product Gromov-Wasserstein between two (unbalanced)
Gaussian measures with a discussion about its geometric
properties and the effect of an entropic regularization term
on an optimal transport plan.

Although the Gromov-Wasserstein distance with `2-norm
cost function has been used in several practical applications,
finding its closed-form expression has remained an open
problem due to its dependence on co-moments of order 2
and 4 of feasible transport plans (see Theorem 2.1) (Salmona
et al., 2021). In particular, they can only derive the upper
and lower bounds for GW2(µ, ν) and they are even not able
to show that an optimal transport plan is a Gaussian distri-
bution. By considering the inner product cost function, our
work can be seen as the first step towards better understand-
ing and new insights on the `2-norm Gromov-Wasserstein
distance between Gaussian distributions. Note that proof
techniques ((Salmona et al., 2021), (Janati et al., 2020))
prior to our work to study the Gromov-Wasserstein distance
between Gaussian measures were quite complicated.

Now, we reintroduce the Gromov-Wasserstein using the
inner product as a cost function and its unbalanced variant.

Definition 2.2 (Inner product Gromov-Wasserstein).
(Salmona et al., 2021) Let X,X ′ ∼ µ be i.i.d random multi-
variates in Rm while Y, Y ′ ∼ ν are i.i.d random multivari-
ates in Rn. Next, we assume that both (X,Y ) and (X ′, Y ′)
are jointly distributed as π. Then, the inner product Gromov-
Wasserstein (IGW) problem is defined as

IGW(µ, ν) := min
π∈Π(µ,ν)

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
.

In this paper, we utilize an entropy-regularized approach by
adding the relative entropy term to the above objective func-
tion As a result, we have the following definition, named
entropic IGW, which is given by

IGWε(µ, ν) := min
π∈Π(µ,ν)

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
+ εKL

(
π‖µ⊗ ν

)
, (3)

where ε > 0 is a regularized parameter and KL(α||β) :=∫
log
(
dα
dβ

)
dα+

∫
(dβ − dα) for any positive measures α

and β. Given that the entropic IGW between Gaussian distri-
butions has a closed-form expression (see Theorem 3.1), it
might be useful for some applications such as graph match-
ing and word embedding alignment, which we leave for
future development.

Entropic unbalanced IGW problem: When µ and ν are
unbalanced Gaussian measures which are not probability
distributions, the entropic IGW formulation in equation (3)
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is no longer valid. One solution to deal with this issue
is by regularizing the marginal constraints via KL diver-
gence (Chizat et al., 2018). The entropic IGW problem be-
tween unbalanced measures, which we refer to as entropic
unbalanced IGW, admits the following form:

UIGWε,τ (µ, ν) := min
π

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
+ τKL⊗(πx‖µ) + τKL⊗(πy‖ν) + εKL⊗

(
π‖µ⊗ ν

)
,
(4)

where τ > 0, π ∈M+(Rm×Rn) in the minimum, πx and
πy are the projections of π on Rm and Rn, respectively, and
KL⊗(α||β) := KL(α ⊗ α||β ⊗ β). Using the quadratic-
KL divergence KL⊗ (Séjourné et al., 2021) in place of the
standard KL will result in UIGWε,τ being 2-homogeneous,
i.e., if µ and ν are multiplied by θ ≥ 0, then the value of
UIGWε,τ (µ, ν) is multiplied by θ2.

Invariant property: Unlike the `2-norm Gromov Wasser-
stein in equation (2), which is invariant to both translation
and rotation (Salmona et al., 2021), our IGWε and UIGWε,τ

only keeps unchanged under the latter transformation, which
is shown in the following lemma with a note that the KL
divergence is both rotation and translation invariant.
Lemma 2.3 (Invariant to rotation). Let µ and ν be two
probability measures on Rm and Rn. Let Tm : x→ Omx
and Tn : y → Ony be two functions in which Om and
On are orthogonal matrices of size m × m and n × n,
respectively. Then, we have

IGWε(Tm#µ, Tn#ν) = IGWε(µ, ν),

where # denotes the push-forward operator.

The proof of Lemma 2.3 can be found in Appendix A.1.

Mean-zero assumption: As being discussed above, the
IGWε and UIGWε,τ are not invariant to translation, because
the IGW depends on the means of distributions, which is
apparently undesirable. To get around this cumbersome,
we assume that the means of two distributions are equal to
zero, which is equivalent to the shifting step as shown in Sec-
tion 2.2. Then, the translation invariant property is no longer
a concern, and the problem is reduced to working with the
covariance structures. By putting the mean-zero assumption,
we still follow the main idea of the Gromov-Wasserstein
distance, which is comparing the inner structures of two
input distributions.

3. Entropic Gromov-Wasserstein between
Balanced Gaussians

We present in this section a closed-form expression of the
entropic inner product Gromov-Wasserstein between two
Gaussian measures and a formula of a corresponding opti-
mal transport plan in Theorem 3.1.

Let µ = N (0,Σµ) and ν = N (0,Σν) be two Gaussian
measures in Rm and Rn, respectively. To ease the ensuing
presentation, in the entropic IGW problem, we denote the
covariance matrix of the joint distribution π of µ and ν by

Σπ =

 Σµ Kµν

K>µν Σν

 . (5)

In addition, the rotation invariant property of entropic IGW
in Lemma 2.3 allows us to assume without loss of generality
that Σµ and Σν are diagonal matrices with positive diagonal
entries sorted in descending order. In particular,

Σµ = diag
(
λµ,1, . . . , λµ,m

)
,

Σν = diag
(
λν,1, . . . , λν,n

)
. (6)

This step simplifies significantly the unnecessarily com-
plicated form of the general covariance matrix, since the
Gromov-Wasserstein depends on the eigenvalues of the co-
variance matrix. The following result gives the closed-form
expression for the entropic IGW between two balanced
Gaussian distributions.

Theorem 3.1 (Entropic IGW has a closed form). Sup-
pose without loss of generality that m ≥ n. Let µ =
N (0,Σµ) and ν = N (0,Σν) be two zero-mean Gaussian
measures in Rm and Rn, respectively, where Σµ and Σν
are diagonal matrices given in equation (6). The entropic
inner product Gromov-Wasserstein between µ and ν then
equals to

IGWε(µ, ν) = tr(Σ2
µ) + tr(Σ2

ν)− 2

n∑
k=1

[
λµ,kλν,k −

ε

4

]+
+
ε

2

n∑
k=1

[
log(λµ,kλν,k)− log

(ε
4

)]+
.

Furthermore, an optimal transportation plan of the en-
tropic IGW problem is a zero-mean Gaussian measure
π∗ = N (0,Σπ∗), where

Σπ∗ =

 Σµ K∗µν

(K∗µν)> Σν

 , (7)

withK∗µν = diag
([
λµ,kλν,k

[
1− ε

4λµ,kλν,k

]+] 1
2
)n
k=1

is an
m× n matrix.

Remark 3.2. It can be seen that the quantity IGWε(µ, ν)
depends only on the eigenvalues of the covariance matrices
of µ and ν. In addition, as ε→ 0, IGWε(µ, ν) converges to∑n
k=1(λµ,k−λν,k)2 +

∑m
k=n+1 λ

2
µ,k, which is the squared

Euclidean distance between covariance matrices Σµ and Σν .
In other words, IGWε(µ, ν) reflects the difference in the
inner structures of the two input measures. Regarding the
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optimal transport plan, when Σµ and Σν are not diagonal,
the covariance matrix K∗µν in equation (7) turns into

K∗,new
µν = PµD

1
2
µΛ

1
2
µνD

1
2
ν P
>
ν = PµK

∗
µνP

>
ν .

where Λ
1
2
µν = diag

({[
1 − ε

4λµ,kλν,k

]+} 1
2
)n
k=1

, Pµ, Dµ

and Pν , Dν are the orthogonal diagonalizations of Σµ(=
PµDµP

>
µ ) and Σν(= PνDνP

>
ν ), respectively (see Ap-

pendix A.2 for the derivation).

Proof Sketch of Theorem 3.1. The full proof of this theo-
rem is in Appendix A.2. First of all, we note that the objec-
tive function depends only on the covariance matrix of the
joint distribution and the KL term. Given a fixed covariance
matrix, the entropic term in equation (3) forces an optimal
transport plan for the entropic IGW problem to be a Gaus-
sian distribution (see Lemma 3.3 below). Subsequently,
Lemma 3.4 (cf. the end of this proof) is used to attack
the the determinant and the trace involving the covariance
matrix Kµν between X and Y . Then, the entropic IGW is
reduced to a minimization problem of single variables in a
particular interval, which has a closed-form solution.

Lemma 3.3 (KL divergence minimum). Let Qv be the
Gaussian distribution in Rd with mean v and covariance
matrix Σv. Denote by Πu,Σu the family of all probability
distributions in Rd which have mean u and covariance
matrix Σu, and are dominated by Qv . Then,

N
(
u,Σu

)
= arg min
Pu∈Πu,Σu

KL(Pu‖Qv).

The proof of this lemma is deferred to Appendix A.3

Lemma 3.4 (Eigenvalues, determinant and trace). Let
UµνΛ

1
2
µνV >µν be the SVD of Σ

− 1
2

µ KµνΣ
− 1

2
ν , where Λ

1
2
µν =

diag(κ
1
2

µν,k)nk=1 with κ
1
2

µν,k is the k-th largest singular value

of Σ
− 1

2
µ KµνΣ

− 1
2

ν . Here, Λ
1
2
µν is an m×n matrix, while Uµν

and Vµν are unitary matrices of sizes m ×m and n × n,
respectively. Then,

(a) The values of κµν,1, . . . , κµν,n lie between 0 and 1.

(b) The determinant of matrix Σπ could be computed as
det(Σπ) = det(Σµ)det(Σν)

∏n
j=1

(
1− κµν,j

)
.

(c) We have tr
(
K>µνKµν

)
≤
∑n
j=1 λµ,jλν,jκµν,j . The

equality occurs when Uµν and Vµν are identity matri-
ces of sizes m and n, respectively.

The proof of Lemma 3.4 can be found in Appendix A.4.

This lemma allows us to optimize the entropic IGW problem
between Gaussian measures µ and ν over the singular values

(κµν,k)nk=1 of the matrix Kµν rather than the transport plan
π which is quite challenging to directly deal with. Part
(a) of Lemma 3.4 shows a representation of the covariance
matrix Kµν through its singular values, which is useful for
calculating its determinant in part (b). Our key technique
to derive the closed-form expression for the entropic IGW
lies in part (c) of Lemma 3.4. In that part, we utilize the
von Neumann’s trace inequality which says that the sum of
singular values of the product of two matrices is maximized
when their SVDs share the same orthogonal bases and their
corresponding singular values match that of each other by
their magnitudes. Specifically,

Lemma 3.5 (von Neumann’s inequality). (Kristof, 1969)
Let A1, . . . , An be fixed complex matrices and Z1, . . . , Zn
run independently over all unitary matrices, all matrices
are of size m ×m. Let αk1, . . . , αkm be the singular val-
ues of Ak for all k ∈ [n], all in the same sense mono-
tonically ordered. Then, the maximum of the real part of
tr
(
[Z1A1] . . . [ZnAn]

)
is given by

∑m
`=1 α1` . . . αn`.

In comparison with previous works such as (Janati et al.,
2020) and (Salmona et al., 2021), we have a direct attack
to the problem by figuring out a detailed formula for the co-
variance matrix and utilising the von Neumann’s inequality
to avoid solving a complicated system of equations of the
first derivatives of the objective function.
Remark 3.6. In the step of applying part (c) of Lemma 3.4,
the equality of the von Neumann’s inequality for
tr(K>µνKµν) can occur in many cases (see Appendix A.4).
Therefore, the optimal transport plan mentioned in Theo-
rem 3.1 is not unique. For instance, π′ = N (0,Σπ′) where

Σπ′ =

 Σµ −K∗µν
−K∗µν Σν

 ,

is also an optimal transport plan.

4. Entropic Unbalanced Gromov-Wasserstein
between Unbalanced Gaussians

In this section, we consider a more general setting when the
two distributions µ and ν are unbalanced Gaussian measures
in Rm and Rn, respectively. Specifically,

µ = mµN (0m,Σµ),

ν = mνN (0n,Σν), (8)

where m ≥ n; mµ,mν > 0 are their masses and Σµ, Σν
are given in equation (6). Here, µ and ν do not necessarily
have the same mass, i.e., mµ could be different from mν .
For any positive measure α, we denote by α the normalized
measure of α. Thus, µ = N (0m,Σµ) and ν = N (0n,Σν).

Under the setting of entropic unbalanced IGW, we denote
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the covariance matrix of a transportation plan π by

Σπ =

 Σx Kxy

K>xy Σy

 , (9)

where Σx and Σy are covariance matrices of distributions
πx and πy , respectively.

Note that the objective function of entropic unbalanced
IGW in equation (4) involves two new KL divergence terms
compare to that of the entropic IGW problem. Thus, before
presenting the main theorem of this section, we introduce
a tight lower bound for the KL divergence between two
Gaussian distributions in the following lemma.
Lemma 4.1 (Lower bound for KL divergence). Let π be
given in equation (9), λx = (λx,i)

m
i=1 be the eigenvalues of

Σx, and λy = (λy,j)
n
j=1 be the eigenvalues of Σy . Similarly,

we define λµ for Σµ and λν for Σν . Then, we find that

(a) KL(πx‖µ) ≥ 1
2

∑m
i=1 Ψ

(
λx,iλ

−1
µ,i

)
;

(b) KL(πy‖ν) ≥ 1
2

∑n
j=1 Ψ

(
λy,jλ

−1
ν,j

)
;

(c) KL(π‖µ⊗ ν) = KL(πx‖µ) + KL(πy‖ν)
+ 1

2

∑n
k=1 log(1− κxy,k),

where Ψ(x) = x− log(x)−1, and (κ
1
2

xy,k)nk=1 are singular

values of matrix Σ
− 1

2
x KxyΣ

− 1
2

y .

The proof of Lemma 4.1 is in Appendix A.5. Next, we
define some functions and quantities that will be used in our
analysis. Given τ, ε > 0, let

gε,τ,+(x, y; a, b) := x2 + y2 + ε
[
log(xy)− log

ε

2

]+
+ (τ + ε)

[x
a

+
y

b
− log

(xy
ab

)
− 2
]
− 2

[
xy − ε

2

]+
;

hε,τ (x; a) := x2 + (τ + ε)
[x
a
− log

(x
a

)
− 1
]

;

(ϕk, φk) := arg min
x,y>0

gε,τ,+(x, y;λµ,kλν,k), k ∈ [n];

ϕk := arg min
x>0

hε,τ (x, λµ,k), k = n+ 1, . . . ,m;

for any x, y, a, b > 0. The detailed calculation of (ϕk)mk=1

and (φk)nk=1 can be found in Appendix B.

Now, we are ready to state our main result regarding the en-
tropic unbalanced IGW between two unbalanced Gaussian
distributions.
Theorem 4.2 (Entropic unbalanced IGW has a closed
form). Let µ and ν be two unbalanced Gaussian distribu-
tions given in equation (8). Then, the entropic unbalanced
IGW between µ and ν can be computed as follows:

UIGWε,τ (µ, ν) = m2
π∗Υ

∗ + εKL(m2
π∗‖m2

µm
2
ν)

+ τ
{

KL(m2
π∗‖m2

µ) + KL(m2
π∗‖m2

ν)
}
, (10)

where

mπ∗ := (mµmν)
τ+ε
2τ+ε exp

{ −Υ∗

2(2τ + ε)

}
,

Υ∗ :=

n∑
k=1

gε,τ,+(ϕk, φk;λµ,k, λν,k)

+

m∑
k=n+1

hε,τ (ϕk;λµ,k).

Furthermore, an optimal transportation plan is an unbal-
anced Gaussian measure π∗ = mπ∗N (0,Σπ∗), where

Σπ∗ =

 Σ∗x K∗xy

(K∗xy)> Σ∗y

 ,

in which Σ∗x = diag
(
ϕk
)m
k=1

, Σ∗y = diag
(
φk
)n
k=1

, and
K∗xy = diag

(
ψk
)n
k=1

is an m× n matrix with

ψk :=
{[

1− ε

2ϕkφk

]+
ϕkφk

} 1
2

,

for all k ∈ [n].
Remark 4.3. Similar to IGWε(µ, ν), equation (10) shows
that UIGWε(µ, ν) still depends on the eigenvalues of the
covariance matrices of µ and ν via the quantity Υ∗, the
detailed calculation of which is deferred to Appendix B. In
addition, as µ and ν are assumed to be unbalanced in this
case, the masses of these two measures are also included in
the closed-form of UIGWε(µ, ν).

Proof Sketch of Theorem 4.2. The full proof of this theo-
rem can be found in Appendix A.6. Recall that feasible
transport plans π in the problem (4) are not necessarily
probability measures. Therefore, we aim to optimize over
the shape π̄ and the masses mπ of π. To do so, we separate
those two factors in the objective function (4) as follows:

m2
πΥ + εKL(m2

π‖m2
µm

2
ν)

+ τ
{

KL(m2
π‖m2

µ) + KL(m2
π‖m2

ν)
}
, (11)

where

Υ := Eπ̄⊗π̄
[
〈X,X ′〉 − 〈Y, Y ′〉

]2
+ 2εKL(π̄‖µ̄⊗ ν̄)

+ 2(ε+ τ)
{

KL(π̄x‖µ̄) + KL(π̄y‖ν̄)
}
. (12)

Shape optimization. In a similar fashion to the proof of
Theorem 3.1, we show that the sum of the expectation and
entropic terms in equation (12) depend only the covariance
matrix Σπ of π as below:

‖λx‖22 + ‖λy‖22−2

n∑
k=1

(
λx,kλy,k −

ε

2

)+

+ ε

n∑
k=1

[
log(λx,kλy,k)− log

ε

2

]+
,
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where λx, λy, λµ and λν are defined as in Lemma 4.1.
Putting this result together with parts (a) and (b) of
Lemma 4.1, the problem (12) is reduced to

min
λx,λy>0

{ n∑
k=1

gε,τ,+(λx,k, λy,k;λµ,k, λν,k)

+

m∑
k=n+1

hε,τ (λx,k;λµ,k)
}
.

Finally, Lemma C.4 (in Appendix C) allows us to optimize
each summation term in the above problem independently
but still preserving the decreasing order of eigenvalue se-
quences (λx,k)nk=1. Eventually, we obtain the optimal value
Υ∗, which will be calculated in detail in Appendix B.

Mass optimization. Based on the equation (11), the op-
timal mass mπ∗ is the square root of the minimizer of the
function

f(x) := xΥ∗+εKL(x‖m2
µm

2
ν)

+ τ
{

KL(x‖m2
µ) + KL(x‖m2

ν)
}
,

which is obtained by solving the equation f ′(x) = 0.

5. (Entropic) Gromov-Wasserstein
Barycenter of Gaussian Distributions

In this section, we consider the problem of computing the
(entropic) Gromov-Wasserstein barycenter of T Gaussian
measures µ1, . . . , µT defined in spaces of various dimen-
sions. To tackle this problem, we need to fix the desired
dimension of a barycenter, e.g, d, and choose beforehand
the positive weighting coefficients α1, . . . , αT such that∑T
`=1 α` = 1 associated with the measures µ1, . . . , µT .

Here we allow the dimension of the barycenter to be flexi-
ble, since the given Gaussian measures could be in different
dimensional spaces. Then, the barycenter of T positive mea-
sures under the inner-product Gromov-Wasserstein distance
is defined as follows:
Definition 5.1 (Inner product Gromov-Wasserstein
barycenter). Let µ` be a positive measure in Rm` for any
` ∈ [T ]. Let α1, . . . , αT be positive constants such that∑T
`=1 α` = 1. The inner product Gromov-Wasserstein

(IGW) barycenter of {µ`, α`}T`=1 is defined as the proba-
bility distribution of the random vector Y in Rd which is a
solution of the following problem

arg min
X`∼µ`; dim(Y )=d;
(X`,Y ),(X′`,Y )∼π`,y

T∑
`=1

α`Eπ`,y⊗π`,y
{[
〈X`, X

′
`〉 − 〈Y, Y ′〉

]2}
,

(13)

where in the above minimum, (X`, Y ) and (X ′`, Y
′) are i.i.d

random vectors for each ` = 1, . . . , T .

Based on this definition, the following theorem provides a
closed-form expression for the IGW barycenter of T Gaus-
sian measures.
Theorem 5.2 (Inner product Gromov-Wasserstein
barycenter has a closed form). Let µ` = N (0,Σ`) be
Gaussian distribution in Rm` for all ` ∈ [T ], where Σ` =
diag

(
λ`,i
)m`
i=1

is an m` ×m` positive definite matrix. Let d
be a positive integer and assume that d ≤ max`∈[T ]m`, the
IGW barycenter of the formulation (13) admits a Gaussian
solution: µ∗ = N (0,Σµ∗), where

Σµ∗ = diag
(
λµ∗,j

)d
j=1

,

in which λµ∗,j =
∑T
`=1 α`λ`,j1j≤m` for all j ∈ [d].

The proof of Theorem 5.2 can be found in Appendix A.7.
Subsequently, we define the formulation of the barycenter
of positive measures using the entropic IGW.
Definition 5.3 (Entropic inner product Gromov-Wasser-
stein barycenter). Let µ` be a positive measure in Rm`
for any ` ∈ [T ]. Let α1, . . . , αT be positive constants such
that

∑T
`=1 α` = 1. The entropic inner-product Gromov-

Wasserstein barycenter of {µ`, α`}T`=1 is defined as the prob-
ability distribution of the random vector Y in Rd which is a
solution of the following problem

arg min
X`∼µ`;Y ∈Rd;Y∼µ;
(X`,Y ),(X′`,Y )∼π`,y

T∑
`=1

α`

{
Eπ`,y⊗π`,y

[
〈X`, X

′
`〉 − 〈Y, Y ′〉

]2
+ εKL(π`,y‖µ` ⊗ µ)

}
, (14)

where in the above minimum, {X ′`} and {X`} are i.i.d.
random vectors and Y and Y ′ are i.i.d. random vectors.

From that definition, we have the following result for the
entropic IGW barycenter of T Gaussian distributions.
Theorem 5.4 (Entropic inner product Gromov-Wasser-
stein barycenter has a closed form). Let µ` = N (0,Σ`)
be Gaussian distribution in Rm` for all ` ∈ [T ], where
Σ` = diag

(
λ`,i
)m`
i=1

is an m` × m` positive definite ma-
trix. Let d be a positive integer such that d ≤ max`∈[T ]m`.
Define d` = min{d,m`}. Let ε be a positive constant satis-
fying

ε ≤ 2λ`,j
{
Aj + (A2

j − εBj)
1
2

}
, (15)

and A2
j ≥ εBj for any ` ∈ [T ] and j ∈ [d], where

Aj =
∑T
`=1 α`λ`,j1j≤d` and Bj =

∑T
`=1 α`1j≤d` . Then,

the barycenter of the formulation (14) admits a Gaussian
solution which has the form: µ∗ = N (0,Σµ∗), in which
Σµ∗ = diag(λµ∗,j)

d
j=1 with

λµ∗,j =

T∑
`=1

α`λ`,j1j≤d`

{
1− ε

λ`,j
[
Aj + (A2

j − εBj)
1
2

]} .
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The proof of Theorem 5.4 is in Appendix A.8.
Remark 5.5. In the above theorem, we need a set of con-
ditions for ε that could be satisfied when ε is small, which
is often chosen in practice. When ε is not small, then the
readers could follow the guideline in Lemma C.5 in Ap-
pendix C to find the covariance matrix Σµ∗ . The proof of
Theorem 5.4 needs the below lemma to show the existence
of a Gaussian minimizer.

Lemma 5.6. Let QX = N (γx,Σx) be a Gaussian distribu-
tion in Rm and PY be a probability distribution with mean
γy ∈ Rn and covariance matrix Σy . Denote by Π(QX , PY )
the family of all probability distributions in Rm+n which
have marginal distributions QX and PY , and covariance

matrix ΣX,Y =

Σx Σxy

Σ>xy Σy

. Here, Σx and Σy are non-

degenerate covariance matrices of size m×m and n× n,
respectively. Then,

N
(
[γx, γy]>,ΣX,Y

)
∈ arg min
PX,Y ∈Π(QX ,PY )

KL
(
PX,Y ‖QX ⊗ PY

)
.

The proof of Lemma 5.6 is in Appendix A.9.

6. Empirical Studies
In this section, we will use the derived closed-forms to
inspect the behavior of algorithms solving entropic Gromov-
Wasserstein problem, in particular those studied in (Peyré
et al., 2016). We use the implementation of these al-
gorithms in Python Optimal Transport library (Flamary
& Courty, 2017). The implementation is available at
https://github.com/lntk/egw_gaussians.

Projected mirror descent for IGWε (Figure 1). The al-
gorithm in (Peyré et al., 2016) reads

C(t) = −DaP
(t)Db

P (t+1) = min
P∈Π(a,b)

〈P,C(t)〉 − εH(P ),

in which Da, Db correspond to inner product cost matrices
on supports of µN and νN , Π(a,b) is the set of discrete
couplings {P ∈ RN×N : P1N = a, P>1N = b}, and
〈P,C(t)〉 =

∑
i,j∈[N ] PijC

(t)
ij . Here, we set m = 2, n = 3

and sample N (between 10 and 2000) data points from
N (02,Σµ) and N (03,Σν), in which Σµ and Σν are diago-
nal matrices whose diagonal values are uniformly sampled
from the interval [0, 2]. The regularization parameter ε is
chosen from {0.5, 1, 5}. We plot means and one standard-
deviation areas over 20 independent runs for each N . As ex-
pected, with more samples we can approximate IGWε more
accurately. However, since this algorithm only converges
to a stationary point, there might still be a gap between the
converged value and the optimal value.

0 500 1000 1500 2000
2

3

4

5

6
empirical
true
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Figure 1. Empirical convergence for (Peyré et al., 2016) in com-
puting IGWε. From left to right: ε = 0.5, ε = 1 and ε = 5.
The red dashed lines correspond to the theoretical optimal values
from Theorem 3.1, while the blue lines and shaded regions are the
means and standard variations of the objective values computed
according to (Peyré et al., 2016), respectively.
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Figure 2. Empirical convergence for (Séjourné et al., 2021) in com-
puting UIGWε,τ . From left to right: ε = 0.5, ε = 1 and ε = 5
while τ is fixed to 1. The red dashed lines correspond to the the-
oretical optimal values from Theorem 4.2, while the blue lines
and shaded regions are the means and standard variations of the
objective values computed according to (Séjourné et al., 2021),
respectively.

Alternating minimization for UIGWε,τ (Figure 2).
Next, we use the closed-form for the unbalanced formu-
lation (see Theorem 4.2) to demonstrate the convergence
of a recently proposed algorithm (Séjourné et al., 2021, Al-
gorithm 1), solving a bi-convex relaxation of the problem
(4), which is tight for negative semi-definite kernels and the
mass balance between two measures (Séjourné et al., 2021,
Theorem 4). Thus, we will only consider two measures of
the same mass in this section, and the setting is essentially
the same as the previous section as follows: m = 2, n = 3
and we sample N (between 10 and 2000) data points from
N (02,Σµ) and N (03,Σν), in which Σµ and Σν are diago-
nal matrices whose diagonal values are uniformly samples
from the interval [0, 2]. The regularization parameter ε is
chosen from {0.5, 1, 5} and τ is set to 1. We plot means
and one standard-deviation areas over 20 independent runs
for each N . The observed behavior is also similar to what
we saw previously: the approximation quality for UIGWε,τ

increases with more samples.

Visualizing optimal transportation plans of for n =
m = 1 (Figure 3). Now we take a look at the trans-

https://github.com/lntk/egw_gaussians
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Figure 3. Empirical transportation plans between 1-dimensional
Gaussians N (0, 2) and N (0, 10). From left to right: ε = 0.1, ε =
1, ε = 20, ε = 40, ε = 80, ε = 100. The first rows present plans
returned by (Peyré et al., 2016) and the second row corresponds to
theoretical plans in Theorem 3.1.

portation plans computed by the above algorithm for dif-
ferent values of ε. Specifically, we create 1000-bin his-
tograms of N (0, α) and N (0, β) (which will be µN and
νN with N = 1000) in which α = 2, β = 10, and set
ε ∈ {0.1, 1, 20, 40, 80, 100} (values in this set are chosen
based on αβ). The algorithm is run till convergence (with
tolerance 10−9) and the plans are plotted in Figure 3. It
is apparent that the plans returned by the projected mirror
descent algorithm are Gaussians and resemble our theoret-
ical ones (except for the case ε = 1, but noting that when
n = m = 1, if N (0, (

α γ
γ β )) is an optimal plan for IGWε,

so is N (0, ( α −γ
−γ β )).

Alternating minimization for the barycenter problem
(Figure 4). Given T discrete measures {µ(i)

N }Ti=1, a set
of weights {αi}Ti=1, cost matrices C(i) corresponding to
measure µ(i)

N and a probability vector p, (Peyré et al., 2016)
proposes an alternating minimization scheme to find a d-
dimensional barycenter µ of {µ(i)

N }Ti=1 with probability
mass p, i.e., finding the cost matrix C on the support of
this barycenter. In our case of inner product metric, C is a
Gram matrix, and we can recover the supports of µ via the
Cholesky decomposition C = LL> where L ∈ RN×N and
choosing the first d columns of L. In our setting, for i ∈ [T ],
we choose µ(i)

N =
∑N
j=1

1
N δXj where Xj ∼ N (0,Σ(i)),

C
(i)
kl = 〈Xk, Xl〉 for k, l ∈ [N ] and p = 1N/N . Specif-

ically, we consider N = 1000, T = 3,Σ(1) = 5,Σ(2) =
diag(10, 1),Σ(3) = diag(2, 1, 1), α = (0.3, 0.6, 0.1) and
d = 2. The regularization parameter ε is set to 0.1, which
satisfies all the constraints in Theorem 5.4. After finding N
support points for µ by the discussed method, we compute
the sample covariance matrix Σ̂, perform orthogonal diago-
nalization, and apply the corresponding transformation to
the support. We then compute its sample mean and sample
covariance matrix, and compare the Gaussian with these
statistics with our theoretical optimal plan (see Figure 4). It
is worth noting that any orthogonally-transformed version
of the found barycenter is also a barycenter of {µ(i)

N }Ti=1

Figure 4. Visualizing the barycenter. The blue points correspond to
one possible set of support for the computed barycenter by (Peyré
et al., 2016) (see discussion). The blue contours are the rotated
version of the Gaussian fitted to this support set (for comparison).
The red contours represent the theoretical barycenter whose form
is presented in Theorem 5.4.

under the Gromov-Wasserstein setting.

7. Conclusion
In this paper, we provide a comprehensive study of the
entropic (unbalanced) inner product Gromov-Wasserstein
(IGW) between (unbalanced) Gaussian distributions. We
demonstrate that the optimal transportation plan is (unbal-
anced) Gaussian distribution. Based on that result and a
novel application of von Neumann’s trace inequality, we
derive the closed-form expression for the entropic (un-
balanced) IGW between these distributions. Finally, we
also consider the (entropic) Gromov-Wasserstein barycenter
problem of multiple Gaussian measures. We prove that the
barycenter problem admits a Gaussian minimizer and obtain
the closed-form expression for the covariance matrix of the
barycenter when the entropic regularization parameter is
small.
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Supplementary Materials for “Entropic Gromov-Wasserstein between
Gaussian Distributions”

In this supplement, we first provide proofs of remaining lemmas and theorems in Appendix A. Then, we present how to
derive a closed-form formulation for Υ∗ in Theorem 4.2 in Appendix B. Auxiliary results are presented in Appendix C while
another proof of Lemma C.4 is in Appendix D. We highlight the issue of obtaining closed-form expression for entropic
inner product Gromov-Wasserstein between non-zero means Gaussian distributions in Appendix E. Finally, we revisit the
entropic optimal transport between (unbalanced) Gaussian distributions in Appendix F and provide a simpler proof than that
in (Janati et al., 2020) to derive the closed-form expression for that problem.

A. Proofs of remaining results
This appendix is devoted to provide the proofs of lemmas and theorems presented in the paper.

A.1. Proof of Lemma 2.3

Firstly, note that when π′ ∈ Π(Tm#µ, Tn#ν), there exists π ∈ Π(µ, ν) such that (Tm, Tn)#π = π′. Therefore, we have

Eπ′⊗π′ [〈X,X ′〉 − 〈Y, Y ′〉]2 = E(Tm,Tn)#π⊗(Tm,Tn)#π[〈TmX,TmX ′〉 − 〈TnY, TnY ′〉]2

= Eπ⊗π[〈X,X ′〉 − 〈Y, Y ′〉]2. (16)

Next, we will show that π is absolutely continuous w.r.t µ⊗ν if and only if π′ is absolutely continuous w.r.t (Tm#µ⊗Tn#ν).
Assume that π is absolutely continuous w.r.t µ⊗ ν. Consider two arbitrary Borel set U, V such that

(Tm#µ)(U)× (Tn#ν)(V ) = 0,

which is equivalent to µ(T−1
m (U))× ν(T−1

n (V )) = 0. Since π is dominated by µ⊗ ν, we have π(T−1
m (U), T−1

n (V )) = 0,
or equivalently,

π′(U, V ) = [(Tm, Tn)#π](U, V ) = 0.

Thus, the first part of the above statement is proved, and the second part is obtained similarly. It follows that the KL terms
used below are well defined.

Notice that dπ′(x, y) = dπ(T−1
m (x), T−1

n (y)), d(Tm#µ)(x) = dµ(T−1
m (x)) and d(Tn#ν)(y) = dν(T−1

n (y)). Therefore,
by changing of variables x 7→ Tm(u) and y 7→ Tn(v), we get

KL(π′‖(Tm#µ)⊗ (Tn#ν)) (17)

=

∫
log

(
dπ′(x, y)

d(Tm#µ)(x)d(Tn#ν)(y)

)
dπ′(x, y)

=

∫
log

(
dπ′(Tm(u), Tn(v)))

d(Tm#µ)(Tm(u))d(Tn#ν)(Tn(v))

)
|det(T ′m(u))det(T ′n(v))|dπ′(Tm(u), Tn(v))

=

∫
log

(
dπ(u, v)

dµ(u)dν(v)

)
dπ(u, v)

= KL(π‖µ⊗ ν), (18)

with a note that |det(T ′m(u)| = |det(Om)| = 1 and |det(T ′n(v))| = |det(On)| = 1 since Om and On are orthogonal
matrices. Putting the results in equations (16) and (18) together, we obtain the conclusion.

A.2. Proof of Theorem 3.1

Firstly, we will show that

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
= tr(Σ2

µ) + tr(Σ2
ν)− 2 tr

(
K>µνKµν

)
. (19)
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Indeed, we have

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
= Eπ⊗π〈X,X ′〉2 + Eπ⊗π〈Y, Y ′〉2 − 2Eπ⊗π〈X,X ′〉〈Y, Y ′〉.

As π is a coupling of two zero-mean distributions µ and ν, π also has mean zero. Combining this result with the independence
between X and X ′ and Y and Y ′ leads to

Eπ⊗π〈X,X ′〉2 = tr(Σ2
µ) and Eπ⊗π〈Y, Y ′〉2 = tr(Σ2

ν).

Meanwhile, we have

Eπ⊗π[〈X,X ′〉〈Y, Y ′〉] = Eπ⊗π
[ m∑
i=1

n∑
j=1

XiX
′
iYjY

′
j

]
=

m∑
i=1

n∑
j=1

Eπ⊗π[XiYj ]Eπ[X ′iY
′
j ] = tr

(
K>µνKµν

)
.

Putting the above results together, we obtain the desired equality (19). It indicates that we can rewrite the formulation of
IGWε(µ, ν) as follows:

IGWε(µ, ν) = tr(Σ2
µ) + tr(Σ2

ν) + min
π∈Π(µ,ν)

{
εKL(π‖µ⊗ ν)− 2 tr

(
K>µνKµν

)}
. (20)

To solve the minimization problem (20), we firstly fix the matrix Kµν , therefore, the covariance matrix of π is also fixed
due to equation (5). By Lemma 3.3, the optimal transport plan of this problem needs to be a Gaussian distribution. Thus,
according to Lemma C.3 in Appendix C and part (b) of Lemma 3.4, the entropic term in the objective function reads

εKL(π‖µ⊗ ν) =
1

2
ε
{

tr
(
ΣπΣ−1

µ⊗ν
)
− (m+ n) + log

(det(Σµ⊗ν)

det(Σπ)

)}
= −ε

2

n∑
i=1

log(1− κµν,i),

where ([κµν,i]
1
2 )ni=1 are singular values (in descending order) of matrix Σ

− 1
2

µ KµνΣ
− 1

2
ν . By applying part (c) of Lemma 3.4,

the optimal value of the term tr
(
K>µνKµν

)
is achieved at Kµν = Σ

1
2
µdiag([κµν,k]

1
2 )nk=1Σ

1
2
ν . Therefore, the optimization

problem (20) reduces to

IGWε(µ, ν) = tr(Σ2
µ) + tr(Σ2

ν)− max
κµν,k∈[0,1)

{
2

n∑
k=1

λµ,kλν,kκµν,k +
ε

2

n∑
k=1

log(1− κµν,k)
}
.

The function f(x) = ax+ ε
4 log(1− x) for a > 0 determined in the interval [0, 1) attains its maximum at x =

[
1− ε

4a

]+
.

Thus, κ∗µν,k =
[
1− ε

4λµ,kλν,k

]+
for all k ∈ [n], and

IGWε(µ, ν) = tr(Σ2
µ) + tr(Σ2

ν)− 2

n∑
k=1

(
λµ,kλν,k −

ε

4

)+

+
ε

2

n∑
k=1

[
log(λµ,kλν,k)− log

(ε
4

)]+
.

Additionally, we have

K∗µν = diag
({
λµ,kλν,k

[
1− ε

4λµ,kλν,k

]+} 1
2
)n
k=1

.

As a consequence, the proof is completed.

When Σµ and Σν are not diagonal: The value of IGWε(µ, ν) still remains according to Lemma 2.3 but the optimal
transport plan does not. More specifically, the equality conditions mentioned in part (c) of Lemma 3.4 will be no longer
valid. Instead, let Pµ, Dµ and Pν , Dν are the orthogonal diagonalizations of Σµ(= PµDµP

>
µ ) and Σν(= PνDνP

>
ν ),
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respectively. By using the same approach as in Lemma 3.4, let UµνΛ
1
2
µνV >µν be the SVD of matrix Σ

− 1
2

µ KµνΣ
− 1

2
ν where

Λ
1
2
µν = diag([κµν,k]

1
2 )nk=1, we have Kµν = Σ

1
2
µUµνΛ

1
2
µνV >µνΣ

1
2
ν . Therefore,

tr(K>µνKµν) = tr
(
Σ

1
2
ν Vµν(Λ

1
2
µν)>U>µνΣµUµνΛ

1
2
µνV

>
µνΣ

1
2
ν

)
= tr

(
Vµν(Λ

1
2
µν)>U>µνΣµUµνΛ

1
2
µνV

>
µνΣν

)
= tr

(
Vµν(Λ

1
2
µν)>U>µνPµDµP

>
µ UµνΛ

1
2
µνV

>
µνPνDνP

>
ν

)
= tr

(
[P>ν Vµν(Λ

1
2
µν)>][U>µνPµDµ][P>µ UµνΛ

1
2
µν ][V >µνPνDν ]

)
≤

n∑
i=1

λµ,iλν,iκµν,i.

The equality occurs when Uµν = Pµ and Vµν = Pν . Hence, the covariance matrix K∗µν in this case turns into

K∗,new
µν = Σ

1
2
µPµΛ

1
2
µνP

>
ν Σ

1
2
ν = PµD

1
2
µΛ

1
2
µνD

1
2
ν Pν = PµK

∗
µνP

>
ν .

A.3. Proof of Lemma 3.3

Let qv and pu be the probability density functions of distributions Qv and Pu, respectively, whereas qu be the probability
density function of the Gaussian distribution Qu in Rd which has mean u and covariance matrix Σu. Then, we have

KL(Pu‖Qv) =

∫
Rd
pu log

pu
qv

dx =

∫
Rd
pu log

pu
qu

dx+

∫
Rd
pu log

qu
qv

dx

= KL(Pu‖Qu) +

∫
Rd
pu log

qu
qv

dx

≥
∫
Rd
pu log

qu
qv

dx.

The equality happens when Pu = Qu. Now we prove the lower bound is constant.

Note that∫
x

pu log qv = Epu
[

log(qv)
]

= Epu
[
− 1

2
log
[
(2π)ddet(Σv)

]
− 1

2
(x− v)>Σ−1

v (x− v)
)]

= −1

2
Epu

[
(x− v)>Σ−1

v (x− v)
]

+ const

= −1

2
Epu

[
(x− u+ u− v)>Σ−1

v (x− u+ u− v)
]

+ const

= −1

2
Epu

[
(x− u)>Σ−1

v (x− u) + 2(x− u)>Σ−1
v (u− v) + (u− v)>Σ−1

v (u− v)
]

+ const

= −1

2
Epu

[
(x− u)>Σ−1

v (x− u)
]

+ const

= −1

2
Epu

[
(x− u)>Σ

− 1
2

v Σ
− 1

2
v (x− u)

]
+ const

= −1

2
Epu

[
tr
(
Σ
− 1

2
v (x− u)(x− u)>Σ

− 1
2

v

)]
+ const

= −1

2
tr
(
Σ
− 1

2
v ΣuΣ

− 1
2

v

)
+ const. (21)

Similarly, we have Epu
[

log(qu)
]

is a constant. Hence, the proof is completed.
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A.4. Proof of Lemma 3.4

(a) We start with decomposing the matrix Kµν as Kµν = Σ
1
2
µUµνΛ

1
2
µνV >µνΣ

1
2
ν . It follows from the fact Σπ is non-negative

definite that

Σν � K>µνΣ−1
µ Kµν

⇔ Σν � Σ
1
2
ν Vµν(Λ

1
2
µν)>U>µνUµνΛ

1
2
µνV

>
µνΣ

1
2
ν

⇔ Σν � Σ
1
2
ν VµνΛµνV

>
µνΣ

1
2
ν

⇔ Idn � VµνΛµνV
>
µν ,

where Λµν = diag
(
κµν,k

)n
k=1

is an n× n matrix. Since Vµν is an unitary matrix, all eigenvalues of matrix Λµν , which are
(κµν,k)nk=1, belong to the interval [0, 1].

(b) By the definition of matrix Σπ , we have

det(Σπ) = det(Σµ)det
(
Σν −K>µνΣ−1

µ Kµν

)
= det(Σµ)det(Σν)det

(
Idn−VµνΛµνV

>
µν

)
= det(Σµ)det(Σν)

n∏
k=1

(1− κµν,k).

The third equality results from the fact that all eigenvalues of matrix Idn−VµνΛµνV
>
µν are 1− κµν,k for k ∈ [n].

(c) Using the decomposition of matrix Kµν in part (a), tr
(
K>µνKµν

)
can be rewritten as

tr
(
Σ

1
2
ν Vµν(Λ

1
2
µν)>U>µνΣµUµνΛ

1
2
µνV

>
µνΣ

1
2
ν

)
= tr

([
Vµν(Λ

1
2
µν)>

][
U>µνΣµ

][
UµνΛ

1
2
µν

][
V >µνΣν

])
.

Applying the generalization of the von Neumann’s inequality (Kristof, 1969; Horn & Johnson, 1991) for singular values
with a note that the equality happens when Uµν and V >µν are identity matrices, we obtain

tr
(
K>µνKµν

)
≤

n∑
i=1

λµ,iλν,iκµν,i.

Hence, we obtain the conclusion of this lemma. It is worth noting that the equality for the above inequality can also occur in
other cases, for example, when Uµν = Idm, Vµν = − Idn or when Uµν = − Idm, Vµν = Idn.

A.5. Proof of Lemma 4.1

By the formula for KL divergence between Gaussians in Lemma C.3 in Appendix C and applying the von Neumann’s trace
inequality (Kristof, 1969; Horn & Johnson, 1991), we have

KL(πx‖µ) =
1

2

{
tr
(
ΣxΣ−1

µ

)
−m+ log

(det(Σµ)

det(Σx)

)}
≥ 1

2

m∑
i=1

{
λx,i
λµ,i
− log

(λx,i
λµ,i

)
− 1

}
.

Similarly, we find that

KL(πy‖ν) ≥ 1

2

n∑
j=1

{
λy,j
λν,j

− log
(λy,j
λν,j

)
− 1

}
.
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For the last equality, KL(π‖µ⊗ ν) is equal to

1

2

{
tr
(
ΣπΣ−1

µ⊗ν
)
− (m+ n)− log

( det(Σπ)

det(Σµ⊗ν)

)}
=

1

2

{
tr
(
ΣxΣ−1

µ

)
+ tr

(
ΣyΣ−1

ν

)
− (m+ n)− log

(det(Σx)det(Σy)

det(Σµ)det(Σν)

)
−

n∑
k=1

log(1− κxy,k)
}

= KL(πx‖µ) + KL(πy‖ν)− 1

2

n∑
k=1

log(1− κxy,k).

The first equality results from the form of the matrix Σµ⊗ν =

 Σµ 0m×n

0n×m Σν

.

A.6. Proof of Theorem 4.2

For the sake of computing, we will firstly show that all quadratic KL terms in the objective function (4) can be transformed
to their normal versions as follows:

KL⊗(πx‖µ) = 2m2
πKL(π̄x‖µ̄) + KL(m2

π‖m2
µ), (22)

KL⊗(πy‖ν) = 2m2
πKL(π̄y‖ν̄) + KL(m2

π‖m2
ν), (23)

KL⊗(π‖µ⊗ ν) = 2m2
πKL(π̄‖µ⊗ ν) + KL

(
m2
π‖m2

µm
2
ν

)
. (24)

By applying parts (ii) and (i) of Lemma C.1 in that order, we get the equation (22)

KL⊗(πx‖µ) = KL⊗(mππ̄x‖mµµ̄)

= m2
πKL⊗(π̄x‖µ̄) +m2

π log

(
m2
π

m2
µ

)
+ (m2

µ −m2
π)

= 2m2
πKL(π̄x‖µ̄) + KL(m2

π‖m2
µ).

The equations (23) and (24) are obtained similarly. As a result, the objective function in equation (4) can be rewritten as

m2
πEπ̄⊗π̄

{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
+ ε
{

2m2
πKL(π̄‖µ⊗ ν) + KL

(
m2
π‖m2

µm
2
ν

)}
+ τ
{

2m2
πKL(π̄x‖µ̄) + KL(m2

π‖m2
µ) + 2m2

πKL(π̄y‖ν̄) + KL(m2
π‖m2

ν)
}

=m2
πΥ + εKL(m2

π‖m2
µm

2
ν) + τ

{
KL(m2

π‖m2
µ) + KL(m2

π‖m2
ν)
}
, (25)

in which Υ is defined as

Υ := Eπ̄⊗π̄
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
+ 2εKL(π̄‖µ̄⊗ ν̄) + 2τ

{
KL(π̄x‖µ̄) + KL(π̄y‖ν̄)

}
. (26)

Now, we will divide the rest of the proof into two parts: shape optimization and mass optimization.

Shape optimization. The problem of interest now is minπ̄ Υ. We will first prove that the optimal shape π̄ is a zero-mean
Gaussian measure. Denote by (u, v) and Σπ the mean vector and covariance matrix of π̄ where u ∈ Rm and v ∈ Rn. Let
Z = X − u, Z ′ = X ′ − u and T = Y − v, T ′ = Y ′ − v. According to Lemma C.7, we have

Eπ̄⊗π̄
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
=Eπ̄⊗π̄

{[
〈Z,Z ′〉 − 〈T, T ′〉

]2}
+ 2u>Σxu− 4u>Σxyv + 2v>Σyv +

[
‖u‖2 − ‖v‖2

]2
= tr(Σ2

x) + tr(Σ2
y)− 2 tr(K>xyKxy) + 2u>Σxu− 4u>Σxyv + 2v>Σyv +

[
‖u‖2 − ‖v‖2

]2
.
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The second equality is obtained by using the same arguments for deriving equation (19). Let us fix the covariance matrix
and mean vector of π̄, therefore, the value of the expectation term in equation (26) is also fixed. Then, Lemma 3.3 indicates
that π̄ needs to be a Gaussian measure. while Lemma C.3 forces its mean to be zero.

Consequently, the problem minπ̄ Υ is reduced to

Υ∗ := min
Σπ

{
tr(Σ2

x) + tr(Σ2
y)− 2 tr(K>xyKxy) + 2εKL(π̄‖µ̄⊗ ν̄) + 2τKL(π̄x‖µ̄) + 2τKL(π̄y‖ν̄)

}
(27)

Using the same arguments as in Theorem 3.1, we obtain that the minimum value of

tr(Σ2
x) + tr(Σ2

y)− 2 tr(K>xyKxy) + 2εKL(π̄‖µ̄⊗ ν̄)

is equal to

‖λx‖22 + ‖λy‖22 − 2

n∑
k=1

(
λx,kλy,k −

ε

2

)+

+ ε

n∑
k=1

[
log(λx,kλy,k)− log

ε

2

]+
.

Combining this result with parts (a) and (b) of Lemma 4.1 implies that the problem (27) is equivalent to

Υ∗ = min
λx,λy>0

{ n∑
k=1

gε,τ,+(λx,k, λy,k;λµ,k, λν,k) +

m∑
k=n+1

hε,τ (λx,k;λµ,k)
}
,

with note that (λx,k)mk=1 and (λy,k)nk=1 are decreasing sequences. By Lemma C.4, each summation term of the above
problem can be optimized independently but still preserving the order of (λx,k)nk=1 as follows:

Υ∗ =

n∑
k=1

min
λx,k,λy,k>0

gε,τ,+
(
λx,k, λy,k;λµ,i, λν,j

)
+

m∑
k=n+1

min
λx,k>0

hε,τ
(
λx,k, λµ,k

)
.

A detailed calculation of Υ∗ is deferred to Appendix B.

Mass optimization. Finally, based on equation (25), the optimal mass is obtained by taking the square root of the
minimizer of the following problem:

m2
π∗ = arg min

x>0
f(x) := Υ∗x+ εKL(x‖m2

µm
2
ν) + τKL(x‖m2

µ) + τKL(x‖m2
ν).

By part (c) of Lemma C.6, we obtain mπ∗ = (x∗)
1
2 = (mµmν)

τ+ε
2τ+ε exp

{
−Υ∗

2(2τ+ε)

}
. Hence, the proof is completed.

A.7. Proof of Theorem 5.2

Firstly, let K`y be the covariance matrix between X` and Y while v and Σy be the mean and covariance matrix of Y ,
respectively. By Lemma C.7, the objective function in equation (13) is rewritten as

T∑
`=1

α`Eπ`,y⊗π`,y
{[
〈X`, X

′
`〉 − 〈Y, Y ′〉

]2}
=

T∑
`=1

α`

{
Eπ`,y⊗π`,y

[
〈X`, X

′
`〉 − 〈Y − v, Y ′ − v〉

]2
+ 2v>Σyv + ‖v‖4

}
.

As Σy is a positive definite matrix, we have 2v>Σyv + ‖v‖4 > 0 when v 6= 0d. Therefore, the barycenter µ∗ must have
mean zero. Next, we denote by λ`,i and λy,i the ith largest eigenvalues of Σ` and Σy, respectively. By using the same
arguments for deriving equation (19), we get

T∑
`=1

α`Eπ`,y⊗π`,y
{[
〈X`, X

′
`〉 − 〈Y, Y ′〉

]2}
=

T∑
`=1

α`

{ d∑
i=1

λ2
y,i − 2 tr

(
K>`yK`y

)
+

m∑̀
j=1

λ2
`,j

}
.

According to parts (a) and (c) of Lemma 3.4, we have

tr(K>`yK`y) ≤
min{d,m`}∑

j=1

λy,jλ`,j ,
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where the equality happens when (X`)j =
√
λ`,jZj and Yj =

√
λy,jZj with (Zj)j are i.i.d. standard normal random

variables. Thus, the problem now is reduced to minimize

T∑
`=1

α`

{ d∑
j=1

λ2
y,j − 2

min{d,m`}∑
j=1

λy,jλ`,j

}
=

d∑
j=1

{
λ2
y,j − 2λy,j

T∑
`=1

α`λ`,j1j≤m`

}
.

This quantity has a quadratic form, so it attains its minimum at

λy,j =

T∑
`=1

α`λ`,j1j≤m` ; j ∈ [d].

Hence, we obtain the conclusion of the theorem.

A.8. Proof of Theorem 5.4

Firstly, we will show that the barycenter µ∗ has mean zero. Let K`y be the covariance matrix between X` and Y while v
and Σy be the mean and covariance matrix of Y , respectively. By Lemma C.7, the objective function in equation (14) can be
rewritten as

T∑
`=1

α`

{
Eπ`,y⊗π`,y

[
〈X`, X

′
`〉 − 〈Y, Y ′〉

]2
+ εKL(π`,y‖µ` ⊗ µ)

}
=

T∑
`=1

α`

{
Eπ`,y⊗π`,y

[
〈X`, X

′
`〉 − 〈Y − v, Y ′ − v〉

]2
+ 2v>Σyv + ‖v‖4

}
+ εKL(π`,y‖µ` ⊗ µ).

Note that π`,y and µ` ⊗ µ share the same mean and KL divergence is invariant to translation, which make the quantity
KL(π`,y‖µ` ⊗ µ) become independent of the mean vector of π`,y . Additionally, as Σy is a positive definite matrix, we have
2v>Σyv + ‖v‖4 > 0 when v 6= 0d. Therefore, the barycenter µ∗ must have mean zero. Moreover, according to Lemma 5.6,
there exists a Gaussian solution, says µ∗. Then, the objective function is reduced to

T∑
`=1

α`

{ d∑
i=1

λ2
y,i − 2 tr

(
K>`yK`y

)
+

m∑̀
j=1

λ2
`,j

}
+ εKL(π`,y‖µ` ⊗ µ).

Denote by Σ`,y and Σ`⊗y the covariance matrices of π`,y and µ` ⊗ µ, respectively. The entropic term in the above equation
is then equal to

ε

2

{
tr(Σ`,yΣ−1

`⊗y) + log
(det(Σ`⊗y)

det(Σ`,y)

)
− (m` + d)

}
=
ε

2
log

(
det(Σ`⊗y)

det(Σ`,y)

)
.

The problem is thus reduced to minimize

d∑
j=1

λ2
y,j − 2

T∑
`=1

α` tr
(
K>`yK`y

)
+

1

2

T∑
`=1

α`ε log

(
det(Σ`⊗y)

det(Σ`,y)

)
. (28)

Use the same approach of Lemma 3.4, let U`yΛ
1
2

`yV
>
`y be the SVD of matrix Σ

− 1
2

` K`yΣ
− 1

2
y , or equivalently,

K`y = Σ
1
2

` U`yΛ
1
2

`yV
>
`yΣ

1
2
y .

Denote by κ
1
2

`y,j the j-th largest singular value of Σ
− 1

2

` K`yΣ
− 1

2
y . Then, we find that

log

(
det(Σ`⊗y)

det(Σ`,y)

)
= −

d∑̀
j=1

log(1− κ`y,j).
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By applying the von Neumann’s trace inequality (Kristof, 1969; Horn & Johnson, 1991), we have

tr(K>`yK`y) = tr
(

Σ
1
2
y V`y(Λ

1
2

`y)>U>`yΣ`U`yΛ`yV
>
`yΣ

1
2
y

)
= tr

(
[V`y(Λ

1
2

`y)>]× [U>`yΣ`]× [U`yΛ
1
2

`y]× [V >`yΣy]
)

≤
d∑̀
j=1

λ`,jλy,jκ`y,j ,

with a note that all Λ`y , Σy and Σ` are diagonal matrices. The equality occurs when V`y and U`y are identity matrices.

Put the above results together, the problem in equation (28) is reduced to minimizing

d∑
j=1

λ2
y,j −

T∑
`=1

2α`

d∑̀
t=1

λ`,tκ`y,tλy,t −
ε

2

T∑
`=1

α`

d∑̀
t=1

log(1− κ`y,t),

or equivalently,

d∑
j=1

{
λ2
y,j − 2λy,j

T∑
`=1

α`λ`,jκ`y,j1j≤d`

}
− ε

2

T∑
`=1

α`

d∑̀
t=1

log(1− κ`y,t).

By fixing the values of κ`y,t ∈ [0, 1] for all t ∈ [d`], this quantity attains its minimum at

λy,j =

T∑
`=1

α`λ`,jκ`y,j1j≤d` , j ∈ [d].

Therefore, the problem of entropic IGW barycenter is equivalent to finding the maximum of

d∑
j=1

[ T∑
`=1

α`λ`,jκ`y,j1j≤d`

]2
+
ε

2

T∑
`=1

d∑̀
j=1

α` log(1− κ`y,j)

=

d∑
j=1

{[ T∑
`=1

α`λ`,jκ`y,j1j≤d`

]2
+
ε

2

T∑
`=1

α` log(1− κ`y,j)1j≤d`
}
.

We need to maximize each term, which is[ T∑
`=1

α`λ`,jκ`y,j1j≤d`

]2
+

T∑
`=1

ε

2
α` log(1− κ`y,j)1j≤d` ,

under the constraints that 0 ≤ κ`y,j ≤ 1, for all j ∈ [d`]. By Lemma C.5 in Appendix C, and when ε satisfying the
condition (15) for j ≤ min{d,m`}, we have

κ`y,j = 1− ε

2λ`,j

{
Aj +

√
A2
j − εBj

} ,
where Aj =

∑T
`=1 α`λ`,j1j≤d` and Bj =

∑T
`=1 α`1j≤d` . Hence, we reach the conclusion of the theorem.

A.9. Proof of Lemma 5.6

Let QX,Y = N ([γx, γy]>,ΣX,Y ) and QY = N (γy,Σy) be Gaussian distributions in Rm+n and Rn, respectively. Denote
by qX , qY , qX,Y , pY and pX,Y the probability density functions of distributions QX , QY , QX,Y , PY and PX,Y , respectively,
we need to show that

KL
(
PX,Y ‖QX ⊗ PY

)
≥ KL

(
QX,Y ‖QX ⊗QY

)
.

Expanding the KL divergence, we need to prove∫
pX,Y (x, y)

[
log pX,Y (x, y)− log qX(x)− log pY (y)

]
dxdy ≥

∫
qX,Y (x, y)

[
log qX,Y (x, y)− log qX(x)− log qY (y)

]
dxdy.
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Similar to the derivation for equation (21) in the proof Lemma 3.3 with a note that qX,Y , qX and qY are Gaussian
distributions, we have ∫

pX,Y (x, y) log qX(x)dxdy =

∫
qX,Y (x, y) log qX(x)dxdy;∫

pX,Y (x, y) log qY (y)dxdy =

∫
qX,Y (x, y) log qY (y)dxdy;∫

pX,Y (x, y) log qX,Y (x, y)dxdy =

∫
qX,Y (x, y) log qX,Y (x, y)dxdy,

since both sides are equal to the same function of the covariance matrices of PX,Y and QX,Y , which are both equal to ΣX,Y .
Hence, the inequality is equivalent to∫

pX,Y (x, y)
[

log pX,Y (x, y)− log pY (y)
]
dxdy ≥

∫
pX,Y (x, y)

[
log qX,Y (x, y)− log qY (y)

]
dxdy

⇔
∫
pX,Y (x, y) log

pX,Y (x, y)/pY (y)

qX,Y (x, y)/qY (y)
dxdy ≥ 0.

By using the formula for conditional distributions, we get

pX,Y (x, y) = pY (y)pX|Y (x|y);

qX,Y (x, y) = qY (y)qX|Y (x|y).

Then the left hand side is equal to∫
pY (y)pX|Y (x|y) log

pX|Y (x|y)

qX|Y (x|y)
dxdy =

∫
y

pY (y)
[ ∫

x

pX|Y (x|y) log
pX|Y (x|y)

qX|Y (x|y)
dx
]
dy

=

∫
y

pY (y)KL
(
PX|Y ‖QX|Y

)
dy

which is not less than zero, since the KL term is non-negative. The inequality becomes equality when PX|Y = QX|Y .

B. On detailed calculation of Υ∗

In this appendix, we discuss how to derive a closed-form formulation for Υ∗ in Theorem 4.2. It is equivalent to finding the
minimizers of functions gε,τ,+ and hε,τ in Lemma B.1 and Lemma B.4, respectively.

Lemma B.1 (Minimizer of gε,τ,+). Let

gε,τ,+(x, y; a, b) := x2 + y2 + (τ + ε)
(x
a

+
y

b
− log

(xy
ab

)
− 2
)
− 2
[
xy − ε

2

]+
+ ε
[

log(xy)− log
(ε

2

)]+
.

We define

gε,τ,−1(x, y; a, b) := x2 + y2 + (τ + ε)
[x
a

+
y

b
− log

(xy
ab

)
− 2
]
,

gε,τ,1(x, y; a, b) := x2 + y2 + (τ + ε)
[x
a

+
y

b
− log

(xy
ab

)
− 2
]
− 2(xy − ε

2
) + ε

[
log(xy)− log

(ε
2

)]
,

(x̃, ỹ) := arg min
x,y>0

gε,τ,−1(x, y; a, b),

(x̂, ŷ) := arg min
x,y>0

gε,τ,1(x, y; a, b),

(x∗, y∗) := arg min
x,y>0

gε,τ,+(x, y, ; a, b).

Then if x̃ỹ < ε
2 , then (x∗, y∗) = (x̃, ỹ) where solutions are in Lemma B.2, and if otherwise, then (x∗, y∗) = (x̂, ŷ), where

solutions are in Lemma B.3.
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Proof of Lemma B.1. By definition of functions gε,τ,1, gε,τ,−1 and gε,τ,+, we have

gε,τ,+(x, y; a, b) = gε,τ,−1(x, y; a, b)1{xy< ε
2} + gε,τ,1(x, y; a, b)1{xy≥ ε2}.

We observe that both functions gε,τ,1 and gε,τ,−1 are convex functions. Moreover, we have

gε,τ,−1(x, y; a, b)− gε,τ,1(x, y; a, b) = 2
(
xy − ε

2

)
− ε
[

log(xy)− log
(ε

2

)]
= ε
{ xy
ε/2
− 1− log

( xy
ε/2

)}
≥ 0.

It means that gε,τ,−1(x, y; a, b) ≥ gε,τ,1(x, y; a, b).

Next, we prove that ε2 cannot lie between x̂ŷ and x̃ỹ. Assume the contradictory, then the segment connecting (x̃, ỹ) to (x̂, ŷ)
cuts the hyperpole xy = ε

2 at a point with coordinates denoted by (x, y). Since gε,τ,1 is a convex function, we have

max
{
gε,τ,1(x̂, ŷ; a, b), gε,τ,1(x̃, ỹ; a, b)

}
> gε,τ,1(x, y; a, b). (29)

Moreover, we find that

gε,τ,1(x, y; a, b) ≥ gε,τ,1(x̂, ŷ; a, b)

gε,τ,1(x, y; a, b) = gε,τ,−1(x, y; a, b) ≥ gε,τ,−1(x̃, ỹ; a, b) ≥ gε,τ,1(x̃, ỹ; a, b).

It contradicts inequality (29). Thus, both x̂ŷ and x̃ỹ have to be greater or smaller than ε
2 at the same time. Given that, we

have two separate cases:

Case 1: They are both greater than ε
2 , then

gε,τ,−1(x, y; a, b) ≥ gε,τ,−1(x̃, ỹ; a, b) ≥ gε,τ,1(x̃, ỹ; a, b) ≥ gε,τ,1(x̂, ŷ; a, b).

It means that x̂ = x∗ and ŷ = y∗.

Case 2: Both of them are smaller than ε
2 . For any (x, y) such that xy ≥ ε

2 , there exists
(
x, y
)

lies in the segment connecting
(x, y) to (x̂, ŷ) such that x y = ε

2 . Since the function gε,τ,1 is convex, we find that

tgε,τ,1(x̂, ŷ; a, b) + (1− t)gε,τ,1(x, y; a, b) ≥ gε,τ,1(x, y; a, b),

where t = ‖(x̂,ŷ)−(x,y)‖2
‖(x,y)−(x̂,ŷ)‖2 . However, gε,τ,1(x̂, ŷ; a, b) ≤ gε,τ,1(x, y; a, b), which implies that

gε,τ,1(x, y; a, b) ≥ gε,τ,1(x, y; a, b) = gε,τ,−1(x, y; a, b) ≥ gε,τ,−1(x̃, ỹ; a, b).

It means that x̃ = x∗ and ỹ = y∗. As a consequence, we obtain the conclusion of the lemma.

Lemma B.2 (Minimizer of function gε,τ,−1). With a, b > 0, let

gε,τ,−1(x, y; a, b) = x2 + y2 + (τ + ε)
(x
a

+
y

b
− log(xy)− log(ab)

)
subjected to x, y > 0. Let (x̃, ỹ) = arg minx,y>0 gε,τ,−1(x, y; a, b). Then,

x̃ = −τ + ε

4a
+

1

2

√
2(τ + ε) +

(τ + ε)2

4a2
, ỹ = −τ + ε

4b
+

1

2

√
2(τ + ε) +

(τ + ε)2

4b2
.

Proof of Lemma B.2. 1. Taking the derivatives of gε,τ,−1 with respect to x and y, we get

∂gε,τ,−1

∂x
= 2x+

τ + ε

a
− τ + ε

x
,

∂gε,τ,−1

∂y
= 2y +

τ + ε

b
− τ + ε

y
.
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It follows that
∂2gε,τ,−1

∂x2
= 2 +

τ + ε

x2
,

∂2gε,τ,−1

∂x∂y
= 0,

∂2gε,τ,−1

∂y2
= 2 +

τ + ε

y2
.

The Hessian matrix of function gε,τ,−1 is positive definite, so gε,τ,−1 is a convex function.

2. Solving the equations
∂gε,τ,−1

∂x
= 0 and

∂gε,τ,−1

∂y
= 0, we have

x̃ = −τ + ε

4a
+

1

2

√
2(τ + ε) +

(τ + ε)2

4a2
, ỹ = −τ + ε

4b
+

1

2

√
2(τ + ε) +

(τ + ε)2

4b2
.

Therefore, we reach the conclusion of the lemma.

Lemma B.3 (Minimizer of function gε,τ,1). For a, b > 0, let

gε,τ,1(x, y; a, b) = x2 + y2 + ε
[

log(xy)− log
(ε

2

)]
− 2
(
xy − ε

2

)
+ (τ + ε)

[x
a

+
y

b
− log

(xy
ab

)
− 2
]
,

subjected to x, y > 0. Define (x̂, ŷ) = arg minx,y>0 gε,τ,1(x, y; a, b). Then, the value of (x̂, ŷ) is given in the following
equations.

x̂ = −τ + ε

4a
+

1

2

√
(τ + ε)2

4a2
+ 4τ

(1

2
+

1

ẑ

)
; ŷ = −τ + ε

4b
+

1

2

√
(τ + ε)2

4b2
+ 4τ

(1

2
+

1

ẑ

)
,

where ẑ is the unique positive root of the equation

τz3 +
[
8τ − (τ + ε)2

ab

]
z2 +

[
16τ − 2(τ + ε)2

(1

a
+

1

b

)2]
z − 4(τ + ε)2

(1

a
+

1

b

)2

= 0.

Proof of Lemma B.3. Taking the first derivatives of gε,τ,1 with respect to x and y , we have

∂gε,τ,1
∂x

= 2x− 2y +
τ + ε

a
− τ

x
,

∂gε,τ,1
∂y

= 2y − 2x+
τ + ε

b
− τ

y
.

It follows that
∂2gε,τ,1
∂x2

= 2 +
τ

2x2
,

∂2gε,τ,1
∂x∂y

= −2,
∂2gε,τ,1
∂y2

= 2 +
τ

y2
.

Thus, the Hessian matrix of this function is positive definite, which implies that gε,τ,1 is a convex function.

The equations of the stationary point give us

2x̂− 2ŷ +
τ + ε

a
− τ

x̂
= 0; 2ŷ − 2x̂+

τ + ε

b
− τ

ŷ
= 0.

Taking the sum of both equations leads to

τ + ε

a
+
τ + ε

b
=
τ

x̂
+
τ

ŷ
⇔ τ

(
1

x̂
+

1

ŷ
− 1

a
− 1

b

)
=
ε

a
+
ε

b
.


2(x̂− ŷ) +

τ + ε

a
=
τ

x̂

2(ŷ − x̂) +
τ + ε

b
=
τ

ŷ
.

(30)

Taking the difference between two equations in system (30), we get

(x̂− ŷ)
(

4 +
τ

x̂ŷ

)
=
τ + ε

b
− τ + ε

a
.
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Let z =
τ

x̂ŷ
, we have x̂− ŷ = (τ + ε)

1/b− 1/a

4 + z
. Take the product of two equations in system (30), we have

[
2(x̂− ŷ) +

τ + ε

a

][
2(ŷ − x̂) +

τ + ε

b

]
=
τ2

x̂ŷ
.

Substitute x̂− ŷ = (τ + ε) 1/b−1/a
4+z to the above equation, we obtain

(τ + ε)2
[
2
(1

a
+

1

b

)
+
z

a

][
2
(1

a
+

1

b

)
+
z

b

]
= τz(z + 4)2,

which is equivalent to the following cubic equation

t(z) := τz3 +
[
8τ − (τ + ε)2

ab

]
z2 +

[
16τ − 2(τ + ε)2

(1

a
+

1

b

)2]
z − 4(τ + ε)2

(1

a
+

1

b

)2

= 0.

Since it is a cubic equation, it has either three real roots or one real root. In the first case, we know that it has at least
one positive root, since the highest coefficient of the equation is positive. Assume that it has other two positive roots. By
applying Viete’s theorem, we get

8τ − (τ + ε)2

ab
< 0; 16τ − (τ + ε)2

(1

a
+

1

b

)2

> 0,

which implies that
(

1
a + 1

b

)2
< 2

ab , it is contradiction by Cauchy-Schwarz’s inequality. Thus, the equation t(z) = 0 has
unique positive root which is denoted by ẑ.

With ẑ =
τ

x̂ŷ
, we have x̂ŷ =

τ

ẑ
. Substituting it to the system of equations (30), we have

x̂2 +
τ + ε

2a
x̂ =

τ

ẑ
+
τ

2

ŷ2 +
τ + ε

2b
x̂ =

τ

ẑ
+
τ

2
.

This implies that

x̂ = −τ + ε

4a
+

1

2

√
(τ + ε)2

4a2
+ 4τ

(1

2
+

1

ẑ

)
, ŷ = −τ + ε

4b
+

1

2

√
(τ + ε)2

4b2
+ 4τ

(1

2
+

1

ẑ

)
.

As a consequence, we obtain the conclusion of the lemma.

Lemma B.4 (Minimizer of function hε,τ ). Given a constant a > 0, the function

hε,τ (x; a) = x2 + (τ + ε)
[x
a
− log

(x
a

)
− 1
]

attains its minimum at x∗ = −τ + ε

4a
+

√
(τ + ε)2

16a2
+
τ + ε

2
.

Proof of Lemma B.4. Taking the first and second derivatives of function hτ,ε, we have

∂hτ,ε
∂x

= 2x+
τ + ε

a
− τ + ε

x
,

∂2hτ,ε
∂x2

= 2 +
τ + ε

x2
.

Note that the second derivative of hτ,ε is positive, therefore, the positive minimizer of this function is exactly the positive

solution of equation
∂hτ,ε
∂x

= 0, which is

x∗ = −τ + ε

4a
+

√
(τ + ε)2

16a2
+
τ + ε

2
.
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C. Auxiliary results
In this appendix, we provide additional lemmas that are used to derive the closed-form expressions of entropic (unbalanced)
IGW between (unbalanced) Gaussian distributions.

Lemma C.1 (KL divergence between Gaussian measures). Let α = mαNk(0,Σα) and β = mβNk(0,Σβ) be scaled
Gaussian measures while α = Nk(0,Σα) and β = Nk(0,Σβ) be their normalized versions. Then, the generalized KL
divergence between α and β is

KL(α‖β) = mαKL(α‖β) + KL(mα‖mβ),

where the KL divergence between α and β is

1

2

{
tr
(
ΣαΣ−1

β

)
− k + log

(det(Σβ)

det(Σα)

)}
.

Proof of Lemma C.1. Let f(x,Σα) and f(x,Σβ) be the distribution functions of Nk(0,Σα) and Nk(0,Σβ), respectively.

KL(α‖β) =

∫
Rk

log
(mαf(x,Σα)

mβf(x,Σβ

)
dα(x)−mα +mβ

=

∫
Rk

log
(f(x,Σα)

f(x,Σβ)

)
mαdα(x) + log

(mα

mβ

)
mα −mα +mβ

= mαKL(α‖β) + KL(mα‖mβ).

The expression for KL(α‖β) results from Lemma C.3. Hence, the proof is completed.

Lemma C.2 (Double integrals). For the sake of simple computations, we derive some relations between the quadratic-KL
and the standard KL as follows:

(i) KL⊗(α‖β) = 2mαKL(α‖β) + (mα −mβ)2;

(ii) KL⊗(tα‖rβ) = t2KL⊗(α‖β) + t2 log

(
t2

r2

)
m2
α + (r2 − t2)m2

β , t, r > 0,

for any positive measures α and β.

Proof of Lemma C.2. Let pα and pβ be the Radon-Nikodym derivatives of α and β with respect to the Lebesgue measure.
Then, we have
Part (i)

KL⊗(α‖β) =

∫ ∫
log

(
pα(x)pα(x′)

pβ(x)pβ(x′)

)
pα(x)pα(x′)dxdx′ −m2

α +m2
β

= mα

∫
log

(
pα(x)

pβ(x)

)
pα(x)dx+mα

∫
log

(
pα(x′)

pβ(x′)

)
pα(x′)dx′ −m2

α +m2
β

= 2mα

∫
log

(
pα(x)

pβ(x)

)
pα(x)dx−m2

α +m2
β

= 2mα[KL(α‖β) +mα −mβ ]−m2
α +m2

β

= 2mαKL(α‖β) + (mα −mβ)2.
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Part (ii)

KL⊗(tα‖rβ) =

∫∫
log

(
t2pα(x)pα(x′)

r2pβ(x)pβ(x′)

)
t2pα(x)pα(x′)dxdx′ + r2m2

β − t2m2
α

= t2
[∫∫

log

(
pα(x)pα(x′)

pβ(x)pβ(x′)

)
pα(x)pα(x′)dxdx′ + log

(
t2

r2

)
m2
α

]
+ r2m2

β − t2m2
α

= t2
[∫∫

log

(
pα(x)pα(x′)

pβ(x)pβ(x′)

)
pα(x)pα(x′)dxdx′ +m2

β −m2
α

]
+ t2 log

(
t2

r2

)
m2
α + (r2 − t2)m2

β

= t2KL⊗(α‖β) + t2 log

(
t2

r2

)
m2
α + (r2 − t2)m2

β .

As a consequence, we obtain the conclusion of the lemma.

Lemma C.3 (KL divergence between Gaussians). The Kullback-Leibler divergence between Gaussian measures α =
N (µα,Σα) and β = N (µβ ,Σβ) on Rk is given by

KL
(
α‖β

)
=

1

2

[
tr(Σ−1

β Σα) + (µβ − µα)>Σ−1
β (µβ − µα)− k + log

(
det(Σβ)

det(Σα)

)]
.

As a result, when Σβ ,Σα are fixed, KL(α‖β) achieves its minimum value when µα = µβ .

Proof of Lemma C.3. Let pα(x) and pβ(x) be the probability density functions of α and β, respectively. By the formula for
KL divergence, we have

KL(α‖β) =

∫
Rk

log

(
pα(x)

pβ(x)

)
pα(x)dx, (31)

in which

log(pα(x)) = −1

2
[k log(2π) + log(det(Σα)) + (x− µα)>Σ−1

α (x− µα)],

log(pβ(x)) = −1

2
[k log(2π) + log(det(Σβ)) + (x− µβ)>Σ−1

β (x− µβ)],

where π denotes a constant number pi only in this lemma. Plugging this result in equation (31), we get

KL(α‖β) =
1

2

[
log

(
det(Σβ)

det(Σα)

)
+

∫
Rk

[(x− β)>Σ−1
β (x− β)− (x− α)>Σ−1

α (x− α)]pα(x)dx

]
=

1

2

[
log

(
det(Σβ)

det(Σα)

)
+ (µβ − µα)>Σ−1

β (µβ − µα) +

∫
Rk

[(x− µα)>(Σ−1
β − Σ−1

α )(x− µα)]pα(x)dx

]
.

Note that∫
Rk

[(x− µα)>(Σ−1
β − Σ−1

α )(x− µα)]pα(x)dx =

∫
Rk

tr((x− µα)(x− µα)>(Σ−1
β − Σ−1

α ))pα(x)dx

= tr

(∫
Rk

[(x− µα)(x− µα)>(Σ−1
β − Σ−1

α )]pα(x)dx

)
= tr

(
Σα(Σ−1

β − Σ−1
α )
)

= tr(ΣαΣ−1
β )− k.

Putting the above results together, we obtain the conclusion of this lemma.

Lemma C.4 (Order solutions). Let {ai}mi=1 and {bj}mj=1 be positive decreasing sequences. Let {x̃i}mi=1 and {ỹj}nj=1 be
the minimizer of

min
xi>0,yj>0

D
(
{xi}, {yj}; {ai}, {bj}

)
:=

m∑
i=1

x2
i +

n∑
j=1

y2
j+(τ + ε)

{ m∑
i=1

[xi
ai
− log(xi)

]
+

n∑
j=1

[yj
bj
− log(yj)

]}
− 2

n∑
k=1

[
xkyk −

ε

2

]+
+ ε
[

log(xkyk)− log
ε

2

]+
.
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Then (x̃i) and (ỹj) are also decreasing sequences.

Proof of Lemma C.4. We have two proofs for this lemma. While the first proof will be presented here, the second one can
be found in Appendix D.

Let us consider all permutations (x̂i) and (ŷj) of (x̃i) and (ỹj), respectively. The difference between
D
(
{x̂i}, {ŷj}; {ai}, {bj}

)
and D

(
{x̃i}, {ỹj}, {ai}, {bj}

)
lies in the term

−2

n∑
k=1

[
xkyk −

ε

2

]+
+ ε
[

log(xkyk)− log
ε

2

]+
,

which is actually the minimum value of

−2 tr
(
K>xyKxy

)
+ 2εKL

(
π‖πx ⊗ πy

)
,

where its solution has to match order by magnitude {x̃i} to {x̂i} and {ỹj} to {ŷj} of the largest eigenvalues. The part∑m
i=1

xi
ai

+
∑n
j=1

yj
bj

is minimized by the rearrangement inequality (cf. Lemma D.2). Therefore, we obtain the conclusion
of the lemma.

Lemma C.5. Let {ai}si=1 and {bi}si=1 be positive sequences. The problem of finding the maximum value of{ s∑
i=1

aixi

}2

+

s∑
i=1

bi
2

log(1− xi), (32)

where xi ∈ [0, 1], is equivalent to finding the set S ⊂ [s] in the below problem:

max
S⊂[s]

{
AS −

BS

2
[
AS + (A2

S −BS)
1
2

]}2

+
∑
i∈S

bi log(bi)−BS log
(
AS + (A2

S −BS)
1
2

)
,

where AS =
∑
i∈S ai, BS =

∑
i∈S bi and A2

S ≥ BS and

bi ≤ 2ai
{
AS + (A2

S −BS)
1
2

}
; i ∈ S.

Proof of Lemma C.5. Taking the derivative of function f(x) = (ax+ b)2 + c log(1− x) in [0, 1], we have

f ′(x) = 2a(ax+ b)− c

1− x
.

The equation f ′(x) = 0 has either two solutions or no solution. It means that either f(x) is monotone or it has one minimum
and one maximum. When x→ 1−, f(x) diverges to infinity. Thus, the xmax where function f attains its maximum is closer
to 1 than the xmin, where f attains its minimum. In the second case, f is monotone, then f is monotone decreasing, because
f(0) = 0 and f(1−) = −∞. Overall,

xmax =

{
0

the larger solution of equation: 2a(ax+ b) = c
1−x .

Hence, if {x̃i} is a maximizer of the objective function, then either x̃i = 0 or x̃i is the larger solution of the first derivative
system of equations.

We consider the case that all x̃i are not equal to zero. By taking the derivatives of the function in equation (32) with respect
to xi, we obtain

2ai

{ s∑
j=1

aj x̃j

}
− bi

2

1

1− x̃i
= 0,

4
{
ai − aix̃i

}
×
{ s∑
j=1

aj x̃j

}
= bi, (33)

4
{ s∑
j=1

aj −
s∑
j=1

aj , x̃j

}
×
{ s∑
j=1

aj x̃j

}
=

s∑
j=1

bj .
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Denote A =
∑s
j=1 aj and B =

∑s
j=1 bj . Then, by solving the quadratic equation 4X2 − 4AX +B = 0, we have

s∑
j=1

aj x̃j =
1

2

{
A+

√
A2 −B

}
.

Substituting it into equation (33), we obtain

4ai(1− x̃i) =
2bi

A+
√
A2 −B

x̃i = 1− bi

2ai(A+
√
A2 −B)

.

Then, the minimum value of the objective function in this case equals to

{ s∑
i=1

ai −
1

2(A+
√
A2 −B)

s∑
i=1

bi

}2

+

s∑
i=1

bi log(bi)− log
(
A+

√
A2 −B

) s∑
i=1

bi.

We have thus proved the stated result.

Lemma C.6 (Optimizers of some functions).

(a) For positive constants a and c, the function f(x) = ax+c log(1−x) for x ∈ [0, 1) attains its minimum at x∗ =
[
1− c

a

]+
.

(b) For positive constants a and c, the function f(x) = 2ax
1
2 + c log(1 − x) for x ∈ [0, 1) attains its maximizer at

x∗ =
[√

c2

4a2 + 1− c
2a

]2
.

(c) For positive constants a, b, c and Υ, the function f(x) = Υx+ τKL(x‖a)+ τKL(x‖b)+εKL(x‖c) attains its minimum

at x∗ = a
τ

2τ+ε b
τ

2τ+ε c
ε

2τ+ε exp
{
−Υ

2τ+ε

}
.

Proof of Lemma C.6.

For part (a), we have f ′(x) = a− c
1−x which is a decreasing function when x ∈ [0, 1). It means that the function is convex.

Hence its maximum attains at the equation f ′(x) = 0 or at the boundary. In fact, we have f ′(1− c/a) = 0. Therefore, the
maximizer attains at max(0, 1− c/a).

For part (b), we have f ′(x) = ax−
1
2 − c

1−x , which is also a decreasing function. Hence, f is concave, it means
that the maximum attains at the solution of f ′(x) = 0 or the boundary. Solving the equation f ′(x) = 0 we obtain

x∗ =
[√

c2

4a2 + 1− c
2a

]2
, which belongs to (0, 1).

For part (c), by taking the derivative of f(x), we have

f ′(x) = Υ + τ
{

2 log(x)− log(ab)
}

+ ε
{

log(x)− log(c)
}

Solving the equation f ′(x) = 0, we obtain

x∗ = exp
{τ log(a) + τ log(b) + ε log(c)−Υ

2τ + ε

}
= a

τ
2τ+ε b

τ
2τ+ε c

ε
2τ+ε exp

{ −Υ

2τ + ε

}
.

Lemma C.7. Let (X,Y ) and (X ′, Y ′) be two i.i.d random vectors in Rm × Rn and follow a probability distribution

π which have a mean vector (u, v) ∈ Rm×n and a covariance matrix

Σx Σxy

Σ>xy Σy

 where Σx and Σy are covariance

matrices of X and Y , respectively. Denote Z = X − u, Z ′ = X ′ − u and T = Y − v, T ′ = Y ′ − v, then

Eπ⊗π
[
〈X,X ′〉 − 〈Y, Y ′〉

]2
= Eπ⊗π

[
〈Z,Z ′〉 − 〈T, T ′〉

]2
+ 2u>Σxu− 4u>Σxyv + 2v>Σyv +

[
‖u‖2 − ‖v‖2

]2
.
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Proof of Lemma C.7. Firstly, we have

〈X,X ′〉 − 〈Y, Y ′〉 = 〈Z + u, Z ′ + u〉 − 〈T + v, T ′ + v〉
= 〈Z,Z ′〉 − 〈T, T ′〉+ 〈u, Z + Z ′〉 − 〈v, T + T ′〉+ ‖u‖2 − ‖v‖2.

Note that

Eπ⊗π〈u, Z〉〈Z,Z ′〉 = Eπ⊗π
[ m∑
i=1

ZiZ
′
i

m∑
j=1

ujZj

]
=

m∑
i=1,j=1

ujEπ⊗π
[
ZiZ

′
iZj
]

=

m∑
i=1,j=1

ujEπ⊗π
[
ZiZj

]
Eπ⊗π[Z ′i] = 0

Eπ⊗π〈Z,Z ′〉 = Eπ⊗π
[ m∑
i=1

ZiZ
′
i

]
= 0

Eπ⊗π〈Z,Z ′〉〈v, T 〉 = Eπ⊗π
[ m∑
i=1

ZiZ
′
i

n∑
j=1

vjTj

]
=

m∑
i=1

n∑
j=1

vjEπ⊗π
[
ZiZ

′
iTj
]

=

m∑
i=1

n∑
j=1

Eπ⊗π[ZiTj ]Eπ⊗π[Z ′i] = 0.

Similarly, we get

Eπ⊗π〈v, T 〉〈T, T ′〉 = Eπ⊗π〈T, T ′〉 = Eπ⊗π〈T, T ′〉〈u, Z〉 = 0.

As a consequence, we can deduce that

Eπ⊗π
[
〈X,X ′〉 − 〈Y, Y ′〉

]2
= Eπ⊗π

[
〈Z,Z ′〉 − 〈T, T ′〉

]2
+ Eπ⊗π

[
〈u, Z + Z ′〉 − 〈v, T + T ′〉

]2
+
[
‖u‖2 − ‖v‖2

]2
.

Next, it is sufficient to show that

Eπ⊗π
[
〈u, Z + Z ′〉 − 〈v, T + T ′〉

]2
= 2u>Σxu+ 2v>Σyv − 4u>Σxyv.

Indeed, we have

Eπ⊗π
[
〈u, Z + Z ′〉

]2
= Eπ⊗π

[
u>(Z + Z ′)(Z + Z ′)>u

]
= u>Var(Z + Z ′)u = 2u>Σxu

Eπ⊗π
[
〈v, T + T ′〉

]2
= Eπ⊗π

[
v>(T + T ′)(T + T ′)>v

]
= v>Var(T + T ′)v = 2v>Σyv

Eπ⊗π
[
〈u, Z + Z ′〉〈v, T + T ′〉

]
= u>Eπ⊗π

[
(Z + Z ′)(T + T ′)>

]
v = u>Eπ⊗π

[
ZT> + Z ′(T ′)>

]
v = 2u>Σxyv.

Hence, the proof is completed.

D. Another proof of Lemma C.4
In this appendix, we introduce another proof of Lemma C.4 using Karamata’s inequality. Firstly, we introduce an inequality
which can be considered to be a generalization of Karamata’s inequality in a special case.

Lemma D.1 (A quasi-Karamata inequality). Let a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and b1 ≥ b2 ≥ . . . ≥ bn ≥ 0 which satisfy

a1 ≥ b1
a1 + a2 ≥ b1 + b2

. . .

a1 + a2 + . . .+ an−1 ≥ b1 + b2 + . . .+ bn−1

a1 + a2 + . . .+ an ≥ b1 + b2 + . . .+ bn

Let f be a concave and non-increasing function in [0,+∞). Then, we have

f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn).
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Proof of Lemma D.1. We prove the Lemma by using induction. The Lemma is obvious when n = 1.

Suppose that the problem is true for n− 1. For i ∈ {1, 2, . . . , n}, let

ci = a1 + a2 + . . .+ ai − b1 − b2 − . . .− bi.

Let k (1 ≤ k ≤ n) be the smallest index such that ck = min1≤i≤n ci. Let b′1 = b1 + ck, then, we have b′1 ≥ b2 ≥ . . . ≥ bn.
We consider two cases:

• If k = n, we have

a1 ≥ b′1
a1 + a2 ≥ b′1 + b2

. . .

a1 + a2 + . . .+ an = b′1 + b2 + . . .+ bn

Applying Karamata’s inequality, we have

f(a1) + f(a2) + . . .+ f(an) ≤ f(b′1) + f(b2) + . . .+ f(bn) ≤ f(b1) + f(b2) + . . .+ f(bn)

.

• If k < n. We have

a1 ≥ b′1
a1 + a2 ≥ b′1 + b2

. . .

a1 + a2 + . . .+ ak = b′1 + b2 + . . .+ bk.

Applying Karamata’s inequality, we have

f(a1) + f(a2) + . . .+ f(ak) ≤ f(b′1) + f(b2) + . . .+ f(bn) ≤ f(b1) + f(b2) + . . .+ f(bk)

.

Moreover, when i > k, we have

ak+1 + . . .+ ai − bk+1 − . . .− bi = ci − ck ≥ 0.

Applying the inductive assumption for two arrays ak+1, . . . , an and bk+1, . . . , bn, we have

f(ak+1) + f(ak+2) + . . .+ f(an) ≤ f(bk+1) + f(bk+2) + . . .+ f(bn).

which implies
f(a1) + f(a2) + . . .+ f(an) ≤ f(b1) + f(b2) + . . .+ f(bn).

As a consequence, we obtain the conclusion of the Lemma.

Lemma D.2 (Extension of rearrangement inequality). Let a1 ≥ a2 . . . ≥ an ≥ 0, b1 ≥ b2 ≥ . . . ≥ bn ≥ 0 be two
decreasing array. Consider α and β are two injections from the set {1, 2, . . . , k} to {1, 2 . . . , n} in the set {1, 2, . . . , n},
where k is a positive integer such that k ≤ n, we have

max aα(1)bβ(1) + . . .+ aα(k)bβ(k) = a1b1 + a2b2 + . . .+ akbk,

and the maximum value is achieved when α, β are two permutation which satisfy

aα(i) = ai, bβ(i) = bi ∀i : 1 ≤ i ≤ k.
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Proof of Lemma D.2. Let I = {i1, i2, . . . , it} be the indices which are not greater than k such that α(ir) > k, ∀r : 1 ≤
r ≤ t. Let J = {j1, j2 . . . , jt} be the indices which are not greater than k such that α(r) /∈ J, ∀r : 1 ≤ r ≤ k. Consider the
permutation α̃ : {1, 2, . . . , k} → {1, 2, . . . , k} which is defined by

α̃(j) =

{
α(j), if j /∈ I
jr if j = ir

.

It is obviously that
aα(1)bβ(1) + . . .+ aα(k)bβ(k) ≤ aα̃(1)bβ(1) + . . .+ aα̃(k)bβ(k).

Similarly, there exist a permutation β̃ : {1, 2, . . . , k} → {1, 2, . . . , k} such that

aα(1)bβ(1) + . . .+ aα(k)bβ(k) ≤ aα̃(1)bβ(1) + . . .+ aα̃(k)bβ(k) ≤ aα̃(1)bβ̃(1) + . . .+ aα̃(k)bβ̃(k).

Applying the rearrangement inequality, we have

aα̃(1)bβ̃(1) + . . .+ aα̃(k)bβ̃(k) ≤ a1b1 + a2b2 + . . .+ akbk,

which implies
aα(1)bβ(1) + . . .+ aα(k)bβ(k) ≤ a1b1 + a2b2 + . . .+ akbk.

From this, we can conclude our proof.

Given the above lemmas, we have another proof of Lemma C.4.

Another Proof of Lemma C.4. Let us consider a permutation (x̂i) and (ŷi) of (x̃i) and (ỹi), respectively, such that (x̂i) and
(ŷi) are decreasing sequence. The difference between D

(
{x̂i}, {ŷj}; {ai}, {bj}

)
and D

(
{x̃i}, {ỹj}, {ai}, {bj}

)
lies in the

part

−2
∑
k=1

[
xkyk −

ε

2

]+
+ ε
[

log(xkyk)− log
ε

2

]+
.

Let f(x) = −2
(
x− ε

2

)+

+ ε
(

log(x)− log
(ε

2

))
. This function has non-positive and decreasing derivative

f ′(x) =

{
0, when x ≤ ε

2
ε

x
− 2, when x ≥ ε

2

.

Thus, f is concave function in [0.∞). Moreover, according to Lemma D.2, we have (x̂iŷi) and (x̃iỹi)) satisfy the condition
of Lemma D.1. Thus, applying this Lemma with the function f , we have the term

−2
∑
k=1

[
xkyk −

ε

2

]+
+ ε
[

log(xkyk)− log
ε

2

]+
.

is minimized when xk and yk are decreasing sequence. The part
∑m
i=1

xi
ai

+
∑n
j=1

yj
bj

is minimized by the rearrangement
inequality. Therefore, we obtain the conclusion of the lemma.

E. Entropic IGW between Gaussian distributions with non-zero means
In this appendix, by considering the problem of solving entropic Gromov-Wasserstein between balanced Gaussians in a
special case, we show the difficulty to solve this problem in the general case.

Let m be a positive integer. Let µ = N (θµ,Σµ) and ν = N (1, 1) be two Gaussian measures in Rm and R, respectively,
where

Σµ = diag
(
a2

1, . . . , a
2
m

)
,

θµ = (b1, . . . , bm)>.
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To find IGWε(µ, ν), we must find the joint distribution π between µ and ν which has the covariance matrix

Σπ =

 Σµ Kµν

K>µν 1


that minimizes the following term

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
+ εKL

(
π‖µ⊗ ν

)
.

Note that, in this case, Kµν is an m × 1 matrix, thus, we can denote that Kµν = (x1, . . . , xm)>. Firstly, we prove the
following equality

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
=

m∑
i=1

a2
i +

m∑
i=1

b2i + 2− 2

m∑
i=1

(xi + bi)
2. (34)

Indeed, we have

Eπ⊗π
{[
〈X,X ′〉 − 〈Y, Y ′〉

]2}
= Eπ⊗π〈X,X ′〉2 + Eπ⊗π〈Y, Y ′〉2 − 2Eπ⊗π〈X,X ′〉〈Y, Y ′〉.

Note that the independence between X and X ′ and Y and Y ′ leads to

Eπ⊗π〈X,X ′〉2 = [Eπ⊗π〈X,X ′〉]2 + Varπ〈X,X ′〉

= [〈θµ, θµ〉]2 +

m∑
i=1

Varπ[Xi]Varπ[X ′i]

=

(
m∑
i=1

b2i

)2

+

m∑
i=1

a4
i .

Similarly, we have Eπ⊗π〈Y, Y ′〉2 = 2. Meanwhile,

Eπ⊗π〈X,X ′〉〈Y, Y ′〉 = Eπ⊗π
{ m∑
i=1

[
XiX

′
iY Y

′]} =

m∑
i=1

Eπ⊗π{XiY }Eπ{X ′iY ′} =

m∑
i=1

(xi + bi)
2.

Putting the above results together, we obtain the desired equality (34). By Lemma 3.3, the optimal transportation plan π∗ is
a Gaussian distribution, namely, π∗ = N (θπ∗ ,Σπ∗), where θπ∗ = (b1, . . . , bn, 1)>. Thus, according to Lemma C.3, the
entropic term in the objective function reads

εKL(π∗‖µ⊗ ν) =
1

2
ε
{

tr
(
Σπ∗Σ

−1
µ⊗ν

)
− (m+ n) + log

(det(Σµ⊗ν)

det(Σπ∗)

)}
= −ε

2
log

(
1−

m∑
i=1

x2
i

a2
i

)
.

From the above calculation, our problem turns out to find the non-negative real numbers x1, . . . , xm which maximize the
following function

ψ(x1, . . . , xm) = 2

m∑
i=1

(xi + bi)
2 +

ε

2
log

(
1−

m∑
i=1

x2
i

a2
i

)
.

Taking the derivatives of the above function with respect to xi, i ∈ [m], we get

∂ψ

∂xi
= 4(xi + bi)−

εxi/a
2
i

1−
∑m
i=1

x2
i

a2
i

, ∀i ∈ [m].



Entropic Gromov-Wasserstein between Gaussian Distributions

To solve the system of equations
∂ψ

∂xi
= 0 for all i ∈ [m], we denote t =

ε

1−
∑m
i=1

x2
i

a2
i

. Then, t =
4(xi + bi)

a2
ixi

, which

implies that xi =
4a2
i bi

t− 4a2
i

. By substituting this representation of xi to the expression t =
ε

1−
∑m
i=1

x2
i

a2
i

, we obtain

t

(
1−

m∑
i=1

16a2
i b

2
i

(t− 4a2
i )

2

)
= ε.

After some transformations, we achieve the equation of degree 2m, which is difficult to solve in close-form.

F. Revisiting the entropic optimal transport between Gaussian measures
In this appendix, via the technique that we use to study the entropic Gromov Wasserstein between two Gaussians, we provide
a simpler proof for deriving the close-form expressions of entropic optimal transport (OT) between (unbalanced) Gaussian
measures than the proof that was presented in (Janati et al., 2020).

F.1. Entropic optimal transport between balanced Gaussian measures

Before moving to the main theorem of this section, we review some backgrounds on the entropic optimal transport problem
between balanced Gaussian measures.

Entropic Optimal Transport. Let α and β be two probability measures in Rd. Then, the entropic OT between them is
defined as follows:

OTε(α, β) := min
π∈Π(α,β)

Eπ‖X − Y ‖2 + εKL(π‖α⊗ β), (35)

where X ∼ α and Y ∼ β are independent random vectors in Rd such that (X,Y ) ∼ π, and ε > 0 denotes the entropy-
regularized parameter. Now, we are ready to show the closed-form expression of entropic OT between Gaussians in the
following theorem.

Theorem F.1. Let µ = N (u,Σµ) and ν = N (v,Σν) be two Gaussian measures in Rd, where Σµ and Σν are positive
definite matrices. Then, the entropic optimal transport between µ and ν is given by

OTε(µ, ν) = ‖u− v‖22 + tr(Σµ) + tr(Σν)− tr(Dε) +
dε

2
(1− log ε) + log det

(
Dε +

ε

2
Id
)
,

where Dε =
(

4Σ
1
2
µΣνΣ

1
2
ν + ε2

4 Id
) 1

2

. Moreover, the optimal transportation plan admits the form π∗ = N
(
(u∗,v∗)>,Σπ∗

)
where

Σπ∗ :=

 Σµ K∗µν

(K∗µν)> Σν

 ,

with K∗µν = 1
2Σ

1
2
µ

(
ε2

4 Id +4 Σ
1
2
µΣνΣ

1
2
µ

) 1
2

Σ
− 1

2
µ − ε

4 Id.

Remark F.2. Note that if we replace ε by 2σ2 in the above result, we obtain Theorem 1 in (Janati et al., 2020).

Proof of Theorem F.1. Note that if µ̄ and ν̄ are respective centered transformations of µ and ν, then

OTε(µ, ν) = OTε(µ̄, ν̄) + ‖u− v‖22.

Therefore, it is sufficient to solve the case when u = v = 0d. Under this assumption, we have

Eπ‖X − Y ‖2 = Eπ‖X‖2 + Eπ‖Y ‖2 − 2Eπ〈X,Y 〉
= tr(Σµ) + tr(Σν)− 2 tr(Kµν).
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Thus, the entropic optimal transport between µ and ν can be rewritten as

OTε(µ, ν) = tr(Σµ) + tr(Σν) + min
π∈Π(µ,ν)

{
εKL(π‖µ⊗ ν)− 2 tr(Kµν)

}
. (36)

By fixing the covariance matrix Σπ =

 Σµ Kµν

K>µν Σν

, Lemma 3.3 indicates that the optimal solution must be a Gaussian

measure with the form π = N (02d,Σπ). Let UµνΛ
1
2
µνV >µν be the SVD of matrix Σ

− 1
2

µ KµνΣ
− 1

2
ν with Λ

1
2
µν = diag(κ

1
2
µν,i)

d
i=1.

It follows from Lemma C.1 and Lemma 3.4 part (b) that

εKL(π‖µ⊗ ν) =
ε

2

[
tr(ΣπΣ−1

µ⊗ν)− 2d+ log

(
det(Σµ⊗ν)

det(Σπ)

)]
= −ε

2

d∑
i=1

log(1− κµν,i).

Let UΛ
1
2V > be the SVD of Σ

1
2
ν Σ

1
2
µ , where Λ

1
2 = diag(λ

1
2
µν,i)

d
i=1. By using von Neumann’s inequality (Kristof, 1969; Horn

& Johnson, 1991), we have

tr(Kµν) = tr(Σ
1
2
µUµνΛ

1
2
µνV

>
µνΣ

1
2
ν ) = tr(UµνΛ

1
2
µνV

>
µνΣ

1
2
ν Σ

1
2
µ ) = tr([V >UµνΛ

1
2
µν ][V >µνUΛ

1
2 ])

≤
d∑
i=1

λ
1
2
µν,iκ

1
2
µν,i.

The equality occurs when Uµν = V and Vµν = U . Collecting the above two results, the problem in equation (36) is reduced
to

OTε(µ, ν) = tr(Σµ) + tr(Σν)− max
κµν,i∈(0,1)

d∑
i=1

[
2λ

1
2
µν,iκ

1
2
µν,i +

ε

2
log(1− κµν)

]
.

Note that the function f(x) = 2ax
1
2 + ε

2 log(1 − x) attains its maximum at x =
(
−ε+

√
ε2+16a2

4a

)2

. Then, the optimal

solution of the above problem is κ∗µν,i =

(
−ε+
√
ε2+16λµν,i

)2

16λµν,i
, which leads to

OTε(µ, ν) = tr(Σµ) + tr(Σν)− 1

2

d∑
i=1

[
−ε+

√
ε2 + 16λµν,i + ε log

(
ε(−ε+

√
ε2 + 16λµν,i)

8λµν,i

)]

= tr(Σµ) + tr(Σν) +
dε

2
(1− log ε)− 1

2

d∑
i=1

√
ε2 + 16λµν,i −

ε

2

d∑
i=1

log

(
−ε+

√
ε2 + 16λµν,i

8λµν,i

)

= tr(Σµ) + tr(Σν) +
dε

2
(1− log ε)−

d∑
i=1

√
ε2

4
+ 4λµν,i +

ε

2
log

(
d∏
i=1

[
ε

2
+

√
ε2

4
+ 4λµν,i

])

= tr(Σµ) + tr(Σν) +
dε

2
(1− log ε)− tr

([
4Σ

1
2
µΣνΣ

1
2
µ +

ε2

4
Id
] 1

2

)
+ log det

([
4Σ

1
2
µΣνΣ

1
2
µ +

ε2

4
Id
] 1

2

+
ε

2
Id

)
.

The last equality results from the fact that (λµν,i)
d
i=1 are eigenvalues of Σ

1
2
µΣνΣ

1
2
µ . Additionally,

K∗µν = Σ
1
2
µV diag

−ε+
√
ε2 + 16λµν,i

4λ
1
2
µν,i

d

i=1

U>Σ
1
2
ν

=
1

2
Σ

1
2
µV diag

([ ε2

4λµν,i
+ 4
] 1

2

)d
i=1

U>Σ
1
2
ν −

ε

4
Σ

1
2
µV diag

(
λ
− 1

2
µν,i

)d
i=1

U>Σ
1
2
ν .
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Recall that Σ
1
2
ν Σ

1
2
µ = UΛ

1
2V >, or equivalently U>Σ

1
2
ν = Λ

1
2V >Σ

− 1
2

µ . Then, we have

K∗µν =
1

2
Σ

1
2
µV diag

([ ε2

4λµν,i
+ 4
] 1

2

)d
i=1

diag
(
λ

1
2
µν,i

)d
i=1

V >Σ
− 1

2
µ − ε

4
Σ

1
2
µ (UΛ

1
2V >)−1Σ

1
2
ν

=
1

2
Σ

1
2
µV diag

([ε2

4
+ 4λµν,i

] 1
2

)d
i=1

V >Σ
− 1

2
µ − ε

4
Id .

As a result of SVD property, we get V diag(λµν,i)
d
i=1V

> = Σ
1
2
µΣνΣ

1
2
µ . Thus, V diag

(
ε2

4 + 4λµν,i

)d
i=1

V > =

ε2

4 Id +4Σ
1
2
µΣνΣ

1
2
µ , which follows that

V diag

([ε2

4
+ 4λµν,i

] 1
2

)d
i=1

V > =

(
ε2

4
Id +4 Σ

1
2
µΣνΣ

1
2
µ

) 1
2

.

Consequently, we obtain

K∗µν =
1

2
Σ

1
2
µ

(
ε2

4
Id +4 Σ

1
2
µΣνΣ

1
2
µ

) 1
2

Σ
− 1

2
µ − ε

4
Id = Σ

1
2
µ

(
ε2

16
Id + Σ

1
2
µΣνΣ

1
2
µ

) 1
2

Σ
− 1

2
µ − ε

4
Id .

Hence, the proof is completed.

F.2. Entropic optimal transport between unbalanced Gaussian measures

Prior to presenting the closed-form expression of entropic optimal transport between unbalanced Gaussian measures, let us
review the formulation of entropic unbalanced optimal transport (UOT).

Entropic Unbalanced Optimal Transport. When either α or β is not a probability measure, the formulation in equa-
tion (35) is no longer valid. One solution to deal with this issue is using entropic UOT, which is given by

UOTε,τ (α, β) := min
π∈M+(Rd×Rd)

Eπ‖X − Y ‖2 + τKL(πx‖α) + τKL(πy‖β) + εKL(π‖α⊗ β),

where X,Y are independent random vectors in Rd such that (X,Y ) ∼ π while ε, τ > 0 are regularized parameters, and
πx, πy are the marginal distributions of the coupling π corresponding to α and β, respectively.

Consider two unbalanced Gaussian measures in Rd:

µ = mµN (u,Σµ) and ν = mνN (v,Σν), (37)

where mµ,mν > 0 are their masses and Σµ,Σν are positive definite matrices. To state our main result, we need to define
some quantities which are necessary for our analysis. Firstly, let us denote

Σµ,η := ηΣ−1
µ + Id; Σν,η := ηΣ−1

ν + Id,

where η := τ+ε
2 . Next, we define

A :=
1

τ

{[ε2

4
Id +τ(2η)B>B

] 1
2 − ε

2
Id

}
, where B := Σ

− 1
2

ν,ηΣ
− 1

2
µ,η ,

Υu∗,v∗ := (u− v)>
{

Id−(Σµ + Σν)
[
η Id +Σ−1

µ + Σ−1
ν

]−1
}

(u− v),

ΥΣ∗ := 2η
{

1− log(η) + log det(A)− log det(B)− 1

2
log det(ΣµΣν)

}
− ε

2
log det

(
Id−A2(B>B)−1

)
,

Υ∗ := Υu∗,v∗ + ΥΣ∗ + 2ηd.
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Theorem F.3. Let µ and ν be two unbalanced Gaussian measures given in equation (37), the entropic UOT between µ and
ν can be computed as

UOTε,τ (µ, ν) = mπ∗Υ
∗ + εKL(mπ∗‖mµmν) + τ [KL(mπ∗‖mµ) + KL(mπ∗‖mν)].

where mπ∗ = (mµmν)
τ+ε
2τ+ε exp

{
−Υ∗

2τ+ε

}
. Moreover, the optimal transport plan is also an unbalanced Gaussian measure

which admits the form π∗ = mπ∗N
(
(u∗,v∗)>,Σ∗xy

)
, where

u∗ = u− Σµ

[
η Id +Σµ + Σν

]−1

(u− v);

v∗ = v + Σν

[
η Id +Σ−1

µ + Σ−1
ν

]−1

(u− v);

Σ∗xy =

 Σ∗x K∗xy

(K∗xy)> Σ∗y

 ,

with

Σ∗x = ηΣ
− 1

2
µ,ηA(B>B)−

1
2 Σ
− 1

2
µ,η ; Σ∗y = ηΣ

− 1
2

ν,ηA(B>B)−
1
2 Σ
− 1

2
ν,η ;

K∗xy = ηΣ
− 1

2
µ,ηA(Id−A)−1(B>B)−

1
2B−1Σ

− 1
2

ν,η .

Proof of Theorem F.3. We assume that π is a positive measure such that π = mππ with π is a probability measure with
mean (ux,vy) and covariance matrix

Σπ =

 Σx Kxy

K>xy Σy

 .

Here the two marginals of π are denoted by πx and πy where πx has mean ux and covariance matrix Σx while πy has mean
vy and covariance matrix Σy . Let πx and πy be two marginals of π, then πx = mππx and πy = mππy .

By Lemma 3.3, π needs to be Gaussian. We also have

Eπ‖X − Y ‖2 = mπ

{
‖ux − vy‖2 + tr(Σx) + tr(Σy)− 2 tr(Kxy)

}
.

According to Lemma C.1,

KL(πx‖µ) = mπKL(πx‖µ) + KL(mπ‖mµ),

KL(πy‖ν) = mπKL(πy‖ν̄) + KL(mπ‖mν),

KL(π‖µ⊗ ν) = mπKL(π‖µ⊗ ν) + KL(mπ‖mµmν).

Combining the above results, the entropic optimal transport between µ and ν reads as

UOTε,τ (µ, ν) = min
π∈M+(Rd×Rd)

{
mπΥ + εKL(mπ‖mµmν) + τ [KL(mπ‖mµ) + KL(mπ‖mν)]

}
,

where Υ := ‖ux − vy‖2 + tr(Σx) + tr(Σy)− 2 tr(Kxy) + εKL(π‖µ̄⊗ ν) + τ
[
KL(πx‖µ) + KL(πy‖ν)

]
. We divide our

proof into two main steps. The first step is to minimize Υ, and the second step is to find the optimal scale mπ∗ .

Step 1: Minimization of Υ For the three KL terms, we have

KL(πx‖µ) =
1

2

{
tr(ΣxΣ−1

µ )− d− log det(Σx) + log det(Σµ)
}

+
1

2
(ux − u)>Σ−1

µ (ux − u),

KL(πy‖ν) =
1

2

{
tr(ΣyΣ−1

ν )− d− log det(Σy) + log det(Σν)
}

+
1

2
(vy − v)>Σ−1

ν (vy − v),

KL(π‖µ⊗ ν) =
1

2

{
tr(ΣxΣ−1

µ )− d− log det(Σx) + log det(Σµ)
}

+
1

2

{
tr(ΣyΣ−1

ν )− d− log det(Σy) + log det(Σν)
}

+
1

2
(ux − u,vy − v)>Σ−1

µ⊗ν(ux − u,vy − v)− 1

2

d∑
i=1

log(1− κxy,i),
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where

Σµ⊗ν =

 Σµ 0d×d

0d×d Σν

 ,

and κ
1
2
xy,i is the i-th largest singular value of Σ

− 1
2

x KxyΣ
− 1

2
y for all i ∈ [d]. Here we use the equation tr(ΣπΣ−1

µ⊗ν) =

tr(ΣxΣ−1
µ ) + tr(ΣyΣ−1

ν ) and results from part (b) of Lemma 3.4. Put the results together, we get

Υ = tr(Σx) + tr(Σy)− 2 tr(Kxy) + η
{

tr(ΣxΣ−1
µ )− log det(Σx) + tr(ΣyΣ−1

ν )− log det(Σy)
}

− ε

2

d∑
i=1

log(1− κxy,i) + ‖ux − vy‖2 +
1

2

{
τ(ux − u)>Σ−1

µ (ux − u) + τ(vy − v)>Σ−1
ν (vy − v)

+ ε(ux − u,vy − v)>Σ−1
µ⊗ν(ux − u,vy − v)

}
+ 2ηd.

The means part: We first work with the terms involving ux and vy . Let ux − u = ũx and vy − v = ṽy , then

(ũx, ṽy)>Σ−1
µ⊗ν(ũx, ṽy) = ũ>x Σ−1

µ ũx + ṽyΣ−1
ν ṽy

‖ux − vy‖2 = ‖ũx − ṽy + u− v‖2

= ‖ũx‖2 + ‖ṽy‖2 − 2ũ>x ṽy + 2ũ>x (u− v)− 2ṽ>y (u− v) + ‖u− v‖2.

Hence, sum of all terms which include ux and vy is equal to

Υu,v :=ũ>x

(
ηΣ−1

µ + Id
)
ũx + ṽ>y

(
ηΣ−1

ν + Id
)
ṽy − 2ũ>x ṽy + 2ũ>x (u− v)− 2ṽ>y (u− v) + ‖u− v‖2

=ũ>x Σµ,ηũx + ṽ>y Σν,ηṽy − 2ũ>x ṽy + 2ũ>x (u− v)− 2ṽ>y (u− v) + ‖u− v‖2. (38)

Taking the derivative with respect to ũx and ṽy of Υu,v, and set the equation to zero we obtain

Σµ,ηũx − ṽy + (u− v) = 0,

Σν,ηṽy − ũx − (u− v) = 0.

Adding two equations we get

(ηΣ−1
µ + Id)ũx − ṽy + (ηΣ−1

ν + Id)ṽy − ũx = 0,

Σ−1
µ ũx = −Σ−1

ν ṽy.

Replace them into the above equation, we obtain

Σµ,ηũx + ΣνΣ−1
µ ũx = −(u− v)

ũx = −
[
Σµ,η + ΣνΣ−1

µ

]−1

(u− v)

= −Σµ

[
η Id +Σµ + Σν

]−1

(u− v).

Similarly, we obtain ṽy = Σν

[
η Id +Σ−1

µ + Σ−1
ν

]−1

(u− v). The value of Υu,v at the minimizer is computed as follow

ũ>x Σµ,ηũx − ũ>x ṽy = −ũ>x (u− v)

ṽ>y Σν,ηṽy − ũ>x ṽy = ṽ>y (u− v).

Adding them together

ũ>x Σµ,ηũx + ṽ>y Σν,ηṽy − 2ũ>x ṽy = −(ũx − ṽy)>(u− v).

Put it back to equation (38)

Υu∗,v∗ = (ũx − ṽy)>(u− v) + ‖u− v‖2 = (u− v)>
{

Id−(Σµ + Σν)
[
η Id +Σ−1

µ + Σ−1
ν

]−1
}

(u− v).
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The covariance matrix part: The second part is to group all factors of Σx, Σy and κxy,i, which is

ΥΣ := tr(Σx) + tr(Σy)− 2 tr(Kxy) + η
{

tr(ΣxΣ−1
µ )− log

(det(Σx)

det(Σµ)

)
+ tr(ΣyΣ−1

ν )− log
(det(Σy)

det(Σν)

)}
− ε

2
log

d∏
i=1

(1− κxy,i). (39)

Grouping terms which have the same factors, the above quantity is rewritten as

ΥΣ = tr(ΣxΣµ,η) + tr(ΣyΣν,η)− 2 tr(Kxy)− η
[

log
(det(Σx)

det(Σµ)

)
+ log

(det(Σy)

det(Σν)

)]
− ε

2

d∑
i=1

log(1− κxy,i). (40)

Let UxyΛxyV
>
xy be SVD of Σ

− 1
2

x KxyΣ
− 1

2
y and denote

Σ
1
2
xUxy = X; V >xyΣ

1
2
y = Y. (41)

Then we get

XX> = Σx; Y >Y = Σy; Λxy = diag
(
κ

1
2
xy,i

)
.

Note that if we fix Σx, Σy , Λxy , then we only need to maximize the term tr(Kxy), which is equal to tr(ΛxyY X). We could

choose Uxy and Vxy such that Y X = diag(λxy,i) where λxy,i is the ith singular value of Σ
1
2
y Σ

1
2
x . By von Neumann’s trace

inequality (Kristof, 1969; Horn & Johnson, 1991), it is where the term tr(Kxy) attains its maximum. Hence, Y X is a
diagonal matrix when the objective function ΥΣ attains its minimum.

We also note that the form Σ
1
2
xUxy and V >xyΣ

1
2
y are the QR decompositions of X and Y , respectively. Hence there is no

condition on X and Y , except that they are invertible. Then ΥΣ now is equal to

ΥΣ = tr(XX>Σµ,η) + tr(Y >Y Σν,η)− 2 tr(XΛxyY )− 2η
[

log
(
det(X)det(Y )

)]
− ε

2

d∑
i=1

log(1− κxy,i) + const.

Taking the derivative with respect to X and Y (since in a small local neighbourhood, they are still invertible), we get the
following system of equations

2Σµ,ηX − 2Y >Λ>xy − 2η(X−1)> = 0 (42)

2Y Σν,η − 2Λ>xyX
> − 2η(Y −1)> = 0. (43)

We multiply the first equation with X> on the left side and the second equation with Y > on the right side,

X>Σµ,ηX = (Y X)>Λxy + η Id (44)

Y Σν,ηY
> = Λ>xy(Y X)> + η Id . (45)

The right hand side of (44) and (45) are diagonal matrices, since Λxy and Y X are diagonal matrices. It means that
X>Σµ,ηX is also a diagonal matrix. Denote

(Y X)>Λxy + η Id = Λxy,η := diag(λxy,η,i). (46)

Then

X>Σµ,ηX = X>Uµ,ηΛµ,ηU
>
µ,ηX = Λxy,η[

Λ
1
2
µ,ηΛ

− 1
2

xy,ηX
>Uµ,η

]
Λµ,η

[
U>µ,ηXΛ

− 1
2

xy,ηΛ
1
2
µ,η

]
= Λµ,η,

where Uµ,ηΛµ,ηU
>
µ,η and Uν,ηΛν,ηU

>
ν,η are the spectral decomposition of Σµ,η and Σν,η, respectively. The equation has

the form AΛA> = Λ, with Λ is a diagonal matrix. Let AΛ
1
2 = Λ

1
2U , then Λ

1
2UU>Λ

1
2 = AΛA> = Λ. It means that
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UU> = Id, then U is unitary matrix. Thus we obtain A = Λ
1
2UΛ−

1
2 . Replace A by

[
Λ

1
2
µ,ηΛ

− 1
2

xy,ηX>Uµ,η

]
, there exists

unitary matrix U such that

Λ
1
2
µ,ηΛ

− 1
2

xy,ηX
>Uµ,η = Λ

1
2
µ,ηUΛ

− 1
2

µ,η

Λ
− 1

2
xy,ηX

>Uµ,η = UΛ
− 1

2
µ,η

X> = Λ
1
2
xy,ηUΛ

− 1
2

µ,ηU
>
µ,η

X = Uµ,ηΛ
− 1

2
µ,ηU

>Λ
1
2
xy,η. (47)

Similarly, there exists an unitary matrix V such that

Y = Λ
1
2
xy,ηV Λ

− 1
2

ν,ηU
>
ν,η. (48)

Combine the results with a note that Uµ,η = Uµ and Uν,η = Uν , we obtain

Y X = Λ
1
2
xy,ηV Λ

− 1
2

ν,ηU
>
ν,ηUµ,ηΛ

− 1
2

µ,ηU
>Λ

1
2
xy,η

(Y X)Λ−1
xy,η = V Λ

− 1
2

ν,ηU
>
ν UµΛ

− 1
2

µ,ηU
> := diag(αi)

d
i=1. (49)

Here, αi is the ith singular values of UνΛ
− 1

2
ν,τ,εU>ν UµΛ

− 1
2

µ,ηUµ, where U and V could be chosen such that

V Λ
− 1

2
ν,ηU>ν UµΛ

− 1
2

µ,τ,εU is a diagonal matrix diag(αi)
d
i=1. By the von Neumann’s trace inequality (Kristof, 1969; Horn

& Johnson, 1991),

tr(Kxy) = tr(ΛxyY X) ≤
d∑
i=1

αiκ
1
2
xy,iλxy,η,i.

The equality happens when (κxy,i), (αi) and (λxy,η,i) are decreasing sequences with V Λ
− 1

2
ν,ηU>ν UµΛ

− 1
2

µ,ηU is diagonal.

Substitute it into the equation (46) with Λxy,η := diag(λxy,η,i)
d
i=1

λxy,η,i = η + αiκ
1
2
xy,iλxy,η,i

λxy,η,i = η
[
1− αiκ

1
2
xy,i

]−1

. (50)

Combine it with equations (44) and (46), we get

det(X>Σµ,ηX) = det(X)2det(Σµ,η) = ηd
d∏
i=1

(
1− αiκ

1
2
xy,i

)−1
.

Therefore,

log det(X) = −1

2

d∑
i=1

log
(
1− αiκ

1
2
xy,i

)
+ const. (51)

Similarly, we also have

log det(Y ) = −1

2

d∑
i=1

log
(
1− αiκ

1
2
xy,i

)
+ const. (52)

Put them (44), (45), (51), (52) together, with Σ∗ to be the optimal solution of X,Y , etc, we obtain

ΥΣ∗ = 2η

d∑
i=1

log
(
1− αiκ

1
2
xy,i)−

ε

2

d∑
i=1

log(1− κxy,i) + const.
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Let us consider the function for α, t ∈ (0, 1)

f(t) = 2η log
(
1− αt 1

2

)
− ε

2
log(1− t).

Taking derivative with respect to t we get

f ′(t) =
−2ηα

2(1− αt 1
2 )t

1
2

+
ε

2

1

1− t
=
ε(1− αt 1

2 )t
1
2 − 2ηα(1− t)

2(1− αt 1
2 )t

1
2 (1− t)

=
(2η − ε)αt+ εt

1
2 − 2ηα

2(1− αt 1
2 )t

1
2 (1− t)

The nominator is a quadratic function of t
1
2 , which is increasing function taking negative value with t = 0 and positive

value when t = 1, since 0 < α < 1. Thus, it has only one solution

√
t∗ =

√
ε2 + 8τηα2 − ε

2τα
=

√
ε2/4 + 2τηα2 − ε/2

τα
.

It also deduces that if α increases, the t∗ also increases. Substituting the result into the equation (50), we obtain

λxy,η,i =
η

1− αiκ
1
2
xy,i

=
η

1−
√
ε2/4+τ(2η)α2

i−ε/2
τ

. (53)

Due to equation (49), we get αiλxy,η,i = (Y X)i,i. Combine with equation (46), we get

λxy,i =
λxy,η,i − η
αiλxy,η,i

. (54)

Covariance matrix: Recall from equations (47) and (48), we have

X = Uµ,ηΛ
− 1

2
µ,ηU

>Λ
1
2
xy,η; Y = Λ

1
2
xy,ηV Λ

− 1
2

ν,ηU
>
ν,η.

Since equation (41), V Λ
− 1

2
ν,ηU>ν UµΛ

− 1
2

µ,ηU> is a diagonal matrix. It means that

(V U>ν )UνΛ
− 1

2
ν,ηU

>
ν UµΛ

− 1
2

µ,ηU
>
µ (UµU) = (V U>ν )(Σ

− 1
2

ν,ηΣ
− 1

2
µ,η )(UµU

>) = diag(αi)
d
i=1,

which means that the αi are the singular values of Σ
− 1

2
ν,ηΣ

− 1
2

µ,η . Then

Σ
− 1

2
ν,ηΣ

− 1
2

µ,η =
[
UνV

>]diag(αi)
[
UU>µ

]
= Uµν,ηdiag(αi)V

>
µν,η

which is a SVD of Σ
− 1

2
ν,ηΣ

− 1
2

µ,η , where UµU> = Vµν,η and V U>ν = U>µν,η . Put them into the equation (41)

Kxy = XΛxyY = UµΛ
− 1

2
µ,ηU

>Λ
1
2
xy,ηΛxyΛ

1
2
xy,ηV Λ

− 1
2

ν,ηU
>
ν = Σ

− 1
2

µ,η

[
UµU

>][Λ 1
2
xy,ηΛxyΛ

1
2
xy,η

][
V U>ν

]
Σ
− 1

2
ν,η

= Σ
− 1

2
µ,η

[
Vµν,ηdiag

(λxy,η,i − η
αi

)d
i=1

U>µν,η

]
Σ
− 1

2
ν,η

= ηΣ
− 1

2
µ,ηA(Id−A)−1(B>B)−

1
2B−1Σ

− 1
2

ν,η . (55)

We could obtain it from

B = Uµν,ηdiag(αi)
d
i=1V

>
µν,η ⇒ B>B = Vµν,ηdiag(α2

i )
d
i=1V

>
µν,η

A =
1

τ
Vµν,ηdiag

(√
ε2/4 + τ(2η)α2

i − ε/2
)d
i=1

V >µν,η

=
1

τ

{[ε2

4
Id +τ(2η)B>B

] 1
2 − ε

2
Id

}
η(Id−A)−1 = Vµν,ηdiag(λxy,η,i)

d
i=1V

>
µν,η

η
{

(Id−A)−1 − Id
}

(B>B)
1
2 = Vµν,ηdiag

(
λxy,η,i − η

αi

)d
i=1

V >µν,τ .
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Multiply both side with B−1 = Vµν,ηdiag(αi)U
>
µν,η , we obtain the formula in (55).

For the Σx, multiply with X> to the right side of equation (42), we have

Σµ,ηXX
> − Y >Λ>xyX

> − η(X−1)>X> = 0

Σµ,ηΣx = (XΛxyY )> + η Id

Σx = Σ−1
µ,η(K>xy + η Id). (56)

Another way to derive Σx is to use equation (47) of X and equation (53) of λxy,η

Σx = XX> = UµΛ
− 1

2
µ,ηU

>Λxy,ηUΛ
− 1

2
µ,ηU

>
µ = Σ

− 1
2

µ,ηUµU
>Λxy,ηUU

>
µ Σ
− 1

2
µ,η

= Σ
− 1

2
µ,ηVµν,ηΛxy,ηV

>
µν,ηΣ

− 1
2

µ,η

= ηΣ
− 1

2
µ,ηA(B>B)−

1
2 Σ
− 1

2
µ,η , (57)

where the last equation is obtained from the equation (54)

Vµν,ηdiag(λxy,i)
d
i=1V

>
µν,η = η

{
(Id−A)−1 − Id

}
(Id−A)(B>B)−

1
2 = η

{
Id−(Id−A)

}
(B>B)−

1
2

= ηA(B>B)−
1
2 .

Similarly for equation (43)

Y >Y Σν,η − Y >Λ>xyX
> − η Id = 0

Σy = (K>xy + η Id)Σ−1
ν,η. (58)

or we could derive another way to obtain Σy = ηΣ
− 1

2
ν,ηA(B>B)−

1
2 Σ
− 1

2
ν,η .

Next we calculate the ΥΣ∗ . Since equations (56) and (58), we have

tr(ΣxΣµ,η) + tr(ΣyΣν,η)− 2 tr(Kxy) = 2η.

We also have
d∏
i=1

(1− κxy,i) = det
(

Id−diag(κxy,i)
d
i=1

)
Vµν,ηdiag(κxy,i)

d
i=1V

>
µν,η = A2(B>B)−1.

It means that
∑d
i=1 log(1− κxy,i)di=1 = log det

(
Id−A2(B>B)−1

)
. Put all the results into equation (40), we obtain

ΥΣ = tr(ΣxΣµ,η) + tr(ΣyΣν,η)− 2 tr(Kxy)− η
[

log
(det(Σx)

det(Σµ)

)
+ log

(det(Σy)

det(Σν)

)]
− ε

2

d∑
i=1

log(1− κxy,i)

ΥΣ∗ = 2η − 2η
{

log(η) + log det(A)− log det(B)− 1

2
log det(Σµ)− 1

2
log det(Σν)

}
− ε

2
log det

(
Id−A2(B>B)−1

)
= 2η

{
1− log(η) + log det(A)− log det(B)− 1

2
log det(ΣµΣν)

}
− ε

2
log det

(
Id−A2(B>B)−1

)
.

Step 2: Calculation of mπ∗ We need to find the minimizer of the following problem:

min
mπ>0

mπΥ∗ + τKL(mπ‖mµ) + τKL(mπ‖mν) + εKL(mπ‖mµmν).

By part (c) of Lemma C.6, we obtain

mπ∗ = m
τ

2τ+ε
µ m

τ
2τ+ε
ν (mµmν)

ε
2τ+ε exp

{ −Υ∗

2τ + ε

}
.

Hence, we have thus proved our claims.


