
TSPipe: Learn from Teacher Faster with Pipelines

Hwijoon Lim 1 Yechan Kim 2 Sukmin Yun 1 Jinwoo Shin 1 2 Dongsu Han 1 2

Abstract
The teacher-student (TS) framework, training a
(student) network by utilizing an auxiliary supe-
rior (teacher) network, has been adopted as a pop-
ular training paradigm in many machine learning
schemes, since the seminal work—Knowledge
distillation (KD) for model compression and trans-
fer learning. Many recent self-supervised learn-
ing (SSL) schemes also adopt the TS framework,
where teacher networks are maintained as the
moving average of student networks, called the
momentum networks. This paper presents TSPipe,
a pipelined approach to accelerate the training pro-
cess of any TS frameworks including KD and SSL.
Under the observation that the teacher network
does not need a backward pass, our main idea is
to schedule the computation of the teacher and
student network separately, and fully utilize the
GPU during training by interleaving the compu-
tations of the two networks and relaxing their de-
pendencies. In case the teacher network requires
a momentum update, we use delayed parameter
updates only on the teacher network to attain high
model accuracy. Compared to existing pipeline
parallelism schemes, which sacrifice either train-
ing throughput or model accuracy, TSPipe pro-
vides better performance trade-offs, achieving up
to 12.15x higher throughput. 1

1. Introduction
Knowledge distillation (KD) (Hinton et al., 2015) has shown
remarkable success with the teacher-student (TS) framework
in transferring knowledge from a teacher network to a stu-
dent network. Motivated by this, the TS framework has been

1School of Electrical Engineering, KAIST, Daejeon, Repub-
lic of Korea 2Kim Jaechul Graduate School of AI, KAIST, Dae-
jeon, Republic of Korea. Correspondence to: Dongsu Han
<dhan.ee@kaist.ac.kr>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1The source code is available at https://github.com/
kaist-ina/TSPipe.

Pipeline Idle

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0

GPU 1

GPU 2

GPU 3

time

Forward
student+teacher

Backward
student Update

Forward
teacher

Forward
student

Forward
teacher

Backward
student

Forward
student

Forward
teacher

Update

Backward
student

0.25 0.5 0.75
TS
P
ip
e

G
P
ip
e

0

Bubble

Figure 1. TSPipe achieves high training throughput by eliminating
pipeline bubbles. Top: With GPipe, GPUs are idle, exhibiting
pipeline bubbles. Gray blocks indicate the forward pass, and
orange blocks indicate the backward pass. Bottom: Timeline for
TSPipe. Green, blue, and orange blocks indicate the forward pass
of the teacher network, the forward pass of the student network,
and the backward pass of the student network, respectively. Note
two figures share the same time axis, which is normalized.

used in a broader range of applications—vision (Pham et al.,
2021), natural language processing (Sanh et al., 2019), and
deep reinforcement learning (Yin & Pan, 2017). In particu-
lar, many recent studies in self-supervised learning (SSL) for
vision (He et al., 2020; Chen et al., 2021; Grill et al., 2020;
Li et al., 2021a; Zhou et al., 2021) have successfully learned
visual representations from a large number of unlabeled data
using the TS framework.

However, both KD and SSL often suffer from the extensive
amounts of resource requirements (e.g., GPU memory and
computation) for training. For example, KD often lever-
ages large teacher networks—in Natural Language process-
ing (NLP), the state-of-the-art pre-trained language models
have up to 175B parameters (Brown et al., 2020; Zhang et al.,
2022), which requires 700 GB of GPU memory only for the
model itself. Many recent SSL methods also employ a large-
scale of architectures for better representation learning, e.g.,
MoCo-v3 (Chen et al., 2021) adopting ViT (Dosovitskiy
et al., 2020), a transformer-based model, takes 128 GPU-
days with ViT-B (86 M parameters) to converge. In addition,
SSL methods often require extensive training epochs for
model convergence—BYOL (Grill et al., 2020) needs an
order of magnitude more training epochs to achieve the

https://github.com/kaist-ina/TSPipe
https://github.com/kaist-ina/TSPipe

TSPipe: Learn from Teacher Faster with Pipelines

accuracy proximal to the supervised learning counterpart.

In some cases, even a cutting-edge GPU cannot accom-
modate such large models, which led to the adoption of
Model Parallelism (MP) that splits a model into multiple
GPUs. However, MP suffers from either serious under-
utilization due to the dependency among layers (inter-layer
MP) (Huang et al., 2019) or extreme slowdown in multi-
node environments due to the inter-node communication
overhead (intra-layer MP) (Narayanan et al., 2021). Thus,
increasing the number of GPUs hardly contributes to speed-
up in training with MP.

To overcome this issue, many recent works introduce
pipeline parallelism (Huang et al., 2019; Narayanan et al.,
2019; 2021; Park et al., 2020; Li et al., 2021b). However,
existing solutions still fail to achieve high training through-
put while maintaining scalability and model accuracy. For
example, in Figure 1, GPipe (Huang et al., 2019), one of the
well-known pipeline parallelism schemes, only utilizes 57%
of GPU time and fails to fully schedule training tasks. This
is due to the fundamental challenge that pipeline parallelism
faces—dependencies between layers cannot be eliminated
without changing training semantics at the risk of accuracy
degradation.

This paper presents TSPipe, a novel approach to accelerate
the training of any TS framework including KD and SSL
by pipelining multiple GPUs. TSPipe is the only training
scheme that achieves three highs—high training throughput,
high model accuracy, and high scalability. We achieve
these by leveraging the following unique properties of the
TS framework; 1) The teacher network does not need a
backward pass. 2) The parameters of the teacher network
are never updated, or updated in a steady and stable manner
(i.e, momentum coefficient, τ = 0.996).

Unlike other schemes that do not distinguish the teacher
from the student, TSPipe schedules them separately to take
advantage of the property of the TS framework. TSPipe in-
terleaves the computations of the teacher network between
the computations of the student, which enables us to elimi-
nate all pipeline bubbles without additional memory foot-
print for activation stashing. This allows TSPipe to train
larger models since activation memory accounts for the
majority of total memory usage.

TSPipe further applies delayed parameter updates as in other
schemes (Narayanan et al., 2021; Xu et al., 2020; Park et al.,
2020), to fully schedule the pipeline. However, unlike the
existing schemes, TSPipe considers asymmetric parameter
update. To be specific, we suggest applying delayed pa-
rameter update only on the teacher network, as the slow
update of the teacher network parameters allows TSPipe
to mitigate the performance drop of the student network.
As a result, TSPipe provides high training throughput and

a better trade-off between the GPU memory footprint and
utilization, without loss of the model performance.

We demonstrate the efficiency of TSPipe by training various
KD and SSL schemes. For example, When we train MoCo-
v3 under multiple-sized ViT architectures with 16 GPUs,
TSPipe achieves up to 12.15x higher training throughput
compared to inter-layer MP (Shoeybi et al., 2019). When
we perform KD from ViT networks to ResNet with 8 GPUs,
TSPipe achieves up to 4.68x higher training throughput over
inter-layer MP. We also evaluate the learned representation
quality for SSL where we adopt asymmetric parameter up-
date. TSPipe preserves the same accuracy as the inter-layer
MP under ResNet-18 with respect to the linear evaluation
protocol (Chen et al., 2020). To the best of our knowledge,
TSPipe is the first framework for training parallelism that
targets the TS framework.

2. Background and Related Work
This paper focuses on the general teacher-student frame-
work of Knowledge distillation (Hinton et al., 2015), which
is an effective learning scheme to transfer the knowledge
from a powerful teacher network to a student. We remark
many recent SSL frameworks (He et al., 2020; Chen et al.,
2021; Grill et al., 2020; Roh et al., 2021) also belong to a
form of TS framework with a slight variation, which lever-
ages two encoder networks in training: the online (student)
network θ and the target (teacher) network ξ. The former is
the primary network for encoding the final representations
directly updated by the loss gradients, and the parameters
ξ of is the latter target (momentum) network (Tarvainen &
Valpola, 2017) updated by an exponential moving average
of parameters θ of the former as:

ξ ← τξ + (1− τ)θ, (1)

where τ ∈ [0, 1] is a momentum coefficient. One key idea
of our work is that such TS frameworks do not require back-
propagating gradients of the target (or teacher) network
during training.

Many KD and SSL models feature 100M+ parameters (e.g.,
ViT (Dosovitskiy et al., 2020)), which cannot be trained
with a single GPU due to the memory constraint. Pure data
parallelism that does not split a model across GPUs cannot
be used to train large models that do not fit in a single GPU’s
memory. Mechanisms for distributed training are discussed
below.

Model parallelism (MP) (Shoeybi et al., 2019; Shazeer
et al., 2018; Chilimbi et al., 2014) splits a model into multi-
ple partitions and places each partition into a single GPU.
This enables training larger models. Specifically, MP can
be further classified into inter-layer MP and intra-layer MP.
Inter-layer MP partitions a model layer-wise, and each parti-

TSPipe: Learn from Teacher Faster with Pipelines

DP (Data Parallelism) Inter-layer MP GPipe (Huang et al., 2019) TSPipe

Model + Optimizer states 2W 2W
N

2W
N

2W
N

Batch + Activations
∑

i<n
Ai
Nk

maxj

∑
Li∈Pj

Ai
k

maxj

∑
Li∈Pj

Ai
k

maxj

∑
Li∈Pj

Ai
k

Ideal pipeline utilization 1 1
N

u
u+N−1 1

KD
DistilBERT

BERT-xxlarge

Total memory 39.70 GiB 24.78 GiB 24.78 GiB 24.78 GiB
Ideal utilization Out of Memory 12.5% 53% 100%

SSL
MoCo-v3
ViT-Large

Total memory 34.24 GiB 28.02 GiB 28.02 GiB 28.02 GiB
Ideal utilization Out of Memory 12.5% 53% 100%

Table 1. Peak GPU memory footprints and ideal GPU utilization. W is the model size, N is the number of GPUs, Ai is the activation
memory for a layer Li, Pj is the model partition, k is the degree of gradient accumulation, and u is the number of microbatches per batch.
In the lower part of the table, we give the example of training models with eight V100 GPUs, each with 32 GB of GPU memory.

tion holds subsets of layers. After each GPU completes com-
puting a batch using the partition of the model, it hands over
activations and gradients to the next GPU holding the imme-
diate subsequent partition. However, due to this dependency
between partitions, MP suffers from the under-utilization of
GPUs (Huang et al., 2019).

Meanwhile, in intra-layer MP, each layer is sharded over
multiple GPUs (e.g., tensor parallelism (Shoeybi et al.,
2019)). Although intra-layer MP does not suffer from
the dependency issue of the inter-layer MP, calculating
each layer requires all-to-all communication between all
sharded workers, which brings significant performance over-
head (Narayanan et al., 2021). When intra-layer MP is
applied over multiple nodes, all-to-all communication re-
markably slows down the training due to limited bandwidth,
making the strategy not scalable.

Pipeline parallelism (Huang et al., 2019; Narayanan et al.,
2019; Park et al., 2020; Narayanan et al., 2021; Li et al.,
2021b) tackles the GPU resource under-utilization problem
of inter-layer MP by pipelining computations. The key dif-
ference with inter-layer MP is that pipeline parallelism splits
given (mini-)batches into microbatches. Instead of waiting
for the computation of a whole (mini-)batch to be completed,
each GPU sends activations and gradients immediately after
they are done on computations for a single microbatch. This
relaxes communication dependencies so that the next GPU
can start computing without waiting for the previous GPUs
to complete the whole batch.

However, proposed solutions for pipeline parallelism still
exhibit undesirable trade-offs between the model staleness,
memory footprint, and training throughput. GPipe (Huang
et al., 2019) achieves better GPU utilization and higher
throughput than MP by pipelining the computation, but still
fails to fully utilize GPUs. The maximum theoretical train-
ing efficiency of GPipe only reaches 50.3% with 64 GPUs

and 64 microbatches. DSP (Xu et al., 2020) has flexibility in
its scheduling with layer-wise staleness. However, it makes
both student and teacher networks stale worsening on lower
layers, and requires activation recomputation which adds
25% more computation.

PipeDream (Narayanan et al., 2019) and PipeDream-
2BW (Narayanan et al., 2021) employ pipeline parallelism.
However, they do not support SSL with momentum net-
works out-of-the-box. This is because both schemes highly
depend on their planners’ algorithms to partition models, but
the planners do not support the unique model structure of
momentum networks. Even if PipeDream and PipeDream-
2BW are redesigned to support the structure of momentum
networks as in TSPipe, they would still suffer from a large
memory footprint and final accuracy drop, respectively.

Asynchronous pipeline parallelism (Niu et al., 2011; Yang
et al., 2021; Xu et al., 2020) tries to achieve speedup by
allowing discrepancy between weight versions used in the
forward and backward passes. However, this incurs a vary-
ing degree of staleness across partitions, which requires
extra effort (i.e., activation recomputation (Xu et al., 2020),
learning rate rescheduling (Yang et al., 2021)) to prevent
accuracy drops. To avoid the additional cost and retain high
accuracy, we do not take the approach.

3. Method
Challenge. Due to the dependencies between computa-
tions, pipeline parallelism cannot fully schedule the com-
putations, resulting in GPU under-utilization. Prior ap-
proaches to override the dependencies and fully schedule
the computations came with side effects, including larger
memory footprint (Narayanan et al., 2019), reduced com-
puting efficiency (Xu et al., 2020), and degraded model
accuracy (Narayanan et al., 2021). In our paper, we ask if

TSPipe: Learn from Teacher Faster with Pipelines

Forward
teacher

Forward
student

Forward
teacher

Backward
student

Forward
student

Forward
teacher

view1 view2 view1 view2 view1 view2 view1 view2
Optimization

GPU 0
GPU 1
GPU 2
GPU 3

view1 view2

augmentation

view1 view2

augmentation

view1 view2 view1 view2

view1 view2

augmentation

Backward
student

Forward
student

Startup Iteration 1 Iteration 2

…Batch 1 Batch 2 Batch 3Input
Batches

Optimization

Figure 2. Overview image of TSPipe that shows how TSPipe trains self-supervised learning network. TSPipe achieves full utilization of
GPU pipelines by scheduling the teacher network’s forward pass between computations of the student network.

it is possible to achieve full scheduling without using extra
memory footprint and model accuracy loss.

Our observation regarding the TS framework provides a
key for this challenge; a teacher network does not require a
backward pass, so its forward pass can be scheduled more
leniently than the student’s, without worrying about the
activation stashing, which doubles the memory footprint
and halves the maximum model sizes. Thus, unlike other
schemes that do not distinguish the two networks, we sched-
ule the teacher and student networks separately. This allows
us to fully schedule computations without increasing the
memory footprint (§3.1).

In addition, separating student and teacher networks also
benefits in terms of accuracy. Since we schedule these two
separately, we can choose to apply staleness only to the
teacher network to maintain model accuracy. Therefore,
SSL, in which the teacher network is updated slowly, can
mitigate the loss of accuracy, and the KD whose teacher
network remains unchanged has no loss of accuracy at all
(§3.2).

3.1. Achieving high GPU utilization without a large
memory footprint

TSPipe introduces a novel pipeline parallelism scheme for
the TS framework. Unlike other works that do not take
into account the structure of the TS framework, TSPipe
separates the scheduling of the student and teacher network
from its design. This enables TSPipe to benefit from the
property that the teacher network does not need a backward
pass, allowing TSPipe to interleave the teacher network’s
forward pass between the computation of the student net-
work without concern about activation stashing. This simple
but clever idea enables TSPipe to achieve 100% GPU uti-
lization. Figure 2 illustrates the pipeline of TSPipe with 4
GPUs.

During the startup phase, TSPipe first calculates a teacher
network’s forward pass and then calculates a student net-
work’s forward pass. With the loss calculated from the
two forward passes, TSPipe computes a student network’s
backward pass. Between the forward and backward passes,
GPU time slots naturally become idle, creating a bubble
as depicted in Figure 1. In the bubble, TSPipe inserts a
teacher network’s forward pass for the next batch. Once
the backward pass for the current batch finishes, TSPipe
updates the model parameters using an optimizer (student
network) and weighted average (teacher network) if needed.

After the first batch, TSPipe enters steady-state, where
pipelines are fully scheduled. TSPipe computes the back-
ward pass of the student network, using the teacher net-
work’s forward pass from the previous iteration and the
student network’s forward pass from the current iteration.
The teacher network’s forward pass for the next batch is
pre-computed in the current iteration so that it can be used
at the next iteration. Note that we schedule the teacher net-
work’s forward pass in the pipeline bubbles between the
student network’s forward and backward passes. This way,
we maximize the pipeline utilization and reduce the training
time.

Strategy for splitting a batch for full GPU scheduling.
Unlike existing works (Huang et al., 2019; Park et al., 2020),
TSPipe manages two different microbatch sizes for the for-
ward and backward passes, uf and ub, respectively. This
accommodates a longer processing time taken in backward
passes compared to forward passes in processing the same
tensor size (Narayanan et al., 2021). During the backward
passes, the autograd engine needs to accumulate all relative
tensors and propagates in addition to computing the gradi-
ents. Empirically, we estimate that backward passes take
twice the longer time than the forward pass, and thus we set
ub = 2× uf .

TSPipe: Learn from Teacher Faster with Pipelines

To completely fill up the pipeline, TSPipe splits a single
batch into uf = N − 1 microbatches, where N is the
number of GPUs. In the prior work (Huang et al., 2019), the
computation of a single batch takes nv(2uf + ub +N − 1)
time slots per GPU, where nv is the number of views per
batch, generally 2 for SSL networks and 1 for others. This
is composed of the computation time nv(2uf + ub) and the
pipeline bubbles nv(N − 1). TSPipe eliminates this bubble
by filling in the teacher network’s forward pass for the next
batch, which takes nvuf time slots.

Table 1 shows the ideal GPU utilization for each scheme.
For inter-layer MP, it is 1

N , where N is the number of
GPUs. This is because only one GPU can be active at
a time. GPipe’s (Huang et al., 2019) ideal GPU utilization is

u
u+N−1 , where u is the number of microbatches per batch.
Although GPipe can achieve higher utilization with high u,
it comes with a reduced size of microbatches. This brings
significant scheduling overhead, as well as inefficient uti-
lization of CUDA cores in GPUs. The ideal GPU utilization
of TSPipe is 1 in steady-state, which means we can achieve
up to u+N−1

u x throughput gain over GPipe; e.g., with 8
GPUs and u = 8, this gives 1.88x improvement.

High GPU utilization without additional memory cost.
TSPipe achieves high GPU utilization without additional
GPU memory cost compared to the other pipeline paral-
lelism schemes. As shown in Table 1, TSPipe uses the same
amount of model and activation memory as MP. Unlike
stashing approaches (Narayanan et al., 2019; 2021) that
keep multiple versions of activation or parameters in mem-
ory, TSPipe holds exactly one version of activation and
parameters in each GPU, which enables us to train a very
large network by splitting it into multiple GPUs. In order
to train larger batches, TSPipe also leverages gradient ac-
cumulation, where the model accumulates gradients for k
iterations without updating parameters. This allows TSPipe
to keep a low memory footprint even when training large
batches, requiring the activation memory of A

k , where A
is the activation size for a partition. Note that TSPipe’s
memory footprint can be further reduced with activation
checkpointing (Chen et al., 2016), but it comes at the cost
of increased computation.

3.2. Attaining high accuracy

To achieve fast training throughput and high utilization,
many existing pipeline parallelism schemes (Narayanan
et al., 2021; Park et al., 2020) make changes in training
semantics. They schedule the computation for the current
batch before the model parameters are updated from the
previous batch computations, which we call “early compu-
tation”. This results in the degraded model accuracy, as
their early computation cannot reflect the gradient from the
previous batch. In contrast, although TSPipe also introduces

the early computation, TSPipe preserves the model accuracy
leveraging the property that the teacher network is updated
slowly (momentum network-based SSL) or never updated
(KD).

Preserving accuracy with asymmetric parameter update.
Leveraging the fact that the teacher network is updated
slowly, TSPipe performs early computation only for the
teacher network. We use the current student network (θn)
and the stale teacher network (ξn−1) to compute the loss
Lθn,ξn−1

:

θn+1 ← optimizer(θn,∇θnLθn,ξn−1
, η) (2)

where θn+1 is the student network’s parameter at n+ 1-th
iteration,∇θn is the gradient calculated from Lθn,ξn−1

with
respect to θn, and η is the learning rate. The asymmetric
update has minimal impact on model performance because
the teacher is updated as the exponential moving average of
the student network (Equation (1)) with τ close to 1, which
implies ξn ≈ ξn+1, and thus Lθn,ξn ≈ Lθn,ξn−1

. In §4.2,
we demonstrate that this is indeed the case for real-world
workloads.

Note KD is a special case of momentum-based SSL where
the momentum τ = 1 and thus, ξn = ξn−1 for all n. Sub-
stituting ξn−1 for ξn into Equation (2) shows that TSPipe
exactly preserves the original training semantic of KD, re-
sults in the model accuracy preservation.

On the other hand, generic pipelined approaches (Ren et al.,
2021; Narayanan et al., 2021) do not differentiate the stu-
dent network from the teacher network and perform early
computation for both networks, updating the parameter as:

θn+1 ← optimizer(θn,∇Lθn−1,ξn−1
, η). (3)

The difference between θn and θn−1 is significant. This
discrepancy gradually propagates throughout parameter up-
dates and eventually results in model accuracy degradation.
This is even worse on recent SSL approaches where they
often adopt a high learning rate due to large batch sizes(He
et al., 2020; Grill et al., 2020). Note that KD also suffers
from accuracy degradation with this approach, a substituting
ξn−1 for ξn into Equation (3) still differs from the original
training semantic of KD.

3.3. Discussion

Model partitioning. We use a simple model partition-
ing method similar to one that appears in Narayanan et al.
(2021). Our method aims to find a schedule s : L → D,
where L is a set of Layers Li and D is a set of devices Dj .
We denote a function s as a vector (s1, s2, · · · , sm) where
S(Li) = Dsi . We consider three dominant factors:
• Memory footprint: We measure the actual activation

and model parameter size required to compute the layer.

TSPipe: Learn from Teacher Faster with Pipelines

• Transfer time t
(t)
i : We estimate the transfer time t

(t)
i

by dividing the output batch size of layer Li into the
bandwidth between the two device si and si+1. Here we
consider if P2P technology is available between GPUs
(i.e., NVLink).

• Computing time t
(c)
i : We measure the time required for

the forward pass of layer Li. We assume the computing
time is identical for all GPUs.

We exhaustively search for the optimal schedule ŝ that mini-
mizes the bottleneck processing time maxi max(t

(t)
i , t

(c)
i)

such that the memory footprints of partitions fit into the
assigned device memory.

Batch normalization. TSPipe normalizes input batches and
keeps track of the mean and variance on every microbatch.
This may potentially degrade performance with models with
many batch normalization layers. To mitigate the problem,
we adopt deferred batch normalization from GPipe.

Combining with DP. As with other pipeline parallelism
schemes, TSPipe can be combined with DP (Data Paral-
lelism), which enables us to run multiple parallel pipelines,
for better scalability (Li et al., 2020). For example, with 64
GPUs, we can run 4 parallel pipelines, each composed of
16 GPUs. It is especially useful when training a relatively
small model with a large number of GPUs, e.g., when the
number of GPUs are similar to or larger than the number
of layers. For small models, it would be more efficient to
partition the model into a small number of partitions and ap-
ply DP, rather than partitioning the model to fit the number
of GPUs. Increasing the number of parallel pipelines will
reduce the overhead of transmitting intermediate activations
across GPUs.

4. Evaluation
We compare TSPipe with prior work in KD and SSL models
with momentum networks. We summarize our findings:

• TSPipe boosts up training throughput up to 12.2x com-
pared to inter-layer MP and 1.88x compared to GPipe,
achieving near-ideal performance that we expect from
our design.

• TSPipe preserves the final model accuracy of the original
training semantics. Meanwhile, applying the conven-
tional strategy for parameter updates significantly de-
grades the accuracy (up to -5.8%p).

Implementation. We implement TSPipe on Py-
Torch (Paszke et al., 2019). Multiple GPUs cannot be fully
utilized with multi-threaded design on PyTorch due to the
Python global interpreter lock (Beazley, 2010). Thus, we
use a multi-process design where we implement CPU-CPU
communication with PyTorch RPC and GPU-GPU com-
munication via NCCL (NVIDIA, 2021). We implement

communication and computation overlapping to hide data
transfer latency and improve throughput.

Baselines. We compare TSPipe with inter-layer MP and
GPipe (Huang et al., 2019). For fair comparisons, we apply
the same model partitioning and configurations. We also
implement an extended version of inter-layer MP and GPipe
that support gradient accumulation. Accordingly, the same
architectures and network configurations are applied.

Models. We evaluate soft target (Hinton et al., 2015) and
DistilBERT (Sanh et al., 2019) for KD, and BYOL (Grill
et al., 2020) and MoCo-v3 (Chen et al., 2021) for SSL
models. During the self-supervised training (pre-training)
of SSL models, we use the same configurations from the
original papers except for the batch size.

For soft target, we use ViT (Large and Huge) (Dosovitskiy
et al., 2020) as the backbone architecture for teacher net-
works, and ResNet-101, Resnet-152 (He et al., 2016) as
the backbone architecture for student networks. For Dis-
tilBERT, we use BERT-xlarge and BERT-xxlarge (Shoeybi
et al., 2019) as the backbone architecture for its teacher
networks. Corresponding to the teacher network architec-
ture, we resized the student model to DistilBERT-xlarge and
DistilBERT-xxlarge.

For BYOL, we use four different sizes of ResNet (He
et al., 2016) as its backbone architecture. LARS (You
et al., 2017) optimizer is used with base learning rate of
lr = 0.2 which linearly scales w.r.t the batch size(lr ×
(BatchSize)/256) (Goyal et al., 2017). We apply a cosine-
annealing learning rate scheduling (Loshchilov & Hutter,
2016) with weight decay of 1.5 × 10−6. On momentum
constant τ , cosine-annealing was applied starting from
τ = 0.996 to 1. We train for 200 epochs each with 10
warm-up epochs.

For MoCo-v3, we use ViT (Small, Base, Large, and
Huge) (Dosovitskiy et al., 2020) as its backbone architec-
ture. Following (Chen et al., 2021), AdamW (Loshchilov &
Hutter, 2017) optimizer is used with linearly scaled learning
rate, lr = 1.5 × 10−4. We apply weight decay of 0.1 and
momentum of 0.99 with cosine-annealing and train for 100
epochs with 10 warm-up epochs.

Setup. We follow the training procedure described in Grill
et al. (2020); Chen et al. (2021). Given an image, we apply
SimCLR (Chen et al., 2020)’s image augmentation. Then,
two backbone architectures are trained to learn good image
representations with different views of the image. After
training, we extract the representations by removing the
final MLP layers and attaching a linear classifier with the
size of 4096 hidden dimensions and an output dimension
of 256 (512 and 128 for ResNet-18-based models). We
utilize the linear evaluation protocol described in Grill et al.
(2020); Chen et al. (2020); Oord et al. (2018). We evalu-

TSPipe: Learn from Teacher Faster with Pipelines

Training Throughput (Seq/s)

Method Architecture Param. Inter-layer MP GPipe TSPipe (Ours)

KD
Soft Target (Hinton et al., 2015)

ViT-Large / ResNet-101 303 M / 43 M 57.41 136.8 204.4 (3.56x)
ViT-Large / ResNet-152 303 M / 58 M 47.24 126.6 180.7 (3.82x)
ViT-Huge / ResNet-101 631 M / 43 M 35.65 100.6 148.5 (4.17x)
ViT-Huge / ResNet-152 631 M / 58 M 30.30 84.03 141.8 (4.68x)

DistillBERT (Sanh et al., 2019) BERT-xlarge 1.3 B / 480 M 62.82 113.3 193.4 (2.00x)
BERT-xxlarge 3.9 B / 1.2 B 30.36 75.22 98.82 (3.25x)

SSL

BYOL (Grill et al., 2020)

ResNet-18 11 M 346.3 585.1 728.5 (2.10x)
ResNet-50 26 M 102.0 232.0 295.8 (2.90x)
ResNet-101 45 M 71.25 162.7 243.0 (3.41x)
ResNet-152 60 M 53.33 136.9 201.6 (3.78x)

MoCo-v3 (Chen et al., 2021)

ViT-Small 22 M 99.42 259.9 365.7 (3.68x)
ViT-Base 86 M 35.06 106.7 176.6 (5.04x)
ViT-Large 307 M 11.31 33.95 54.70 (4.84x)
ViT-Huge 632 M 5.496 18.71 35.26 (6.42x)

Table 2. Training throughput (seq/s) evaluated on various architectures using TSPipe with 8 GPUs. Numbers in parenthesis show
improvement over inter-layer MP. Note that there exists speedup with respect to the size of the models (# of parameters).

Method MP GPipe TSPipe

Soft Target (ViT-Huge / ResNet-152) 26.5 136 191 (7.21x)
MoCo-v3 (ViT-Huge) 5.90 40.0 71.7 (12.15x)

Table 3. Training throughput (seq/s) evaluated on KD (Soft Tar-
get (Hinton et al., 2015)) and SSL (MoCo-v3 (Chen et al., 2021))
using TSPipe with 16 GPUs. Numbers in parenthesis show im-
provement over inter-layer MP.

ate TSPipe on a DGX-1 machine, which features 8 V100
GPUs (32GB memory) with 2 NVLink connecting adja-
cent GPUs (NVIDIA, 2017). To further evaluate TSPipe
with 16 GPUs, we use two Azure ND40rsv2 VMs (8 V100
GPUs each) with GPUDirect RDMA for faster inter-node
communication.

4.1. Throughput Analysis

We evaluate the training throughput of KD (soft target (Hin-
ton et al., 2015) and DistilBERT (Sanh et al., 2019)) and
SSL (BYOL (Grill et al., 2020) and MoCo-v3 (Chen et al.,
2021)) models. To avoid out-of-memory, we vary the batch
size between 128 and 2048.

Throughput gain over baselines. Tables 2 and 3 and Fig-
ure 3 illustrate the training throughput according to models
and their architectures. With 8 GPUs, TSPipe achieves im-
provement in training throughput up to 6.42x compared
to inter-layer MP and 1.88x compared to GPipe. With
16 GPUs, TSPipe achieves even greater speedup reach-
ing 12.15x compared to inter-layer MP. TSPipe shows the

4

16

64

256

1024

8 32 128 512

Th
ro

u
gh

p
u

t
(s

e
q

/s
)

of Model Parameters (Million)

Inter-Layer MP

GPipe

TSPipe

Better

6.42x

5.04x

2.10x

Figure 3. Training throughput vs. # of Model Parameters (Million).
TSPipe delivers the best training throughput, up to 6.42x better
than the inter-layer MP. TSPipe shows the greatest performance
increase with a larger model size.

best performance improvement in MoCo-v3 with ViT-Huge
backbone, while evaluation with BYOL shows relatively
low throughput gain. Figure 3 shows that TSPipe tends to
get more performance improvement with larger-sized mod-
els. Such tendency results from higher utilization of internal
computing resources in GPUs (CUDA cores) when larger
tensors are computed. ViT-Huge is literally a “huge” model
with 632M parameters, so it benefits the most from TSPipe
design with full pipelines. Compared to GPipe, we achieve
performance gain up to 1.88x with 8 GPUs, which is close
to the estimated ideal performance gain of our design (§3.1).

4.2. Accuracy Analysis

According to the common practice, we evaluate the linear
classification accuracy over frozen representations to eval-
uate the performance of self-supervised learning models.

TSPipe: Learn from Teacher Faster with Pipelines

Vanilla TSPipe

Dataset Top1 Top5 Top1 Top5

STL10 (Coates et al., 2011) 81.73 ±0.27 99.41 ±0.06 81.75 ±0.32 (+0.02) 99.40 ±0.03 (-0.01)
CIFAR10 (Krizhevsky et al., 2009) 74.76 ±0.34 98.60 ±0.08 75.24 ±0.52 (+0.48) 98.73 ±0.09 (+0.13)
CIFAR100 (Krizhevsky et al., 2009) 48.54 ±0.34 78.46 ±0.16 49.79 ±0.32 (+1.25) 79.22 ±0.50 (+0.76)
ImageNet100 (Russakovsky et al., 2015) 64.18 ±0.61 88.12 ±0.33 64.24 ±0.23 (+0.06) 88.24 ±0.22 (+0.12)

Table 4. Linear evaluation accuracy (%) of ResNet-18 (He et al., 2016), pre-trained with BYOL (Grill et al., 2020) for 200 epochs.
Numbers in parenthesis indicate the gain over the vanilla scheme. TSPipe achieves almost identical accuracy as the vanilla scheme.

0.4

0.8

1.2

1.6

2

0 50 100 150 200

Vanilla TSPipe

Lo
ss

Epochs

Figure 4. Training loss curve of TSPipe and vanilla during the
pre-training of BYOL (Grill et al., 2020). Trained with ResNet-
50 (He et al., 2016) for 200 epochs, batch size of 1024 and LARS
optimizer (You et al., 2017) are used.

20

30

40

50

60

70

0 100 200

Vanilla

TSPipe

Epochs

A
cc
u
ra
cy
(%

)

(a) STL10

Epochs

A
cc
u
ra
cy
(%

)

20

30

40

50

60

0 100 200

Vanilla

TSPipe

(b) CIFAR10

Epochs

A
cc
u
ra
cy
(%

)

0

10

20

30

0 100 200

Vanilla

TSPipe

(c) CIFAR100

Epochs

A
cc
u
ra
cy
(%

)

0

10

20

30

40

0 100 200

Vanilla

TSPipe

(d) ImageNet100
Figure 5. Validation accuracy of the k-NN classifier (Wu et al.,
2018) on various datasets during the pre-training of BYOL (Grill
et al., 2020) with ResNet-18 (He et al., 2016)

Since inter-layer MP and GPipe share the same training
semantics with vanilla training scheme, we only compare
the accuracy of TSPipe with the vanilla training scheme in
this section.

Linear classification accuracy. After training the BYOL
model with ResNet-18 architecture over 200 epochs using
ImageNet100 (pre-training), we further train the linear clas-
sifier over 90 epochs to evaluate the test accuracy. Unlike
pre-training, the linear classifier was trained on a single
GPU. We use SGD with momentum and a linearly scaled
learning rate. We utilize four image datasets, STL10 (Coates
et al., 2011), CIFAR10/CIFAR100 (Krizhevsky et al., 2009),

Method Vanilla TSPipe TSPipe without ASP

STL10 81.7% 81.7% 79.1% (-2.69%p)
ImageNet100 64.2% 64.2% 58.3% (-5.89%p)

Table 5. Ablation study on asymmetric parameter update (§3.2).
Linear evaluation accuracy (%) of ResNet-18 (He et al., 2016),
pre-trained on BYOL (Grill et al., 2020) with vanilla, TSPipe, and
TSPipe without asymmetric parameter update(ASP).

and ImageNet100 (Russakovsky et al., 2015). We report the
average accuracy and the standard deviations of five runs
with random seeds.

As shown in Table 4, TSPipe shows almost identical test
accuracy compared to the vanilla training schemes. The
accuracy differences between vanilla and TSPipe are very
marginal, where the accuracy of TSPipe is better than the
vanilla scheme for some datasets, such as STL10 and Ima-
genet100.

k-NN classifier accuracy. We also show the validation
accuracy of a k-nearest-neighbor (k-NN) classifier (Wu
et al., 2018), with which we can monitor the performance
of the model as the pre-training progresses. Figure 5 (a)
to (d) shows the validation accuracy of the k-NN classifier
evaluated using four different datasets (STL10, CIFAR10,
CIFAR100, and ImageNet100), during the pre-training of
BYOL with ResNet-18. It shows that TSPipe achieves
nearly identical or better accuracy than the vanilla during
the entire process of pre-training.

Loss curve. In Figure 4, we train BYOL under ResNet-50
architecture and the batch size of 1024 using TSPipe and
vanilla (inter-layer MP). We show the loss curve during
the 200 epochs of pre-training. TSPipe exhibits an almost
similar loss curve to that of the vanilla training schemes.
Actually, the curve of TSPipe is even more stable since
the asymmetric parameter update of TSPipe contributes to
stabilizing the training. We think this is another strong
property of TSPipe as self-supervised training schemes are
often highly unstable (Chen et al., 2021).

TSPipe: Learn from Teacher Faster with Pipelines

Asymmetric parameter update ablation study. We eval-
uate whether limiting the early computation only to the
teacher network helps preserve the accuracy. More specifi-
cally, we evaluate if TSPipe can preserve its accuracy with-
out incorporating the asymmetric parameter update (§3.2).
The conventional strategy for parameter update used in pre-
vious works (Narayanan et al., 2021; Ren et al., 2021) (Equa-
tion (3)) does not differentiate between the student network
and the teacher network, making both networks stale. How-
ever, TSPipe’s strategy for parameter update (Equation (2))
clearly differentiates the two networks, and TSPipe only
make the teacher network stale. We compare the result from
the conventional and TSPipe parameter update strategies.
We observe that under the conventional strategy, the linear
evaluation accuracy significantly drops up to -5.9%p (Ta-
ble 5), i.e., the update of the student network is unstable, and
the difference between θn and θn−1 is not negligible (θn is
the parameters of the student network at n-th iteration).

5. Conclusion
TSPipe presents a framework that enables faster training
of large models with the TS framework without risking
any performance degradation of the model. We demon-
strate it is possible to utilize 100% of GPU pipelines for
training KD and SSL with momentum networks, as the
teacher network does not need a backward pass. We show
TSPipe can mitigate potential model accuracy degradation
coming from delayed parameter update, using that the pa-
rameters of the teacher network are updated in a steady and
stable manner. TSPipe exhibits better performance than any
other pipeline parallelism schemes, providing near-optimal
training throughput without sacrificing the model accuracy.
TSPipe achieves up to 12.15x higher training throughput
than inter-layer model parallelism, while preserving the
model accuracy.

Acknowledgements
We appreciate Jinwoo Park and anonymous reviewers for
providing helpful feedbacks and suggestions to improve our
paper. This work was mainly supported by Institute of Infor-
mation & Communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No.2022-0-00117, Development of low-power computa-
tional storage system technology for low-latency large-scale
data processing; No.2019-0-00075, Artificial Intelligence
Graduate School Program (KAIST)).

References
Beazley, D. Understanding the python gil. In PyCON

Python Conference. Atlanta, Georgia, 2010.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, X., Xie, S., and He, K. An empirical study of training
self-supervised visual transformers. arXiv e-prints, pp.
arXiv–2104, 2021.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project adam: Building an efficient and scalable deep
learning training system. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
14), pp. 571–582, 2014.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In Pro-
ceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 215–223. JMLR
Workshop and Conference Proceedings, 2011.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9729–
9738, 2020.

TSPipe: Learn from Teacher Faster with Pipelines

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32:103–112, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images, 2009.

Li, C., Yang, J., Zhang, P., Gao, M., Xiao, B., Dai, X.,
Yuan, L., and Gao, J. Efficient self-supervised vision
transformers for representation learning. arXiv preprint
arXiv:2106.09785, 2021a.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P.,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704,
2020.

Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D.,
and Stoica, I. Terapipe: Token-level pipeline parallelism
for training large-scale language models. arXiv preprint
arXiv:2102.07988, 2021b.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 1–15, 2019.

Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and Za-
haria, M. Memory-efficient pipeline-parallel dnn training.
In International Conference on Machine Learning, pp.
7937–7947. PMLR, 2021.

Niu, F., Recht, B., Ré, C., and Wright, S. J. Hogwild!:
A lock-free approach to parallelizing stochastic gradient
descent. arXiv preprint arXiv:1106.5730, 2011.

NVIDIA. Nvidia DGX-1 with tesla v100 system
architecture white paper, 2017. URL https:
//images.nvidia.com/content/pdf/
dgx1-v100-system-architecture-whitepaper.
pdf.

NVIDIA. Nvidia collective communications library (nccl),
Dec 2021. URL https://developer.nvidia.
com/nccl.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Park, J. H., Yun, G., Chang, M. Y., Nguyen, N. T., Lee,
S., Choi, J., Noh, S. H., and Choi, Y.-r. Hetpipe: En-
abling large DNN training on (whimpy) heterogeneous
GPU clusters through integration of pipelined model par-
allelism and data parallelism. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pp. 307–321,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

Pham, H., Dai, Z., Xie, Q., and Le, Q. V. Meta pseudo
labels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11557–
11568, 2021.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload: De-
mocratizing billion-scale model training. arXiv preprint
arXiv:2101.06840, 2021.

Roh, B., Shin, W., Kim, I., and Kim, S. Spatially consistent
representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 1144–1153, 2021.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252, 2015.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani,
A., Koanantakool, P., Hawkins, P., Lee, H., Hong, M.,
Young, C., et al. Mesh-tensorflow: Deep learning for
supercomputers. arXiv preprint arXiv:1811.02084, 2018.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

TSPipe: Learn from Teacher Faster with Pipelines

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. arXiv preprint
arXiv:1703.01780, 2017.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised
feature learning via non-parametric instance discrimina-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3733–3742, 2018.

Xu, A., Huo, Z., and Huang, H. On the acceleration of deep
learning model parallelism with staleness. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2088–2097, 2020.

Yang, B., Zhang, J., Li, J., Ré, C., Aberger, C., and De Sa, C.
Pipemare: Asynchronous pipeline parallel dnn training.
Proceedings of Machine Learning and Systems, 3, 2021.

Yin, H. and Pan, S. J. Knowledge transfer for deep rein-
forcement learning with hierarchical experience replay.
In Thirty-First AAAI conference on artificial intelligence,
2017.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A.,
and Kong, T. ibot: Image bert pre-training with online
tokenizer. arXiv preprint arXiv:2111.07832, 2021.

