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Abstract

We study the problem of model selection in
batch policy optimization: given a fixed, partial-
feedback dataset and M model classes, learn a
policy with performance that is competitive with
the policy derived from the best model class. We
formalize the problem in the contextual bandit
setting with linear model classes by identifying
three sources of error that any model selection
algorithm should optimally trade off in order to
be competitive: (1) approximation error, (2) sta-
tistical complexity, and (3) coverage. The first
two sources are common in model selection for
supervised learning, where optimally trading off
these two is well-studied. In contrast, the third
source is unique to batch policy optimization and
is due to dataset shift inherent to the setting. We
first show that no batch policy optimization algo-
rithm can achieve a guarantee addressing all three
simultaneously, revealing a stark contrast between
difficulties in batch policy optimization and the
positive results available in supervised learning.
Despite this negative result, we show that relax-
ing any one of the three error sources enables
the design of algorithms achieving near-oracle in-
equalities for the remaining two. We conclude
with experiments demonstrating the efficacy of
these algorithms.

1. Introduction

Model selection and hyperparameter tuning are fundamental
tasks in supervised learning and statistical learning theory.
In these settings, given a model class, the standard goal is
to minimize risk, which can always be decomposed as a
sum of approximation error (i.e., bias) and estimation er-
ror (i.e., variance) of the model class. A trade-off between
these two often exists: a large model class may require a
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lot of data for generalization while a small one may suffer
from large approximation error. At its core, model selec-
tion describes the problem of choosing a model class so as
to automatically balance these quantities. A vast literature
exists on algorithms and selection rules — such as hold-out
methods, cross-validation, and structural risk minimization
— that nearly optimally achieve this trade-off in supervised
learning (Massart, 2007; Lugosi & Nobel, 1999; Bartlett
et al., 2002; Bartlett, 2008). That is, one can select a model
class from a collection that nearly matches the performance
of the best model class. The implications in practice have
been equally, if not more, impactful as evidenced by the
widespread use of model validation and selection in machine
learning applications, where methods like cross-validation
on held-out data are standard and essential steps for practi-
tioners.

In recent years, interest has turned to model selection in
online bandits and reinforcement learning (Agarwal et al.,
2017; Foster et al., 2019; Pacchiano et al., 2020; Lee et al.,
2021; Modi et al., 2020; Chatterji et al., 2020; Muthuku-
mar & Krishnamurthy, 2021; Ghosh et al., 2021). How-
ever, in contrast to the extensive understanding of model
selection in supervised learning and the growing literature
in online learning, relatively little is known about model
selection in the context of batch (or offline) bandits and re-
inforcement learning. Batch policy optimization, or offline
policy optimization, is a promising paradigm for learning
decision-making policies by leveraging large datasets of in-
teractions with the environment (Lange et al., 2012; Levine
et al., 2020). The goal is for the learner to find a good pol-
icy without interacting with the environment in an online
fashion so as to avoid dangerous or costly deployments of
sub-optimal policies. While a number of works provide
theoretically sample-efficient algorithms for batch policy
optimization (Munos & Szepesvari, 2008; Jin et al., 2019;
Nachum et al., 2019b; Liu et al., 2020; Xie et al., 2021), their
effectiveness in practice has been limited due to the lack of
tools for validation and selection when faced with multiple
options for model classes or hyperparameter settings.

It is clear that a need exists in batch policy optimization for
an analogue to methods like cross-validation in supervised
learning. Traditionally, this need has motivated a large body
of literature dedicated to the problem of batch policy evalu-
ation (e.g., (Precup, 2000; Jiang & Li, 2016; Nachum et al.,
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2019a)). These works aim to estimate the values (i.e., online
performance) of a set of arbitrary candidate policies, typi-
cally via value function regression on the fixed batch dataset
or some form of importance sampling. Unfortunately, in
practice these methods warrant their own hyperparameter
selection (e.g. choice of model class used to estimate value
functions), an observation that has been noted by several
authors (Tang & Wiens, 2021; Kumar et al., 2021; Paine
et al., 2020). The policy evaluator could thus suffer from
the same issues as batch policy optimization algorithms.
The question of how to achieve effective model selection
methods in the batch setting thus remains open.

Motivated by this challenge, in this paper we formalize and
study theoretically the problem of model selection for batch
policy optimization in the setting of contextual bandits with
linear models and make progress towards understanding
what is and is not possible in the batch setting compared to
supervised learning. The problem is as follows. The learner
is given access to a collection of model classes Fi, ... Fr
in order to estimate value functions. Equipped with a single
model class Fy, a base algorithm produces a policy 75. The
learner’s goal is thus to leverage all M classes to produce a
policy 7 that nearly matches the performance of the best 7.
That is, the learner should perform as if the “optimal” model
class F}, that produces the best 75, were known in advance.
To ground our results, we focus on the contextual bandit
setting and model classes F}, that are linear with respect to
a collection of known feature maps.

1.1. Contributions

Three Model Selection Criteria In Section 3, we iden-
tify three sources of error that a model selection algorithm
should trade off in order to be competitive with 75, for
linear model classes. Two natural sources, borrowed from
supervised learning bounds, are approximation error and
statistical complexity of the model class. However, unlike
supervised learning, a third source that contributes to error
is the coverage of the fixed dataset in conjunction with the
properties of the model class. This can be interpreted as
the effect of dataset shift. The fixed dataset may not suf-
ficiently cover the relevant states and actions' and some
model classes may be better equipped to handle this. Fi-
nally, we aim to ensure that model selection preserves the
property that the learned policy competes well against any
well-covered comparator policy (Jin et al., 2021; Zanette
etal., 2021; Xie et al., 2021).

Hardness of Model Selection Our first technical contri-
bution (Theorem 2) shows that it is provably impossible to
perform model selection so as to optimally trade off all three

'In contextual bandits, one need only worry about action distri-
bution mismatch.

error sources. This is perhaps surprising for two reasons.
Firstly, in supervised learning and general risk minimiza-
tion, such oracle inequalities that nearly optimally balance
approximation error and statistical complexity are achiev-
able through myriad procedures, and a vast literature exists
on this topic. Secondly, recent work by Su et al. (2020)
shows that the analogous problem of estimator selection for
batch policy evaluation is possible up to an inexact oracle
inequality. These observations suggest that the difficulty
of model selection is a unique characteristic of the batch
policy selection/optimization problem. Furthermore, since
the negative result applies to the more restrictive setting of
linear contextual bandits, it automatically implies the same
for broader classes of problems such as general function
approximators and multi-step reinforcement learning.

Positive Results Despite this negative result, we show in
Section 5 that positive results for model selection are pos-
sible in some instances. Namely, as long as just one of
the three error sources is ignored, there exist algorithms to
achieve an oracle inequality that optimally trades off the
remaining two. We provide experimental results demon-
strating the effectiveness of these algorithms.

1.2. Related Work

Pessimistic Policy Optimization The principle of pes-
simism in batch policy optimization has recently attracted
great interest as both a heuristic and principled method that
performs (provably) well on the given data distribution in
order combat the dataset shift problem. Work by Jin et al.
(2021); Xiao et al. (2021); Xie et al. (2021); Zanette et al.
(2021); Uehara & Sun (2021) has sought to theoretically
quantify the benefit of pessimistic methods for batch learn-
ing with different coverage conditions. In particular, Jin et al.
(2021) show it is possible to recover regret bounds that are
stronger when compared to policies that are well-covered
by the data. However, these theoretical studies typically
assume a single model class and either assume realizability
(Jin et al., 2021; Uehara & Sun, 2021) or require that the
approximation error is known in advance (Xie et al., 2021),
which is often not the case. The goal of our paper is to
investigate and make progress on these unaddressed issues
when multiple model classes are available with unknown
approximation error.

Policy Evaluation and Selection Another related line of
work has considered the problem of batch policy evaluation
where one seeks to estimate the value of a target policy
using a fixed dataset (Duan et al., 2020). Often, the end
goal is to evaluate a number of policies and select the one
with maximal value (Yang et al., 2020). In principle, one
could use such an evaluation method to select the estimated
best policy from several candidates, which are generated
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from some batch policy optimization method using different
model classes. However, one of the main drawbacks of these
policy evaluation methods is that they are subject to their
own hyperparameters and modeling errors which may com-
promise the final model selection regret bound. For example,
to ensure accurate policy evaluation, one might be tempted
to use a large model class, but the resulting estimation error
can easily leak into the regret bound if only a small model
class is sufficient, rendering any model selection guarantee
infeasible. Tang & Wiens (2021); Kumar et al. (2021); Paine
et al. (2020); Zhang & Jiang (2021) have previously pointed
out this problem and attempted to address it with practical
solutions, but theoretical guarantees are less understood.
This is precisely what we wish to understand in the current

paper.

Farahmand & Szepesvari (2011) studied the problem of se-
lecting action-value functions for reinforcement learning,
but also assumed access to an estimator, which may suffer
from the aforementioned problems. Xie & Jiang (2021)
also considered selecting action-value functions for RL as
an application of their algorithm, but did not consider the
end-to-end model selection problem with coverage and the
resulting guarantee is not competitive with an oracle. Repre-
sentation learning (Agarwal et al., 2020; Papini et al., 2021;
Zhang et al., 2021) is also related, but most current work
is in the online setting with assumed realizability or fixed
statistical complexity. Most similar in setting to our work
is that of Su et al. (2020) who show that it is possible to
select from a collection of batch policy evaluators in a way
that optimally trades off approximation error and estimation
error up to constants, as long as the estimators are prop-
erly ordered. However, they did not consider the selection
problem, where the best policy will be selected among the
candidates that are evaluated upon given data. We show
in Section 4 that this additional task raises complications
since different target policies may yield different coverage
properties, but these complications can be overcome if the
problem is slightly relaxed.

2. Preliminaries

Notation For n € N, we define the set [n] := {1,...,n}.
Let S € R¥*4 be a positive semi-definite matrix and x € R?
be a vector. By default, ||z|| denotes the ¢5-norm of x and
IS]| denotes the spectral norm of S. ||z||s = V& TSz
is the Mahalanobis norm. || - ||y, and || - ||, denote the
sub-Gaussian and sub-exponential norms, respectively (see
Appendix A for precise definitions). We use C', C1, Cy, . ..
to denote absolute constants that do not depend on problem-
relevant parameters. We use § > 0 to denote a desired
failure probability and assume § < 1/e. We write a < b to
mean there exists a constant C' > 0 such that a < Cb.

2.1. Contextual Bandits

We consider the contextual bandit setting (Lattimore &
Szepesvari, 2018) with state space X', action space A, and
a fixed distribution D over X x RA. A learner interacts
with the environment through the following protocol: the
environment samples a pair (X,Y) ~ D with X € X
and Y € RA. The learner observes X and then com-
mits to an action ¢ € A. A reward Y (a) is incurred
and subsequently only the value of Y'(a) is revealed to
the learner. The learner’s objective is to determine a pol-
icy @ : X — A4, which maps states to distributions over
actions, such that the expected reward E;Y (A) is large.
Here E; denotes the expectation over state-action-rewards
induced by # with A ~ #(-|X). Similarly, we use P;
to denote the probability measure under 7. Given a state
z and action a, we write the expected reward function as
f(z,a) = E[Y(a) | x]. We assume f(z,a) € [—1,1] and
the noise terms 7(a) = Y (a) — f(X,a) are independent
across actions and sub-Gaussian with ||7(a)|ly, < 1. We
use £ x and Px to denote the expectation and measure over
just the marginal distribution over states X.

2.2. Batch Learning

As mentioned before, we consider the batch setting for pol-
icy optimization (Lange et al., 2012; Levine et al., 2020;
Xiao et al., 2021). Rather than learning via direct interac-
tion with the environment, the learner is given access to
a fixed dataset D = {x;, a;, y; }ie[n) of n € N prior inter-
actions where ¥; is drawn from D conditioned on z; and
y; = ¥i(a;) as in the aforementioned interface. Similar
to the potential outcomes framework under unconfounded-
ness (Lin, 2013; Imbens & Rubin, 2015), we assume that
a; L (y;j(a))jemn),aca | z;. Intuitively, this ensures the
process that selects actions does not peek at the outcomes
directly or through a confounding variable. For example,
this could be collected from a behavior policy. From this
data, the learner produces a policy 7 to minimize regret with
respect to a comparator policy 7

Reg(m, 71) = Ex [f(X, 7(X)) — f(X, 7(X))].

The comparator 7 can be any deterministic policy, including
the optimal policy. The typical regret is obtained by max-
imizing over 7: Reg(#) := max, Reg(w, 7). Like recent
work (Jin et al., 2021; Zanette et al., 2021; Uehara & Sun,
2021; Xie et al., 2021), the motivation for this flexibility is
that the globally optimal policy may not be well-covered in
the dataset, and in these cases, we are interested in proving
regret bounds that compete well against comparators that
are nearly optimal but that are also well-covered by D.

?For deterministic policies, we write w(z) € A to denote the
action on which all the probability mass lies given the state x € X
We assume all comparator and learned policies are deterministic
but all our results can be easily extended.



Model Selection in Batch Policy Optimization

Algorithm 1 Pessimistic Linear Learner

1: Input: Dataset D, linear model class F, confidence
parameter 0 < § < 1/e, regularization parameter A >
0

2: SetV «+ %]Id + %Z’LG[H] d)(xh ai)(b(xia ai)T

3: Setd + V1 (% i ¢(@i, ai)yi)

4: for z € X do A

5. fw,a) « (8(a,0),0) = Brs(n,d)-[6(,0)]ly

6:  Set #(x) + argmax, 4 f(z,a) with ties broken
arbitrarily

7: end for

8: Return: 7

In the batch setting, it is often assumed that, for the data in
D, states are generated as x; ~ D marginally and a; comes
from a (potentially unknown) fixed stochastic behavior pol-
icy p conditioned on z; (Levine et al., 2020). However, our
aforementioned assumption about D throughout most of the
paper is more general as it does not require that x; or a;
come from a random distribution at all such as in a fixed
design setting. Nevertheless, we will eventually address
this behavior policy setting in Section 5, so we will briefly
introduce context and a definition. It is common to assume
that p sufficiently covers the state-action space, often by
means of a concentrability coefficient which captures the
worst-case ratio of the density under an arbitrary policy 7
and p (Munos & Szepesvari, 2008).

Definition 1. The concentrability coefficient with re-
spect to data collection policy 1 is defined as C(u) =

SUP; o T(al2)/ p(alz)-

It should be noted that the assumption that such concentra-
bility coefficients are small can be very strong. When using
function approximation, it may not be necessary to require
that © have non-zero density everywhere as long as one can
still sample-efficiently find a good fit on the given data distri-
bution. Exploiting the properties of function approximation
can thus overcome many coverage issues.

3. Model Selection for Batch Linear Bandit

In this section, we introduce linear model classes for the
contextual bandit problem (Chu et al., 2011; Abbasi-Yadkori
etal., 2011; Jin et al., 2019; 2021) and present a correspond-
ing batch regret bound for a single model class. We identify
three sources of sub-optimality in a resulting regret bound
and then formally state the goal of model selection to bal-
ance these three sources.

3.1. Batch Regret for a Single Model Class

Let F C (X x A— R) be a model class defined by a
known d-dimensional feature mapping ¢ : X x A — R¢
such that

F = {(z,a) = (¢(zx,a),0) : 6 € R} . (1)

Leveraging the batch dataset D, Algorithm 1 (which is
standard and essentially a restatement of that of Jin et al.
(2021)) performs ridge regression with regularizer A/n on
the rewards observed in D and returns a policy 7 that conser-
vatively chooses actions based on both the best-fit estimator
and a penalty term determined by the coverage. The penalty
term is modulated by a coefficient that we set to be equal to

Bas(n, d) = /%_i_\/5d+10d1/2log1/2751/6)+1010g(1/6).

In general 7 may not actually contain the optimal regressor
f that defines the true reward function. In such cases, we say
that 7 may suffer from misspecification or approximation
error. It is thus important to ensure that the sub-optimality
of the extracted policy scales gracefully with the approxi-
mation error of the model, even when the approximation
error is not known. The below result, which to the best of
our knowledge has not been explicitly stated in the litera-
ture, follows as a simple application of a standard regression
analysis (e.g. Hsu et al. (2012b, Section 3.1)) to handle con-
centration and the penalized action-selection method akin
to that of Jin et al. (2021).

Theorem 1. Let 7 be the output policy of Algorithm 1 with
A > 0. Define,

e(m, ) = Ex [|f(X, m(X)) = (¢(X, 7(X)), 0. []
+Ex [ (o(X, 7(X)), 0.) — (X, 7(X))]]

where 0, € argmingega Y ;e (p(wi,a:) "0 — f(as, ai))2 .
If |0.]] < V/d, then with probability at least 1 — 6, for
any policy 7 (including the optimal policy), Reg(w,7t) is
bounded above by

e(m ) + 2Bx5(n,d) - Ex|[o(X, m(X))[lv—
——

coverage

approx. error complexity

6Gmﬂ+¢ZEmMXﬂmmv)

where V is the regularized empirical covariance matrix of
the data, defined in Algorithm I°.

The theorem reveals that sub-optimality in the regret bound
is due primarily to three sources:

3Throughout the paper, we use O to omit polylog factors of
problem-dependent parameters such as 6, dimension d, and
number of model classes M (defined in Section 3.2).
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1. Approximation error: this represents how far the clos-
est function in F is from representing the true reward
function f. Here, “closest” means the solution, 6., to
the fixed design regression problem. When f(x,a) =
é(x,a)"0,*, we say the data is realizable and clearly
e(m,m) = 0. We discuss approximation error and its
various forms in more detail in Appendix B.

2. Statistical complexity: this represents the learnability
size of F. In the linear case, this is concisely encapsu-
lated by the dimension d of the feature map ¢. From the
definition of 3, we have 8 5(n,d) = O(+y/d/n)

3. Coverage properties: this source plays an important
role in the batch learning setting where sub-optimality
can be due to the dataset shift between D and the learned
policy 7. In the linear setting, this is represented as the
mismatch between the covariance matrix V' and the fea-
ture distribution of the comparator policy 7. That is, if
directions of features that 7 visits do not coincide with
directions covered in V', then one should expect the error
due to mismatch to be large. One critical factor due to
pessimism is that we need only consider the mismatch
with the comparator 7 (e.g. the optimal policy) as op-
posed to a worst-case policy or the maximum eigenvalue
of V! or a concentrability coefficient, all of which
could lead to a substantially larger regret bound. This
ensures that 7 is competitive against all well-covered
comparator policies 7 under the dataset D, simultane-
ously (Jin et al., 2021).

We note that 6, depends on the states and actions in the
dataset D. Several additional remarks are in order.

Remark 1. The bound in Theorem I can be viewed as a
data-dependent bound (dependent on the state-action pairs
in the training dataset D), which is desirable for two main
reasons. The first is that it is consistent and easily com-
parable with the prior work of Jin et al. (2021); Zanette
et al. (2021) who proved similar bounds (albeit under the as-
sumption of realizability). The approximation error €(m, )
can be naturally viewed as all of the sub-optimality not ac-
counted for in the usual estimation error, i.e. it recovers
the prior work in the realizable case with e(m,7t) = 0 since
0. can be set to the realizing value. The second reason is
that, as we will see, the data-dependent bound is convenient
for model selection since we can evaluate it directly and it
avoids any distributional assumptions and quantities until
absolutely necessary (Duan et al., 2020; Xie et al., 2021). In
statistical learning settings, data-dependent generalization
bounds are desirable precisely for the purpose of model
selection. They also tend to be tighter than worst-case coun-
terparts (Antos et al., 2002; Bartlett et al., 2002).

Remark 2. In general, one does not know the approxima-

“There could be multiple elements in the arg min, but this is
purely analytical so we can set 6, correctly in the realizable case.

tion error €(m, ) or even non-trivial upper bounds on it,
which is the initial motivation for model selection both here
and in supervised learning. We work with this particular
quantity since it is naturally one of the tightest. Alterna-
tives can be easily derived with some work but there is little
reason to artificially inflate the bound. See Appendix B for
further discussion.

3.2. Model Selection Objectives

With these sources of error in mind, we now introduce
the general model selection problem for batch policy op-
timization. We assume a collection of M linear model
classes Fi,...,Fu, such that, for k& € [M], F, =
{(z,a) = (¢r(x,a),0) : 6 € R%} where ¢, is a known
dy-dimensional feature map for model class Fj. We desire
an algorithm with the following guarantee: given an input
dataset D of n interactions and model classes F1, ..., Fas,
the algorithm outputs a policy 7 such that, with probability
at least 1 — §, Reg(w, 7) is bounded above by

@ (minke[M] {Ek(ﬂ',ﬁ') /% Bl (X, (X)) |y })

@)
for all deterministic policies 7. Here, €5 and V}, are the cor-
responding approximation error and regularized empirical
covariance matrix for class k, as defined in the previous
section for the single model class.

Interpretation In words, the main goal of model selec-
tion is to achieve performance that is nearly as good as the
performance that could be achieved had the optimal model
class been known in advance. Observe that this desired
bound is essentially the best single model class guarantee
from Theorem 1 applied to each of the M model classes.
Such an inequality is often referred to as an oracle inequal-
ity because an oracle with knowledge of the best class could
simply choose it. We emphasize that achieving the desired
bound in (2) requires careful balancing of all three error
sources (approximation, complexity, coverage). Importantly,
note that we aim to maintain the property that 7 is competi-
tive against any well-covered comparator 7. This stands in
stark contrast to oracle inequalities in supervised learning,
which typically require only balancing approximation error
and statistical complexity.

4. A Negative Result for Model Selection

With the main goal of model selection in the batch problem
having been introduced, we present our first major contri-
bution, which establishes a fundamental hardness of the
model selection problem in the batch policy optimization
setting. We show that, unlike standard learning problems, it
is actually impossible to optimally trade off all three error
sources that comprise the oracle inequality in (2).
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Before arriving at the theorem, we identify a condition to im-
pose additional structure on the model classes F1, ..., Fas
so as to actually make model selection easier. Otherwise,
without structure, the selection problem is trivially impossi-
ble. In particular, we consider the setting where the model
classes are nested.

Definition 2. The collection of linear model classes
Fi,..., Fa with respective feature maps ¢1,...,0n i
said to be nested if, for each map ¢ 11, the first dy, coordi-
nates of 41 are the same as ¢y, for all k € [M — 1].

The nestedness condition imposes structure sufficient for
adaptive policy value estimation via a variant of the algo-
rithm by Su et al. (2020). Nestedness effectively requires
that the model classes are ordered by complexity. Nonethe-
less, for policy optimization, we will see the additional
structure is still insufficient.

We denote A as a model selection algorithm which takes as
input the nested model classes Fi, ..., Fjs and a dataset
D of n interactions and outputs a learned policy 7 =
A(Fi1.m, D). The following theorem states that even for
such nested model classes, near-optimal model selection is
impossible, and performance can be arbitrarily worse in fact.

Theorem 2. Let F1, ..., F be a particular nested collec-
tion of linear model classes (Definition 2). For any o > 0,
there is n = ©(a?) such that for any algorithm A there is a
contextual bandit instance with comparator T and dataset
D with n interactions consistent with D that satisfies

Ep [Reg(m, A(F1.a1, D))]

> a.
ming {eu(m7) + /% Exllon(Xo (XDl

Here, Ep denotes the expectation with respect to the ran-
domness of the observed rewards in the dataset that are
distributed according to the bandit instance D (conditioned
on the states and actions). The result follows by reducing
the problem to a batch multi-armed bandit problem and
designing the appropriate nested model classes that ensure
the oracle inequality is much better than what is achiev-
able by any algorithm on the bandit problem. The dataset
is constructed in order to be sufficiently imbalanced while
still being true to the underlying conditional distribution
induced by D. The construction is illustrative of the core
problems that lead to the oracle achieving very small regret.
We remark that the result does not necessarily apply to all
collections of model classes; it relies on existence of such a
nested collection. See Appendix C for a detailed proof.

The theorem shows that in general, the oracle (encapsulated
by the denominator), which picks the best regret bound in-
duced by the model classes from Theorem 1, can be made
to achieve regret that is arbitrarily better than the regret of

any model selection algorithm for a sufficiently imbalanced
dataset. The result suggests that the desired bound of (2)
is too ambitious and it highlights a separation of difficulty
between model selection in the batch policy optimization set-
ting (where there is an additional error — coverage — involved
in the oracle inequality) and standard statistical learning.

Note that because this is a hardness result in the restricted
class of linear contextual bandits, the implication applies
much more broadly to policy optimization, for example with
general function classes and multi-step reinforcement learn-
ing. Interestingly, the nestedness condition should make
positive results for model selection easier (by restricting
the set of problem instances that an algorithm must deal
with), yet the negative result still holds under this condition.
This suggests that policy optimization is deceptively hard
compared to policy evaluation where nestedness is indeed
sufficient (Su et al., 2020).

We remark briefly that the lower bound by « cannot be triv-
ially due to e.g. polylogarithmic factors in n that may be
omitted from the denominator. This is because n can be cho-
sen to be quadratic in «, not exponential. The lower bound,
as shown explicitly in the proof of Theorem 2, is indeed due
to an imbalanced dataset that causes worse coverage error
in the numerator.

5. Positive Results for Special Cases

In the last section, we showed that attempting to optimally
trade off all three error sources — (1) approximation error, (2)
complexity, and (3) the coverage property — is not possible
in general for any model selection algorithm and thus we
cannot hope to make progress without further assumptions.
The question remains of whether there are other settings
sufficient for model selection. In this section, we explore
relaxations of the model selection objective. Rather than
requiring all three error sources be addressed, we aim to
trade off two at a time. We will show that non-trivial model
selection guarantees are indeed possible in certain settings.

5.1. Balancing complexity and coverage

We consider the problem of minimizing regret when the
approximation error is zero or we are willing to ignore its
contribution to the regret. For example, when we have
multiple feature representations {¢y, } that all satisfy realiz-
ability, but some may handle coverage better or induce more
favorable distributions under the behavior policy .

Algorithm 2 shows a simple selection rule for this case. The
main idea is that we will use each model class Fj, to gener-
ate an estimate ék and covariance matrix V3. Then, when
extracting the policy, actions are chosen pessimistically, but
the action that achieves the highest pessimistic value among
all classes is selected. The following theorem shows that this
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Algorithm 2 Complexity-Coverage Selection

Algorithm 3 SLOPE Method

1: Input: Dataset D, linear model classes Fi, ..., Fa,
confidence parameter § > 0, regularization parameter
A>0.

2: for k € [M] do

3 Vi 2+ 1 Yicn) Pk (Ti; ai) o (i, a;)’.

4 O V! (% > icin] ¢k(xi7ai)yi)

5: end for

6: forAx € X do .

70 fr(z,a) +— (o (z,a),bk) -

Bxs(n, die)l|ow(z, a) |y, -

8  Set(x), k(x) « arg maX,e 4 kM) fr(z, a) with
ties broken arbitrarily

9: end for

10: Return: 7

procedure optimally trades off complexity and coverage.

Theorem 3. Given arbitrary linear model classes
Fi, ..., Fu, Algorithm 2 outputs a policy 7t such that, with
probability at least 1 — 6, for any comparator policy =, the
regret Reg(m, ) is bounded above by

minge(a {Qﬁm/M(”,dk) 'EX||¢k(X77T(X))||ka1}
22 ke €k, 7).

The detailed proof is shown in Appendix D. In the case
where realizability holds for all of the model classes (e, = 0
for all k), an exact oracle inequality is achieved and we have,
with high probability, Reg(w, 7) is bounded above by

0 <mink€[M} \//elos /) EX||¢k<X7w<X)||V,;) :

However, when positive approximation error is involved,
it can be cumulative in the regret bound. We note that
Algorithm 2 is similar in concept to the online representation
selection algorithm of Papini et al. (2021).

5.2. Balancing complexity and approximation error

We now consider the setting where the worst-case coverage
properties are tolerable, but we would like to optimally trade
off approximation error and statistical complexity. We will
examine two methods: i) an adaptive method inspired by
the SLOPE estimator (Su et al., 2020) and ii) the classical
hold-out method. While the hold-out method is desirable
for its simplicity, the SLOPE method is potentially capable
of achieving stronger theoretical guarantees under a slightly
stronger nestedness condition on the model classes.

Hitherto, for the dataset D, we required only that the actions
a; are chosen independent of all potential outcomes condi-
tional on x; without regard to any behavior policy p. We

1: Input: Dataset D, linear model classes Fi, ..., Fu,
confidence parameter § > 0

2: for k € [M] do

3:  Estimate covariance matrix V} and parameters ék as

in Algorithm 2.
4:  Set fk(:v,a) — <¢k(1'7a)vék>

5 Set @p(x) ¢ argmax,c 4 f(x, ) with ties broken
arbitrarily
6: end for
7: for ¢ € [M] do
8: for k € [M] do
9 Setiy(u) ¢ Ex [fu(X, (X))
10: Set & < (i (0/M) - Ex max, ||<f)k(X,a)||Vk71
11: Define intervals
Tie = [0 (7te) — 26k, Or(Te) + 2&k]
12:  end for

13:  Select model class for for evaluating 7,:
k(¢) = min {k’ : ﬂfik Zieis non—empty}

Set 9 (7) ﬁ,;(z)(ﬁ'z)
14: end for
15: Set k = arg maxea O(7T)
16: Return: 7t = 7;,

will now explicitly assume that the each (x;, a;, y;) in the
dataset D is sampled jointly from D and a fixed behavior
policy p as discussed in Section 2.2. This is stronger than
before, but it is a standard setting for batch learning (Xie
et al., 2021). Henceforth, we simply use E,, [-] to denote the
expectation over the joint distribution Ex a~px, [-]. We
also consider a relaxed version of the approximation error,
which can be written in terms of the statistical approxima-
tion error between Fj, and the true reward function f:

6 = min 24/C(E, ((64(X, 4).0) — (X, 4))°.

Define f), = arg mingcga, B, ((61(X, A),0) — f(X, A))?
when E,, [¢(X, A)p(X,A)T] = 0. If F}, satisfies realiz-
ability, then €;, = 0 as before. However, this version has
dependence on the concentrability coefficient C (1) for the
worst-case dataset shift (Definition 1), which we are willing
to tolerate in this section.

5.2.1. SLOPE METHOD

The first method, which we state in Algorithm 3, is inspired
by the SLOPE estimator, originally designed for evalua-
tion (Su et al., 2020). The algorithm begins by generat-
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ing estimates Oy using the dataset D. The main idea is
to then estimate the values of the 7 policies using an im-
proved variant of the SLOPE estimator (which may be of
independent interest) to achieve the optimal trade-off be-
tween approximation error and complexity. We describe
this sub-procedure and its differences from the original in
Appendix E. However, we require additional structure on
the model classes in order to meet the pre-conditions of the
improved SLOPE estimator. In particular, we assume the
model classes are nested in the sense of Definition 2 (see
precedents Bartlett et al. (2002); Foster et al. (2019)). We
also assume the following distributional conditions.

Assumption 1. For all k € [M], E, [¢(X,A)] = 0 and
Sp = E, [0(X, A)p(X, A)T] = 0. Furthermore, un-
der D X p, the features ¢ (X, A) are sub-Gaussian with
1202 60(X, Ay, < 1.

Assumption 2. Forall k € [M], ||0x]| < 1.

Centering is done for ease of exposition. The eigenvalue
lower bound is useful for random design linear regression
analysis. The sub-Gaussian condition is standard. As-
sumption 2 is like the precondition of Theorem 1 but it is
distribution-dependent rather than data-dependent. Define
confidence coefficient (used in Algorithm 3) as

() = & ||V log(4dy /5)

+\/ngk+ng1/2 log!/2(4d}, /8)+Ca log(4dy, /8)

n

M—&-Cl

for sufficiently large constants C1, Cs, Cs3, Cy > 0 defined
in Appendix E. Under these assumptions, we have the fol-
lowing theorem.

Theorem 4. Let F1,...,Fas be a nested collection of lin-
ear model classes. For i, = 1 for all k € [M), Algorithm 3
outputs a policy T such that, with probability at least 1 — 49,
for any comparator policy 7, Reg(w, 7t) is bouned above by

12 kIél[l]Vn[] {Ek + Ce(0/M) - Ex ml?x | px (X, a)Hkal} :

We show the detailed proof in Appendix E. Theorem 4
shows that it is possible to obtain a near-oracle inequality
when we are willing to forgo the coverage property and
focus solely on trading off approximation error and com-
plexity. Concisely, this is bounded above by

—1
O<mink€k+\/dklw Hlsg(dkM/a)EmaXa ||¢k(Xva)”Vk1)

The coefficient (;(6/M) on the second term is slightly
larger than ﬁ,\k,(s/M(n, dy) due to the dependence on
HV,;U ?|l, but they are of approximately the same

order in d and n~'. We emphasize the factor
Ex max, ||¢x(X, a) ”V[l’ is different from the coverage

error as defined in (2), which is Ex ||¢x (X W(X))Hvkq.
This version demonstrates the distribution shift effect on
features, but depends on the worst-case policy rather than
the comparator 7. Thus, we are unable to maintain compet-
itiveness against well-covered policies. Note that only the
approximation error €; depends on C(u).

Note that €, is a weaker form of the approximation
than the previously used ex(m, 7). A natural question
is whether a bound of the form ming{é; + (x(d/M) -
E|lo(X 7r(X))||Vk71 }, which satisfies all three criteria, is
possible with this slightly weaker approximation error. We
show in Appendix C that the argument in the proof of Theo-
rem 2 still applies in this case and thus a bound of this form
is still not possible.

5.2.2. HOLD-OUT METHOD

We now analyze the performance of the hold-out method,
a classical model selection tool in supervised learning and
risk minimization. The dataset D is partitioned into D,
and D,,; where D,,,; is used to estimate the regression
error as a proxy and selecting among candidates 0, for
each model class trained on D;,,. As before, we define

7r(x) € argmax, ¢ 4 <¢k (z,a),0,
pirical regression loss on the independent hold-out set as:

>. We denote the em-

Lk(a) - m Z(mi’ai’yi)eDout (<¢k(xi’ai)’ 9> - yi)Q

The hold-out method simply chooses the model class with
smallest empirical loss: k € arg ming e Li(6y).

Theorem S. Given arbitrary linear model classes
Fi,..o, Far let # = 7y, where ke arg miny e[ L ().
Then, there is a constant C' > 0 such that, with probability
at least 1 — 28, Reg(w, ) is bounded above by

min. {& + C\/C(0) |6k — Ol }

Lo < e (vma |éz|1>/iog1/2<zvf/6>) .

out

The detailed proof is provided in Appendix F. Note that, for
simplicity, we have stated the bound abstractly in terms of
its estimation error |6 — 0 ||s;, and the norm of maxy ||0],
where Y, is defined in Assumption 1. Standard analyses
of random design linear regression (Hsu et al., 2012b) can
provide further bounds on these. While we are able to select
to achieve error on the order of the best model class, this
is only achieved when the estimation error depends on the
concentrability coefficient C(y). There is some residual

estimation error on the order of O(1/ nout) which is slower
than the typical O(1/+/n); however, this term does not have
any dependence on d, assuming ||6,|| is of constant size.
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Coverage-Complexity Selection
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Figure 1: In the fully realizable case, the performance of the Algorithm 2 for model
selection is compared to base algorithms that only use a single model class. Each
model class is defined by a different feature representation generated with underlying
dimension dj, ;4. The error band represents standard error.

6. Experiments

To complement our primarily theoretical results, we study
the utility of the above model selection algorithms in syn-
thetic experiments and empirically compare them. In indi-
vidual experiments on balancing complexity-coverage and
approximation-complexity, we generated a collection of
feature maps, each defining a linear model class. We first
evaluated the performance of the base algorithms using Al-
gorithm 1 with each model class. We then compare this
performance to the proposed selection algorithms. All re-
sults were averaged over 20 trials. For clarity, error bands
represent standard error only for the model selection algo-
rithms. Further details can be found in the appendix.

Complexity-Coverage Trade-off In this setting, we stud-
ied the case where all feature maps are capable of real-
izing the true reward function. That is, the learner need
not deal with any approximation error, but it can benefit
from selecting a good representation. We let | X'| = 20 and
|A| = 10 and generated d = |X||.A|-dimensional feature
maps through the following procedure: for model class k a
random collection of dp;4  vectors of size | X||.A| are gen-
erated ensuring that a linear combination exactly equals f.
We then randomly project them to d-dimensions to produce
¢1.. For model selection, we implemented Algorithm 2. Fig-
ure 1 compares the performance. As expected, the model
class with smallest dj,;q performs best. The model selec-
tion is nearly able to match this performance, even without
knowing which feature map uses the smallest dj,;4.

Approximation Error-Complexity Trade-off Next, we
consider trading off approximation error and complexity
with nested function classes. We again let |.A| = 10, but
allowed X to be infinite with feature vectors generated from
zero-mean normal distributions with different covariance
matrices. The feature vectors were given ambient dimen-
sion d = 100, but the reward function was designed using

Approximation-Complexity Selection

d

d
- d:30
100 d
- d
== d: 100
= SLOPE
= Hold-out

Log Regret

———

25 50 75 100 125 150 175 200
Dataset size

Figure 2: The performance of the SLOPE and hold-out methods are compared
against base algorithms that only use a single model class of varying dimension.
Both are eventually able to nearly match the performance of the best model class,
but the hold-out method is consistently better with less data. Error bands represent
standard error.

only the first d, = 30 coordinates. Model classes were
generated by truncating full feature vectors to the follow-
ing dimensions {15, 20, 30, 50, 75, 100}. Thus, the first two
suffer from approximation error while the last three are ex-
cessively large. For model selection, we considered both the
SLOPE method and the hold-out method with an 80/20 data
split. Figure 2 shows that both model selection algorithms
are eventually able to match performance of the best model
class. Interestingly, the hold-out performs consistently bet-
ter than the SLOPE method with small data.

7. Discussion

We introduced the theoretical study of model selection for
batch policy optimization, identifying three sources of error
to consider when selecting model classes. We showed that
balancing all three is not possible in general while remain-
ing competitive with an oracle, but relaxing any one allows
the design of effective model selection algorithms. Several
open questions remain. First, while the negative result is
general, the positive results thus far have applied only to
the linear contextual bandit setting. We expect that the chal-
lenges become more complex for reinforcement learning
and general model classes, but similar trade-offs may be
observed for general function classes that handle coverage
in terms of comparator-specific concentrability coefficients
(Xie et al., 2021; Uehara & Sun, 2021). Another interesting
direction is to understand more formally the strong empiri-
cal performance of the hold-out method.
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A. Sub-Gaussian and Sub-Exponential Random Variables

In this section, we review basic definitions and properties of sub-Gaussian and sub-exponential random variables. See
(Vershynin, 2018) for a comprehensive introduction.

Let X € R be a random variable. We define the norms:

X[, = supp™ /2 (EX|)? )
J4S

X, = supp™ (BIXT") )
pe

Definition 3. The random variable X is sub-Gaussian with parameter || X ||y, if | X ||y, < 0o. It is sub-exponential with
parameter || Xy, if [ X|ly, < oo,

For a non-negative real value 7 > 0 we write X ~ subG(7?) to indicate that || X || 5, < 7. Similarly, we write X ~ subE(7)
to suggest || X ||, < 7. We note that this definition of sub-Gaussian random variables is equivalent up to constant factors

. . . . .. . 2.2
with an alternative popular definition when EX = 0. This definition requires that Ee*X < exp (A > ) forall A € R. Let
X € R? be a random vector. Then, we write || X ||, = Sup,cga . l[oll<1 lvT X|| 4, The same notational conventions above
apply to the vector X.
We now state several basic results concerning sub-Gaussian and sub-exponential random variables that will be used
throughout the remaining proofs.

Lemma 1 ((Vershynin, 2010), Lemma 2.7.7). Let X and Y be (potentially dependent) real-valued random variables. Then,
the following holds: | XY ||y < || X ||y Y |-

Lemma 2. Let X € R? be a random vector with second moment matrix . = EXX . Let v € R? be such that ||v|| < 1.
Then, v Yv < 2||X\\i2.

Proof. We have v'%v =Ev" XX Tv = E(v' X)?. From the definition of || - ||y, we have that E|v T X|* < 2|lv T X |7 .
Finally, we note that |[v " X ||, < || X ||y, since ||| < 1. O

Lemma 3. Ler X satisfy EX = 0and || X ||y, < 7. Then, Eexp (AX) < exp (5’\;72 ) Sforall X € R.

Proof. Note that || Xy, < 7 implies that (]E|X\p)1/p < 7/p. for all p. Theorem 3.10 of (Duchi, 2019) shows that this
implies the stated condition. O
B. Proof of Theorem 1

Theorem 1. Let 7 be the output policy of Algorithm I with A > 0. Define,

6(ﬂ7ﬁ) =Ex Hf(X’ﬂ-(X)) - <¢(X77T(X))79*> H
+ Ex [ (¢(X, #(X)), 0.) — f(X, 7(X))]]

where 0, € argmingega ;¢ (P(w,a:) 10 — flas, ai))2 I ||6.|| < V/d, then with probability at least 1 — 6, for any
policy w (including the optimal policy), Reg(w, ) is bounded above by

e(m 7) + 26x5(n,d) - Ex|[¢(X, 7(X))[[y -1
~——

approx. error complexity coverage

=0 (6(77’7?) + \/Z-Exlw(XﬂT(X))llx/l)

where V is the regularized empirical covariance matrix of the data, defined in Algorithm I°.

Throughout the paper, we use O to omit polylog factors of problem-dependent parameters such as 6, dimension d, and number of
model classes M (defined in Section 3.2).
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We first leverage a basic result in the analysis of fixed design linear regression problems. For convenience, we will write
oi = ¢(x;,a;), fi = f(x4,a;) and noise n; = n;(a;). Thatis, y; = f; + n;. Recall the following definitions:

A1
V="lot - D 6i] (5)
i€[n]
- L1
o=V > by (6)
i€[n]
1
6. c argmin— 3 (6] 60— f;)’ (7
oeR? 1€[n]

B.1. Concentration

Lemma 4. Conditioned on (x;, a;)ic[n), with probability at least 1 — 6,

~ 2 1/2 1/2
16— 6.y < Alli*ll +\/Old+02d log n(1/5)+0310g(1/5) "

where C7 = 5, Cy = 10, and C3 = 10.

Proof. From the definition of é we have

1

||9A79*||V = Hgvilz(bz (fi+77i)79*HV ®)
_ iy sTe o Ly o
==V YD Gl ek VY g — balv (10)

i€[n] i

where in the last equality we have used the fact that 6, is the solution to ming Zi((bjﬁ* — £:)? and therefore satisfies the
normal equations:

> 6idl 0. = oif; (11)

Then,
A Aoy 1,
10 —6.lv =1 — EV 0, + HV E oinillv (12)
<12Vt + 1RV S sl (13)
=1, * ||V n i ||V

A 1
< \/;lla*ll +[ V2D bl (14)

where the last inequality follows since a,i{fx(vfl) <A/ n)fl/ %,

To bound the second term, we apply the Lemma 5, stated below, which is an application of standard fixed-design linear
regression results of (Hsu et al., 2012b). This shows that

||1V_1/2 Z¢'W'||2 < 5d 4+ 104/dlog(1/d) + 101og(1/9)
n - B n

with probability at least 1 — d. Applying this to the previous bound on ||@ — 0. ||y gives the result. O
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Lemma 5.
1 5d + 10+4/dlog(1/6 101og(1/6
P ('V_1/2Z¢ini|2 > * Og( / )+ Og( / ) xl:n;al:n> S )
n - n
Proof of Lemma 5. Let n = (n1,...,1m,)" and & = [cﬁl ¢n]T. Note then that H%V’l/2 >0l

ﬁ” (/\]Id + @T‘I))_l/ 2 ® 7|, where 7 is a random 1-sub-Gaussian random vector consisting of independent entries.

Note that we have that En; = 0 and ||7;||, < 1, which, by Lemma 3 implies E exp (AX) < exp (’\22"2) where 02 < 5.

The concentration result then follows from a version of the Hanson-Wright inequality due to (Hsu et al., 2012a), a restatement
of which can be found in Lemma 12:

P, (||A77||2 > Oy tr(AAT) + 02\/tr((AAT)2) log(1/8) + Cs02| AAT|| log(1/5)> <5 (15)

where A = (Al + <I>T<I>)_1/2 ®" and C; = 5, Cy = 10, and C3 = 10. We may then bound the relevant quantities. Let

®T® = UAUT be the spectral decomposition of & T & where U is unitary and A > 0 is diagonal.

tr(A4T) =t (Mg + @70) P 0To (AL + 07 @) ) (16)
—tr (Al +0T2) 0T o) (17

< tr (ML + A)1A) (18)

<d (19)

tr((A47)?) = tr (Al + @7 @)~ 070 (AL + ©70) 0T e (Mg + 0T 0) ) 20)
<t ( (AL + A) " AL + A)*1A> @1

<d (22)

JAAT| = | (AL + 07@) 20T o (AL, + @7 @) 7| (23)

= UL + A)~V2ANL + A)~V20T| (24)

<1 (25)

where the very last inequality uses the that the unitary matrix preserves the norm an the maximal eigenvalue of (Al; +
A)TY2A(N + A)~1/2 s at most 1.

We therefore conclude that

L1 S ol < C1d + Cy\/dlog(1/5) + Cs log(1/9) 06
- n

with probability at least 1 — 4.

B.2. Full Proof

Proof of Theorem 1. for this proof, all expectations E denote E x, the expectation over the state random variable X from D.
By adding and subtracting, the regret may be decomposed simply as

Reg(m, 1) = E[f(X, 7(X)) — (¢(X, (X)), 0.)] 27
+E[{o(X, 7(X)), 0s) — (X, 7(X))] (28)

+E[(¢(X, 7(X)), 0.) — (6(X, (X)), 0.)] (29)

< e(m, ) + E[(¢(X, w(X)), 0.) — (¢(X, (X)), 0.)] (30)
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For the remainder of the proof, we focus on bounding the second term. Adding and subtracting again, we have

E [($(X, m(X)) = 6(X, #(X)).0.)] G1)
<E [o(X, 7(X))T0. = 6(X, 7(X)) 6] +E [¢(X, #(X)) 6 - 6(X, 7(X)) 6. (32)
<E [¢(X, 7(X)) 70, — (X, 7(X)) 6] + 18— 6. v - E|6(X, 7(X)) v (33)

where the last inequality is due to Cauchy-Schwarz.

Now, we apply the result of Lemma 4 to get that the event

R NE 1/2]001/2(1 log(1
oy < [T Wldw?d 08 /2(1/8) + Cs log(1/0) -
n n
< Brs(n, d) (35)

occurs with probability at least 1 — ¢ for absolute constants C7, Cy, C3 > 0 defined there. Conditioning on this event, we
have

E [(6(X, 7(X)) = (X, #(X)),0.)] < E [6(X, n(X)) 6. — 6(X, #(X)) 4]
+ Brs(n, d) - E[¢(X, 7(X))[lv—
<E [6(X,7(X)) 6. — 6(X, 7(X)) 4]
+ Ba(ns d) - Ell¢(X, 7(X)lly
< (10— 0. llv + Bro(n, d)) - El(X, 7(X))lly-1
< 265 5(n, d) - El|6(X, 7(X)lly -1

where the second inequality applies the penalized action-selection for policy 7, the third inequality applies Cauchy-Schwarz,
and the last inequality once again applies the condition on the concentration of ||§ — 0. ||y . O

B.3. Discussion of Approximation Error

In this paper, we work with a fairly general notion of approximation error € (m, 7). Note that this depends both on the
comparator policy 7 and the learned policy 7 and it tends to be small when 6, outputs similar rewards to f on both of these
policies. It is exactly zero when realizability is satisfied, f € Fy, as is assumed in most related work. The reason for this
choice is that it allows a large degree of flexibility as many natural alternatives may upper bound it, for example those given
below.

Here we point out a couple alternatives that appear frequently in bandit and RL theory.

1. Perhaps the most common assumption is a worst-case difference between f and the model class Fj (Jin et al., 2019;
Foster & Rakhlin, 2020):

€k, worst-case — mln sSup |f('T7 CL) - f(:l?, a)‘
fE€FL zEX ,a€A
The obvious disadvantage of this version is that certain states or contexts might be irrelevant but still lead to large
prediction errors. Furthermore, the minimizing f does not generally have any convenient statistical properties (e.g.
satisfying first-order optimality conditions in the linear case with respect to some relevant distribution).

2. Versions of the minimum squared error are also commonly used (Chen & Jiang, 2019) when it is assumed that the data
is generated from a behavior policy p, as assumption we do not consider until Section 5:

€k,sq = mln E,u (f(Xa A) - f(X7 A))2
feFi
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This is a natural formulation from a statistical perspective as well and it partially remedies some of the problems of the
worst-case approximation error since we care only about those states and actions induced under x. Unfortunately, this
typically brings a concentrability coefficient into the mix. We leverage this as an upper bound to achieve some positive
results in Section 5.2.

We remark that numerous prior works make the assumption that an upper bound on the approximation error is known.
However, it is unrealistic in practice to expect that such information is available, and it furthermore trivializes the model
selection problem. While we consider upper bounds to e (7, 7) in Section 5.2, we make no such assumption about knowing
the value of this upper bound.

C. Proof of Theorem 2

Theorem 2. Let F1, ..., Fur be a particular nested collection of linear model classes (Definition 2). For any o > 0, there
is n = O(a?) such that for any algorithm A there is a contextual bandit instance with comparator w and dataset D with n
interactions consistent with D that satisfies

Ep [Reg(m, A(F1.pm, D))]

ming {ex(r7) + /% Exllon(Xom (X))l

> a.

Let us begin by first describing the dataset and observations for a given contextual bandit instance. The set of contextual
bandit instances is determined by possible distributions D over state-reward pairs. For our construction, we fix the state-
action pairs in the dataset {(x;, a;)}7; across all instances that we consider. To be clear, the distribution of the rewards in
the dataset under different instances will be different, but the covariates are held fixed. Note that this is not necessary for the
lower bound, but it will suffice in our example.

Proof of Theorem 2. The main idea of the proof is to construct a difficult contextual bandit problem with A = {a1, a2} and
show that the oracle can leverage a pair of model classes satisfying Definition 2 to achieve small regret. The hardness of the
contextual bandit problem will be shown via a reduction to a multi-armed bandit (MAB). The model classes will be chosen
such that one is well-specified while the other has no approximation error in some instances but large approximation error in
others.

To start, consider a class of two two-armed bandit instances £ = (v1, v2) (i.e. no states) which are identified by their product
distributions over rewards of both arms. We let vy = N(=A, 1) x N(=2A,1) and v = N(—A,1) x N (0,1) for A > 0
to be determined later. That is, across both instances, arm a; has the same reward distribution, but arm a, can have either
mean 0 or —2A. We let E,,, denote the expectation associated with instance v;. We let D be a dataset consisting of n; > 0
samples from a; and ny > 0 samples from as with n; and no to be determined precisely later. Such a construction is similar
to that of standard lower bounds in bandits (Bubeck et al., 2013; Lattimore & Szepesvdri, 2018); however, since we are in
the offline setting, the dataset is given.

We now establish a regret lower bound for any arbitrary algorithm A that outputs an arm A(D) € {a1, a2} as a function of
the data D. The next lemma follows from a standard application of Le Cam’s two-point method and similar results for the
offline multi-armed bandit problem (Xiao et al., 2021).

Lemma 6. Let A = ﬁ Then, for any algorithm A, max; ; E,, [Y (a;) — Y(A(D))] > 8\}
2 g

Henceforth, we will define A := 2\/1%. We now construct a linear contextual bandit instance and apply a reduction to the

MAB setting so that we may leverage the stated lower bound. Let X’ be a singleton (that is, states have no effect) and again
A = {a1,as}. Since there is only a single state, we omit notational dependence of policies® and functions on the state.

We again consider two instances £ = {1, 2} which each govern the data distribution denote by D,,. For D,,, we set
Y ~N(=A,1) x N(—=2A,1) and, for D,,,, we set Y ~ N (—A, 1) x N(0,1) where A is defined above. Note that this
ensures that the noise for either instance is given by the centered standard normal distribution (Y (a) — f(a)) ~ N(0, 1) for
all a € A. We use 7, to denote the optimal policy (action), which depends on the instance. In v, we have 7, = a1 and

SFor a deterministic policy 7, we simply use 7 € A to denote the selected action and 7., denotes the number of samples to arm 7.
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in v, we have 7, = ao. Finally, we assume that the batch dataset D again consists of n; > 0 samples of a; and ny > 0
samples of ay with ny > ny giving a total of n = ny + ng samples. Exact quantities will be determined at the end.

Next, we construct two linear model classes F; and F,. For Fj, we use the following 1-dimensional feature map
(bl A= R:

0 a=as

¢1(a):{1 a:al.

F1 thus has some opportunity to make predictions about the mean of a; but the features are trivial for ag, potentially leading
to approximation error. For Fy, we set ¢ : A — R? as

0,)7 a=ay

Note that this model is well-specified as f(a) = ¢o(a) "0 by setting @ = (f(a1), f(az))". Itis also evident that F; and F»
are nested according to Definition 2.

Let

. N2
01+« = argmin Z <¢k(a(z))T9 _ f(a(l)))
OERE icin)

for k € {1,2} where a? denotes the action of the ith datapoint in D. It is easy to verify that the following conditions are
true as long as n; > 0 and ny > O:

1. Invq: 61, = —Aand by, = (A, —2A).
2. In V. 91,* = —Aand 92)* = (—A,O)
We now summarize the estimation error and approximation error for both model classes. The contribution of estimation

error follows directly from the definitions. We summarize the results in the following fact. Note that we need not include
expectations over the state since there is only one state.

Fact1. LetV, =2+ 1 > icn) Pk (@) ()T for k € {1,2} and X > 0. For any instance in € and comparator = € A,
the following inequalities hold:

T 2wl < )

Proof. The results follow by direct calculation and using the fact that ny,no > 0. O

For the approximation error, we can clearly see that, for model class Fa, e2(7, 7)) = 0 for all instances in £ and all 7 and 7
since the model is well-specified. For J7, the approximation error will depend on the instance. Observe that in 2, we have

e1(m, 7)) = [{¢1(7), 01,4) — f(7)] + | (P1(7), 01,4) — f(m)] =0
regardless of what 7 and 7 are. Furthermore, for 11, we have €; (7, #) < 2A in the worst case.

Combining the results for both estimation error and approximation error, we have

. d 1 2
€1 (e, 7) + ;1 Ex|ér(m)lly1 <28+ ——= < —

Vi

ds 2
EX) l - E * = S -
e2(me, ) + /= Exllga(m)lly1 <y -
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in instance v and

N [ dy 1
61(77*,77) + g . IEX”(bl (71'*)”‘/1—1 S \/771

. d 2
ol ) 4] 2 Exloa(m )y < (/2

n2

in instance v5. Therefore, we conclude that

dy, 2
i s —-E X, 7)1 p < ——
moin {%(ﬂ )+ Exllon(X m)lly, 1} T

for all v € £. Furthermore, note that this contextual bandit setting exactly reduces to the MAB problem and thus Lemma 6
requires that the regret of any algorithm A be lower bounded as E,, [Reg(w, A(D))] > ﬁ for some v € £ with our given
choice of A. Therefore, there is a constant C; > 0 such that for any algorithm A, there exists v € £ satisfying

E, [Reg(m., A(D))] } > \/@

minke[g] {Ek(ﬂ*,’frk)—‘,— dﬁ .]ExH(bk(XﬂT*)”Vk—l

Finally, we are left with choosing n; and ny as the number of samples in the dataset (which is the same across all of the
instances). Choosing n; = 2 (a2n2) ensures the claim, which is possible since it was assumed that n = Q(a?).

O
C.1. Proof of Lemma 6
Proof. Note that
max E,, [Y(j) — Y (A(D))] = maxE,, [Y'(i) - Y(A(D))] (36)
by definition of the instances v and v». For convenience, we just write A instead of A(D). Then,
maxEy, [V (i) ~ Y (A)] > 5 (B, [V(1) = Y(A)] + By, [V (2) - Y (4)) G7)
= S (PL(A#£1) 4 P4 £2) (38)
> %(1— [Po; = Pusll7v) (39)
> % <1 - ;DKL(PIJ1||PV2)> (40)

where the last two inequalities follow from the definition of the total-variation distance and Pinsker’s inequality, respectively.
Then, we apply the tensorization of the KL-divergence over the product distribution induced by the dataset to get:

Dir (P, [|Py,) = mDkr (N (A, D[IV(A, 1)) 41
+n2Dr (N(0,1)[NV(24, 1)) 42)
For normal distribution, D1, (N(0, 1)[|NV(2A, 1)) = 2A?. Therefore, choosing A = ﬁ, we have
maxE, [V () ~ Y (4) > T (1-4) (44)
- (45)

82
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D. Proof of Theorem 3

Theorem 3. Given arbitrary linear model classes F1, . .., Fur, Algorithm 2 outputs a policy 7 such that, with probability
at least 1 — §, for any comparator policy T, the regret Reg(m, ) is bounded above by

minye ] {25>\,6/M(nadk) ~EX||¢k(X,7r(X))||ka1}
+2 e € (T, 7).

Proof of Theorem 3. For all k € [M], let 6, . denote the solution to

min ((b;c(xi,ai)TG — f(;vi,ai))2
OER ™ i€[n]

Throughout the proof, all expectations E denote E x over D and, within expectations over X, we will write k= I%(X ) for
shorthand. From the definition of regret, we have

Reg(m, #) = E[f(X, m(X)) — f(X,7(X))]
<E[f(X,7(0) = (5 (X,m(X)), 0, )] +E [(0p(X. 7)), 05, ) = F(X,7(X))|
+E [<(Z5];,(X,7T(X)), 9k> - <¢,;.(X,fr(X)), okﬂ

We now focus on bounding the contribution of the estimation error to the regret. Using the condition in Lemma 4 to bound
each [|0; — 6. ||v,. we have

E [(0n(X,7(X).05,..) = (6(X.7(X)), 0. (46)
<E [<¢;;(X, (X)), 9k> - <¢,;(X, (X)), 9k>] +110; — 65, llv, B3 (X, 7 (X)) - (47)
<E (93X, 7(X)),0;.. ) = (800 7(X0)),05) | + Bra(m. dy) - Ellg (X, 7(X))lly (48)

Next, we apply the selection rule that determines k and # simultaneously, both of which are designed to maximize the
penalized value estimate across actions and model classes. For any fixed k € [M], the previous display is bounded by

Ex [(6306,70X0), 05, ) = (0r(X,7(X)), 81 )| + Brs(n, di) - Bllow (X, m(X)) (49)

There is now a potential mismatch between the predictions under 6, ; and the predictions under 0. To handle this, we will
turn to the approximation error. For k € [M], define €, (X) := |f(X,7(X)) — ¢x (X, 7(X)) " O |-

The first term in the previous display can be bounded using predictions under model class & up to additive factors in ¢; (X))
and € (X).

(63X, 7(X)) 05.,)
< {03 (X, m(X)), 0, ) = SO0+ {4, 1(X), ) = FOC TN+ (60X, 7(X), O )
< (X)) + (X)) + (o (X, 7(X)), O «)

Then, conditioned on the same event from Lemma 4 and using the approximation error above, we may further bound (49)
with

E[(63(X,m(X)), 05, ) = (0(X, 7(X)), 0 )] + Bro (. i) - Ellgn (X, m(X) ]y

<E (600X, 7(X)), 01.) = (01(X, 7(X), 61| +E [e(X) + (X)) + Ba(m, i) - Bl (X, (X)) |y
E e (X) + (X)) +285.a(n, di) - Bl (X, 7(X))lly,»
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Applying this upper bound to the regret and using the fact that this holds for any fixed k& € [M], we get

Reg(,7) (50)
< e(m, ) + Ex [e(X)] + min Ex {€k(X) +2Bx5(n, di) - ||¢k(X77T(X))||ka1} (51)
<9 g{ﬂ:ﬂ () + min {2@,5(1@ i) - Ex || én(X, W(X))Hvk_l} (52)

Note here that & depends on X and thus we cannot readily replace E x [e (X )] with maxy g/ (7, 7) in the first inequality.
The sum over approximation errors is thus done to simplify the bound in terms of just € (7, #) terms. Finally, note that
Lemma 4 establishes concentration of |0y, — 0, x|y, for all k € [M] with probability at least 1 — Md. Changing variables
to &' = M4 proves the result. O

E. Proof of Theorem 4

The SLOPE-inspired algorithm for balancing complexity and approximation error is stated completely in Algorithm 3.

E.1. Single Model Guarantee

We first begin with an independent result for a single d-dimensional F that shows that one can bound the regret of a
learned policy 7 by the approximation error ¢ of the optimal parameter 6 plus an estimation error term that depends on the
complexity of the model class d. For clarity of notation, we drop dependence on the model class index k in the subscript.
Recall the definitions ¢; := ¢(x;, a;) and

A 1
=21 75 b
nd+ni¢¢z

(i)

#(z) € arg max <9, o(x, a)>

a€A
0 arg minE,, ((6(X, 4),0) — J(X. A))?
€= min 2,/C(u)E, ((9(X, 4),0) — [(X, 4))°

Proposition 1. For the above definitions, the following inequality holds with probability at least 1 — 6:

. _ 0|2
16—y < N +C4\/E”V_1/2H.log(4d/5)+\/Cld+02\/dlog(4d/5)+C;310g(4d/5)
n n n

Furthermore, under the same event, the regret Reg(m, 1) is bounded above by:

e (/I [V 172 togaa )+ LGN ) g, (X, )

where Cy = 192 and C1.3 are defined in Lemma 4.

Proof. The regret decomposes as

Reg(ﬂ,fr) [f(X,W(X)) f(X,7(X)]
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By Jensen’s inequality and Definition 1, the first expectation can be bounded as
< 2\/C(E, ((8(X, 4),0) — f(X, 4))?

For the second expectation, it remains to show that the policy 7 selects actions nearly as well as 7 with respect to §. For
convenience, define ¢(7) := Ex¢(X, 7(X)) for features ¢ and policy 7. Then,

(6(x),0) = (8(7),0) = (6(x),0) = (6(7),0) + (6(7),0) — (6(7),0)
< (3(m),0) = (6(m),0) + (9(7).0) — ((7),0)
<100y - Ex|lo(X, (X)) ly-1 + 16 = bllv - Ex|¢(X, #(X))[[v—
< 20— Olly - Ex max (X, @)y

where the first inequality uses the fact that 7 selects actions to maximize the reward predicted with 0, the second inequality
applies Cauchy-Schwarz and the last inequality takes the worst-case action. Thus, we focus on the concentration of ||§ — 6|y .
We use the previous definitions of ¢; = ¢(x;, a;), fi := f(x;,a;), and 1; := n;(a;). Furthermore, we define the error term

ei=fi—¢] 0.

. 1. _
HG—HHV: ;V 1Z¢iyi—9

|4

v S i (6T 04 e ) — 6
= |-V ;@(wmw) g

v

= %Vil Z oin; + %V71 Z p;e; — AVLo

1%
< vl | v S e+ vt S e
— n \74 n : ' n . 1~
3 \Y4 7 \Y4
The first term is bounded above as L [|\V 0]y < %é”z. For the second term, we appeal to Lemma 5 to show that

2

1 1
1.,- . 1oy .
~V 1% bimi -V 12% b

< Cy1d 4 Coy/dlog(1/8) + C3log(1/4)
- n

2
14

conditional on x1.,, and a;.,, for constants C7, Co, C3 > 0 defined in Lemma 5 with probability at least 1 — . For the third
term, we note that the expectation inside the norm is zero and use Lemma 9 to show concentration, yielding:

VS e <6401+ 208))v/dfnl[v ) - log(2d/5)

v
< Ca/d/n||V71?| - log(2d/5)
with probability at least 1 — & for a constant Cy = 192 since ||| < 1 by assumption.

Therefore, by the union bound, we are able to conclude that

. 16112 /

with probability at least 1 — § for Cy = 192 and C} .3 are defined in Lemma 4. O
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Proposition 1 ensures the validity of choosing

A d _ 5dy, + 10+/dy log(4dy /) + 10 log(4dy /6
ck(a):\/;ng v, 1/2|-log(4dk/5)+\/ i k log( T’;/) B(4dx/0)

Note that we have used the assumption that |0y || < 1.

E.2. An Improved Analysis of the SLOPE Estimator

In order to simplify notation, we will denote f(7) = Ex f(X, n(X)) and ¢(7) = Ex (X, 7 (X)) for deterministic policies
7 and features ¢.

Algorithm 3 relies on the validity of a version of the SLOPE estimator introduced by (Su et al., 2020). Recall that we
construct the following value estimators:

og(m) = Ex <¢(X7W(X)),ék>

Proposition 1 ensures that they satisfy the following guarantee.

Lemma 7. Let the event of Proposition 1 hold for all model classes k € [M)]. Then, for any k and policy T,

0% () = ()] < & + Ck(9) - Ex max [[¢(X; a) [y,

Proof. The event ensures that ||6;, — 05| < C(8). This holds for all model classes with probability at least 1 — M.
Therefore, we have

= <¢k(7r)>ék> —{(@r(m), 0k) + (Sr(T),0k) — f(7)
(60(0),00) = (0r(m). 0) + \/COIE, (90(X, 4),80) — F(X, 4))’
< & + 110k = Okllv, - Ex max [ ¢r(X, a)lly,—

< &+ G(0) - Ex max||ox (X, a) ||y,
where we have again used Jensen’s inequality, concentrability in Definition 1, and Cauchy-Schwarz. O

Next, we verify that é, is decreasing in &k while (;(9) - Ex max, ||¢(X, a) Hkal.

Lemma 8. The following conditions hold for all k € [M — 1]:

1. €; > €x41 and

2 G(8) - Ex max [ 64(X, ) ly-1 < Gora(6) - Box maxa 941 (X, a)[-1

Proof. The first condition is trivially true since for any § € R% we have § € R%+1, which equals 6 in the top dj
coordinates and is zero in the bottom dy1 — dj, coordinates since the model classes are nested. This at least achieves the
excess risk of 6 and therefore €, > €5 1.

For the second condition, observe that one immediately has & () < &x41(d). It suffices to show that the second factor is
also increasing. Lemma 11 shows that in general for nested vectors and positive definite matrices:

164X, @)l < l6e11(X, @) y,-1 (53)

proving the claim. O
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We are now ready to prove that the SLOPE estimator from Algorithm 3 is adaptive. Note that this proof is done in general
and may be of independent interest as it requires fewer assumptions than that of (Su et al., 2020). Consider estimators
01, ..., 0p of a quantity v € R and define

k= min{k : |0 — 0g| < 26, V0> k}

Theorem 6. Let 01, ..., be estimators of a quantity v € R with parameters (\Vr) ke[ and (§x) pear Satisfying

1 |0 —v| < 9y + & forall k € [M]
2. Y > gy forallk € [M —1]

3. & < &gy forallk € [M —1]

Then, the estimator v defined above satisfies
[0 — v < Cmin {gy + &}
where C' = 5.
Proof. Let k, = arg minkE[M] {tx + &k }. To prove the claim, we handle to cases: (1) k< k. and (2) k> k.. Otherwise,
the selection is already correct. In the first case, we have that £ intersects all intervals above it including k.. Therefore

< f/};—f}k*‘ + |U—ﬁk-*
<28 + 28k, + Yk, + k.

<5 Wk, +&k,)

|’U—1A1f€

For the second case, we have that 1 = k— 1, which satisfies 7, > ¢ does intersect with some j € [l%, M]. Therefore
28 4285 < |0; — 0| < pi F &+ U+
by definition. It follows then that

& +E& S+ < 2y,

since k, < 1, j. Therefore,

lv— 0] <5 + &,
<, +§;
< Yp, +&+ &
< 3¢,
<3 ¥k, + &)

Since all cases have been handled, we see that the claim is satisfied with C' = 5. O

E.3. Proof of Model Selection Guarantee

Equipped with the single model class guarantees and the SLOPE estimator guarantees, we are ready to prove the final result,
which is restated below.

Theorem 4. Let F, ..., Fur be a nested collection of linear model classes. For A\, = 1 for all k € [M], Algorithm 3
outputs a policy 7t such that, with probability at least 1 — 46, for any comparator policy 7, Reg(w, 7) is bouned above by

12 krél[g\r}] {ek + (p(6/M) -Ex max [¢x (X, a)Hv,jl} :
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Proof of Theorem 4. Recall that Proposition 1 guarantees that ||, — 6]y < ((0) for all k with probability at least
1 — M. From here on, assume this event holds. In order to derive the results, we first note that Lemma 8 ensures the
ordering properties of € and (j () - E max ||¢x (X, a) ”Vk_l' Therefore, it is valid to apply Theorem 6 with v, = € and

6 = G- Emax 00X, 0) |y,

Note that the selection rule ensures that 7 = 7, where /= arg max, 0(7tg). From the regret decomposition, we have, for
any fixed ¢ € [M],

= £(m) = 0(R) + () - £(7)

< f(r) — 9(#;) + C’' min {ék + Gk (6) - Emax || (X, a)”kal}

< f(m) — 0(e) + €' min {& + Gu(6) - Bmax g (X, ), }

= f(7) = f(Fe) + f(7e) = 0(e) + C"min {& + G4(6) - Emax (X, @) |- }
< f(m) = (o) + 20" min {& + Gu(8) - Emax (X, 0)]ly-» |

= £(m) — f(e) + 20" min {& + Go(6) - Emax 64X, 0) .-+ }

< €+ 2¢¢(0) - Emax || ¢ (X, G)H‘/Efl +2C’ mkin {Ek + ¢, (6) - Emax || ¢p (X, a)||ka1}

where the first and third inequalities follow from Theorem 6 with the constant C’ = 5 and the second uses the selection rule
of ¢. The last inequality uses Proposition 1. Therefore,

Reg(m, @) < (2C 4+ 1)ér + 2(C + 1)((0) - Emax || e (X, a)||V[1

Recall that ¢ € [M] was arbitrary and the assumed event occurs with probability at least 1 — M. The proof of the claim is
completed by a change of variables 6’ = M 4. Therefore, the claim is satisfied by choosing C' = 12.

O

E.4. Technical Lemmas

Lemma 9. With probability at least 1 — 0,

VIS e

3

< C(1+42[|0])Vnd||V 2| - log(2d/6) (54)

where C' = 64

Proof. Note that we have E, [¢;e;] = E,, [¢5(fi — ¢; 0)] = E, o(X, A)f(X, A) — 360 which equals zero by first order
optimality conditions applied to the minimizer . Therefore it suffices to show concentration of i »=1/2¢4,e; around its
mean.

Define ¢; = £~ /2¢; and define ¢/ as the jth coordinate of the sample ¢;.

Note that sz = ¢! (fZ — $:21/20_) is sub-exponential with parameter HZ{le < Oy + Co|2Y20)| < Oy + 2C,| 0|

where C; = 1and Cy = 1 Cy,Cy > 0 by Lemma 1 and Lemma 2. This follows because ||¢;]4, < 1and f; € [~1,1] by
assumption. Therefore by Bernstein’s inequality and multiplying by ¥ ~1/2,

|3 dlea] < 32/ (1+218])%n - log(2/8) + 32(1 + 2/ log(2/2)

< 64(1 + 2[|]))v/n - log(2/9)
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with probability at least 1 — §. We have used the fact that 6 < 1/e so that \/log(2/6) < log(2/4). Taking the union bound
over all coordinates j € [d] and applying standard norm inequalities, we have

IS el < 64(1+2(8])Vnd - log(2/)

with probability at least 1 — dd by the union bound. The result then follows by change of variables with ' = dé and
applying the ¢ matrix norm inequality. O
F. Proof of Theorem 5

We define the expected regression loss as Ly (6) = Eﬁk(Q) for § € R9% . We first require the following concentration result
which is immediate from the selection rule via Bernstein’s inequality.

Lemma 10. There is a constant C' > 0 such that with probability at least 1 — 6,

(L+ 110l

Nout

Li(0r) — Li(Br)| < C© log(2M /)
forall k € [M].

Proof. Define Z; = <¢k,i,ék> — yi. Note that || Zpills, < 20|65l + 2 since |9~ 2¢lly, < 1and [|y;]ly, < 2.
Therefore ||Z,37i||¢,1 < (2 + 2||6k|)2. By Bernstein’s inequality, we have

noutzzkl Zkz'

. 32\/4(2 + 200u) log(2M/5) |, 64(2 + 2]|0x )2 log(2/9)

Nout Nout

|Li(Bx) — Lip(0x)] = |

with probability at least 1 — § for all k. It is assumed that § < 1/e. Therefore, 1— < \/% and \/log(M/5) < log(M/$).
Applying these two upper bounds to the terms above and then summing them gives the result.

O

Armed with this result, we turn to the proof of Theorem 5, restated below.

Theorem 5. Given arbitrary linear model classes F, . .., Fy, let &# = 7, where ke arg ming ey Ly (ék) Then, there is
a constant C' > 0 such that, with probability at least 1 — 20, Reg(w, #) is bounded above by

minyg {gk + C\/C(T)Hék - ékHEk}
+0O <F (1vmax, |0/|>1°g1/2(M/6))

Nout

Proof of Theorem 5. Recall that Y (A4) = f(X, A) 4+ n(A) is the observed random reward taking action A where 7 is the
noise vector. By linearity of expectation, for any k& € [M],

Li(6) = E,, ((6(X, A),0) — Y (A))?
—E, ((¢1(X, 4),0) — £(X, A) + f(X,A) - Y(4))°
=B, ((63(X, A4),0) = [(X, 4))" + E, (F(X, 4) - Y (4))*
+2E,, ((44(X, 4),0) — f(X,A4)) (f(X,A) =Y (4))
=B, ((6;(X, A4),0) = [(X, 4))" + E, (F(X, 4) - Y (4))*
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Applying the tower rule of the expectation to the last term conditioned on (X, A) yields the above results since 7 is
zero-mean independent noise. Then,

. 2 R 5
B (000X, A),0;) = F(X4))" = L) — B, (F(X, 4) = Y (4)) (55)

(1 + 116511

Nout

< Li(6) —E, (f(X,4) —Y(A)* +C log(M/9) (56)

(1 + maxg [[9l])*

Nout

< Li(0r) — B, (f(X, A) = Y (4)) +C\/ log(M/5)  (57)

(1 + max, [|0])*

Nout

< Li(fr) — E, (f(X, 4) = Y (A))* + 20\/ log(M/5)  (58)

(1 + maxg [|9[])*

Nout

<E, (<¢>k<x,A>,ék>—f(X,A>)2+zo¢ log(M/8) (59)

with probability at least 1 — d. The first inequality follows from Lemma 10. The second inequality follows from the choice
of k to minimize Ly (6;).

Therefore, we can apply the following regret bound for any k € [M]:

Reg(r, 7) = f(r) - f(7)
< £(m) = (6(2).0;) + (#(7),0) - £(7)
< f(m) = (8(m).0;) + (#(7), 01 ) — £ (7)

< 24 COE, ((@r(X, 4),0,) — F(X, 4))" +20¢( )\/(”m;”t”@||)4 log(M/5)
< 2\/C(E, ((6:(X, 4),6.) — F(X, A)) +2/C0)]100 — Bulls,
4 1/4
C1 (1 +max||0,]|) log*(M/s
2T (1+ 7!|) g(M/9)
1/4

R 4 9
o (1 + maxy ||9,3||) log?(M /)

Nout

= & + 2/C(W)|0k — Bills, +2v/C(0)

Note that the third inequality follows from applying Jensen’s inequality and Definition 1. The fourth inequality applies the
previous display.

O

Balancing approximation error and coverage. We conclude by remarking that a final case may be considered when we
ignore the model selection criterion of statistical complexity and aim to balance only approximation error and coverage. In
this case, the problem becomes trivial since we are “permitted” to take arbitrarily large model classes until realizability is
achieved.

G. Supporting Lemmas

In this section, we state several independent results that support the proofs of the main results.
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G.1. Nestedness Properties

Let M € R*? be a positive definite matrix of the form

A B
M= { d D} (60)
where A € R4 is also a positive definite matrix and D € R%*% and B € R%1*d2,
Lemma 11. Let a € R% and b € R? be arbitrary. The following inequality holds:
al’ a
M M! M >aq' A g (61)

Proof. By Schur complement inverse rules:

B
H M [“] —a A \a+a AT B(M/A) ' BT A \a — 26T (M/A)"'BT A \a + b (M/A)" b (62)

b b
>a'Ala+a" AT'B(M/A)T'BT AT la —a"TATIB(M/A) ' BT A7 (63)
=a' A 'a (64)
where the inequality follows from optimizing over b. O

G.2. Concentration of Quadratic Forms

The following is a restatement of Lemma 14 of (Hsu et al., 2012b) for convenience, which can be interpreted as a version of
the Hanson-Wright inequality (Rudelson & Vershynin, 2013).

Lemma 12. Let A € R™*™ be a matrix and ¥ = AAT. Let X € R™ be a random vector with independent coordinates
X1,..., X such that EX; = 0 and Eexp(AX;) < Eexp (V : ) for all \. Then,

o
2

P <||AX|\2 < o trY + 20%/tr(22) log(1/6) + 2022 1og(1/5)) <5 (65)

H. Additional Experiment Details

In this section, we provide some additional details regarding the experimental results presented in Section 6. We start with
details that are common to both of the settings considered. In order to evaluate the performance of algorithms, within each
trial, we generated a test set of nes = 500 samples. All algorithms were thus compared on the same data within a trial.
For both the batch dataset and the test set, noise was artificially generated on rewards by sampling from a standard normal
distribution (0, 1) such that n(a) ~ subG(1) for all a € A. Regret was computed by taking the difference between
the optimal policy 7, and the learned policy evaluated on the same test set. Thus, the points approximately (up to noise)
represent Reg(m., ,,) where 7, is the learned policy after n batch samples.

The data collection policy was generated as a policy independent of the observed state. Thus u(alz) = p(a’|z) for all
a,a’, x. We generated the probabilities of sampling arms by sampling from a standard Dirichlet distribution of |.4] values.
For the algorithms, penalization terms (i.e. the estimation error) typically depends on constants being chosen sufficiently
large to ensure a confidence interval is valid. However, choosing large values in practice can lead to unnecessarily poor
convergence. We found that multiplying by C' = 0.1 yielded good performance in most settings.

H.1. Complexity-Coverage Setting

In this section, all random quantities were generated by sampling multivariate normal distributions. We first generated a
random vector (f(z,a))zex,ac.a, Which specifies the average reward for each state-action pair. In order to generate a set of
linear models (feature maps) that all satisfy realizability, we began with an input dj;q and randomly generated dj,;q — 1
vectors vy, . .., vg,,,—1 of length | X||.A| and solved for the last vg,,, by subtracting these off the reward. This ensures a
particular linear combination of the vs equals the vector (f(x, a))zex qc.4. This procedure was repeated for various values
of dj;q and the resulting feature vectors were scaled up to d = |X||.A| by multiplying by a random matrix A with elements
generated from NV (0, 1). This ensures that the feature maps are not simply equivalent linear transformations of each other.
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H.2. Approximation-Complexity Setting

In contrast the previous setting, we considered an infinite state space where, for each action, a d = 100 dimensional
covariate vector is sampled from a multivariate normal distribution with mean 0 and covariance matrix X,, where X, was
also randomly generated. As mentioned in the main text, we constructed model classes by truncating the original covariate
vector to small dimensions, thus inducing a nested structure. Since d. = 30, some of these choices result in misspecified
models. For the SLOPE method, in order to estimated the predicted values to generate each U, we used a validation set of
unlabeled samples (i.e. no revealed reward).



