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Abstract
Researchers may perform regressions using a
sketch of data of size m instead of the full sam-
ple of size n for a variety of reasons. This paper
considers the case when the regression errors do
not have constant variance and heteroskedasticity
robust standard errors would normally be needed
for test statistics to provide accurate inference.
We show that estimates using data sketched by
random projections will behave ‘as if’ the errors
were homoskedastic. Estimation by random sam-
pling would not have this property. The result
arises because the sketched estimates in the case
of random projections can be expressed as degen-
erate U -statistics, and under certain conditions,
these statistics are asymptotically normal with
homoskedastic variance. We verify that the con-
ditions hold not only in the case of least squares
regression when the covariates are exogenous, but
also in instrumental variables estimation when the
covariates are endogenous. The result implies that
inference can be simpler than the full sample case
if the sketching scheme is appropriately chosen.

1. Introduction
Big data sets can be costly to store and analyze, and one
approach around the data bottlenecks is to work with a ran-
domly chosen subset, or a sketch, of the data. Data privacy
may also dictate that a sketch of the data be made available
for public use. The early works of Sarlos (2006), Drineas
et al. (2006) and Drineas et al. (2011) consider the algorith-
mic properties of the least squares estimator using sketched
data. Subsequent work extends the analysis to ridge regres-
sion (e.g., Wang et al., 2018; Liu & Dobriban, 2020), and
logistic regression (e.g., Wang, 2019). See, e.g., Woodruff
(2014), Drineas & Mahoney (2018) and Martinsson & Tropp
(2020) for a review. However, Ma et al. (2015), Raskutti
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& Mahoney (2016), Dobriban & Liu (2019) and Ma et al.
(2020) have found that an optimal worse-case (algorithmic)
error may not yield an optimal mean-squared (statistical)
error. This has led to interest in better understanding the
sketched least squares estimates in a Bayesian setting as
in Geppert et al. (2017), or its asymptotic distribution as
in Ahfock et al. (2020) and Ma et al. (2020). Lee & Ng
(2020) highlights the tension between a large m required
for accurate inference, and a small m for computation effi-
ciency. To date, these results have been derived under the
assumptions that the errors are homoskedastic and that the
regressors are exogenous. But these assumptions are not
innocuous. The estimates will be biased when the regressors
are not exogenous, as would normally be the case in causal
inference. And if the errors are heteroskedastic, test statis-
tics must use standard errors robust to heteroskedasticity, or
else inference will not be accurate even if the regressors are
exogenous.

In this paper, we obtain the surprising result that when
sketching is based on random projections, robust standard
errors will not be needed, meaning that inference using the
sketched estimates can proceed as though the errors were
homoskedastic. The proof is obtained by analyzing the dif-
ference between the full sample and the sketched estimates
in terms of degenerate U -statistics. However, the result does
not hold when sketching is based on random sampling. Our
analysis of the least squares estimator and two-stage least
squares estimator shows that these findings hold both when
the regressors are exogenous and endogenous.

The following notation will be used. Let ‖a‖ denote the
Euclidean norm of any vector a. Let Aij or [A]ij denote the
(i, j) element of a matrix A. For k = 1, . . . , d, let σk(A) be
a singular value of A. Let ‖A‖2 = σmax(A) denote its spec-
tral norm, where σmax(A), and σmin(A) are the largest and
smallest singular values of A. The superscript T denotes
the transpose of a matrix. For an integer n ≥ 1, [n] is the
set of positive integers from 1 to n. Let→p and→d, respec-
tively, denote convergence in probability and in distribution.
For a sequence of random variables An and a sequence of
positive real numbers an, An = op(an) iff a−1

n An →p 0;
An = Op(an) iff a−1

n An is bounded in probability.

An accompanying R package is available on the Com-
prehensive R Archive Network (CRAN) at https://

https://CRAN.R-project.org/package=sketching
https://CRAN.R-project.org/package=sketching
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CRAN.R-project.org/package=sketching and
all replication files are available at https://github.
com/sokbae/replication-LeeNg-2022-ICML.

2. Sketched Least Squares Estimation with
Heteroskedastic Errors

Given n observations {(yi, Xi, Zi) : i = 1, . . . , n}, we
consider a linear regression model:

yi = XT
i β0 + ei, (1)

where yi is the scalar dependent variable, Xi is a p × 1
vector of regressors, β0 is a p × 1 vector of unknown pa-
rameters. The innovation ei is said to be (conditionally)
homoskedastic if E[e2

i |Xi] = E[e2
i ]. Otherwise, ei is said

to be heteroskedastic. The regressors are said to be exoge-
nous if E[eiXi] = 0. Otherwise it is endogenous. In that
case, we assume a q × 1 vector of instrumental variables,
Zi, satisfying E[eiZi] = 0 are available. In matrix form,
the model given in (1) can be written as

y = Xβ0 + e,

where y and e are n× 1 vectors whose i-th rows are yi and
ei, respectively, and X is the n × p matrix of regressors
whose i-th row is XT

i .

We first study the exogenous regressor case when
E(eiXi) = 0. The least squares estimator β̂OLS :=
(XTX)−1XT y is

√
n consistent and asymptotically nor-

mal, i.e.,
√
n(β̂OLS − β0)→d N(0, V1) as n→∞, where

V1 := [E(XiX
T
i )]−1E(e2

iXiX
T
i )[E(XiX

T
i )]−1

is the heteroskedasticity-robust asymptotic variance. Under
homoskedasticity, V1 becomes

V0 := E(e2
i )[E(XiX

T
i )]−1.

The point estimates β̂ can be used to test hypothesis, say,
H0 : β2 = β̄2 using the t test

√
n(β̂2−β̄2)√

[V̂ ]22
, where V̂ is

an estimate of either V1 or V0, β2 is a specific element
of β2, β̄2 is the null value, and [V̂ ]22 the (2,2) diagonal
element of V̂ . The distribution of this test under the null
hypothesis crucially depends on the correct standard error√

[V̂ ]22 being used. Using V̂0 when the robust estimator V̂1

should have been used would lead to inaccurate inference,
in the sense of rejecting the null hypothesis too often or not
enough.

A sketch of the data (y,X) is (ỹ, X̃), where ỹ = Πy, X̃ =
ΠX , and Π is usually anm×n random matrix. The sketched
least squares estimator is β̃OLS := (X̃T X̃)−1X̃T ỹ. Even
though the sketched regression is based on a sample of size

m, X̃T X̃ = XTΠTΠX and X̃T ỹ = XTΠTΠy can be
seen as weighted moments in a sample of size n. Thus let
g̃n := X̃T ẽ/n, ĝn := XT e/n, Ãn := (X̃T X̃/n)−1, and
Ân := (XTX/n)−1. Then

β̃OLS − β̂OLS = (Ãn − Ân)ĝn + Ân(g̃n − ĝn)

+ (Ãn − Ân)(g̃n − ĝn),

By the law of large numbers, Ân − A = op(1), where
A := [E(XiX

T
i )]−1, and by the central limit theorem, ĝn =

Op(n
−1/2). We show in Section 3 that for Π with subspace

embedding property

β̃OLS − β̂OLS = A(g̃n − ĝn) + op(m
−1/2).

We study β̃OLS under the following regularity conditions.

Assumption 2.1. (i) The data Dn := {(yi, Xi) ∈ R1+p :
i = 1, . . . , n} are independent and identically dis-
tributed (i.i.d.), where p is fixed. Furthermore, X has
singular value decomposition X = UXΣXV

T
X .

(ii) E(y4
i ) < ∞, E(‖Xi‖4) < ∞, and E(XiX

T
i ) has full

rank p.

(iii) The random matrix Π is independent of Dn.

(iv) m = mn →∞ but m/n→ 0 as n→∞.

Assumptions (i) and (ii) are standard. For (iii), note that
for a general random Π whose (k, i) element is Πki, the
difference between the full and the sketched moments such
as g̃n − ĝn and Ãn − Ân are of the form

n−1
(
UTΠTΠV − UTV

)
= n−1

n∑
i=1

ψiUiVi + n−1
n∑
i=1

n∑
j=1,j 6=i

UiϕijVj

=: Tn1 + Tn2,

where U ∈ Rn and V ∈ Rn are vectors of certain i.i.d.
random variables (Ui, Vi) ∈ R2 that are independent of Π,

ψi :=

r.dim(Π)∑
k=1

Π2
ki − 1, ϕij :=

r.dim(Π)∑
k=1

ΠkiΠkj ,

and r.dim(Π) ∈ {m,n} denotes the row dimension of Π.

There are two classes of sketching schemes to consider.
Random sampling schemes have ϕij = 0 for all i 6= j
because there is only one non-zero entry in each row of Π.
In such cases, T2n is negligible and T1n is the leading term.
The second class is random projection schemes with which
T1n is asymptotically negligible and T2n is the leading term.

To gain intuition, we first provide results for Bernoulli sam-
pling (BS) from the first type and countsketch (CS) from
the second type.

https://CRAN.R-project.org/package=sketching
https://CRAN.R-project.org/package=sketching
https://github.com/sokbae/replication-LeeNg-2022-ICML
https://github.com/sokbae/replication-LeeNg-2022-ICML
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Theorem 2.2. Let Assumption 2.1 hold and E(eiXi) = 0.

(i) Under BS, m1/2(β̃OLS − β̂OLS )→d N(0, V1).

(ii) Under CS, m1/2(β̃OLS − β̂OLS )→d N(0, V0).

Though Theorem 2.2 indicates that both sampling schemes
yield asymptotically normal estimates, their variances are
different, and normality holds for different reasons. The
proof is given in the Appendix. Here, we sketch the main
arguments.

First, under BS, the sampling probability is determined by
i.i.d. Bernoulli random variables with success probability
m/n. Thus, Π =

√
n
mB is an n × n matrix (not m × n),

where B is a diagonal sampling matrix. We have

1

n

(
XTΠTΠe−XT e

)
=

1

n

n∑
i=1

( n
m
Bii − 1

)
Xiei = Tn1.

Since the summands are i.i.d. with mean zero with variance
( nm−1)E(e2

iXiX
T
i ), applying central limit theorem for i.i.d.

observations yields the sandwich variance V1.

Consider now CS. Each column of its Π has one non-zero
entry taking on value {+1,−1} randomly drawn with equal
probability and located uniformly at random. For such Π
and every nonzero c ∈ Rp,

cT (XTΠTΠe−XT e)/n

= n−1
n∑
i=1

X̄j(c)

(
m∑
k=1

Π2
ki − 1

)
ei

+ n−1
n∑
i=1

n∑
j=1,j 6=i

m∑
k=1

X̄j(c)ΠkjΠkiei

= Tn1 + Tn2,

where X̄i(c) :=
∑q
u cuXiu is a weighted sum of elements

of the i-th row of X . The term Tn1 is identically zero
because there is only one non-zero entry per column of Π.

To analyze Tn2, let Wi = (Yi, X
T
i ,Π1i, . . . ,Πmi)

T . Since
the columns of Π are i.i.d., {Wi : i = 1, . . . , n} are i.i.d.
Now let w = (y, xT , π1, . . . , πm)T be a non-random in-
dex. Define H̃(w1, w2) :=

∑m
k=1 x̄1(c)πk1Sπk2ei and

H(w1, w2) := H̃(w1, w2) + H̃(w2, w1). We can write

Tn2 = n−1
∑∑
1≤i<j≤n

H(Wi,Wj),

noting that H(w1, w2) = H(w2, w1), and
E(H(W1,W2)|W1) = E(H(W1,W2)|W2) = 0. Im-
portantly, Tn2 has now been represented as a degenerate
U -statistic. In general, the asymptotic distribution of such
statistics is either a weighted average of independent,

centered chi-square random variables with complex weights,
or a centered normal distribution. But if the conditions
given in Hall (1984) are satisfied, the latter holds. Precisely,{

1

2
E[H2(W1,W2)]

}−1/2

Tn2 →d N(0, 1).

A sufficient condition for this result which we verify in the
Appendix is

E[G2(W1,W2)] + n−1E[H4(W1,W2)]

{E[H2(W1,W2)]}2
→ 0 as n→∞,

where G(w1, w2) := E[H(W1, w1)H(W1, w2)]. Further-
more, we also verify that for Wi 6= Wj ,

1

2
E[H2(Wi,Wj)] =

1

m
E(X̄2

i (c))E(e2
i ).

Note that E(e2
i ) appears separately from E(X̄2

i (c)). This is
key to the claim in Theorem 2.2 that when β̃ is based on CS,
m1/2(β̃ − β̂) →d N(0, E[e2

i ]A) = N(0, V0). Analogous
arguments show that each entry of (X̃T X̃−XTX) can also
be written as a degenerate U -statistic and Ãn − Â = op(1),
which is needed for consistent estimation of V0 and V1.

As discussed in Charikar et al. (2004) and Clarkson &
Woodruff (2013; 2017), the sparsity of Π significantly re-
duces the run time required of the countsketch to compute
ΠA to O(nnz(A)), where nnz(A) is the number of non-zero
entries of A. Another appeal of countsketch is that the
sketches can be obtained by streaming without constructing
Π. Here, we show that countsketch removes heteroskedas-
ticity which is appealing because it simplifies inference. In
the next section, we study the mean-squared sketching error
and show that part (i) of Theorem 2.2 also holds for other
Πs in the first class, while part (ii) holds for other Πs in the
second class. Section 4 then shows that these results also
hold when the regressors are not exogenous.

3. The Mean-Squared Sketching Error
For a random variableG, let MSE(G) = [E(G)]2 +Var(G)
denote the mean squared error. We now analyze the
asymptotic behavior of mean squared sketching errors of
(UTΠTΠV − UTV )/n, where U ∈ Rn and V ∈ Rn de-
note vectors of i.i.d. random variables (Ui, Vi) ∈ R2 that
are independent of Π, with E(U4

i ) < ∞ and E(V 4
i ) < ∞.

Recall that m = mn →∞ but m/n→ 0 as n→∞.

3.1. Random Sampling with Replacement (RS)

For sketching by random sampling with replacement (RS),
we suppose that for each t = 1, . . . ,m, we sample kt from
[n] with probability pi := Pr(kt = i) independently and



Least Squares Estimation using Sketched Data with Heteroskedastic Errors

with replacement. The random matrix Π ∈ Rm×n is then

Π =

√
n

m

(
ιk1 . . . ιkm

)T
,

where ιk is the k-th column vector of the n×n dimensional
identity matrix. Sketching schemes of the RS class have
properties characterized by Lemma A.2 in the Appendix.
Importantly, each Π in this class has T2n = 0 and as a result,
Tn1 is the only term we need to consider. An important ex-
ample in the RS class is uniform sampling with replacement
with pi = n−1.

Theorem 3.1. (i) If Π is a random matrix satisfying RS and∑n
i=1 p

2
i = o(m−1), then, as n→∞,

MSE
[√
m
(
UTΠTΠV − UTV

)
/n
]
→ Var(UiVi).

(ii) If Π is Bernoulli sampling matrix (BS), then, as n→∞,

MSE
[√
m
(
UTΠTΠV − UTV

)
/n
]
→ E(U2

i V
2
i ).

The mean-squared errors for RS and BS are the same if UiVi
is mean zero.

Theorem 3.1 is useful in two ways. First, let U = cTXT

and V = Xc. Under Assumption 2.1 and for all nonzero
c ∈ Rp, Theorem 3.1 yields

MSE
[√

m(cT X̃T X̃c− cTXTXc)/n
]

= O(1).

By Chebyshev’s Inequality, (X̃T X̃ − XTX)/n =
Op(m

−1/2). Similarly, for U = Xc and V = e, the
theorem implies g̃n − ĝn = Op(m

−1/2). Applying con-
tinuous mapping theorem gives the result stated earlier that
β̃OLS − β̂OLS = A(g̃n − ĝn) + op(m

−1/2).

It is known that the efficient estimator under heteroskedas-
ticity is the generalized least squares (GLS), defined as

β̂GLS = (XTΩ−1X)−1XTΩ−1y,

where Ω is n × n a diagonal matrix with Ωii = σ2
i . GLS

weights each observation with σ−1
i so that the errors in

the weighted regression are homoskedastic. Now the OLS
estimator applied to sketched data can be written as

β̃OLS = (XTΠTΠX)−1XTΠTΠy.

A question of interest is whether ΠTΠ can play the role of
Ω−1. The theorem sheds light on this problem as its second
use is to obtain the asymptotic variance of the sketched
estimator. To this end, let again Ui = cTXi and Vi = ei.
Assuming E(gi) = 0 where gi = eiXi, RS and BS imply:

MSE
[√
mcT (g̃n − ĝn)

]
= E(e2

i c
TXiX

T
i c).

The asymptotic standard error is generally the expectation
of a product of e2

i and (cTXi)
2 and becomes the prod-

uct of two expectations only under homoskedasticity when
E[e2

i c
TXiX

T
i c] = E[e2

i ]E[cTXiX
T
i c]. Thus, under RS

and BS, the asymptotic variance of β̃OLS is V0 only if ho-
moskedasticity is explicitly imposed, implying that ΠTΠ
corresponding to random sampling will not homogenize
error variance in the same way that Ω−1 can.

It is noteworthy that even under homoskedsaticity, we can-
not always use a central limit theorem for i.i.d. data even
if the full sample of data are i.i.d. because the sampling
scheme may induce dependence in the sketched data. Thus
the asymptotic normality result can only be analyzed on
a case by case basis. Ma et al. (2020) confronts a similar
problem when studying the asymptotic distribution of esti-
mators in linear regressions under random sampling with
replacement and homoskedastic errors. Let Ki and pi, re-
spectively, denote the number of times and the probabil-
ity that ith observation is sampled. Their estimator has
W = diag {Ki/(mpi)}ni=1 playing the role of ΠTΠ. Our
Theorem 3.1 applies to their setup with uniform sampling
where pi = 1/n, n ≥ m, but it would not apply when pi is
data dependent. In this case, Ma et al. (2020) also cannot
use a central limit theorem for i.i.d. data. Instead, they apply
Hayék-Sidak central limit theorem and use Poissonization
to account for dependence in the sketched data that arises
from sampling.

3.2. Random Projection (RP)

Sketching schemes in the RP class have properties charac-
terized by Lemma A.3 in the Appendix if Π ∈ Rm×n is a
random matrix with the following properties:

Assumption 3.2. (i) E[Πki] = 0, E[Π2
ki] = m−1 for all

k ∈ [m] and all i ∈ [n], and max(k,i)∈[m]×[n]E[Π4
ki] =

O(m−1);

(ii) E[ΠkiΠkj ] = 0 and E[Π2
kiΠ

2
kj ] = m−2 for all k ∈

[m] and all i 6= j ∈ [n];

(iii) E[ΠkiΠkjΠ`pΠ`q] = 0 for all k 6= ` ∈ [m] and all
i 6= j, p 6= q ∈ [n].

Under Assumption 3.2, Tn1 = Op(n
−1/2) is asymptotically

negligible, and Tn2 becomes the leading term for RP. As
discussed above, the Π for the CS only has one non-zero
entry in each column. Since ΠkiΠkj = 0 for all k, i 6= j,
it is straightforward to check that the above conditions are
satisfied. For Gaussian random projections,

GP : Πki ∼ N(0,m−1).

Since all elements of Π are i.i.d. with mean zero, variance
m−1 and the fourth moment O(m−1), the conditions are
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also satisfied. The SRHT has

SRHT : Π =

√
n

m
SHD,

where S ∈ Rm×n is a uniform sampling matrix with re-
placement, H ∈ Rn×n is a normalized Walsh-Hadamard
transform matrix, and D ∈ Rn×n is a diagonal Rademacher
matrix with i.i.d. entries of ±1. The Appendix shows that
the conditions for RP hold for SRHT.

The following theorem gives the asymptotic mean squared
sketching errors of RP schemes.
Theorem 3.3. If Π is a random matrix satisfying RP, then,
as n→∞,

(i) MSE
[√
m
(
UTΠTΠV − UTV

)
/n
]

→ {E(U2
i )E(V 2

i ) + [E(UiVi)]
2}.

(ii) If, in addition, and E[eiXi] = 0 and the columns of Π

are i.i.d., then m1/2(β̃OLS − β̂OLS )→d N(0, V0).

The limiting MSE of RP is simply the product between
two marginal expectations when E(UiVi) = 0 (and not the
expectation of the product). It implies

MSE
[√
mcT (g̃n − ĝn)

]
= E(e2

i )E(cTXiX
T
i c)

and is the reason why the asymptotic variance for β̃OLS for
RP schemes is V0.

If e2
i and (cTXi)

2 are positively (respectively, negatively)
correlated, the limiting MSE of RP is smaller (respectively,
larger) than that of RS and BS. The limiting MSE is the
same if e2

i and (cTXi)
2 are uncorrelated.

Asymptotic normality of β̃ can be established by apply-
ing a central limit theorem for degenerate U -statistic if the
columns of Π are i.i.d., as reported in part (ii) of Theo-
rem 3.3. The SRHT and SRFT are not covered by this result
because the columns of their Π matrix are not i.i.d. and
requires a limit theorem for a particular type of mixing data.
In general, establishing asymptotic normality of β̃ based
on SRHT or SRFT require different proof techniques. The
approach taken in Ahfock et al. (2020) is to condition on the
data Dn and apply a central limit theorem for a triangular
array of random variables. We do not condition on the data
and appeal to the theory of degenerate U -statistics. Though
deriving distribution theory for the SRHT and SRFT esti-
mates is not straightforward, we will show in simulations
that their finite sample properties are similar to those of CS.

4. Two-Stage Least Squares
The 2SLS estimator is appropriate when E(Xiei) 6= 0 but
exongeous instruments Zi satisfying E(Ziei) = 0 are avail-
able. The 2SLS estimator is

β̂2SLS = (XTPZX)−1XTPZy,

where PZ := Z(ZTZ)−1ZT is the projection matrix.
The estimator first projects on Z to purge the varia-
tions in X correlated with e, and in the second step
replaces X with X̂ = PZX . Let ĝn := ZT e/n and Ân :=
[(XTZ/n)(ZTZ/n)−1(ZTX/n)]−1(XTZ/n)(ZTZ/n)−1.
Analyzing β̂2SLS − β0 = Ânĝn under Assumption 4.3
given below, as n→∞, we have

√
n(β̂2SLS − β0)→d N(0,W1),

where W1 := AE(e2
iZiZ

T
i )AT with

A := [E(XiZ
T
i )[E(ZiZ

T
i )]−1E(ZiX

T
i )]−1

× E(XiZ
T
i )[E(ZiZ

T
i )]−1.

Under homoskedasticity, E(e2
i |Zi) = σ2 and W1 reduces to

W0 := E(e2
i )[E(XiZ

T
i )[E(ZiZ

T
i )]−1E(ZiX

T
i )]−1.

A sketched version of the 2SLS estimator is

β̃2SLS := (X̃TPZ̃X̃)−1X̃TPZ̃ ỹ.

We now provide some algorithmic results not previously
documented in the literature.

Assumption 4.1. Let data Dn = {(yi, Xi, Zi) ∈ R1+p+q :
i = 1, . . . , n} be fixed,ZTZ andXTPZX are non-singular,
and Z has singular value decomposition Z = UZΣZV

T
Z .

For given constants ε1, ε2, ε3, δ ∈ (0, 1/2), the following
holds jointly with probability at least 1− δ :

(i)
∥∥UTZΠTΠUZ − Iq

∥∥
2
≤ ε1,

(ii)
∥∥UTZΠTΠUX − UTZUX

∥∥
2
≤ ε2,

(iii)
∥∥UTZΠTΠê− UTZ ê

∥∥ ≤ ε3 ‖ê‖ ,
(iv) σ2

min(UTZUX) ≥ 2f1(ε1, ε2),

where f1(ε1, ε2) := [ε1 + ε2(ε2 + 2)]/(1− ε1).

Low level conditions for Assumption 4.1(i)-(iii) are given
in Cohen et al. (2016), among others. Assumption 4.1(i)
is equivalent to the statement that the all eigenvalues of
UTZΠTΠUZ are bounded between [1 − ε1, 1 + ε1]. This
ensures that Z̃T Z̃ is non-singular with probability at least
1− δ. Part (iv) strengthens non-singularity of XTPZX to
require that σ2

min(UTZUX) is strictly positive and bounded
below by the constant 2f1(ε1, ε2).

Theorem 4.2. Under Assumptions 4.1, the following holds
with probability at least 1− δ :∥∥∥β̃2SLS − β̂2SLS

∥∥∥ ≤ f2(ε1, ε2) + ε3 ‖ê‖ [1 + f2(ε1, ε2)]

σmin(X)σ2
min(UTZUX)

×
[
1 +

2f1(ε1, ε2)

σ2
min(UTZUX)

]
,

where f2(ε1, ε2) := ε2 + ε1/(1− ε1) + ε2ε1/(1− ε1).
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The sketched estimator β̃2SLS involves, firstly, a regression
of X̃ on Z̃, and then a regression of ỹ on the fitted values
in the first step. The estimator thus depends on adequacy
of subspace approximation in both steps. Theorem 4.2 pro-
vides a worst-case bound for β̃2SLS − β̂2SLS with the data
Dn being fixed. It depends on (i) εj , j = 1, 2, 3, (ii) vari-
ability of ‖ê‖, (iii) the signal from X as given by σmin(X),
and (iv) instrument strength as given by σmin(UTZUX). The
sketched estimator can be arbitrarily close to the full sample
estimate with high probability, provided that the subsample
size m is sufficiently large, X is linearly independent, and
the instrument Z is sufficiently relevant for X .

Though 2SLS is a two step estimator, we can still write

β̃2SLS − β̂2SLS = (Ãn − Ân)ĝn + Ân(g̃n − ĝn)

+ (Ãn − Ân)(g̃n − ĝn)

as in the OLS case, but now g̃n := Z̃T ẽ/n, Ãn :=

[(X̃T Z̃/n)(Z̃T Z̃/n)−1(Z̃T X̃/n)]−1(X̃T Z̃/n)(Z̃T Z̃/n)−1.
A statistical analysis of β̃2SLS requires additional assump-
tions.

Assumption 4.3. (i) The data Dn := {(yi, Xi, Zi) ∈
R1+p+q : i = 1, . . . , n} are i.i.d. with p ≤ q. Fur-
thermore, X and Z have singular value decomposition
X = UXΣXV

T
X and Z = UZΣZV

T
Z .

(ii) E(y4
i ) < ∞, E(‖Xi‖4) < ∞, E(‖Zi‖4) < ∞, and

E(XiX
T
i ) and E(ZiX

T
i ) have full rank p.

(iii) The random matrix Π is independent of Dn.

(iv) m = mn →∞ but m/n→ 0 as n→∞, while p and
q are fixed.

Arguments similar to those used to prove Theorem 2.2 lead
to the following.

Theorem 4.4. Let Assumption 4.3 hold and E(Ziei) = 0.
If Π is RP satisfying RP(i)-(iii) with columns that are i.i.d.

(i) Under BS, m1/2(β̃2SLS − β̂2SLS )→d N(0,W1).

(ii) Under RP, m1/2(β̃2SLS − β̂2SLS )→d N(0,W0).

Theorem 4.4 provides statistical properties of the sketched
2SLS estimator in Theorem 4.2 to complement the algorith-
mic results.

Theorem 4.4 states that when the data are sketched by RP,
β̃ is asymptotically normally distributed with mean β̂ and
variance W0/m. Under our assumptions, W0 can be consis-
tently estimated by

Ŵ0 := êT ê
(
XTZ(ZTZ)−1ZTX

)−1
,

where ê := y−Xβ̂ (not the residuals from the second step).

Interestingly, the asymptotic variance W0 is the same as if
the errors in the full sample regression were homoskedas-
tic. But the result follows from estimation using sketched
data rather than by assumption. This is not the case when
inference is based on the full sample estimates, or the esti-
mates computed from sketched data of the RS type. In such
cases, a homoskedastic covariance weighting matrix would
be inefficient since E(e2

i |Zi) 6= E(e2
i ).

Our analysis can be extended to the two-sample 2SLS es-
timator analyzed in Angrist & Krueger (1992; 1995) and
Inoue & Solon (2010). However, it is not pursued for brevity
of the paper.

In the econometrics literature, the instruments are said to
be relevant if E[ZiX

T
i ] 6= 0. The latter is formalized by the

rank condition in Assumption 4.3(ii). Tests for instrument
relevance usually require robust standard errors correspond-
ing to the parameter estimates in a regression of X on Z
unless heteroskedasticity can be ruled out. An implication
of our preceding analysis is that this is not necessary when
the regression is estimated on data sketched by RP, as will
be illustrated below.

5. Practical Inference
In applications, researchers would like to test a hypothesis
about β0 using a sketched estimate, and our results provide
all the quantities required for inference. In the exogenous
regressor case, we generically have

Ṽ −1/2
m (β̃OLS − β0) ≈ N(0, Ip)

where the form of Ṽm depends on Π. For any Π in BS
or RP class, we can use White (1980)’s heteroskedasticity-
consistent estimator:

Ṽm = Ṽ1,m = (X̃T X̃)−1(

m∑
i=1

X̃iX̃
T
i ẽ

2
i )(X̃

T X̃)−1.

For Π in the RP class, we can let s̃2
OLS := 1

m

∑m
i=1(ỹi −

X̃T
i β̃OLS)2. Then without assuming homoskedasticity,

Ṽm = Ṽ0,m = s̃2
OLS(X̃T X̃)−1,

In the endogenous regressor case, W̃
−1/2
m (β̃2SLS −

β0) ≈ N(0, Ip). For RP, we let s̃2
2SLS :=

1
m

∑m
i=1(ỹi − X̃T

i β̃2SLS)2 and W̃0,m :=

s̃2
2SLS

(
X̃T Z̃(Z̃T Z̃)−1Z̃T X̃

)−1

. For BS, we define

W̃1m from W̃1.

Sketching estimators require a choice of m. From the al-
gorithmic perspective, m needs to be chosen as small as
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possible to achieve computational efficiency. If Π is con-
structed from SRHT, the size of m is roughly (ignoring the
log factors) of order q in the best case. The requirement for
countsketch is more stringent and is proved in the appendix
(see Theorem B.7). In view of this, we may set

m1 = Cmq log q or m1 = Cmq
2,

where Cm is a constant that needs to be chosen by a re-
searcher. However, statistical analysis often cares about the
variability of the estimates in repeated sampling and a larger
m may be desirable from the perspective of statistical effi-
ciency. An inference-conscious guidem2 can be obtained in
Lee & Ng (2020) by targeting the power at γ̄ of a one-sided
t-test for given nominal size ᾱ. In particular, let β̃ be β̃OLS
if E[Xiei] = 0 and let β̃ be β̃2SLS when E[Xiei] 6= 0 but
E[Ziei] = 0. For pre-specified effect size cT (β0 − β0),

m2(m1) = m1S
2(ᾱ, γ̄)

[
SE(cT β̃)

cT (β0 − β0)]

]2

,

where S(α, γ) := Φ−1(γ) + Φ−1(1 − α) and SE(cT β̃) is
the standard error of cT β̃.

Alternatively, a data-oblivious sketch size for a pre-specified
τ2(∞) is defined as

m3 = n
S2(ᾱ, γ̄)

τ2
2 (∞)

. (2)

Note that m3 only requires the choice of ᾱ, γ̄, and τ2(∞)
which, unlike m2, can be computed without a preliminary
sketch. The conditionm/n→ 0 can be viewed as τ2(∞)→
∞ as n→∞.

6. Monte Carlo Experiments
In this section, we use Monte Carlo experiments to establish
that when the errors are homoskedastic, estimates based on
data sketched by random sampling or random projections
will yield accurate inference. However, when the errors
are heteroskedastic, sketching by random sampling will
yield tests with size distortions, rejecting with much higher
probability than the nominal size, unless robust standard
errors are used.

6.1. When All the Regressors are Exogenous

We first consider the simulation design for which all
the regressors are exogenous. The regressors Xi =
(1, X2,i, . . . , Xp,i)

T consist of a constant term and a (p−1)-
dimensional random vector (X2,i, . . . , Xp,i)

T generated
from a multivariate normal distribution with mean zero
vector and the variance covariance matrix Σ, whose (i, j)
component is Σij = ρ|i−j| with ρ = 0.5. The dependent

Table 1. OLS based t test for H0 : βp = 1 vs H1 : βp 6= 1. S.E.0
and S.E.1 refer to homoskedasticity-only and heteroskedasticity-
consistent standard errors, respectively.

(1) (2) (3) (4)

SIZE POWER
S.E.0 S.E.1 S.E.0 S.E.1

(I) HOMOSKEDASTIC DESIGN
BERNOULLI 0.046 0.050 0.490 0.496

UNIFORM 0.047 0.052 0.489 0.490
LEVERAGE 0.045 0.053 0.483 0.513

COUNTSKETCH 0.049 0.051 0.479 0.489
SRHT 0.056 0.061 0.492 0.498
SRFT 0.055 0.057 0.484 0.489

(II) HETEROSKEDASTIC DESIGN
BERNOULLI 0.310 0.047 0.713 0.436

UNIFORM 0.301 0.053 0.719 0.435
LEVERAGE 0.183 0.051 0.727 0.529

COUNTSKETCH 0.054 0.057 0.813 0.812
SRHT 0.054 0.056 0.804 0.809
SRFT 0.050 0.052 0.799 0.806

variable is generated by

yi = XT
i β0 + σ(Xi)ei,

where β0 = (0, 1, . . . , 1)T , and ei is generated fromN(0, 1)
independently fromXi. We consider two designs for σ(Xi):
(i) homoskedastic design σ(Xi) = 1 for all i and (ii) het-
eroskedastic design σ(Xi) = exp(Xp,i), where Xp,i is the
p-th element of Xi. Throughout the Monte Carlo experi-
ment, we set n = 106, m = 500, and p = 6. There were
5,000 replications for each experiment. Six sketching meth-
ods are considered: (i) Bernoulli sampling, (ii) uniform
sampling, (iii) leverage score sampling and reweighted re-
gression as in Ma et al. (2020); (iv) countsketch, (v) SRHT,
(vi) subsampled randomized Fourier transforms using the
real part of fast discrete Fourier transform (SRFT). Table 1
reports the empirical size and power of the t-test. The null
and alternative hypotheses are that H0 : cTβ0 = 1 vs.
H1 : cTβ0 6= 1 with cT = (0, . . . , 0, 1). Equivalently, the
null hypothesis is βp = 1. The power is obtained for the
null value cTβ0 = 1.1 for the homoskedastic design and
cTβ0 = 1.4 for the heteroskedastic design, respectively.
The nominal size is 0.05.

In column (1) in Table 1, we report the size of the test,
namely, the probability of rejecting H0 when the null value
is true. In this column, the t-statistic is constructed using
homoskedasticity-only standard errors S.E.0. Though many
methods perform well, both Bernoulli and uniform sampling
show substantial size distortions for the heteroskedastic de-
sign. Leverage score sampling combined with reweighted
regression seems to account for heteroskedasticity to some
extent, but not enough to remove all size distortions. In col-
umn (2) which reports results using robust standard errors
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S.E.1, all methods have satisfactory size. In column (3), we
report the power of the test, i.e., the probability of rejecting
H0 when the null value is false. For the heteroskedastic de-
sign, the powers of the tests using homoskedastic standard
errors S.E.0 are worse for Bernoulli, uniform and leverage
samplings than those for countsketch, SRHT, and SRFT. The
power loss of the RS schemes is much more pronounced
when the robust standard errors are used in column (4). This
efficiency loss is consistent with asymptotic theory devel-
oped in the paper because the squared regression error is
positively correlated with one of the elements of squared Xi

under the heteroskedastic design. All RP schemes perform
similarly, hinting that even though a formal proof awaits fu-
ture research, asymptotic normality may also hold for both
SRHT and SRFT, and not just countsketch.

6.2. When One of the Regressors is Endogenous

We now move to the case when the regressors are Xi =
(1, X2,i, . . . , Xp−1,i, Xp,i)

T , and yi is generated by

yi = XT
i β0 + σ2(Zi)(ηi + εi), (3)

where εi ∼ N(0, 1) is randomly drawn independently from
Xi and ηi. The first p− 1 regressors, including the intercept
term, are exogenous, but

Xp,i = ZTi ζ0 + σ1(Zi)ηi, (4)

where ζ0 = (ζ1,0, . . . , ζq,0)T , ηi ∼ N(0, 1) independently
from Zi = (1, Z2,i, . . . , Zq,i)

T . The presence of ηi in both
(3) and (4) induces endogeneity of Xp,i.

In each of the 1000 replications, (X2,i, . . . , Xp−1,i)
T =

(Z2,i, . . . , Zp−1,i)
T , while the (q − 1)-dimensional Zi is

multivariate normal with mean zero and the variance Σ,
whose (i, j) component is Σij = ρ|i−j| with ρ = 0.5.
We consider two designs for σ1(Zi): (i) homoskedastic
design σ1(Zi) = 1 for all i and (ii) heteroskedastic design
σ1(Zi) = exp

(
5
q

∑q
j=2 |Zj,i|

)
/100. As in the previous

section, we set n = 106, m = 500, p = 6, and q = 21. We
consider five sketching schemes and no longer include lever-
age score sampling since it is unclear how to implement it
in the case of 2SLS. The nominal size is 0.05. Throughout,
(ζ1,0, . . . , ζp−1,0) = (0, 0.1, . . . , 0.1)T , but values of ζj,0
for j ≥ p depend on the context as explained below.

We first examine the so-called first-stage F-test for instru-
ment relevance. In this case of a scalar endogenous regres-
sor, the null hypothesis of irrelevant instruments amounts
to a joint test of H0 : ζj,0 = 0 for every j = p, . . . , q in
(4). The size of the test is evaluated at ζj,0 = 0 and the
power at ζj,0 = 0.1 for j = p, . . . , q. The F-test statistic is
constructed as

F =
1

q − p+ 1
ζ̂T−(p−1)

(
[V̂ ]−(p−1),−(p−1)

)−1

ζ̂−(p−1),

Table 2. F test for Instrument Relevance: V.0 and V.1 refer to
homoskedasticity-only and heteroskedasticity-consistent asymp-
totic variance estimates, respectively.

(1) (2) (3) (4)

SIZE POWER
V.0 V.1 V.0 V.1

(I) HOMOSKEDASTIC DESIGN
BERNOULLI 0.047 0.063 1.000 0.999

UNIFORM 0.049 0.063 0.997 0.999
COUNTSKETCH 0.040 0.058 1.000 0.999

SRHT 0.048 0.051 0.999 0.998
SRFT 0.050 0.052 1.000 0.999

(II) HETEROSKEDASTIC DESIGN
BERNOULLI 0.350 0.033 0.914 0.843

UNIFORM 0.338 0.024 0.900 0.828
COUNTSKETCH 0.045 0.060 0.879 0.883

SRHT 0.038 0.052 0.897 0.895
SRFT 0.050 0.059 0.890 0.888

Table 3. 2SLS based t test for H0 : βp = 1, H1 : βp 6= 1

(1) (2) (3) (4)

SIZE POWER
S.E.0 S.E.1 S.E.0 S.E.1

(I) HOMOSKEDASTIC DESIGN
BERNOULLI 0.065 0.067 0.687 0.695

UNIFORM 0.056 0.057 0.686 0.693
COUNTSKETCH 0.055 0.060 0.698 0.705

SRHT 0.043 0.046 0.710 0.714
FFT 0.061 0.068 0.704 0.703

(II) HETEROSKEDASTIC DESIGN
BERNOULLI 0.274 0.050 0.844 0.648

UNIF 0.291 0.046 0.864 0.654
COUNTSKETCH 0.042 0.047 0.930 0.930

SRHT 0.052 0.056 0.941 0.944
FFT 0.055 0.055 0.933 0.942

where ζ̂−(p−1) is a (q − p + 1)-dimensional vector of the
OLS estimate ζ̂ of regressing Xp,i on Zi, excluding the first
(p−1) elements, and [V̂ ]−(p−1),−(p−1) is the corresponding
submatrix of V̂ .

In Table 2, we report the size and power of the F-test forH0 :
ζp,0 = ζp+1,0 = . . . = ζq,0 = 0 using homoskedasticity-
only (V.0) and heteroskedasticity-consistent (V.1) asymp-
totic variance estimates, respectively. As in the previous
subsection, Bernoulli and uniform sampling sketches suffer
from size distortions in the heteroskedastic design but V.0
is used. Tests based on V.1 have good size without sacrific-
ing much power when the F test is constructed from data
sketched by RP.

We now turn to 2SLS estimation of β0. To ensure
that the instruments are powerful enough to estimate β0

well, we now set ζj,0 = 0.5 for j = p, . . . , q with
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σ1(Zi) = 1 for all i. We set β0 = (0, 1, . . . , 1)T and
consider two designs for σ2(Zi): (i) homoskedastic de-
sign σ2(Zi) = 1 for all i and (ii) heteroskedastic design
σ2(Zi) = exp

(
5
q

∑q
j=2 |Zj,i|

)
/100.

As in the previous subsection, we test H0 : βp = 1 against
H1 : βp 6= 1, or equivalently, cT = (0, . . . , 0, 1). The
power is obtained for βp = 1.05 in the homoskedastic
design and βp = 1.10 for the heteroskedastic design, re-
spectively. Table 3 reports results for nominal size of 0.05.
Basically, the same patterns are observed as in the previous
section. Thus, simulations support the theoretical result that
robust standard errors are not needed for inference when es-
timation is based on sketched data using sketching schemes
in the RP class.

7. An Empirical Illustration
An exemplary application of the 2SLS in economics is
causal inference, such as to estimate the return to education.
Suppose that yi is the wages for worker i (typically in logs)
and Xi contains educational attainment edui (say, years of
schooling completed). Here, the unobserved random vari-
able ei includes worker i’s unobserved ability among other
things. Then, edui will be correlated with ei if workers
with higher ability tends to attain higher levels of education.
The least-squares estimator may not provide a consistent es-
timate of the return to schooling. To overcome this problem,
economists use an instrumental variable that is uncorrelated
with ei but correlated with edui.

We re-examine the OLS and 2SLS estimates of return to
education in columns (1) and (2) of Table IV in Angrist
& Krueger (1991). The dependent variable y is the log
weekly wages, the covariates X include years of education,
the intercept term and 9 year-of-birth dummies (p = 11).
Following Angrist & Krueger (1991), the instruments Z
are the exogenous regressors (i.e., the intercept and year-
of-birth dummies) and a full set of quarter-of-birth (one
quarter omitted) times year-of-birth interactions (q = 1 +
9 + 3 × 10 = 40). Their idea was that season of birth is
unlikely to be correlated with workers’ ability but can affect
educational attainment because of compulsory schooling
laws. The full sample size is n = 247, 199.

To construct sketched data, we need to choose the sketch
size m. We use a data-oblivious sketch size m3 defined
in (2) with target size set to α = 0.05 and target power to
γ = 0.8, giving S2(ᾱ, γ̄) = 6.18. It remains to specify
τ2(∞), which can be interpreted as the value of t-statistic
when the sample size is really large.

In the OLS case, we take τ2(∞) = 10 resulting in m =
15, 283 (about 6% of n). Table 4 reports empirical results
for the OLS estimates. For each sketching scheme, only one

Table 4. OLS in the empirical illustration: S.E.0 and S.E.1 refer to
homoskedasticity-only and heteroskedasticity-consistent standard
errors, respectively (n = 247, 199, m = 15, 283)

ESTIMATE S.E.0 S.E.1

FULL SAMPLE 0.08016 0.00036 0.00039

BERNOULLI 0.07989 0.00142 0.00158
UNIFORM 0.07931 0.00146 0.00163

LEVERAGE 0.07779 0.00144 0.00149
COUNTSKETCH 0.08105 0.00143 0.00147

SRHT 0.07975 0.00142 0.00143
SRFT 0.08296 0.00143 0.00143

Table 5. 2SLS in the empirical illustration (n = 247, 199, m =
61, 132)

ESTIMATE S.E.0 S.E.1

FULL SAMPLE 0.077 0.015 0.015

BERNOULLI 0.053 0.027 0.028
UNIFORM 0.094 0.021 0.021

COUNTSKETCH 0.076 0.021 0.023
SRHT 0.115 0.018 0.018
SRFT 0.081 0.022 0.022

random sketch is drawn; hence, the results can change if
we redraw sketches. Remarkably, all sketched estimates are
0.08, reproducing the full sample estimate up to the second
digit. The sketched homoskedasticity-only standard errors
are also very much the same across different methods. The
Eicker-Huber-White standard error S.E.1 is a bit larger than
the homoskedastic standard error S.E.0 with the full sample.
As expected, the same pattern is observed for Bernoulli
and uniform sampling, as these sampling schemes preserve
conditional heteroskedasticity.

For 2SLS, as it is more demanding to achieve good preci-
sion, we take τ2(∞) = 5, resulting in m = 61, 132 (about
25% of n). Table 5 reports empirical results for the 2SLS
estimates. The sketched estimates vary from 0.053 to 0.115,
reflecting that the 2SLS estimates are less precisely esti-
mated than the OLS estimates. Both types of standard errors
are almost identical across all sketches for 2SLS, suggesting
that heteroskedasticity is not an issue in this data.
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A. Appendix: Proofs for OLS

Recall that β̂OLS − β0 = (XTX)−1XT e and β̃OLS − β0 = (X̃T X̃)−1X̃T ẽ. Thus

β̃OLS − β̂OLS =

(
(X̃T X̃)−1 − (XTX)−1

)
XT e+ (X̃T X̃)−1

(
X̃T ẽ−XT e

)
+

(
(X̃T X̃)−1 − (XTX)−1

)(
X̃T ẽ−XT e

)
= (Ãn − Ân)ĝn + Ân(g̃n − ĝn) + (Ãn − Ân)(g̃n − ĝn),

where g̃n := X̃T ẽ/n, ĝn := XT e/n, Ãn := (X̃T X̃/n)−1, and Ân := (XTX/n)−1. By the law of large numbers and
the continuous mapping theorem, Ân − A = op(1) and by the central limit theorem, ĝn = Op(n

−1/2). Furthermore, by
repeated applications of Theorem 3.1,

MSE[(X̃T ẽ−XT e)/n] = O(m−1) and MSE[(X̃T X̃ −XTX)/n] = O(m−1),

and by Chebyshev’s inequality, (X̃T ẽ − XT e)/n = Op(m
−1/2) and (X̃T X̃ − XTX)/n = Op(m

−1/2). The latter
combined with the continuous mapping theorem yields that Ãn − Ân = Op(m

−1/2). Thus,

β̃OLS − β̂OLS = A(g̃n − ĝn) + (Ân −A)(g̃n − ĝn) +Op(m
−1/2n−1/2 +m−1)

= A(g̃n − ĝn) + op(m
−1/2).

We start with asymptotic normality for Bernoulli sampling.

Proof of Theorem 2.2(i). In view of the Cramer-Wold device, it suffices to show that for any nonzero constant vector c ∈ Rp,

m1/2
[
cTE(e2

iXiX
T
i )c
]−1/2

cT (g̃n − ĝn)→d N(0, 1).

Write

cT (g̃n − ĝn) = n−1
n∑
i=1

( n
m
Bii − 1

)
eiX

T
i c.

Because the summands are i.i.d. with mean zero and finite variance, the central limit theorem yields the desired result
immediately.

Proof of Theorem 2.2(ii). This result is a special case of Theorem 3.3(ii) and we prove Theorem 3.3(ii) below.

In what follows, we focus on the instance that r.dim(Π) = m. Recall that

n−1
(
UTΠTΠV − UTV

)
= n−1

n∑
i=1

ψiUiVi + n−1
n∑
i=1

n∑
j=1,j 6=i

UiϕijVj =: Tn1 + Tn2,

where U ∈ Rn and V ∈ Rn are vectors of certain i.i.d. random variables (Ui, Vi) ∈ R2 that are independent of Π,

ψi :=

m∑
k=1

Π2
ki − 1, ϕij :=

m∑
k=1

ΠkiΠkj .

There are two important cases. In case (i), Tn1 is the leading term and Tn2 is identically zero. The latter is true if ϕij = 0
for all i 6= j. Methods in this class generate sketches by sampling from the full data matrix using deterministic or data
dependent probabilities. The case includes random sampling with replacement (RS).
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In case (ii), Tn2 is the leading term and Tn1 is identically zero or asymptotically negligible. Recall that for w =
(u, v, π1, . . . , πm)T ,

H̃(w1, w2) :=

m∑
k=1

u1πk1πk2v2

and H(w1, w2) := H̃(w1, w2) + H̃(w2, w1). Then,

Tn2 = n−1
∑∑
1≤i<j≤n

H(Wi,Wj). (5)

Note that H(Wi,Wj) is symmetric, i.e., H(Wi,Wj) = H(Wj ,Wi). The canonical form of Π we consider for case (ii) is
random projection whose properties are given in the main text.

Before proving Theorems 3.1 and 3.3, we first prove Lemma A.1 and establish some useful lemmas.

Lemma A.1. GP, CS, and SRHT satisfy the conditions for RP.

Proof of Lemma A.1. For GP, it is straightforward to check all the conditions as all elements of Π are i.i.d. We omit the
details. For CS, note that the columns of Π are i.i.d. and Π has only one non-zero entry in each column, hence implying that
ΠkiΠkj = 0 for all k, i 6= j. Then, it is easy to see that all the conditions are satisfied. It is more involving to check the
conditions for SRHT. To do so, write

Πki =

√
n

m

n∑
j=1

SkjHjiDii.

Using the fact that for each k, Sk`1Sk`2 = 0 whenever `1 6= `2 (the property of uniform sampling), further write

ΠkiΠkj =
n

m

n∑
`1=1

n∑
`2=1

Sk`1H`1iDiiSk`2H`2jDjj

=
n

m

n∑
`=1

Sk`H`iDiiH`jDjj

and

ΠkiΠkjΠ`pΠ`q =
n2

m2

n∑
t1=1

n∑
t2=1

Skt1Ht1iDiiHt1jDjjS`t2Ht2pDppHt2qDqq.

Using the facts that E(Skj) = n−1, E(Dii) = 0,
∑n
j=1H

2
ji = 1, and |Hji| = n−1/2, we have

E(Πki) =

√
n

m

n∑
j=1

E(Skj)HjiE(Dii) = 0,

E(Π2
ki) =

n

m

n∑
j=1

E(Skj)H
2
ji =

1

m

n∑
j=1

H2
ji =

1

m
,

E(Π2
kiΠ

2
kj) =

n2

m2

n∑
`=1

E(Sk`)H
2
`iH

2
`j =

n

m2

n∑
`=1

H2
`iH

2
`j =

1

m2
,

E(Π4
ki) =

n2

m2

n∑
`=1

E(Sk`)H
4
`i =

n

m2

n∑
`=1

H4
`i =

1

m2
.

Furthermore, note that the diagonal elements of D are i.i.d. and the rows of S are i.i.d. Then, we have that E[ΠkiΠkj ] = 0
for all k, i 6= j and E[ΠkiΠkjΠ`pΠ`q] = 0 for all k 6= `, i 6= j, p 6= q. Therefore, we have verified all the required
conditions.
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Lemma A.2. If Π is a random matrix satisfying RS, then,

E
[
n−1

(
UTΠTΠV − UTV

)]
= 0,

Var
[
n−1

(
UTΠTΠV − UTV

)]
=

{
1

m
− 1

n
+

(
1− 1

m

) n∑
i=1

p2
i

}
Var(UiVi).

In particular, when pi = n−1, the variance is reduced to n−1
n

1
mVar(UiVi).

Proof of Lemma A.2. Using the property of RS, we have that

E[ψi] =

m∑
k=1

E[Π2
ki]− 1 = npi − 1,

E[ψ2
i ] =

m∑
k=1

m∑
`=1

E[Π2
kiΠ

2
`i]− 2

m∑
k=1

E[Π2
ki] + 1

=

m∑
k=1

E[Π4
ki] +

m∑
k=1

m∑
`=1, 6̀=k

E[Π2
kiΠ

2
`i]− 2

m∑
k=1

E[Π2
ki] + 1

=
n2

m
pi +

n2m(m− 1)

m2
p2
i − 2npi + 1,

and for i 6= j, using the fact that ΠkiΠkj = 0 whenever i 6= j,

E[ψiψj ] =

m∑
k=1

m∑
`=1

E[Π2
kiΠ

2
`j ]−

m∑
k=1

E[Π2
ki]−

m∑
`=1

E[Π2
`j ] + 1

=

m∑
k=1

E[Π2
kiΠ

2
kj ] +

m∑
k=1

m∑
`=1, 6̀=k

E[Π2
kiΠ

2
`j ]−

m∑
k=1

E[Π2
ki]−

m∑
`=1

E[Π2
`j ] + 1

=
n2m(m− 1)

m2
pipj − npi − npj + 1.

Note that Tn2 = 0 because ϕij = 0. Hence, it suffices to compute the mean and variance of Tn1. Write

E(Tn1) = n−1
n∑
i=1

E(ψi)E(UiVi) = n−1
n∑
i=1

(npi − 1)E(UiVi) = 0,

Var(Tn1) = n−2
n∑
i=1

E(ψ2
i )E(U2

i V
2
i ) + n−2

n∑
i=1

n∑
j=1,j 6=i

E(ψiψj)E(UiVi)E(UjVj)

= n−2
n∑
i=1

(
n2

m
pi +

n2m(m− 1)

m2
p2
i − 2npi + 1

)
E(U2

i V
2
i )

+ n−2
n∑
i=1

n∑
j=1,j 6=i

(
n2m(m− 1)

m2
pipj − npi − npj + 1

)
E(UiVi)E(UjVj)

=

{
1

m
+

(
1− 1

m

) n∑
i=1

p2
i −

1

n

}
E(U2

i V
2
i )

+

{(
1− 1

m

)(
1−

n∑
i=1

p2
i

)
− n− 1

n

}
E(UiVi)E(UjVj)

=

{
1

m
− 1

n
+

(
1− 1

m

) n∑
i=1

p2
i

}{
E(U2

i V
2
i )− [E(UiVi)]

2
}
.

Therefore, we have proved the lemma.
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Lemma A.3. If Π is a random matrix satisfying RP, then,

E (Tn1) = E (Tn2) = 0,Var (Tn1) = O(n−1), and Var (Tn2) =
n− 1

n

1

m
{E(U2

i )E(V 2
i ) + [E(UiVi)]

2}.

Proof of Lemma A.3. As in the proof of Lemma A.2, we have that

E[ψi] =

m∑
k=1

E[Π2
ki]− 1 = 0,

E[ψ2
i ] =

m∑
k=1

E[Π4
ki] +

m∑
k=1

m∑
`=1, 6̀=k

E[Π2
kiΠ

2
`i]− 2

m∑
k=1

E[Π2
ki] + 1

= O(1) using the assumption that E[Π4
ki] = O(m−1),

and for i 6= j,

E[ψiψj ] =

m∑
k=1

E[Π2
kiΠ

2
kj ] +

m∑
k=1

m∑
`=1, 6̀=k

E[Π2
kiΠ

2
`j ]−

m∑
k=1

E[Π2
ki]−

m∑
`=1

E[Π2
`j ] + 1

=
1

m
+
m(m− 1)

m2
− 2 + 1

= 0.

Now write

E(Tn1) = n−1
n∑
i=1

E(ψi)E(UiVi) = 0,

Var(Tn1) = n−2
n∑
i=1

E(ψ2
i )E(U2

i V
2
i ) + n−2

n∑
i=1

n∑
j=1,j 6=i

E(ψiψj)E(UiVi)E(UjVj)

= O(n−1).

Furthermore, E[H(Wi,Wj)] = E[E[H(Wi,Wj)|Ui, Uj , Vi, Vj ]] = 0 by RP(ii), specifically, E[ΠkiΠkj ] = 0. Hence,
E(Tn2) = 0.

For the final result, write

E[{H(Wi,Wj)}2] = E
{[
H̃(Wi,Wj) + H̃(Wj ,Wi)

] [
H̃(Wi,Wj) + H̃(Wj ,Wi)

]}
.

Write

{H(Wi,Wj)}2 = Tij1 + Tij2 + 2Tij3, (6)

where

Tij1 := H̃(Wi,Wj)H̃(Wi,Wj),

Tij2 := H̃(Wj ,Wi)H̃(Wj ,Wi),

Tij3 := H̃(Wi,Wj)H̃(Wj ,Wi).

Use RP(ii)-(iii), in particular, E[Π2
kiΠ

2
kj ] = m−2 and E[ΠkiΠkjΠ`iΠ`j ] = 0 whenever k 6= `, i 6= j, to obtain

E[Tij1|Ui, Vi, Uj , Vj ] =

m∑
k=1

U2
i V

2
j E[Π2

kiΠ
2
kj ] =

1

m
U2
i V

2
j ,

E[Tij2|Ui, Vi, Uj , Vj ] =

m∑
k=1

U2
j V

2
i E[Π2

kiΠ
2
kj ] =

1

m
U2
j V

2
i ,

E[Tij3|Ui, Vi, Uj , Vj ] =

m∑
k=1

UiUjViVjE[Π2
kiΠ

2
kj ] =

1

m
UiUjViVj .
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Thus,

E[{H(Wi,Wj)}2] = E[E[{H(Wi,Wj)}2|Ui, Vi, Uj , Vj ]]

=
1

m
E
(
U2
i V

2
j + U2

j V
2
i + UiUjViVj

)
=

2

m
{E(U2

i )E(V 2
i ) + [E(UiVi)]

2}.

Then, Var (Tn2) can be obtained by combining the U statistic formula given in (5) with RP(iii).

Proof of Theorem 3.1. The theorem for RS follows immediately from Lemma A.2 under the condition that
∑n
i=1 p

2
i =

o(m−1). The theorem for RP follows straightforwardly from Lemma A.3 using Cauchy–Schwarz inequality. We now
consider BS. Recall that

n−1
(
UTΠTΠV − UTV

)
= n−1

n∑
i=1

( n
m
Bii − 1

)
UiVi

and that the summands are i.i.d.,

E
[( n
m
Bii − 1

)
UiVi

]
= 0, and Var

[( n
m
Bii − 1

)
UiVi

]
=
( n
m
− 1
)
E
(
U2
i V

2
i

)
.

Then, the desired result follows immediately.

In order to prove Theorem 3.3(ii), we use the central limit theorem for degenerate U -statistics of Hall (1984). For the sake
of easy referencing, we reproduce it below.
Lemma A.4 (Theorem 1 of Hall (1984)). Assume that {W1, . . . ,Wn} are independent and identically distributed random
vectors. Define

Un :=
∑∑
1≤i<j≤n

Hn(Wi,Wj).

AssumeHn is symmetric, E[Hn(W1,W2)|W1] = 0 almost surely and E[H2
n(W1,W2)] <∞ for each n. LetGn(w1, w2) :=

E[Hn(W1, w1)Hn(W1, w2)]. If

E[G2
n(W1,W2)] + n−1E[H4

n(W1,W2)]

{E[H2
n(W1,W2)]}2

→ 0

as n→∞, then

V−1/2
n

Un
n
→d N(0, 1),

where Vn := 1
2E[H2

n(W1,W2)].
Lemma A.5. Let Π be a random matrix satisfying RP. Let G(w1, w2) := E[H(Wi, w1)H(Wi, w2)]. Then,

E[G2(Wi,Wj)] = O(m−3).

Proof. First, write

G(w1, w2) = E
{[
H̃(Wi, w1) + H̃(w1,Wi)

] [
H̃(Wi, w2) + H̃(w2,Wi)

]}
.

Because E[Π2
ki] = m−1 and E[ΠkiΠ`i] = 0 whenever k 6= ` for each i, we have that

E[H̃(Wi, w1)H̃(Wi, w2)|Ui, Vi, Uj , Vj ] =

m∑
k=1

m∑
j=1

U2
i v1v2E[ΠkiΠji]πk1πj2

=

m∑
k=1

U2
i v1v2E[Π2

ki]πk1πk2

= m−1
m∑
k=1

U2
i v1v2πk1πk2.
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Similarly,

E[H̃(w1,Wi)H̃(w2,Wi)|Ui, Vi, Uj , Vj ] = m−1
m∑
k=1

u1u2V
2
i πk1πk2,

E[H̃(Wi, w1)H̃(w2,Wi)|Ui, Vi, Uj , Vj ] = m−1
m∑
k=1

Uiu2v1Viπk1πk2,

E[H̃(w1,Wi)H̃(Wi, w2)|Ui, Vi, Uj , Vj ] = m−1
m∑
k=1

u1UiViv2πk1πk2.

Then, by simple algebra,

G(Wi,Wj) = m−1
m∑
k=1

{
E[U2

i ]ViVj + E[V 2
i ]UiUj + E[UiVi]UiVj + E[UiVi]UjVi

}
ΠkiΠkj .

Using RP(ii)-(iii), write

E[G2(Wi,Wj)] = E[E[G2(Wi,Wj)|Ui, Vi, Uj , Vj ]]

= m−2
m∑
k=1

E
[{

E[U2
i ]ViVj + E[V 2

i ]UiUj + E[UiVi]UiVj + E[UiVi]UjVi
}2
]
E[Π2

kiΠ
2
kj ]

= m−4
m∑
k=1

E
[{

E[U2
i ]ViVj + E[V 2

i ]UiUj + E[UiVi]UiVj + E[UiVi]UjVi
}2
]

= O(m−3),

which proves the lemma.

Lemma A.6. Let Π be a random matrix satisfying RP. Furthermore, assume that the columns of Π are i.i.d. Then, for i 6= j,
E[{H(Wi,Wj)}4] = O(m−1).

Proof of Lemma A.6. Using (6), write

{H(Wi,Wj)}4 = (Tij1 + Tij2 + 2Tij3)(Tij1 + Tij2 + 2Tij3).

We expand the right-hand side of the equation above. The first term has the form

Tij1Tij1 =

m∑
k1=1

m∑
k2=1

m∑
k3=1

m∑
k4=1

U4
i V

4
j Πk1iΠk1jΠk2iΠk2jΠk3iΠk3jΠk4iΠk4j .

Combining RP with the additional assumption that the columns of Π are i.id., we have that E[Π4
kiΠ

4
kj ] = O(m−2) uniformly.

Also, E[Πk1iΠk1jΠk2iΠk2jΠk3iΠk3jΠk4iΠk4j ] is nonzero only if all four indices are the same (k1 = k2 = k3 = k4 = k)
or two pairs of the indices are the same (e.g., k1 = k2 and k3 = k4). This implies that

E[Tij1Tij1] = E
(
U4
i V

4
j

)
m∑
k=1

E[Π4
kiΠ

4
kj ] + 6

m∑
k=1

m∑
`=1, 6̀=k

E[Π2
kiΠ

2
kjΠ

2
`iΠ

2
`j ]

 = O(m−1).

Moreover, using similar arguments, we can show that all other terms E[TijkTij`] = O(m−1), where k, ` ∈ {1, 2, 3}.
Therefore, we have proved the lemma.

Lemma A.7. Let Π be a random matrix satisfying RP. Furthermore, assume that the columns of Π are i.i.d. Then, as
n→∞,

√
mTn2 →d N [0, {E(U2

i )E(V 2
i ) + E(UiVi)

2}],
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Proof of Lemma A.7. Note that H(w1, w2) = H(w2, w1) and E(H(W1,W2)|W1) = E(H(W1,W2)|W2) = 0. Thus, Tn2

is a degenerate U -statistic. By Lemmas A.3, A.5 and A.6, we have that

E[G2(W1,W2)] + n−1E[H4(W1,W2)]

{E[H2(W1,W2)]}2
= O(m−1 + n−1m) = o(1).

Then, the conclusion of Lemma A.7 follows directly by applying Lemma A.4 along with Lemma A.3.

Proof of Theorem 3.3(ii). Recall that

β̃OLS − β̂OLS = A(g̃n − ĝn) + op(m
−1/2).

Then, the theorem follows immediately by applying Lemma A.7 with Ui = cTXi and Vi = ei for each constant vector
c ∈ Rp.

B. Appendix: Proofs for 2SLS
B.1. Proof of Theorem 4.2

Recall that using the singular value decomposition of X and Z, we write X = UXΣXV
T
X and Z = UZΣZV

T
Z . Define

θ̂ :=
(
UTXUZU

T
ZUX

)−1
UTXUZU

T
Z y (7)

and

θ̃ :=
(
UTXΠTΠUZ

(
UTZΠTΠUZ

)−1
UTZΠTΠUX

)−1

UTXΠTΠUZ
(
UTZΠTΠUZ

)−1
UTZΠTΠy. (8)

It would be convenient to work with UX θ̂ and UX θ̃ in order to analyze algorithmic properties of sketched 2SLS estimators
because UX is an orthonormal matrix. The following lemma establishes the equivalence between Xβ̂ and UX θ̂.

Lemma B.1. Let Assumption 4.1 hold. Then, Xβ̂ = UX θ̂.

Proof. By the singular value decomposition of X and Z, we have that

ZTZ = VZΣ2
ZV

T
Z ,

Z(ZTZ)−1ZT = UZU
T
Z ,

XTZ(ZTZ)−1ZTX = VXΣXU
T
XUZU

T
ZUXΣXV

T
X ,(

XTZ(ZTZ)−1ZTX
)−1

= VXΣ−1
X

(
UTXUZU

T
ZUX

)−1
Σ−1
X V TX ,

XTZ(ZTZ)−1ZT y = VXΣXU
T
XUZU

T
Z y.

Therefore,

β̂ = VXΣ−1
X

(
UTXUZU

T
ZUX

)−1
UTXUZU

T
Z y,

Xβ̂ = UX
(
UTXUZU

T
ZUX

)−1
UTXUZU

T
Z y,

which in turn implies the conclusion in view of the definition of θ̂ in (7).

As in Lemma B.1, the equivalence between Xβ̃ and UX θ̃ holds.

Lemma B.2. Assume that (i) Z̃T Z̃ is non-singular and (ii) X̃T Z̃(Z̃T Z̃)−1Z̃T X̃ is non-singular. Then, Xβ̃ = UX θ̃.
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Proof. As in the proof of Lemma B.1, we have that

Z̃T Z̃ = VZΣZU
T
ZΠTΠUZΣV TZ ,(

Z̃T Z̃
)−1

= VZΣ−1
Z

(
UTZΠTΠUZ

)−1
Σ−1
Z V TZ ,

Z̃(Z̃T Z̃)−1Z̃T = ΠUZ
(
UTZΠTΠUZ

)−1
UTZΠT ,

X̃T Z̃(Z̃T Z̃)−1Z̃T X̃ = VXΣXU
T
XΠTΠUZ

(
UTZΠTΠUZ

)−1
UTZΠTΠUXΣXV

T
X ,(

X̃T Z̃(Z̃T Z̃)−1Z̃T X̃
)−1

= VXΣ−1
X

(
UTXΠTΠUZ

(
UTZΠTΠUZ

)−1
UTZΠTΠUX

)−1

Σ−1
X V TX ,

X̃T Z̃(Z̃T Z̃)−1Z̃T ỹ = VXΣXU
T
XΠTΠUZ

(
UTZΠTΠUZ

)−1
UTZΠTΠy.

Therefore,

β̃ = VXΣ−1
X

(
UTXΠTΠUZ

(
UTZΠTΠUZ

)−1
UTZΠTΠUX

)−1

UTXΠTΠUZ
(
UTZΠTΠUZ

)−1
UTZΠTΠy,

Xβ̃ = UX

(
UTXΠTΠUZ

(
UTZΠTΠUZ

)−1
UTZΠTΠUX

)−1

UTXΠTΠUZ
(
UTZΠTΠUZ

)−1
UTZΠTΠy,

which again implies the conclusion in view of the definition of θ̃ in (8).

Abusing the notation a bit, define now

Ã := UTXΠTΠUZ
(
UTZΠTΠUZ

)−1
UTZΠTΠUX ,

Â := UTXUZU
T
ZUX ,

B̃ := UTXΠTΠUZ
(
UTZΠTΠUZ

)−1
UTZΠTΠê,

B̂ := UTXUZU
T
Z ê.

Lemma B.3. Let Assumption 4.1 hold. Then, Â−1B̂ = 0.

Proof. Note that

Â−1B̂ =
(
UTXUZU

T
ZUX

)−1
UTXUZU

T
Z ê

=
(
UTXUZU

T
ZUX

)−1
UTXUZU

T
Z y −

(
UTXUZU

T
ZUX

)−1
UTXUZU

T
ZXβ̂

= 0,

since Xβ̂ = UX
(
UTXUZU

T
ZUX

)−1
UTXUZU

T
Z y.

Under Assumption 4.1, we first obtain the following lemma.

Lemma B.4. Let Assumption 4.1 hold. Then, the following holds jointly with probability at least 1− δ :∥∥∥Ã− Â∥∥∥
2
≤ f1(ε1, ε2),∥∥∥B̃ − B̂∥∥∥

2
≤ ε3 ‖ê‖+ f2(ε1, ε2) [1 + ε3 ‖ê‖] .
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Proof. Let Ã1 := UTZΠTΠUX , Ã2 :=
(
UTZΠTΠUZ

)−1
, Â1 := UTZUX , and Â2 := I . Then we have that

Ã− Â

= ÃT1 Ã2Ã1 − ÂT1 Â2Â1

= (Ã1 − Â1)T Ã2(Ã1 − Â1) + ÂT1 Ã2(Ã1 − Â1) + (Ã1 − Â1)T Ã2Â1 + ÂT1 (Ã2 − Â2)Â1

= (Ã1 − Â1)T Â2(Ã1 − Â1) + (Ã1 − Â1)T (Ã2 − Â2)(Ã1 − Â1)

+ ÂT1 Â2(Ã1 − Â1) + ÂT1 (Ã2 − Â2)(Ã1 − Â1)

+ (Ã1 − Â1)T Â2Â1 + (Ã1 − Â1)T (Ã2 − Â2)Â1

+ ÂT1 (Ã2 − Â2)Â1.

It is straightforward to show that
∥∥∥Ã2 − Â2

∥∥∥
2
≤ ε1/(1− ε1) using Assumption 4.1(i). Since

∥∥∥Â1

∥∥∥
2
≤ ‖UZ‖2 ‖UX‖2 = 1

and
∥∥∥Â2

∥∥∥
2

= 1, we have that∥∥∥Ã− Â∥∥∥
2
≤ ε2

2 + ε2
2ε1/(1− ε1) + 2ε2 + 2ε2ε1/(1− ε1) + ε1/(1− ε1)

=
ε1 + ε2(ε2 + 2)

1− ε1
= f1(ε1, ε2),

using Assumption 4.1. This proves the first desired result.

Now let B̃1 := UTZΠTΠê and B̂1 := UTZ ê. Consider

B̃ − B̂ = UTXΠTΠUZ
(
UTZΠTΠUZ

)−1
UTZΠTΠê− UTXUZUTZ ê

= ÃT1 Ã2B̃1 − ÂT1 Â2B̂1

= (Ã1 − Â1)T Ã2(B̃1 − B̂1) + ÂT1 Ã2(B̃1 − B̂1) + (Ã1 − Â1)T Ã2B̂1 + ÂT1 (Ã2 − Â2)B̂1

= (Ã1 − Â1)T Â2(B̃1 − B̂1) + (Ã1 − Â1)T (Ã2 − Â2)(B̃1 − B̂1)

+ ÂT1 Â2(B̃1 − B̂1) + ÂT1 (Ã2 − Â2)(B̃1 − B̂1)

+ (Ã1 − Â1)T Â2B̂1 + (Ã1 − Â1)T (Ã2 − Â2)B̂1

+ ÂT1 (Ã2 − Â2)B̂1.

Since
∥∥∥B̂1

∥∥∥
2

=
∥∥UTZ ê∥∥2

≤ ‖UZ‖2 ‖ê‖ ≤ ‖ê‖, we have that∥∥∥B̃ − B̂∥∥∥
2
≤ ε3 ‖ê‖+ [ε2 + ε1/(1− ε1) + ε2ε1/(1− ε1)] [1 + ε3 ‖ê‖]

= ε3 ‖ê‖+ f2(ε1, ε2) [1 + ε3 ‖ê‖] ,

again using Assumption 4.1. This proves the second desired result.

Lemma B.5. Let Assumptions 4.1 hold. Then, the following holds with probability at least 1− δ :

σmin(Ã) ≥ 1

2
σ2

min(UTZUX).

Proof. Use the fact that for real matrices C and D,

σmin(C +D) ≥ σmin(C)− σmax(D)

to obtain

σmin(Ã) ≥ σmin(Â)− σmax(Ã− Â).
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Then the desired result follows from the first conclusion of Lemma B.4, since

σmin(Â) = σmin(UTXUZU
T
ZUX) = σ2

min(UTZUX) and σmax(Ã− Â) ≤
∥∥∥Ã− Â∥∥∥

2
.

Lemma B.5 implies that Ã−1 is well defined with probability at least 1− δ.
Lemma B.6. Let Assumptions 4.1 hold. Then, the following holds with probability at least 1− δ :∥∥∥Ã−1 − Â−1

∥∥∥
2
≤ 2f1(ε1, ε2)

σ4
min(UTZUX)

.

Proof. Write

Ã−1 − Â−1 = Â−1
(
Â− Ã

)
Ã−1.

Thus, ∥∥∥Ã−1 − Â−1
∥∥∥

2
≤
∥∥∥Â−1

∥∥∥
2

∥∥∥Â− Ã∥∥∥
2

∥∥∥Ã−1
∥∥∥

2

≤ 2f1(ε1, ε2)

σ4
min(UTZUX)

since
∥∥∥Â−1

∥∥∥
2

=
[
σ2

min(UTZUX)
]−1

, by Lemma B.4,
∥∥∥Â− Ã∥∥∥

2
≤ f1(ε1, ε2) and, by Lemma B.5,

∥∥∥Ã−1
∥∥∥

2
≤

2
[
σ2

min(UTZUX)
]−1

with probability at least 1− δ.

Proof of Theorem 4.2. By Lemmas B.1 and B.2,

X(β̃ − β̂) = UX(θ̃ − θ̂),

so that

σmin(X)
∥∥∥β̃ − β̂∥∥∥ ≤ ∥∥∥θ̃ − θ̂∥∥∥ .

Thus, it suffices to bound
∥∥∥θ̃ − θ̂∥∥∥. To do so, write

ỹ = Π
(
Xβ̂ + ê

)
= X̃β̂ + ẽ = ΠUX θ̂ + ẽ, (9)

where ẽ = Πê. Plugging (9) into (8) yields

θ̃ − θ̂ = Ã−1B̃.

Then, by Lemma B.3, we have that θ̃ − θ̂ = Ã−1B̃ = Ã−1B̃ − Â−1B̂. Further, write

θ̃ − θ̂ =
(
Ã−1 − Â−1

)
B̂ + Â−1

(
B̃ − B̂

)
+
(
Ã−1 − Â−1

)(
B̃ − B̂

)
.

Thus,

‖θ̃ − θ̂‖ = ‖Ã−1B̃ − Â−1B̂‖2

≤
∥∥∥Ã−1 − Â−1

∥∥∥
2

∥∥∥B̂∥∥∥
2

+
∥∥∥Â−1

∥∥∥∥∥∥B̃ − B̂∥∥∥
2

+
∥∥∥Ã−1 − Â−1

∥∥∥ ∥∥∥B̃ − B̂∥∥∥
2

≤ 2f1(ε1, ε2)

σ4
min(UTZUX)

‖ê‖+
ε3 ‖ê‖+ f2(ε1, ε2) [1 + ε3 ‖ê‖]

σ2
min(UTZUX)

+
2f1(ε1, ε2)

σ4
min(UTZUX)

{ε3 ‖ê‖+ f2(ε1, ε2) [1 + ε3 ‖ê‖]}

=
f2(ε1, ε2) + ε3 ‖ê‖ [1 + f2(ε1, ε2)]

σ2
min(UTZUX)

[
1 +

2f1(ε1, ε2)

σ2
min(UTZUX)

]
,

where the last inequality follows from Assumption 4.1.
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We now specialize Theorem 4.2 for countsketch.

Theorem B.7. Let data Dn be fixed, ZTZ and XTPZX are non-singular. Let Π ∈ Rm×n be counsketch with
m ≥ max{q(q + 1), 2pq}/(ε2δ) for some ε ∈ (0, 1/3]. Suppose that σ2

min(UTZUX) ≥ 16ε(1+ε)
1−ε . and let σ∗ =[

σmin(X)σ2
min(UTZUX)

]−1
. Then, the following holds with probability at least 1− δ :

∥∥∥β̃2SLS − β̂2SLS

∥∥∥ ≤ 4ε

1− ε

[
2 + 3

‖ê‖
√
p

]
σ∗

To establish Lemma B.10 given below, we first state the following known results in the literature.

Lemma B.8 (Theorem 6.2 of Kane & Nelson (2014)). Distribution D over Rm×n is defined to have (ε, δ, 2)-JL (Johnson-
Lindenstrauss) moments if for any x ∈ Rn such that ‖x‖ = 1,

EΠ∼D

[∣∣‖Πx‖2 − 1
∣∣2] ≤ ε2δ.

Given ε, δ ∈ (0, 1/2), let D be any distribution over matrices with n columns with the (ε, δ, 2)-JL moment property. Then,
for any A and B real matrices each with n rows,

PΠ∼D
(
‖ATΠTΠB −ATB‖F > 3ε‖A‖F ‖B‖F

)
< δ.

Lemma B.9 (Theorem 2.9 of Woodruff (2014)). Let Π ∈ Rm×n be countsketch with m ≥ 2/(ε2δ). Then, Π satisfies the
(ε, δ, 2)-JL moment property.

Lemma B.10. Let Π ∈ Rm×n be countsketch with m ≥ max{q(q + 1), 2pq}/(ε2δ) for some ε ∈ (0, 1/2). Then,
Assumption 4.1 holds with ε1 = ε, ε2 = 3ε, ε3 = 3εp−1/2.

Proof of Lemma B.10. As shown in the proof of Theorem 2 of Nelson & Nguyên (2013),

PΠ∼D
(
‖UTZΠTΠUZ − Iq‖2 > ε

)
< δ,

provided that m ≥ q(q + 1)/(ε2δ). This verifies the first condition of Assumption 4.1.

Now to verify conditions (ii) and (iii) of Assumption 4.1, note that since countsketch with m ≥ 2/(ε2δ) satisfies the
(ε, δ, 2)-JL moment property, we have, for any any A and B real matrices each with n rows,

PΠ∼D
(
‖ATΠTΠB −ATB‖2 > 3ε‖A‖F ‖B‖F

)
≤ PΠ∼D

(
‖ATΠTΠB −ATB‖F > 3ε‖A‖F ‖B‖F

)
< δ.

Since ‖UX‖2F = p, ‖UZ‖2F = q and ‖ê‖F = ‖ê‖, we have that

PΠ∼D
(
‖UTZΠTΠUX − UTZUX‖2 > 3ε

√
pq
)
< δ,

PΠ∼D
(
‖UTZΠTΠê− UTZ ê‖ > 3ε

√
q‖ê‖

)
< δ,

provided that m ≥ 2/(ε2δ). Replacing ε with ε/
√
pq yields that

PΠ∼D
(
‖UTZΠTΠUX − UTZUX‖2 > 3ε

)
< δ,

PΠ∼D

(
‖UTZΠTΠê− UTZ ê‖ > 3εp−1/2‖ê‖

)
< δ,

provided that m ≥ 2pq/(ε2δ). Thus, we have proved Lemma B.10.

Proof of Theorem B.7. In view of Lemma B.10, this theorem follows directly from applying Theorem 4.2 to the case when
Π is a countsketch.
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B.2. Proof of Theorem 4.4

Proof of Theorem 4.4. It follows from the definition of the estimator that

β̃ =
(
X̃T Z̃(Z̃T Z̃)−1Z̃T X̃

)−1

X̃T Z̃(Z̃T Z̃)−1Z̃T
(
X̃β0 + ẽ

)
= β0 +

{
(X̃T Z̃/n)(Z̃T Z̃/n)−1(Z̃T X̃/n)

}−1

(X̃T Z̃/n)(Z̃T Z̃/n)−1(Z̃T ẽ/n).

Thus,,

β̂ = β0 +
[
(XTZ/n)(ZTZ/n)−1(ZTX/n)

]−1
(XTZ/n(ZTZ/n)−1ZT e/n.

Write

β̃ − β̂ = (Ãn −A)gn +A(g̃n − gn) + (Ãn −A)(g̃n − gn),

where g̃n = Z̃T ẽ/n, gn = ZT e/n,

Ãn =
{

(X̃T Z̃/n)(Z̃T Z̃/n)−1(Z̃T X̃/n)
}−1

(X̃T Z̃/n)(Z̃T Z̃/n)−1,

A =
[
E(XiZ

T
i )
[
E(ZiZ

T
i )
]−1 E(ZiX

T
i )
]−1

E(XiZ
T
i )
[
E(ZiZ

T
i )
]−1

.

As in the proof for OLS, Ãn − A = op(1) and g̃n − gn = Op(m
−1/2). By the central limit theorem, gn = Op(n

−1/2).
Hence,

β̃ − β̂ = A(g̃n − gn) + op

(
n−1/2 +m−1/2

)
.

Moreover, by Lemma A.7 that

m1/2(g̃n − gn)→d N [0,E(e2
iZiZ

T
i )].

Combining all the arguments above yields

m1/2(β̃ − β̂)→d N [0, AE(e2
iZiZ

T
i )AT ],

which gives the conclusion of the theorem.


