A Statistical Manifold Framework for Point Cloud Data

Yonghyeon Lee * !

Abstract

Many problems in machine learning involve data
sets in which each data point is a point cloud
in RP. A growing number of applications re-
quire a means of measuring not only distances
between point clouds, but also angles, volumes,
derivatives, and other more advanced concepts.
To formulate and quantify these concepts in a
coordinate-invariant way, we develop a Rieman-
nian geometric framework for point cloud data.
By interpreting each point in a point cloud as a
sample drawn from some given underlying prob-
ability density, the space of point cloud data can
be given the structure of a statistical manifold
— each point on this manifold represents a point
cloud — with the Fisher information metric acting
as a natural Riemannian metric. Two autoencoder
applications of our framework are presented: (i)
smoothly deforming one 3D object into another
via interpolation between the two corresponding
point clouds; (ii) learning an optimal set of latent
space coordinates for point cloud data that best
preserves angles and distances, and thus produces
a more discriminative representation space. Ex-
periments with large-scale standard benchmark
point cloud data show greatly improved classifica-
tion accuracy vis-a-vis existing methods. Code is
available at https://github.com/seungyeon-k/SMF-
public.

1. Introduction

Many machine learning problems involve data sets in which
each data point is a point cloud in R”. For example, to
measure the similarity between two shapes, point cloud
representations of the two shapes can be obtaind with a
depth camera, and a distance metric on the space of point

“Equal contribution 'Department of Mechanical Engineering,
Seoul National University, Seoul, South Korea *Kakao Enterprise,
Seongnam, Kyonggi-do, South Korea *Saige Research, Seoul,
South Korea. Correspondence to: Frank C Park <fcp@snu.ac.kr>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Seungyeon Kim “! Jinwon Choi? Frank C Park '?

Point cloud data space Statistical manifold

11
ppppppp } mapping =
%, “‘.w) . . / N
/ X2 — 1 4
i (2:X1)
p(a;
Xy | bt ! Q pla; X2)
R"D p(m; X3)

Figure 1: Illustration of statistical manifold obtained from
the 1-1 mapping between the space of point cloud data and
the space of probability density functions.

clouds, e.g., the Hausdorff distance, the chamfer distance
(Hausdorff, 1914), or earth mover distance (Rubner et al.,
2000) used to measure their similarity.

The distance metric measures just one aspect of point cloud
data; other applications may require more advanced con-
cepts and tools. For example, in the case of a moving point
cloud, one may seek any number of quantities such as the ve-
locity, acceleration, relative heading direction, or the swept
volume. For multiple point cloud samples, one may seek a
measure of their dispersion, e.g., the covariance or higher
moments.

In fact, a growing number of applications involving point
cloud data require a means of measuring not only distances,
but also angles, volumes, derivatives, and other advanced
geometric and analytical concepts. In principle one could
choose some arbitrary coordinates to parametrize the space
of point clouds, and extend the usual Euclidean notions
of angles, volumes, and derivatives, but such an approach
would not only be ad hoc, but likely not be invariant with
respect to the choice of coordinates.

To formulate and quantify these concepts in a coordinate-
invariant, geometrically meaningful way, as a first con-
tribution we develop a Riemannian geometric framework
for point cloud data. The key idea behind our approach
draws upon information geometry (Amari & Nagaoka, 2000;
Amari, 2016): by interpreting each point in a point cloud
as a sample drawn from some known probability density,
the space of point cloud data can be given the structure of a
statistical manifold — each point on this manifold represents
a point cloud — with the Fisher information metric acting

https://github.com/seungyeon-k/SMF-public
https://github.com/seungyeon-k/SMF-public

A Statistical Manifold Framework for Point Cloud Data

as a natural Riemannian metric. Under some mild assump-
tions, i.e., the number of points in a point cloud is fixed, and
all points are distinct, a one-to-one mapping between the
space of point clouds and probability densities can be con-
structed. That is, a point cloud X = {z1, ...,zy |z; € RP}
is mapped to a density function p(x; X) on R in a 1-1
fashion as illustrated in Figure 1.

We remark that the idea of interpreting each point in a point
cloud as a sample drawn from some given probability den-
sity is well-known, and has been applied to problems rang-
ing from point set registration (Jian & Vemuri, 2005; Wang
et al., 2006; Myronenko & Song, 2010; Hasanbelliu et al.,
2014; Zhou et al., 2014; Min et al., 2018; Li et al., 2021)
to point cloud de-noising (Zaman et al., 2017; Luo & Hu,
2021). These applications, however, only require a similar-
ity measure between point clouds, typically formulated in
terms of some divergence measure.

Two autoencoder applications of our framework are pre-
sented: (i) smoothly deforming one 3D object (a cylinder)
into another (a cone), and (ii) learning an optimal set of
latent space coordinates for point cloud data that best pre-
serves distances and angles. In the former case, a pre-trained
autoencoder is used to encode two 3D point clouds — one
representing the cylinder, the other the cone — and the mini-
mal geodesic with respect to the natural Riemannian metric
is then constructed between these two objects. The shape
evolution obtained for this iemannian metric is seen to be far
more natural and intuitive than that obtained for the straight
line interpolant in latent space.

In the second application, we use the statistical manifold
framework to find a set of distortion minimizing latent space
coordinates, in the sense that Euclidean straight lines in the
latent space closely approximate minimal geodesics on the
statistical manifold. Such a set of coordinates offers a more
discriminative representation for the data manifold (Chen
et al., 2020; Lee et al., 2022) that results in, e.g., higher lin-
ear SVM classification accuracy vis-a-vis existing state-of-
the art methods. Experiments are carried out with both syn-
thetic and standard benchmark datasets (ShapeNet (Chang
et al., 2015), ModelNet (Wu et al., 2015)).

2. Statistical Manifold Framework for Point
Cloud Data

We begin this section with some information geometric pre-
liminaries. A statistical manifold is an infinite-dimensional
Riemannian manifold each of whose points is a probabil-
ity density, with the Fisher information metric acting as
a natural Riemannian metric. Finite-dimensional statisti-
cal manifolds can be obtained by considering a family of
parametric probability density functions:

Definition 2.1. Given an m-dimensional differentiable man-

ifold © and a smooth 1-1 map from © to the space of proba-
bility density functions 6 — p(x; 6), the image of this map-
ping, denoted S := {p(x;0)|0 € O}, is an m-dimensional
statistical manifold.

Let 6 = (6',...,6™) € R™ be local coordinates for § € O,
which by trivial extension also act as local coordinates for
S. Throughout we use italics to represent local coordinates,
e.g., @ € O has local coordinates § € R™. In this coordi-
nate system, elements g;; of the Fisher information metric
G(6) € R™*™ are given by

Ologp(z;0) 0logp(x; 0
9ij (0) := /p(w;9) g@o(i) gaog' Ve,)
where i,7 = 1,...,m. The length of a curve on S

parametrized by 6(¢), t € [0,7T], can then be computed
as the integral fOT ds, where the infinitesimal length ds on
S is given by ds? = df7 G(6)df. Further details on statis-
tical manifolds and the Fisher information metric can be
found in, e.g., (Amari & Nagaoka, 2000; Efron & Hinkley,
1978; Rissanen, 1996; Han & Park, 2014).

With the above statistical manifold preliminaries, we now
construct a Riemannian geometric structure for the space of
point cloud data. Section 2.1 defines a statistical manifold
from the point cloud data, while Section 2.2 uses the Fisher
information metric to construct a Riemannian metric for
point cloud data. To keep the definitions and ensuing results
simple, we assume throughout that all point clouds consist
of exactly n distinct points in R”, i.e., each point cloud is
of the form

X = {21,y n |z € RP 2y £ xjifi # 5} (2)

The set of all point clouds is denoted X. Later we discuss
methods for dealing with point clouds that do not satisfy
these assumptions. Proofs of all propositions in this section
can be found in Appendix B.

2.1. Statistical Manifold of Point Cloud Data

Given a point cloud X, a parametric probability density
function p(z; X) can be defined in terms of a positive kernel
function X itself as the parameter (Parzen, 1962; Davis et al.,
2011):

Definition 2.2. Given a positive kernel function K : RP —
R such that [, K(u) du = 1, and a D x D symmetric
positive-definite matrix X (the bandwidth matrix), the kernel
density estimate

1 O .
p(z;X) = KX 2(x —xy)) (3)
ny/ |2 1:21
is said to be a statistical representation of the point cloud

X € X. The set of statistical representations is denoted
S:={p(x;X)|X e X}.

A Statistical Manifold Framework for Point Cloud Data

To ensure that S is a statistical manifold, recall from Def-
inition 2.1 that the following two conditions need to be
satisfied: (i) X is a differentiable manifold; (ii) A 1-1 map-
ping h : X — S, h(X) = p(x; X) must be defined. The
first condition can be satisfied with the “distinct points”
assumption:

Proposition 2.3 (Corollary 2.2.11. in (Knudsen, 2018)).
The set of point clouds in which each point cloud is a set
of n distinct points of dimension D, is an nD-dimensional
differentiable manifold.

To satisfy the second condition, additional assumptions are
needed. The following proposition provides a sufficient
condition for A to be 1-1:

Proposition 2.4. If the kernel function
U(w,y) = K(57% (@ —y)))

is strictly positive-definite,” then the mapping h : X — S
given by

LS RKE T e-a))

h(X)(z) = ”7\/@ :

is 1-1.

The above proposition offers guidance on the choice of
kernel in our statistical manifold framework. Throughout
the remainder of the paper, we use the standard and widely
used strictly positive-definite kernel function

1 T

K = —eg (=57,

(6)

with the scaled identity bandwidth matrix, i.e., ¥ = o21.
We note that other choices of kernel function are possible,
e.g., the Laplacian kernel, or inverse multiquadratic ker-
nel (Sriperumbudur et al., 2010).

From Propositions 2.3 and 2.4 we have established that,
under the distinct points assumption and using the normal
kernel function, the mapping h : X — S is 1-1; S can
therefore be given the structure of statistical manifold. Fig-
ure 2 illustrates statistical manifold representations of some
example point clouds.

2.2. Information Riemannian Metric for Point Cloud
Data Space

We now equip the point cloud statistical manifold S with
the Fisher information metric, which we refer to as the

"Without the distinct points assumption, the set of point clouds
is no longer a manifold, but only an orbifold that is locally a finite
group quotient of a Euclidean space.

%A kernel function W(-, -) is said to be strictly positive-definite
if the matrix (U(x;,z;))1<s,5<m is positive-definite for all posi-
tive integers m and all mutually distinct 1, ..., Tm,.

Figure 2: Probability heat maps for various k (the
greener, the higher) for some examples from the ShapeNet
dataset (Chang et al., 2015), where we set 0 = k x MED for
k € (0,00). MED denotes the median of the distances be-
tween the points in the point cloud and their nearest points.

info-Riemannian metric and denote by H. The first task is
to define a local coordinate system on the space of point
clouds X'. Toward this end, we use the matrix representation
X € R™*P of a point cloud X. Observe that the matrix
representation is not unique: given an n X n permutation
matrix P € R"*"™, then X and PX represent the same
point cloud X. Fortunately, this does not cause problems
since p(x; X) is defined in a permutation-invariant way, i.e.,
p(z; X) = p(x; PX) for any n X n permutation matrix P.
We again note that we use italics to denote local coordinate
representations, e.g., X has local coordinates X &€ Rn*D|

the tangent vector V. € Tx X has local coordinates V' &
RnXD.

The info-Riemannian metric H can be expressed in local
coordinates coordinates X as follows:

Ologp(x; X) 0log p(x; X) p
0X17 axH 0

(7
fori,k =1,...,nand j,l = 1,...,D. Given two tangent
vectors V, W ¢ Tx X with respective matrix representa-
tions V, W € R™*P their inner product is then computed

as follows:

Hiju(X) := /p(SU;X)

n D
(V.W)x = Y > Him(X)VIWkE. @8)
i,k=1j,l=1

The coordinate expression of the info-Riemannian
metric H,j,(X) results in a permutation-invariant
inner product, ie., Y H;jp(X)VIWH

S Hij(PX)(PV)i3(PW)E for any n x m permu-
tation matrix P, showing that the metric is geometrically
well-defined.

Using the standard normal kernel function, the coordinate
expression of the info-Riemannian metric H;3; has a simple
analytic expression as follows:

A Statistical Manifold Framework for Point Cloud Data

Proposition 2.5. With the standard (multivariate) normal
kernel function and the bandwidth parameter o, the infor-
mation Riemannian metric H;j(X) is given by

T

o KOZE(EE) (@ (e)
[e e
&)

Figure 3 shows that, given two moving point cloud data
whose velocity matrices have equal Euclidean norm (i.e.,
V2 =3, Zle ViVid), the velocity norms under
the info-Riemannian metric are significantly different: the
velocity A has a value of 0.2626, while the velocity B has a
value of 2.2 x 10~8. In particular, observe that the tangential
velocity in the case B, which does not change the overall
distribution of the point cloud, has a very small velocity
norm under the info-Riemannian metric as it should.

3. Applications to Point Cloud Autoencoders

Riemannian geometric formulations of autoencoders for
representation learning have recently been introduced and
extensively studied in (Shao et al., 2018; Arvanitidis et al.,
2018; Yang et al., 2018a; Chen et al., 2018; Kalatzis et al.,
2020; Arvanitidis et al., 2020; Chen et al., 2020; Lee et al.,
2022). In these works, the image of the decoder function
is viewed as a low-dimensional manifold embedded in the
high-dimensional data space — we refer to this manifold as
the decoded manifold — and a Riemannian metric for the
decoded manifold is obtained by projecting the data space
Riemannian metric to this manifold. In contrast, this per-
spective cannot be reasonably extended to existing point
cloud autoencoders (e.g., FoldingNet (Yang et al., 2018b),
AtlasNet (Groueix et al., 2018), AtlasNetV2 (Deprelle et al.,
2019), and TearingNet (Pang et al., 2021)), due to the ab-
sence of a geometrically well-formulated Riemannian mani-
fold structure.

In this section, using the info-Riemannian metric, we extend
this perspective by defining a Riemannian metric for the
decoded manifold of the point cloud autoencoder. With
this info-Riemannian metric, we examine two case studies:
(i) interpolation between two points of latent space via the
minimal geodesic; (ii) learning an optimal set of latent space
coordinates that best preserves distances and angles (or
intuitively, minimizes distortion).

Consider a point cloud decoder function with the m-
dimensional latent space f : R™ — R"*P where the
output is expressed in terms of the matrix representation.
The projection of the info-Riemannian metric on the point
cloud statistical manifold to the decoded manifold is then

expressed in latent space coordinates z € R™ as follows:

n D
Gar(2) = D > Hi(F() I ()T (2),
ik=1j,l=1
(10)
where Jy denotes the Jacobian of f, and the indices a, b
both range from 1 to m. The latent space is then assigned a
Riemannian metric G5 (2); the following two applications
rely on G(z) € R™*™,

Ay 244 ¢ B e
h Y J 4 'Y
e o é LY
ha J ok ‘ q
- [o4 ; ?
R o, X ?
) e, S »
P N * - »
c ey bt e

Figure 3: Two moving point clouds with different velocity
matrices.

Geodesic interpolation: The latent space metric G(z) can
be used to find the minimal geodesic curve connecting two
point clouds (i.e., the shortest length curve in the decoded
manifold). Let 21, zo be the encoded values of the two
point clouds in the latent space R™. In terms of the metric
G(z), the geodesic curve connecting these two points can
be determined as a solution to the following optimization
problem (Do Carmo, 2016):

min /O SOTC=())4(t) dt, (i1

z(t)

subject to z(0) = z; and z(1) = z9. Parametrizing z(t) by
a cubic spline with fixed boundary points z1, z2 then leads
to an unconstrained optimization problem. To avoid exces-
sive memory consumption when computing the objective
function and its gradient, instead of the usual Riemann sum
approximation of the integral, we interpret the integral as an
expectation over the uniform distribution ¢ ~ U(0, 1) and
accordingly use the mini-batch sampling technique.

Learning optimal latent space coordinates: The latent
space metric G(z) can be used to formulate a regularization
term when training an autoencoder to learn an optimal set of
latent space coordinates; by “optimal” we mean G(z) = ¢l
for some positive scalar ¢, so that the decoder preserves
distances and angles as much as possible. Recently, a reg-
ularization technique for this purpose has been introduced
in (Chen et al., 2020). Specifically, the following regular-
ization term is added to the reconstruction loss function:

E.p[|G(z) — cI||3%], (12)

where || || p is the Frobenius norm, ¢ = E...p[--Tr(G(2))],
and P is defined via the modified mix-up augmentation, i.e.,

A Statistical Manifold Framework for Point Cloud Data

z~P <= 2z = az + (1 — a)zy where z1, 25 are
sampled from the set of encoded training data and o ~
U(—n,14n) for n > 0. For latent spaces whose dimension
m is large, in order to avoid the expensive and memory-
consuming computation of G(z) € R™*™, we use the
following regularization term in the subsequent experiments:

EZNP[EUNN’(OJ)[H’UTG(Z)’U — chv||2]], (13)

where we use mini-batch sampling to estimate the expec-
tations. This can be done much more efficiently since
we need only compute the Jacobian-vector product, i.e.,

D (T ve.

4. Experimental Results

We now verify the effectiveness of the info-Riemannian
metric for the two point cloud autoencoder applications de-
scribed above using both a synthetic 3D basic shape dataset
and standard benchmark point cloud datasets.

The synthetic 3D basic shape dataset consists of cylinders,
cubes, cones, and ellipsoids with various aspect ratios of the
shape parameters (e.g., radius versus height for the cylinder).
We sample 512 points from the surface mesh of the shapes
using a greedy sample elimination algorithm, so that each
sampled point is approximately the same distance from its
neighborhood points (Yuksel, 2015). Each point cloud is
then normalized so that the two farthest points are a unit
distance apart. Further details about the synthetic 3D basic
shape dataset generation are provided in Appendix C.

The standard benchmark point cloud dataset consists of
ModelNet (Wu et al., 2015) and ShapeNet (Chang et al.,
2015), where ModelNet consists of ModelNet10 and Mod-
elNet40, each of which consist of 10 and 40 shape classes,
respectively. Each point cloud data has 2048 points; we
normalize these into a unit sphere as done in (Yang et al.,
2018b).

4.1. Synthetic 3D Basic Shape Dataset

In Section 4.1.1, we use a dataset consisting of cones, cylin-
ders, and ellipsoids, which are split into training/valida-
tion/test sets of size 3196/800/804. We then confirm the
validity of the proposed metric by comparing the results of
several shape interpolation methods in the latent space.

In Section 4.1.2, to study the effects of the regularization
term when learning the optimal latent coordinates (with
respect to the info-Riemannian metric), we use a dataset
consisting of boxes, cones, and ellipsoids divided into train-
ing/validation/test sets of size 720/240/240.

We use DGCNN as the encoder (Wang et al., 2019) and
a fully-connected neural network as the decoder. The la-
tent space is assumed to be two-dimensional. For the re-

construction loss term, we use the Chamfer distance. The
regularization term in Equation (12) is multiplied by a co-
efficient A > 0 and added to the reconstruction loss term.
Further details about the network architectures and training
are provided in Appendix C.

4.1.1. EXAMPLE 1: CONE, CYLINDER, AND ELLIPSOID

Figure 4 shows the test data encoded in the latent space to-
gether with the interpolation trajectories and generated point
clouds from those interpolants. In the case of intra-class in-
terpolations (i.e., interpolants between cylinders), the linear
interpolant clearly passes through the red ellipsoid region
in the latent space, with some of the generated point clouds
clearly ellipsoids. The geodesic interpolations under the
Euclidean and info-Riemannian metrics both avoid ellipsoid
regions in the latent space. In particular, the geodesic inter-
polants between two cylinders are also cylinders; this is well-
aligned with human intuition. However, if we look at the
generated point clouds in detail, while the info-Riemannian
metric produces clearly blue cylinders, some of the gener-
ated point clouds with the Euclidean metric are non-blue
cylinders (i.e., relatively closer to the ellipsoid region) with
noisy side surfaces. For the inter-class interpolations (i.e.,
interpolants between a cylinder and a cone), the linear inter-
polant also clearly passes through the red ellipsoid region.
The geodesic interpolation under the Euclidean metric pro-
duces many non-blue and non-green color shapes during the
transition from cylinders to cones, while geodesic interpola-
tion under the info-Riemannian metric produces such cases
far less. Overall, it can be observed that the geodesic in-
terpolants under the info-Riemannian metric have minimal
shape class changes.

Figure 5 shows the latent spaces produced by the regular-
ized autoencoders using the Euclidean and Info-Riemannian
metrics. Compared to the latent space in Figure 4 (trained
without regularization), the following observations can be
made: (i) the encoded latent spaces of cones and cylinders
are flattened, and (ii) the ellipsoids and cones become more
discriminative. Furthermore, we note that the encoded la-
tent space curves of cones and cylinders in the right figure
(where the info-Riemannian metric is used) are clearly flat-
ter than those in the left figure (where the Euclidean metric
is used). In other words, if we linearly interpolate between
two cylinders or two cones, the interpolants in the right case
will most likely remain in the same class, unlike the left
case (the generated point clouds from the linear interpolants
are provided in Appendix E).

4.1.2. EXAMPLE 2: BoX, CONE, AND ELLIPSOID

Figure 6 shows the test data encoded in the latent space
together with the visualization of the Riemannian metric,
the fitted Gaussian Mixture Model and its samples, and pair-

A Statistical Manifold Framework for Point Cloud Data

Latent space

Interpolants
. . 0 . . O 00688 C

E%%%%%%%%@

04 BRI |
02 FT Ve
° (BRI |
-0.2
04 veee
1075 05 025 0 025 . e ﬁ s
Cylerder ® Cone e Ellipsoid
--- gzzzgsicleuclidean metric T @ § ? E

—— Geodesic w/ info-Riemannian metric

Voo
RRRRR
R RN
fo00000000000ca,)
EEEN
NN

bbb bbbb00
Piiddoeeae

Figure 4: Left: Latent space with linear and geodesic interpolants. The orange interpolants connect a wide cylinder to a tall
cylinder, while the magenta interpolants connect a cylinder to a cone. Linear interpolants and geodesic interpolants under the
Euclidean and info-Riemannian metrics are drawn as dotted, dashed, and solid lines, respectively. Right: Generated point
clouds from those interpolants. To visually indicate which class generated point cloud belong to, we color these according
to the ratio of the Chamfer distances to the nearest point cloud for each class (see Appendix C). For example, when it is
uncertain which class a generated data belongs to (i.e., the nearest distances to each class are similar), it is assigned some

color other than blue, red, or green.

Euclidean metric Info-Riemannian metric

: \
10
2 e,
%R
i . 2

0 e, 0 “ 3°
Re) » 2 o
10 N “ /
20 61 = o'

-20 -10 0 10 20 -5 25 0 25 5 75
Cylinder e Cone e Ellipsoid

Figure 5: Latent spaces produced by regularized autoen-
coders, each of which is trained with the Euclidean (Left)
and info-Riemannian metric (Right). Representative intra-
class linear interpolants between two cylinders and two
cones are drawn as black solid lines.

wise Euclidean distances. From the first column of Figure 6,
by comparing the results with and without regularization,
the following two key observations can be made: (i) in the
vanilla autoencoder case (upper case), the major axes of
the gray ellipses are aligned with the decision boundary
(i.e., a hypersurface that partitions the different class re-
gions), which implies that shapes of different classes are
actually more distant in the learned manifold (under the
info-Riemmanian metric) than shown in the latent space,
and (ii) in the regularized autoencoder case (lower case), by
encouraging the metric to be isotropic (i.e., turning ellipses
into circles), the gaps between different class regions are
widened. The second column confirms that the components
of the GMM are better separated after regularization; each
component of the GMM on the regularized autoencoder gen-
erates high-quality, even samples from the same class shape

as shown in the third column. The heat maps of the pair-
wise distances in the last column also indicate that shapes in
different classes are more distant, and therefore more easily
separable in the latent space of the regularized autoencoder.

To quantitatively verify, we repeat this experiment with mul-
tiple different synthetic datasets (details are in Appendix C),
and report the averaged GMM clustering scores, Normal-
ized Mutual Information (NMI) and Adjusted Rand Index
(ADI), in Table 1. Ours shows higher clustering accuracy.

Table 1: Averaged clustering scores over 27 different
datasets, each of which consists of diverse shapes of boxes,
cones, and ellipsoids; the higher the better.

METHOD NMI ADI
Vanilla AE 0.7624 £ 0.2132 0.7209 +£ 0.2598
Regularized AE 0.9484 + 0.1391 0.9368 + 0.1737

4.2. Standard Benchmark Data

To show that the regularization technique with the info-
Riemannian metric can benefit unsupervised representation
learning from the perspective of discriminative representa-
tion learning, we compare the transfer classification accu-
racy of ShapeNetCore.v2 to ModelNet following the same
experimental procedure outlined in (Yang et al., 2018b).
When training autoencoders with ShapeNet, random rota-
tions about an axis parallel to the direction of gravity are
applied to each point cloud. We use four different point
cloud autoencoders: FcNet and FoldingNet adopted from
(Yang et al., 2018b), PointCapsNet adopted from (Zhao
et al., 2019), and DGCNN-FcNet using DGCNN (Wang

A Statistical Manifold Framework for Point Cloud Data

Latent space

w 0.4
<
i
z o
S
-0.4
-1
w 4
<
bl
&
N .ol
© s o
3 2 L e
L 4 i -4
"""“6:'"‘
-5 0 5

Box ¢ Cone e Ellipsoid

Samples Pairwise distances
SIEETIIT I Y 1o
PViVewiyuy 5 :
Chab b aaneld ¢ 5
TSR N I K N N N o
COVNTOPOO® LS g
eessrssyee ®
VIPVOOOVOL 3 e
vioveVewey 2 5
il Ld s iy @ 5
Inlas sl S| ;
LA L AL B & LA g

A N BN K B N ¥ N J

Box Cone Ellipsoid

Figure 6: From left to right: latent spaces with equidistant ellipse ({z|(z — z*)TG(2*)(z — 2*) = 1} for center z*) centered
on some selected points and sampled points from interspaces, Gaussian Mixture Model (GMM) fitting results, generated
samples from the GMM, and the heat map of the pairwise Euclidean distances in the latent space of all test data. The upper
figure is a vanilla autoencoder trained without regularization, while the lower figure is trained with regularization (using the
info-Riemannian metric). For the samples in the third column, we assign colors using the same method of Section 4.1.1 to
visually express which classes the samples are likely to belong to.

et al., 2019); the latent space is 512-dimensional for all. The
four autoencoders are trained with and without regulariza-
tion. In the former case, the regularization terms of Equa-
tion (13) under both the Euclidean and info-Riemannian
metrics are used while varying the regularization coefficient
A. We distinguish between regularized autoencoders using
the Euclidean and info-Riemannian metrics by an “+E” or
“+I” after the network name. After network training is fin-
ished, we train linear SVM classifiers with the encoded data
for ModelNet10 and ModelNet40. These are split into train-
ing/test sets of sizes 3991/909 and 9843/2468, respectively.
Further experimental detail are provided in Appendix C.

Table 2 shows a comparison of transfer classification accu-
racy from ShapeNet to ModelNet10 (MN10) and Model-
Net40 (MN40) for various recent state-of-the-art methods.
In the upper table (Adopted from References), the numbers
are adopted from previous papers (the experimental proce-
dures may differ slightly from ours). In the lower table (Im-
plemented by Authors), we report the best numbers obtained
(adopted from Appendix E). First, although their perfor-
mance is not directly comparable due to differences in the
experimental procedures, it can be seen that our regularized
autoencoders are comparable to the state-of-the-art meth-
ods. Second, at least for our implementation, regularization
using the info-Riemannian metric improves classification
accuracy over vanilla autoencoders, with higher accuracy
compared to the Euclidean metric case.

Next, based on the intuition that kernel-based statistical rep-

resentations are robust to noise, we also conduct additional
experiments to determine how much more robust the repre-
sentation obtained with our regularization approach is for
noisy point cloud data. We add noise with different levels of
standard deviation (1%, 5%, 10%, and 20% of the diagonal
length of the point cloud bounding box) to point cloud data
(see Appendix C for details). Then FcNet is trained with
and without regularization in the same way as above.

MN40, 5% noise MN40, 20% noise

g 5
‘;_’ e rmsmssne 10,060 75 PW 0.076 E
g8 0.055 657 <
0.072:5

§ 70 FcNet { 0.050 55/ | g
FeNet +1{ == 4 2

60 e e A 0.068 %
@ . ity o o
850 e oo 10,040 35 et 10,064 8
O 0 100 200 300 400 500 0 100 200 300 400 500 =

Epoch Epoch

Figure 7: Learning curves in the presence of noise (left: 5%
noise; right: 20% noise), ModelNet40 transfer classification
accuracy and reconstruction error as functions of the training
epoch.

Table 3 shows a comparison of transfer classification accu-
racy in the presence of noise. As the noise level increases,
the classification accuracy obviously decreases, but the re-
duction is the least dramatic for regularized autoencoders
under Info-Riemannian metric. Figure 7 shows learning
curves, ModelNet40 transfer classification accuracy and
reconstruction error as functions of the training epoch, in
the presence of noise. Throughout the learning process,
compared to vanilla autoencoders (light colored lines), reg-

A Statistical Manifold Framework for Point Cloud Data

Table 2: Classification accuracy by transfer learning
for ModelNet10 (MN10) and ModelNet40 (MN40) from
ShapeNet.

METHOD MN40 MNI10
Adopted from References
SPH (Kazhdan et al., 2003) 682% 79.8%
LFD (Chen et al., 2003) 75.5% 79.9%
VConv-DAE (Sharma et al., 2016) 75.5% 80.5%
3D-GAN (Wu et al., 2016) 83.3% 91.0%
Latent-GAN (Achlioptas et al., 2018) 84.5% 95.4%
FoldingNet (Yang et al., 2018b) 88.4% 94.4%
PointFlow (Yang et al., 2019) 86.8% 93.7%
Multi-Task (Hassani & Haley, 2019) 89.1% -
PointCapsNet (Zhao et al., 2019) 89.3% -
Implemented by Authors

FcNet 883% 93.5%
FcNet + E (ours) 89.3% 93.7%
FcNet + I (ours) 904% 94.3%
FoldingNet 89.3% 93.7%
FoldingNet + E (ours) 88.9% 94.4%
FoldingNet + I (ours) 90.1% 94.5%
PointCapsNet 872% 93.6%
PointCapsNet + E (ours) 88.1% 93.7%
PointCapsNet + I (ours) 88.5% 93.9%
DGCNN-FcNet 90.3% 94.5%
DGCNN-FcNet + E (ours) 89.9% 94.4%
DGCNN-FcNet + I (ours) 91.0% 95.2%

ularized autoencoders under Info-Riemannian metric (dark
colored lines) show higher classification accuracy and simi-
lar levels of reconstruction errors. In particular, as shown in
the right figure, as the learning progresses, the classification
accuracy of the vanilla autoencoder largely decreases in ex-
pense of minimizing the reconstruction error, while that of
our regularized autoencoder is maintained. This shows our
regularization approach helps autoencoders to learn robust
representations to noise as expected.

Lastly, we compare the semi-supervised transfer classifica-
tion accuracy. In the semi-supervised settings, not all the
training data have labels, which are actually more frequent
situations in reality. When we train linear SVM classifier,
we use different numbers of training data (1%, 5%, 10%,
and 50% of the overall training data, see Appendix C for
details). Table 4 shows a comparison of transfer classifica-
tion accuracy according to the percentage of training label
used. As the label rate decreases, the classification accuracy
decreases, but the reduction is more dramatic for vanilla au-
toencoders. Together with the results in Table 2, this clearly
shows that our regularization approach helps autoencoders
to learn more discriminative representation spaces, and the
effect is greater with a small number of labeled data.

Overall, it is indeed somewhat surprising that unsupervised
classification accuracy can be improved (i.e., more discrimi-
native representation space can be obtained) with a simple
regularization technique in lieu of a complex neural net-
work architecture or loss function. We include additional

Table 3: Classification accuracy by transfer learning
for ModelNet10 (MN10) and ModelNet40 (MN40) from
ShapeNet under the noise levels of 1%, 5%, 10%, and 20%.

MN40
METHOD 1% 5% 10% 20%
FcNet 87.8% 832% 75.6% 64.5%
FcNet + E (ours) | 86.6% 851% 79.1% 70.4%
FcNet +1 (ours) | 89.0% 86.6% 81.4% 72.4%
MNI10
1% 5% 10% 20%
FcNet 924% 919% 88.4% 79.8%
FcNet+E (ours) | 922% 91.1% 88.2% 82.6%
FcNet+1(ours) | 93.3% 92.6% 91.6% 84.8%

Table 4: Classification accuracy by transfer learning
for ModelNet10 (MN10) and ModelNet40 (MN40) from
ShapeNet under the different percentages of labeled training
data for linear SVM classifier (50%, 10%, 5%, and 1%).

METHOD MN40
50% 10% 5% 1%
FcNet 85.7% 78.0% 70.6% 50.3%
FcNet+1 (ours) | 87.9% 81.6% 76.8% 57.4%
MNI10
50% 10% 5% 1%
FcNet 91.7% 90.1% 87.2% 74.1%
FcNet + 1 (ours) | 93.2% 91.2% 88.3% 78.1%

experimental results and analysis in Appendix D.

5. Discussion and Conclusion

This paper has proposed a new Riemannian geometric struc-
ture for the space of point cloud data. We have defined a sta-
tistical representation of point cloud data and constructed a
statistical manifold in a mathematically rigorous way. Then
a natural Riemannian metric — Fisher information metric
—is assigned to the point cloud statistical manifold, which
provides geometrically well-defined measures needed for
applications. We demonstrate its advantages through two
applications involving point cloud autoencoders: (i) min-
imal geodesic interpolants under info-Riemannian metric
have minimal shape changes compared to the standard linear
interpolants, and (ii) the optimal latent coordinates learned
using our method produce more discriminative representa-
tion spaces than existing methods. In particular, transfer
classification accuracy has been greatly improved in noisy
data and semi-supervised settings.

As a potential issue, the “fixed number of points” assump-
tion used in our construction of the statistical manifold may
be violated in real world problems. In such cases, we can
easily mitigate this issue by matching the number of points
in each point cloud through a simple upsampling/downsam-
pling algorithm. Further, the kernel function used in our

A Statistical Manifold Framework for Point Cloud Data

current implementations, the standard normal kernel func-
tion, may not be an optimal choice. Other choices can be
explored to enhance our algorithms as long as the conditions
of Proposition 2.4 are satisfied.

Compared to research on distance metric, there are relatively
few studies on Riemannian metric despite its importance and
utility. This paper is the starting point of research on point
cloud space Riemannian metric, and we believe the study on
diverse Riemannian metrics, just as various distance metrics
with different properties have been developed, should be
continued.

In certain real-life scenarios containing multiple 3d objects
that (i) are only partially observed (e.g., only one side of the
underlying surface is observed), and (ii) local densities of
the measured points for each object are different, using a
single probability density function with a single kernel-type
and fixed bandwidth parameter to represent the measured
point cloud can be problematic. For example, consider a
point cloud data obtained through LiDAR; the point cloud
can include diverse objects such as cars, pedestrians, trees,
buildings, and lanes. They are obviously partially observed,
and local point cloud densities are different since their dis-
tances from the sensors are different. One way to approach
this problem is to (i) first decompose the measured point
cloud into several multiple point clouds, each of which
represents a single object (for example, by using existing
object detection techniques); (ii) use point cloud completion
and super resolution algorithms as needed to make each
point cloud rich enough to represent the corresponding ob-
ject, and (iii) apply our methods by using different kernels
and bandwidth parameters suitable to represent each point
cloud. Other approaches are also possible, and we believe
it is an worthwhile future research topic to examine which
approaches are best suited to different application domains.

Acknowledgements

This work was supported in part by SRRC NRF grant
2016R1A5A1938472, TITP-MSIT grant 2022-0-00480
(Training and Inference Methods for Goal-Oriented Al
Agents), SNU-AIIS, SNU-IAMD, SNU BK21+ Program in
Mechanical Engineering, and the SNU Institute for Engi-
neering Research.

References

Achlioptas, P., Diamanti, O., Mitliagkas, 1., and Guibas, L.
Learning representations and generative models for 3d

point clouds. In International conference on machine
learning, pp. 40-49. PMLR, 2018.

Amari, S.-i. Information geometry and its applications,
volume 194. Springer, 2016.

Amari, S.-i. and Nagaoka, H. Methods of information geom-
etry, volume 191. American Mathematical Soc., 2000.

Arvanitidis, G., Hansen, L. K., and Hauberg, S. Latent
space oddity: on the curvature of deep generative models.
In Proceedings of the 6th International Conference on
Learning Representations (ICLR), 2018.

Arvanitidis, G., Hauberg, S., and Scholkopf, B. Ge-
ometrically enriched latent spaces. arXiv preprint
arXiv:2008.00565, 2020.

Besl, P. J. and McKay, N. D. Method for registration of
3-d shapes. In Sensor fusion 1IV: control paradigms and
data structures, volume 1611, pp. 586-606. International
Society for Optics and Photonics, 1992.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., et al. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012, 2015.

Chen, D.-Y., Tian, X.-P,, Shen, Y.-T., and Ouhyoung, M. On
visual similarity based 3d model retrieval. In Computer
graphics forum, volume 22, pp. 223-232. Wiley Online
Library, 2003.

Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., and
Smagt, P. Metrics for deep generative models. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp- 1540-1550. PMLR, 2018.

Chen, N., Klushyn, A., Ferroni, F., Bayer, J., and Van
Der Smagt, P. Learning flat latent manifolds with vaes.
arXiv preprint arXiv:2002.04881, 2020.

Cosmo, L., Norelli, A., Halimi, O., Kimmel, R., and Rodola,
E. Limp: Learning latent shape representations with met-
ric preservation priors. In Computer Vision—ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part 111 16, pp. 19-35. Springer, 2020.

Davis, R. A., Lii, K.-S., and Politis, D. N. Remarks on some
nonparametric estimates of a density function. In Selected
Works of Murray Rosenblatt, pp. 95-100. Springer, 2011.

Deprelle, T., Groueix, T., Fisher, M., Kim, V. G., Russell,
B. C., and Aubry, M. Learning elementary structures
for 3d shape generation and matching. arXiv preprint
arXiv:1908.04725, 2019.

Do Carmo, M. P. Differential geometry of curves and sur-
faces: revised and updated second edition. Courier Dover
Publications, 2016.

Efron, B. and Hinkley, D. V. Assessing the accuracy of
the maximum likelihood estimator: Observed versus ex-
pected fisher information. Biometrika, 65(3):457-483,
1978.

A Statistical Manifold Framework for Point Cloud Data

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and
Aubry, M. A papier-maché approach to learning 3d sur-
face generation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 216224,
2018.

Han, M. and Park, F. C. Dti segmentation and fiber tracking
using metrics on multivariate normal distributions. Jour-
nal of mathematical imaging and vision, 49(2):317-334,
2014.

Hasanbelliu, E., Giraldo, L. S., and Principe, J. C. Infor-
mation theoretic shape matching. IEEFE transactions on
pattern analysis and machine intelligence, 36(12):2436—
2451, 2014.

Hassani, K. and Haley, M. Unsupervised multi-task feature
learning on point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 8160—
8171, 2019.

Hausdorff, F. Grundziige der mengenlehre. 1914.

Hausdorff, F. Felix Hausdorff-Gesammelte Werke Band I1I:
Mengenlehre (1927, 1935) Deskripte Mengenlehre und
Topologie, volume 3. Springer-Verlag, 2008.

Jian, B. and Vemuri, B. C. A robust algorithm for point set
registration using mixture of gaussians. In Tenth IEEE
International Conference on Computer Vision (ICCV’05)
Volume 1, volume 2, pp. 1246-1251. IEEE, 2005.

Kalatzis, D., Eklund, D., Arvanitidis, G., and Hauberg, S.
Variational autoencoders with riemannian brownian mo-
tion priors. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. Rota-
tion invariant spherical harmonic representation of 3 d

shape descriptors. In Symposium on geometry processing,
volume 6, pp. 156—164, 2003.

Knudsen, B. Configuration spaces in algebraic topology.
arXiv preprint arXiv:1803.11165, 2018.

Lee, Y., Baek, J., Kim, Y. M., and Park, F. C. Imat: The
iterative medial axis transform. In Computer Graphics
Forum. Wiley Online Library, 2021.

Lee, Y., Yoon, S., Son, M., and Park, F. Regularized au-
toencoders for isometric representation learning. Interna-
tional Conference on Learning Representation, 2022.

Li, F, Fujiwara, K., and Matsushita, Y. Toward a unified
framework for point set registration. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 12981-12987. IEEE, 2021.

Luo, S. and Hu, W. Score-based point cloud denoising. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4583-4592, 2021.

Min, Z., Wang, J., and Meng, M. Q.-H. Robust generalized
point cloud registration using hybrid mixture model. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4812-4818. IEEE, 2018.

Myronenko, A. and Song, X. Point set registration: Coher-
ent point drift. IEEE transactions on pattern analysis and
machine intelligence, 32(12):2262-2275, 2010.

Nguyen, T., Pham, Q.-H., Le, T., Pham, T., Ho, N., and Hua,
B.-S. Point-set distances for learning representations of
3d point clouds. arXiv preprint arXiv:2102.04014, 2021.

Pang, J., Li, D., and Tian, D. Tearingnet: Point cloud
autoencoder to learn topology-friendly representations. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7453-7462, 2021.

Parzen, E. On estimation of a probability density function
and mode. The annals of mathematical statistics, 33(3):
1065-1076, 1962.

Paulsen, V. I. and Raghupathi, M. An introduction to the
theory of reproducing kernel Hilbert spaces, volume 152.
Cambridge university press, 2016.

Rissanen, J. J. Fisher information and stochastic complexity.
IEEE transactions on information theory, 42(1):40-47,
1996.

Rubner, Y., Tomasi, C., and Guibas, L. J. The earth mover’s
distance as a metric for image retrieval. International
Jjournal of computer vision, 40(2):99—-121, 2000.

Shao, H., Kumar, A., and Thomas Fletcher, P. The rieman-
nian geometry of deep generative models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 315-323, 2018.

Sharma, A., Grau, O., and Fritz, M. Vconv-dae: Deep volu-
metric shape learning without object labels. In European
Conference on Computer Vision, pp. 236-250. Springer,
2016.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K.,
Scholkopf, B., and Lanckriet, G. R. Hilbert space embed-
dings and metrics on probability measures. The Journal
of Machine Learning Research, 11:1517-1561, 2010.

Wang, F., Vemuri, B. C., and Rangarajan, A. Groupwise
point pattern registration using a novel cdf-based jensen-
shannon divergence. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 1, pp. 1283-1288. IEEE, 2006.

A Statistical Manifold Framework for Point Cloud Data

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on
point clouds. Acm Transactions On Graphics (tog), 38
(5):1-12, 2019.

Wu, J., Zhang, C., Xue, T., Freeman, W. T., and Tenenbaum,
J. B. Learning a probabilistic latent space of object shapes
via 3d generative-adversarial modeling. In Proceedings of
the 30th International Conference on Neural Information
Processing Systems, pp. 82-90, 2016.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1912—
1920, 2015.

Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S.,
and Hariharan, B. Pointflow: 3d point cloud generation
with continuous normalizing flows. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pp. 4541-4550, 2019.

Yang, T., Arvanitidis, G., Fu, D., Li, X., and Hauberg, S.
Geodesic clustering in deep generative models. arXiv
preprint arXiv:1809.04747, 2018a.

Yang, Y., Feng, C., Shen, Y., and Tian, D. Foldingnet:
Point cloud auto-encoder via deep grid deformation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 206-215, 2018b.

Yuksel, C. Sample elimination for generating poisson disk
sample sets. In Computer Graphics Forum, volume 34,
pp. 25-32. Wiley Online Library, 2015.

Zaman, F., Wong, Y. P., and Ng, B. Y. Density-based de-
noising of point cloud. In 9th International Conference
on Robotic, Vision, Signal Processing and Power Appli-
cations, pp. 287-295. Springer, 2017.

Zhao, Y., Birdal, T., Deng, H., and Tombari, F. 3d point
capsule networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
1009-1018, 2019.

Zhou, Z., Zheng, J., Dai, Y., Zhou, Z., and Chen, S. Robust
non-rigid point set registration using student’s-t mixture
model. PloS one, 9(3):¢91381, 2014.

A Statistical Manifold Framework for Point Cloud Data

Appendix
A. Existing Geometric/Statistical Methods for Point Cloud Data

A.1. Geometric Methods

The Hausdorff distance measures the distance between two non-empty subsets of a metric space (Hausdorff, 1914; 2008).
Given two point clouds X = {x1,....2, | 7; € RP}and Y = {y1, ..., yn | y; € RP} and metric ||z — y||? in RP, the
Hausdorff distance can be computed as follows:

. _ 2 . _ 2
max(max(min ||z — y||"), max(min [— y[)).

The Hausdorff distance is susceptible to outliers; hence, in practice, the average Hausdorff distance is used more often:

1 . 2 1 . 2
‘)(|;§;§gg}ﬂw yll -%|‘(|;§;§232Hx yll?,

where | X| denotes the number of elements in the set X. A slightly modified version of this is often referred to as the Chamfer
distance (Yang et al., 2018b). The popular point cloud registration algorithm ICP relies on these classes of metrics (Besl &
McKay, 1992).

Another popular similarity measure between two point cloud data is the Earth Mover’s Distance (EMD) (Rubner et al.,

2000):
> min o = o),
zeX "

where ¢ is a bijective mapping. Although the EMD is computationally more expensive than the above Hausdorff distances,
comparing point clouds with optimal matching in EMD provides a more robust and well-behaved similarity measure.

The Chamfer distance and EMD are often used to measure the distances between two point clouds, but they are typically
computationally expensive. Recently, the sliced Wasserstein distance and its variants have been proposed to more efficiently
measure distances (Nguyen et al., 2021). In another study, each point cloud data is represented as a matrix of pairwise
Euclidean distances between all points, and the Frobenius norm of the difference between the two matrices is used as the
distance between two point clouds (Cosmo et al., 2020).

A.2. Statistical Methods

Interpreting the point cloud data as a set of samples from some underlying probability distribution is very intuitive and
natural, and has been adopted in many previous works (Jian & Vemuri, 2005; Wang et al., 2006; Myronenko & Song, 2010;
Hasanbelliu et al., 2014; Zhou et al., 2014; Min et al., 2018; Li et al., 2021). Commonly, a mixture model is used to describe

the point cloud, written as follows:
k

pla;w,0) ==Y wi(x|6s),
i=1
where the w; are weights and ¢(x|6;) are primitive density functions with parameter 0, (e.g., ¢(x|6;) can be a standard
Gaussian with mean ;). Given a point cloud X := {x1,...,x,|z; € RP }, the parameters w, 6 are either fit with data or
specified by the user, then the mixture model is used as a statistical representation of the point cloud data. Besides the most
popular choice for ¢, the Gaussian (Jian & Vemuri, 2005), other choices such as the t-distribution (Zhou et al., 2014) or
hybrid model (Min et al., 2018) have been explored. The main purpose behind using statistical representations in existing
works are to use the well-known information-theoretic divergence measures such as the KL-divergence to compute the
similarity between point clouds.

However, all these methods focus on distance metrics that measure just one aspect of point cloud data, yet effective
mathematical concepts and tools for defining and measuring other important geometric aspects of point cloud are still
lacking.

A Statistical Manifold Framework for Point Cloud Data

B. Proof of the Propositions
B.1. Proof of Proposition 2.4
Proof. Start with the proof of Proposition B.1 which is an easier version of the original proposition.

Proposition B.1. Assume that all point cloud data in X consists of exactly n distinct points in RP. If the set of functions
{K (S 2 (z — ;) }a,cr are linearly independent’® for any arbitrary finite subset F C RP with | F| < 2n, the mapping
h: X —>Sisl-1.

Proof. Let’s consider two point clouds {y;}?, and {z;}!",. To show that the mapping h : X — S is 1-1 (especially

i=1
injective), we have to prove the following statement:

p(;i{yiticy) = plws{zi}ie,) = {vitie = {zi}ir (14)
The conditional statement can be rewritten as follows:

1

YKE 2@ —y) =Y K(E 2 (z—2)). (15)
Let denote B = {y;}*, N {z:}!, and | B| = m, and assume that m < n. Then the above equation is reduced to

Yo K@ @-y) - Y. K(E (z-2)=0. (16)

ye{yiti,—B z€{zi}}_,—B

Since the sets {y;}_; — B and {z;}_, — B are disjoint and each set has n — m elements, the LHS has 2(n —m) < 2n
terms and the terms are different to each other. Then, by the assumption, the above 2(n — m) terms are linearly independent,
and so the above equation cannot hold. There is a contradiction and the assumption m < n must be wrong. Therefore,

m =n,so {y;}iy = {z}i,- 0

With the above proposition, any kernel function that satisfies the linear independence condition is sufficient to ensure the
existence of a 1-1 mapping h. Indeed, the strict positive definiteness of the kernel function, satisfied by various kernel
functions such as normal (Gaussian) or Laplacian function, implies the linear independence condition as stated below:

Proposition B.2 (Corollary of Proposition 4.3. in (Paulsen & Raghupathi, 2016)). Let ¥ : RP x RP — R be a positive
function and F = {x1, ...,z } be a finite set of mutually distinct points. Then the set {V (-, z;) }»,crF is linearly independent
if and only if the matrix (¥ (x;,;)); j=1,... n IS positive definite.

From Propositions B.1 and B.2, Proposition 2.4 can be easily proved. From the assumption that a function ¥ : RP xR — R
defined by

U(z,y) = K(E7%(z —y)) (17)

is strictly positive definite, the matrix (¥U(x;,x;))i j=1,.. . is always positive definite for any finite set of mutually distinct
points F = {21, ..., &, }, so the set of functions { K (372 (z — ;) }o,er = {U(x, ;) }o,cr is always linearly independent
by Proposition B.2. Then, directly from Proposition B.1, the mapping b : X — S'is 1-1.

O

3The linear independence of a set of functions implies that only a trivial linear combination of the functions equals the zero function.

A Statistical Manifold Framework for Point Cloud Data

B.2. Proof of Proposition 2.5

Proof. Since Ologp(iX) _ _1__9n(

X . . .
3xi7 22X a)ﬁw), the Riemannian metric H;;;; in equation (7) is

/p(x;X) 2<1 Op(x; X) Op(z; X)

— dx.
zX) 0X4¥ 9XM v

By plugging p(z; X) in equation (6) in 22 a;t{f)) we get the following expression:

Ip(z; X) -1 2
W =555 axw ZK / Ta))

__0 —1/20,, _ .
76Xin(2 (x —x;))

= Jg (V% (z - zi))ylﬂi

= J(Z7 V@ — 22TV ——(x — x;)
= —[Jk (7% (x — 2:))57 1),

Jr : RP — RP is the Jacobian of the kernel function K. This consequently leads to

JK|h(xJ;)E)ik hpan =~)
Ho(X) = [i) Cr K@ am)?

where h(z,z;) = 272 (z — ;).

If K is the standard normal kernel function, then we get Jx () = —K (z)2T. By plugging this in the above equation with
¥ = 021, we get the following:

i ngoay 585 Uy 540
) (z,x;) J h(z,ar)
o) = [o 0 S

K a)K (b)) (e — 2 —)T
= [px0 TR i = — P

A Statistical Manifold Framework for Point Cloud Data

C. Implementation Details for the Experiments
C.1. Synthetic 3D Basic Shape Dataset Generation

For synthetic 3D basic shape dataset, we define 5 shape classes that consist of cylinder, cone, elliptic cone, ellipsoid, and
box. Figure 8 shows the representative shape of each class and the shape parameters used to define the shape class. We
sample 512 points from the surface mesh of the shapes using a greedy sample elimination algorithm, and each point cloud is
then normalized so that the two farthest points are a unit distance apart.

Cylinder Cone Elliptic cone Ellipsoid Box
|
1
h h h ho| h

\\// | |

R _

— f——] : Va | .“/az4 |'—'|/cil
r r w w w

radius r radius r width w width w width w

height h height h depth d depth d depth d

height h height h height h

Figure 8: Representative shape to each class and the shape parameters required to define it. There are 5 shape classes
including cylinder, cone, elliptic cone, ellipsoid, and box.

In Section 4.1.1, we use a dataset consisting of cones, cylinders, and ellipsoids, which are split into training/validation/test
sets of size 3196/800/804. The detail ranges of the exact value of the shape parameters are shown in Table 5.

Table 5: The ranges of the shape parameters of the dataset used in Section 5.1.1

SHAPE param min max param min max param min max
Cylinder r 0.01 0.12 h 0.05 045
Cone r 0.02 0.15 h 0.02 045
Ellipsoid w 0.03 0.12 d 0.03 0.12 h 0.03 0.12

In Section 4.1.2, we use a dataset consisting of boxes, cones, and ellipsoids divided into training/validation/test sets of size
720/240/240. The detail ranges of the aspect ratios of the shape parameters are shown in Table 6.

Table 6: The ranges of the shape parameters of the dataset used in Section 5.1.2

SHAPE param min max param min max
Ellipticcone d/w 0.33 3 h/w 0.33 3

Ellipsoid d/w 033 3 h/w 0125 0.33
Box d/w 033 3 h/w 0.33 3

C.2. Details for Experiments on Synthetic 3D Basic Shape Dataset

We used an encoder with a structure similar to the classification network used in DGCNN (Wang et al., 2019). The input
point cloud with dimension 3x512 passes through five EdgeConv layers with point-wise latent space dimensions (64, 64,
128, 256) and a max pooling layer (we do not use a batch normalization layer unlike the original DGCNN classification
network, but other settings are the same, e.g., & = 20, leaky relu activation), then we can obtain a 1024-dimensional feature

A Statistical Manifold Framework for Point Cloud Data

vector. Then this feature vector again passes through three fully-connected neural networks with dimensions (512, 256, 2)
with leaky relu activation functions and linear output activation function; the latent space is two-dimensional. For the decoder
model, we simply use a fully-connected neural network as the decoder. The two-dimensional vector on the latent space
passes through three fully-connected neural networks with dimensions (256, 512, 3x512) with relu activation functions and
linear output activation function; the output is a 3D point cloud with the number of points 512.

Section 5.1.1: To train the networks, we use ADAM with a learning rate of 0.001 and batch size of 16; the total number of the
epochs is 500. The mean value of MEDs of the dataset is 0.0339, and we use the bandwidth value £ to 0.5. We use Chamfer
distance as the reconstruction loss; for regularization figures, the regularization term with the version of Equation (12) is
multiplied by a coefficient A = 107 with the info-Riemannian metric and by a coefficient A\ = 1 with the Euclidean metric
and added to the reconstruction loss term for each metric case. The value of 7 is set to be 0.0. For geodesic computation, we
parametrize the curve z(t) by a cubic spline with fixed boundary points 21, zo and 10 control points. The control points
are first initialized with equally spaced linear interpolants between z; and 2. Then, for each iteration of optimization, we
randomly sample 40 points on ¢; ~ U(0,1),i = 1, ..., 40 and calculate an expectation 5 Zil 2(t)TG(2(t:))2(t;) over
the sampled points as the approximation of the objective function. We use ADAM with a learning rate of 0.001 and the total
number of the iterations is 5000.

Section 5.1.2: To train the networks, we use ADAM with a learning rate of 0.001 and batch size of 16; the total number of
the epochs is 3000. The mean value of MEDs of the dataset is 0.0341, and we use the bandwidth value & to 0.5. We use
Chamfer distance as the reconstruction loss, and the regularization term with the version of Equation (12) is multiplied by a
coefficient A = 107 and added to the reconstruction loss term. The value of 7 is set to be 0.0.

To quantitatively evaluate how much the regularization approach improves class separability, more diverse synthetic datasets
are made and experiments are conducted. We use datasets consisting of boxes, elliptic cones, and ellipsoids. In details, we
generate short, normal, and tall shapes for each shape class, and the aspect ratios of the shape parameters are shown in
Table 7. We conduct a total of 27 experiments with 33 combinations. Each dataset is divided into training/validation/test sets
of size 720/240/240. Training configurations are the same with the above experiment, except that the mean values of MEDs
are different to each other (but we consistently use the bandwidth value % to 0.5) and the total number of epochs is 500.

Table 7: The ranges of the shape parameters of the dataset used in quantitative analysis on synthetic dataset

SHAPE param min max param min max
Elliptic cone short d/w 033 3 h/w 0.125 0.33
Elliptic cone normal d/w 033 3 h/w 0.33 3
Elliptic cone tall d/w 033 3 h/w 3 8
Ellipsoid short d/w 033 3 h/w 0.125 033
Ellipsoid normal d/w 033 3 h/w 0.33 3
Ellipsoid tall d/w 033 3 h/w 3 8
Box short d/w 033 3 h/w 0125 0.33
Box normal d/w 033 3 h/w 0.33 3
Box tall d/w 033 3 h/w 3 8

In the obtained representation spaces, after fitting the Gaussian mixture model by using the training and validation data, the
clustering scores are measured with the test data.

Color assigning method: To visually indicate which class generated point clouds belong to, we color these according
to the ratio of the Chamfer distances to the nearest point cloud for each class. In detail, the smallest value (distance to
nearest point cloud) is found by comparing the distance between the given point cloud and all point clouds of each class in
the dataset. Since we are using 3 shape classes in both examples, we call the nearest distance to each class d, do, and d3.
After that, the vector d = (dy, da, d3) is normalized with 2-norm so that the 2-norm of the vector to be 1. Finally, the value
0.2 x Softmax(1/dy,1/ds,1/ds) is regarded as the ratio of the distances and a color is assigned to a given point cloud
according to this ratio (i.e., linear weighted sum in the RGB coordinate).

A Statistical Manifold Framework for Point Cloud Data

C.3. Details for Experiments on Standard Benchmark Dataset

We use four different point cloud autoencoders: FcNet, FoldingNet, PointCapsNet, and DGCNN-FcNet; the latent space is
512-dimensional. For FcNet and FoldingNet, we use the exactly same point cloud autoencoder structures both adopted from
(Yang et al., 2018b). For PointCapsNet, we also use the exactly same point cloud autoencoder structure adopted from (Zhao
et al., 2019); we use 16 x 32 capsules to restrict the latent space to a reasonable size of 512. For DGCNN-FcNet, we use
DGCNN classification network as encoder (i.e., the same encoder architecture used in experiments on synthetic 3D basic
shape dataset, see Appendix C.2), and the same decoder structure from FcNet as decoder (i.e., three fully-connected neural
networks with dimension (1024, 2048, 3x2048) with relu activation function and linear output activation function). To
train the networks, we use ADAM with a learning rate of 0.0001, betas of [0.9, 0.999], and weight decay of 0.000001 and
batch size of 16; the total number of the epochs is 500. The mean value of MEDs of the dataset is 0.0356, and we use the
bandwidth value k to 0.8. We use Chamfer distance as the reconstruction loss and regularization term with the version of
Equation (13) with the value of 1 to be 0.2. The regularization term is multiplied by various coefficients, where the values of
the regularization coefficients are summarized in Appendix C.

C.4. Details for Experiments on Standard Benchmark Dataset with Noise

We use the exactly same point cloud autoencoder structures adopted from (Yang et al., 2018b), FcNet, where the latent space
is 512-dimensional. We add noise to each point x in point cloud of the dataset (ShapeNet, ModelNet10, and ModelNet40)
according to X — X + mv, where v is uniformly sampled on the unit sphere and m is sampled from the Gaussian distribution
with zero mean and different levels of standard deviation (1%, 5%, 10%, and 20% of the diagonal length of the point cloud
bounding box) as done in (Lee et al., 2021). The training configuration is the same with the case of Appendix C.3 except the
followings. The regularization term is multiplied by A = 8000. The mean values of MEDs of the dataset are 0.0320, 0.0364,
0.0442, and 0.579 for the cases of the noise levels 1%, 5%, 10%, and 20%, respectively, and we use the bandwidth value k
to 0.8.

C.5. Details for Experiments on Standard Benchmark Dataset (Semi-Supervised Classification)

We train FcNet whose latent space is 512-dimensional with and without regularization. The training configuration is the
same with the case of Appendix C.3 except the following: the regularization term of the regularized autoencoder (i.e., FcNet
+ 1) is multiplied by A = 8000. In this case, when we training linear SVM classifier, we use the different numbers of training
data (1%, 5%, 10%, and 50% of the overall training data).

A Statistical Manifold Framework for Point Cloud Data

D. Additional Experimental Results
D.1. Synthetic Dataset
D.1.1. QUALITATIVE RESULTS OF TABLE 1 IN 4.1.2.

More examples related to the experiment in 4.1.2 are shown in Figure 9. The trend of the experimental results is similar to
the experimental results in Section 4.1.2. For all five results, the gray ellipses are aligned well with the decision boundary in
the vanilla autoencoder (we show the decision boundary in Figure 9 while it is not included in the main manuscript due to
lack of space). In the regularized autoencoder, these gray ellipses (or Riemannian metrics) try to become isotropic, so the
gaps on the decision boundaries get widened. As a result, different class clusters become farther away from each other.

D.1.2. LINEAR INTERPOLATIONS USING REGULARIZED AUTOENCODERS (RELATED TO FIGURE 5 IN 4.1.1)

The generated point clouds from the representative intra-class linear interpolants between two cylinders and two cones with
the regularized autoencoders under the Euclidean metric and info-Riemannian metric are drawn in Figure 10.

D.2. Standard Benchmark Dataset
D.2.1. PERFORMANCE ANALYSIS WITH VARYING REGULARIZATION COEFFICIENTS

Figure 11 shows graphs of the classification accuracy versus reconstruction error for the trained AEs measured on ModelNet
datasets, for a range of regularization coefficients. The reconstruction error is measured by the modified Chamfer distance
as in (Yang et al., 2018b). Compared to vanilla autoencoders (red), regularized autoencoders under the info-Riemannian
metric (blue) show overall higher classification accuracy regardless of the regularization coefficients. At the same time, they
do not significantly increase the reconstruction error. On the other hand, when comparing the performance of regularized
autoencoders under the Euclidean metric (green), most of these are clearly inferior to the vanilla autoencoder; the others
perform even worse. Overall, regularization under the info-Riemannian metric is much more robust to the choice of
regularization coefficients compared to using the Euclidean metric.

The linear SVM classification accuracy and reconstruction error (modified Chamfer distance) according to regularization
coefficient are shown in Table 8 and Table 9. The tables are also arranged according to autoencoder models (FcNet vs.
Foldingnet vs. PointCapsNet vs. DGCNN-FcNet) and regularization types (Vanilla vs. Euclidean vs. info-Riemannian).

D.2.2. LEARNING CURVES FOR NOISY POINT CLOUD DATA

Figure 12 shows how the linear SVM classification accuracy and reconstruction error (modified Chamfer distance) evolve
as the training proceeds, where datasets are ModelNet10 and ModelNet40 and noise levels are 1%, 5%, 10%, and 20%
(details about noise are in Appendix C.4). Compared to vanilla autoencoders (light colored lines), regularized autoencoders
under Info-Riemannian metrc (dark colored lines) show overall higher classification accuracy, while they show similar levels
of reconstruction errors. The increase in classification accuracy becomes more pronounced as the noise level increases.
Especially, when the noise level is 10% and 20%, the classification accuracy of the vanilla autoencoder and regularized
autoencoder under Euclidean metric gradually decreases as the learning progresses (as the epoch increases). However, such
phenomenons do not appear in the regularized autoencoders under the Info-Rimennian metric. This result implies that our
method is very advantageous in situations where there is noise in the data.

D.2.3. LEARNING CURVES FOR SEMI-SUPERVISED CLASSIFICATION

Regularized autoencoders (i.e., FcNet + I) show overall higher classification accuracy compared to vanilla autoencoders (i.e.,
FcNet), while their reconstruction errors are not significantly different to vanilla autoencoders’. Moreover, the increase
in classification accuracy becomes more pronounced as the label rate decreases. In other words, our performance is more
effective as the number of labels decreases. Figure 13 shows how the linear SVM classification accuracy and reconstruction
error evolve as the training proceeds, where label rate levels are 1%, 5%, 10%, and 50%. Also, similarly, when the label rate
is 1%, the classification accuracy of the vanilla autoencoder gradually decreases as the learning progresses (as the epoch
increases), but such phenomenons do not appear in the regularized autoencoders. This result implies that our method is also
very advantageous in semi-supervised settings.

A Statistical Manifold Framework for Point Cloud Data

Table 8: Classification accuracy and reconstruction error according to regularization coefficient. The table is also arranged
according to model (FcNet vs. FoldingNet) and regularization type (Vanilla vs. Euclidean vs. info-Riemannian). For
Riemannian metric cases, the regularization coefficients used in the actual experiments are o2 times A shown in the table.

MODEL METRIC A MD40acc MD40recon MDI10acc MDIO0 recon
FcNet Euclidean 0.0001 89.343598 0.029069 92.951542 0.029527
FcNet Euclidean 0.0010 88.330632 0.030464 93.612335 0.030684
FcNet Euclidean 0.0100 88.249595 0.029877 93.722467 0.030054
FcNet Euclidean 0.1000 86.993517 0.029878 92.841410 0.030900
FcNet Euclidean 1.0000 87.115073 0.031966 92.951542 0.034272
FcNet Euclidean 10.0000 86.709887 0.031523 92.400881 0.032318
FcNet Euclidean 100.0000 85.696921 0.031841 92.511013 0.035172
FcNet Euclidean 1000.0000 85.899514 0.035089 92.400881 0.036145
FcNet Euclidean 10000.0000 86.345219 0.034149 92.400881 0.034811
FcNet Riemannian 100.0000 89.586710 0.029032 94.052863 0.029435
FcNet Riemannian 500.0000 89.829822 0.028944 94.273128 0.029928
FcNet Riemannian 1000.0000 89.951378 0.028864 93.722467 0.029430
FcNet Riemannian 2000.0000 90.194489 0.029165 94.052863 0.029606
FcNet Riemannian 8000.0000 90.397083 0.028869 93.722467 0.028944
FcNet Riemannian ~ 10000.0000 89.991896 0.029603 94.162996 0.030278
FcNet Riemannian ~ 20000.0000 89.748784 0.028980 93.832599 0.029412
FcNet Riemannian ~ 50000.0000 89.667747 0.029161 93.392070 0.028894
FcNet Riemannian 100000.0000 89.748784 0.028961 93.942731 0.030085
FcNet Vanilla 0.0000 88.330632 0.028938 93.502203 0.029895
FoldingNet Euclidean 0.0001 88.897893 0.030540 94.162996 0.029130
FoldingNet Euclidean 0.0010 87.844408 0.031623 94.273128 0.031726
FoldingNet Euclidean 0.0100 87.520259 0.029126 93.612335 0.032219
FoldingNet Euclidean 0.1000 87.641815 0.029391 93.722467 0.030318
FoldingNet Euclidean 1.0000 88.128039 0.030564 93.171806 0.031435
FoldingNet Euclidean 10.0000 88.290113 0.032129 93.171806 0.032975
FoldingNet Euclidean 100.0000 88.087520 0.032728 94.383260 0.032885
FoldingNet Euclidean 1000.0000 87.722853 0.033305 92.951542 0.036244
FoldingNet Euclidean 10000.0000 87.844408 0.033546 93.502203 0.036820
FoldingNet Riemannian 100.0000 89.667747 0.029467 94.052863 0.030789
FoldingNet Riemannian 500.0000 90.113452 0.029916 94.052863 0.029346
FoldingNet ~Riemannian 1000.0000 89.870340 0.030090 94.493392 0.029996
FoldingNet Riemannian 2000.0000 89.546191 0.030471 94.273128 0.031142
FoldingNet Riemannian 8000.0000 89.627229 0.028949 94.162996 0.029745
FoldingNet Riemannian 10000.0000 89.505673 0.029926 94.052863 0.033548
FoldingNet Riemannian 20000.0000 89.384117 0.032798 94.162996 0.029463
FoldingNet Riemannian 50000.0000 89.708266 0.029262 94.273128 0.030002
FoldingNet Riemannian 100000.0000 89.262561 0.029511 94.162996 0.030355
FoldingNet Vanilla 0.0000 89.343598 0.029599 93.722467 0.030528

A Statistical Manifold Framework for Point Cloud Data

Table 9: Classification accuracy and reconstruction error according to regularization coefficient. The table is also arranged
according to model (PointCapsNet vs. DGCNN-FcNet) and regularization type (Vanilla vs. Euclidean vs. info-Riemannian).
For Riemannian metric cases, the regularization coefficients used in the actual experiments are o2 times A shown in the

table.

MODEL METRIC A MD40acc MD40recon MDI0acc MDI0 recon
PointCapsNet Euclidean 0.0001 88.087520 0.039522 93.722467 0.043112
PointCapsNet Euclidean 0.0010 87.601297 0.046227 93.171806 0.047749
PointCapsNet Euclidean 0.0100 87.155592 0.058326 92.621145 0.060827
PointCapsNet Euclidean 0.1000 86.628849 0.070735 91.519824 0.072615
PointCapsNet Euclidean 1.0000 85.858995 0.087722 91.299559 0.087930
PointCapsNet Euclidean 10.0000 83.954619 0.110708 90.638767 0.107402
PointCapsNet Euclidean 100.0000 79.659643 0.124266 88.215859 0.115549
PointCapsNet Euclidean 1000.0000 76.823339 0.128694 88.546256 0.121284
PointCapsNet Euclidean 10000.0000 75.567261 0.130566 88.325991 0.121398
PointCapsNet Riemannian 100.0000 88.492707 0.035034 93.942731 0.042224
PointCapsNet Riemannian 1000.0000 88.168558 0.035816 93.942731 0.039131
PointCapsNet Riemannian 2000.0000 87.884927 0.036824 93.392070 0.040169
PointCapsNet Riemannian 5000.0000 87.884927 0.035990 93.832599 0.039729
PointCapsNet Riemannian 8000.0000 87.641815 0.037986 93.392070 0.040947
PointCapsNet Riemannian ~ 10000.0000 87.763371 0.037507 93.722467 0.040428
PointCapsNet Riemannian ~ 20000.0000 87.763371 0.038454 93.281938 0.048909
PointCapsNet Riemannian ~ 50000.0000 87.641815 0.042233 93.281938 0.044333
PointCapsNet Riemannian 100000.0000 87.317666 0.046607 93.171806 0.051187
PointCapsNet Vanilla 0.0000 87.155592 0.033936 93.612335 0.037172
DGCNN-FcNet Euclidean 0.0001 89.910859 0.028852 94.052863 0.029049
DGCNN-FcNet Euclidean 0.0010 89.546191 0.029489 94.383260 0.029480
DGCNN-FcNet Euclidean 0.0100 88.492707 0.030448 93.061674 0.030531
DGCNN-FcNet Euclidean 0.1000 87.884927 0.030046 93.392070 0.030966
DGCNN-FcNet Euclidean 1.0000 87.520259 0.030605 93.502203 0.034671
DGCNN-FcNet Euclidean 10.0000 87.196110 0.032174 92.841410 0.032151
DGCNN-FcNet Euclidean 100.0000 87.277147 0.032385 93.171806 0.033750
DGCNN-FcNet Euclidean 1000.0000 87.682334 0.033359 93.171806 0.033906
DGCNN-FcNet Euclidean 10000.0000 86.385737 0.034471 92.621145 0.036056
DGCNN-FcNet Riemannian 100.0000 90.397083 0.028761 94.493392 0.028591
DGCNN-FcNet Riemannian 1000.0000 90.964344 0.028278 94.493392 0.028806
DGCNN-FcNet Riemannian 2000.0000 90.680713 0.028299 94.493392 0.028832
DGCNN-FcNet Riemannian 5000.0000 90.883306 0.028520 94.493392 0.029128
DGCNN-FcNet Riemannian 8000.0000 90.802269 0.028727 95.154185 0.028971
DGCNN-FcNet Riemannian ~ 10000.0000 90.680713 0.028583 94.383260 0.028820
DGCNN-FcNet Riemannian ~ 20000.0000 90.559157 0.028677 94.713656 0.029067
DGCNN-FcNet Riemannian ~ 50000.0000 90.761750 0.029794 94.713656 0.029695
DGCNN-FcNet Riemannian 100000.0000 90.235008 0.028934 94.052863 0.031275
DGCNN-FcNet Vanilla 0.0000 90.275527 0.028867 94.493392 0.029454

A Statistical Manifold Framework for Point Cloud Data

Latent Decision Riemannian MM Pairwise
space boundary metric distances
B E C . . , . .
] e . . SN -
_ 5 ok T D M C ooy - :
sw E
| o » 0 i -
= = g L:“ ity : ;'.‘“ : 1.‘9&
S 1 7 doanl o
E o “r P | R~
o
‘E]
__ & =
¢ EB® =
s EE
£ 5 5 [.
L5606 5
= =2 5 ”’“;_—;*
P o
] © = il .
ESE _
=] = =] L] %
= = = 5 ,3"'!. > #ﬁ.
[. . i
g e
= K -
c »
—_ o 14?' e
o = -
g_t B
e ﬁ _E o
z £ 4 3
o i Iy W
L §
é_u 3.. i " -.l‘-.\.’i,:__ .,'t.:,':.. :-;:;C a; . :
g IR h A :
=== v, RSN
[o i . -
3 ta iy <En | :
@ - = i | -
o A FEs G JTEF
2 | J LT | B

Figure 9: The representative five examples of the regularization experiments on the synthetic dataset. From left to right:
latent spaces, decision boundary according to the color assigning method introduced in Appendix C.2, latent spaces with
equidistant ellipse ({z|(z — 2*)TG(2*)(2 — 2*) = 1} for center z*) centered on some selected points and sampled points
from interspaces, Gaussian Mixture Model (GMM) fitting results, and the heat map of the pairwise Euclidean distances in
the latent space of all test data. For each experiment, the upper figure is a vanilla autoencoder trained without regularization,
while the lower figure is trained with regularization.

A Statistical Manifold Framework for Point Cloud Data

(4omory)
JLIJOW UBTUURWANY-0JUl pue (42dd[)) J1119W UBIPI[ONY Y} YIIM SIOPOOU0INE PAZLIe[nSa1 oy Jo sjuejodidul Jeau] ay) woly spnod jutod pojerouas oy,] 21nS1g

A2 A2 A AL A A A AR EEE NN

J1413W URJUURWSIY-0JU|

A X K X N KN NN NN

B e

J1J39W UeapIPNg

A Statistical Manifold Framework for Point Cloud Data

Modelnet40
—_ N
& 90 ? °
.
Q89
c . ®
S 88 ¢
i
= L]
= 87 L] -
o
v 86 ° ®
0.030 0.032 0.034
Reconstruction error
Modelnetd0
£ 90.0 %
G895|®"® o @
u 89,
2 * °
§ %20 :
E 88.5 . .
w0 @
E 88.0 . ® .
Usgrsi e , , , ,
0.029 0.030 0.031 0032 0033
Reconstruction error
Modelnet40
g o‘bl .
. L]
=85
o o
=
2
S 80 o
[
wn
n ®
[w]
75
0.05 0.10
Reconstruction error
Modelnetd0
] :‘ @
o 90 [
H []
c
.% ®
% B8 ™ R s
a o®
=
(])
0.028 0.030 0.032 0.034

Reconstruction error

94.0

93.5

93.0

Classification acc. (%)

92.5

94.5

Classification acc. (%)

o
B

92

a0

Classification acc. (%)

[+:]
[+:]

1]
L

94

93

Classification acc. (%)

Modelnetl0
.-
-
(0]
o : L]
o ® @ Fchet + E
@ FcNet +1
® FcNet
L] - L]
o]
[[]
0.030 0.032 0.034 0.036
Reconstruction error
Modelnetl0
&
o
L] ee
e o
L] L]]
@ FoldingNet + E
i @ Foldinghet + |
® e FoldingNet
® o
o
0.030 0032 0034 0.036
Reconstruction error
Modelnet10
® -
[}
® @ FPointCapsNet + E
. @ PointCapsNet + |
° ® FPointCapshet
o =]
0.050 0.075 0.100 0.125
Reconstruction error
Modelnetl0
[
]
b ad]
. s ® DGCNN-FcNet + E
@ DGCNN-FcNet + |
® @ DGCNN-FeNet
L]
. W
a
0.0300 0.0325 0.0350

Reconstruction error

Figure 11: Graphs of classification accuracy versus reconstruction error measured on ModelNet datasets. More transparent
markers have larger coefficients \; detailed values are in Table 8 and Table 9.

A Statistical Manifold Framework for Point Cloud Data

FcNet FcNet+ E —— FcNet + |
ModelNet40 ModelNet10
90T — B I T ————
= r-—“- 007 5 = 90| I* 0.07 5
Noise 4% § g ;
o 0.06 ¢ 83 0.06 ¢
£ 70 5 £ 80 5

1%] 0055 = 0.05 2
[] e} m ?5)
£ 601 | £ & £
& ¥ 004§ G 70 0.04 §
® 50 — o B g5 s . &
= L —— T l , — - t0.03

0 100 200 300 400 S00 0 100 200 300 400 500

Epoch Epoch

I .
) -0.060 _) e e ot gl et =
g 85 /-m g £ o - e Lo 060 g
g 0055Y ¢
g 75 093 ¢ 2 gs 10.055 §
= 70 =] c =
=] =]

5% 2 s 00505 2801} 0.050 2
= 2 E2 75 2
= 21N 00455 \ 10,045 &
B 55 o B 70 8
T e = }0.040% T[4 T = l0.0a0™

0 100 200 300 400 S00 0 100 200 300 400 500
Epoch Epoch
B 0.062
80 f R 5 T 90 [npas e e Y 1062
= 0.060 g < o F gt i la.nan g
b 75 o v B85 : o
g 00587 Y <
= 70 =] o +0.058 5
5 0.056 & c 80 2
10% 265 nosas = 10,056 S
S 60 \ N - ” ,'.I 0,054
2 55{ | tama TREE @70 10,052 S
o g e,
S 50 w 0.050 F G"u' 65 “"Ww 'U.UE{JE
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
75 _ T
£ 70 00765 (TSt [0.076
- E 80 £
Y 65 -0.074 0 u | r0.074 o
% 60 00728 270 0.072 §
20% ¥ -E 55 0,070 5 -é‘ i 0,070 3
® 50 ' = = 60 M £
'Hu_:‘n 45 0.068 E E 50 ""'-..__w 0.068 5
= 40 00663 & R . 10.066 g
U35 © U ' Tt -
0.064 40 r0.064
0 100 200 300 400 S00 0 100 200 300 400 500
Epoch Epoch

Figure 12: Learning curves of classification accuracy and reconstruction error measured on ModelNet datasets (ModelNet40
and ModelNet10) according to the noise levels (1%, 5%, 10%, and 20%). In each plot, the light colored lines are the result
of the non-regularized autoencoders (i.e., FcNet), and the dark colored lines are the result of the regularized autoencoders
(i.e., FcNet + E and FcNet + I).

A Statistical Manifold Framework for Point Cloud Data

FcNet FcNet + |
ModelNet40 ModelNet10
90 10.08 _ 95 — — T, Y,
3 5 £ 90 =]
Label G % I/—_'ﬂ 0.07 £ = 88 0.07 £
® 70 10.06 5 % 80 10.06.5
50 % S g 3n 5
w 807 | [0.05 £ w70 L0.05 £
& | £ 651 | 2
@ 501 |\ 10.04 5 7 \ 10.04 S
o o " o m 60 iy, 9
O 40 R B 1Y L U 551. T ——— . r— YT
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
-— 1 D.DB —— " _..,..-_-.q—--.u;-—x-“ -
e g 2| -
S 70 0.0?2 ¥ . 0.07 q:_|
y € 60 0062 ¢ 0.06:2
10% = . 2 = 70 E]
-E ool | n|.|:1|5E E . n.nsE
7 0.04 8 @ 601 |3 0.04 8
T 40 '-‘1_ . a E a.._.l_ . .I a
3 enbessdiireas. 003 U, B —— L
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
_— — . Jp— r fm ’ - a L i
§ - " 0.08 . ;:?L ,.....-..-M"_""' i 0.08 »
S f r0.07 5 J 80 0.07 9
8 60 10.06.8 @ S
5% 5 : E 570 D.DE-E
LEIR r0.05 5 © | 0.05 5
g 2 260 2
@ \ L0.04 S n 0.04 8
:-';I 40 I‘."'“'--.--u . 5 - 30 - e = Y 5
R e L — R
0 100 200 300 400 500 O 100 200 300 400 500
Epoch Epoch
= R e — "
£ 55 & 75 f T8
g 0.07 E 4 70 0.07 ®
5 =1
® 50 0.06 5 c 0.06 2
1% ¥ =45 g s g
® l 0-055 T 601 | 0.05 &
E 4 '~
= 40 I\ 0.04 & w551 1% 0.04 &
™ Vi, o i & u
S 35 oot b |00z OO ——— T
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

Figure 13: Learning curves of classification accuracy and reconstruction error measured on ModelNet datasets (ModelNet40
and ModelNet10) according to the label rates (50%, 10%, 5%, and 1%). In each plot, the light colored lines are the result of
the non-regularized autoencoders (i.e., FcNet), and the dark colored lines are the result of the regularized autoencoders (i.e.,
FcNet +).

