
Federated Learning with Positive and Unlabeled Data

Xinyang Lin * 1 Hanting Chen * 2 Yixing Xu 2 Chao Xu 3 Xiaolin Gui 1 Yiping Deng 4 Yunhe Wang† 2

Abstract
We study the problem of learning from positive
and unlabeled (PU) data in the federated setting,
where each client only labels a little part of their
dataset due to the limitation of resources and time.
Different from the settings in traditional PU learn-
ing where the negative class consists of a single
class, the negative samples which cannot be iden-
tified by a client in the federated setting may come
from multiple classes which are unknown to the
client. Therefore, existing PU learning methods
can be hardly applied in this situation. To ad-
dress this problem, we propose a novel frame-
work, namely Federated learning with Positive
and Unlabeled data (FedPU), to minimize the ex-
pected risk of multiple negative classes by lever-
aging the labeled data in other clients. We theoret-
ically analyze the generalization bound of the pro-
posed FedPU. Empirical experiments show that
the FedPU can achieve much better performance
than conventional supervised and semi-supervised
federated learning methods.

1. Introduction
With the development of edge devices (e.g., cameras, mi-
crophones, and GPS), more and more decentralized data
are collected and locally stored by different users. Due to
the privacy and transmission concerns, users are unwilling
or not allowed to share the data with each other. In this
case, classical machine learning scheme can hardly learn a
globally effective model for all the users. Therefore, feder-
ated learning (McMahan et al., 2017) is proposed to derive
a model with high performance in the central server by
leveraging multiple local models trained by users (clients)
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themselves, which ensures the privacy of the local data.

Typically, there is a common assumption in federated learn-
ing that the local data (private data) stored on user devices
is well refined (i.e., all of the local data is labeled with
ground truth). However, considering the limitation of time
and resources, only part of the private data in each client
are labeled in reality. To this end, some of the previous
works were proposed to address this federated learning prob-
lem following a semi-supervised scheme. (Jeong et al.,
2021) proposed the FedMatch algorithm which introduced
a new inter-client consistency loss and decomposed the pa-
rameters for labeled and unlabeled data. (Zhang et al.,
2020) managed to solve this problem by conducting a novel
grouping-based model average method and improved the
convergence efficiency. (Itahara et al., 2020) proposed a
distillation-based algorithm to exchange the local models
among each client and learned the unlabeled data by pseudo
labels. Although these methods can successfully address
the semi-supervised learning problem for federated learning,
they assume that each class has labeled samples in each
client. However, in real world applications, users from each
client may only label part of categories due to their limited
ability.

To address the aforementioned problem, we consider a more
general setting of federated learning with unlabeled data:
1) each client only labels part of their own data which
comes from part of the classes; 2) there are no data in the
central server; 3) nothing except parameters of models can
be exchanged between clients and the central server. Note
that the first constraint of our setting meets the problem of
learning from positive and unlabeled (PU) data. Existing
PU methods (Liu et al., 2003; Liu & Tao, 2015; Xu et al.,
2017) focused on solving the PU problem which regard the
negative class (class that contains no labeled samples) as a
single class. However, since negative class in one client may
consist of multiple positive classes in other clients, there are
multiple negative classes in one client in federated learning,
which results in a multiple-positive-multiple-negative PU
(MPMN-PU) learning problem and cannot be solved using
existing PU learning framework.

In this paper, we propose the Federated learning with Posi-
tive and Unlabeled data (FedPU) algorithm, where the local
model in each client is trained with MPMN-PU data. We
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Figure 1. Illustration of the conventional federated learning (left) and the proposed method (right). Conventional federated learning
method only learns from labeled data. In contrast, we propose the federated learning with positive and unlabeled data to fully inherit the
information from the unlabeled data.

first analyze the expected risk of each class in each client
and show that the risks of multiple negative classes can be
successfully minimized by leveraging unlabeled data in this
client and labeled data in other clients, which is shown in
Figure 1. Moreover, we present a generalization bound of
proposed FedPU and show that the FedPU algorithm is no
worse than C

√
C times (where C denotes the number of

classes) of the fully-supervised model in federated setting.
Experiments on MNIST and CIFAR datasets empirically
show that the proposed method can achieve better perfor-
mance than existing federated learning algorithms.

2. Related Works
In this section, we briefly review the related works about
the federated learning and positive-unlabeled learning.

2.1. Federated Learning

Federated learning is firstly proposed by (McMahan et al.,
2017) in order to collaboratively learn a model without col-
lecting data from the participants. (Bonawitz et al., 2017)
proposes the secure aggregation based on the concept of the
Secure Multiparty Computation (SMC) algorithm, which
aggregates private values of mutually distrustful parties with-
out revealing information about their private values. (Geyer
et al., 2017) introduces client-level differential privacy to
prevent any client from trying to reconstruct the private
data of another client by exploiting the global model in
federated learning. (Yang et al., 2019) considers the statis-
tical challenge of the heterogeneity of data from users in

practical settings that cooperation are conducted on low-
quality, incomplete and insufficient data. (McMahan et al.,
2017) proposes the Federated Averaging (FedAvg) algo-
rithm, which performs aggregating algorithm by averaging
model updates from participants. (Ghosh et al., 2020) pro-
poses the Iterative Federated Clustering Algorithm (IFCA),
which optimizes the weights for each client by estimating
the cluster identities. Recently, several researches (Li et al.,
2018; Karimireddy et al., 2020; Sattler et al., 2019) focus
on improving model performance on non-iid data.

2.2. Positive and Unlabeled Learning

Various effective algorithms have been developed to solve
the PU learning problem. (Liu et al., 2003) proposes the two-
step technique based on the assumption that all the positive
samples are similar to the labeled examples and the negative
samples are very different from them. (Liu & Tao, 2015)
introduces an biased PU learning methods, which treats the
unlabeled samples as negative ones with label noise. (Lee &
Liu, 2003) regards the unlabeled data as negative data with
smaller weights, then performed logistic regression after
weighting the samples to handle the situation that noise rate
is greater than a half. In order to avoid tuning the weights,
(Elkan & Noto, 2008) regards unlabeled data as weighted
positive and negative data simultaneously. (du Plessis et al.,
2014) proposes the unbiased risk estimator and (Kiryo et al.,
2017) makes a progress by proposing a non-negative risk
estimator for PU learning to mitigate the overfitting problem
when using a flexible model. (Garg et al., 2021) investigated
methods for mixture proportion estimation and PU classifi-
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cation. (Xu et al., 2017) adapted PU learning to the setting
with multi-class classification problem. These methods re-
gard the negative class as a single class, which is reasonable
when there is only a single dataset. However, in federated
learning, the datasets are distributed in different clients,
where samples from the negative classes in one client may
become positive in another client since different clients are
free to label their data. To this end, an effective PU learning
algorithm for the federated setting is urgently required.

3. Method
In this section, we study federated learning problem under
the MPMN-PU learning setting for each client.

3.1. Problem Setup

Here we first introduce the notations in federated learning,
where there are K different clients and one central server.
Given the data space S and the hypothesis space of parame-
tersW , the training data is distributed onK different clients
and is generated from the data space S, which is denoted
as {Sk}Kk=1 ∈ S. Denote T as the number of communi-
cation rounds and wt ∈ W as the weight matrix in the
central server in time t ∈ {1, ..., T}, the weights wt is first
transferred from the central server to each client, and then
updated using the training data in each client respectively
and derive K different weights:

wkt+1 ← ClientUpdate(k,wt), (1)

where wkt+1, k ∈ {1, ...,K} is the updated weights from
client k and the client update stage is a conventional training
method for updating the gradient. After that, the updated
weights are then transferred back to renew the weight matrix
in central server:

wt+1 ←
K∑
k=1

nk

n
wkt+1, (2)

where nk is the number of training samples in client k and
n =

∑K
k=1 n

k is the number of all the training samples.

In the traditional federated learning setting, the training data
in each client is fully labeled. Nevertheless, samples are not
always fully labeled in many real world scenarios because of
the time and resources limitation in each client. Specifically,
the training data Sk in client k consists of positive data Pk
and unlabeled data Uk, which can be formulated as:

Sk = Pk ∪Uk, k = 1, . . . ,K. (3)

Given the set of classes as C = {1, ..., C} in which C
is the total number of classes, the set of classes of posi-
tive data (i.e. the positive classes) in client k is denoted
as CPk , while the negative classes is denoted as CNk

,

where CPk

⋃
CNk

= C. In other words, each client
can only identify part of the classes from the dataset Sk.
Besides, only a portion of the data in the positive classes
can be labeled since the data is too much to be fully la-
beled. Therefore, there exists unlabeled data from not
only the negative classes but also the positive classes, i.e.,
CUk

= C = CPk

⋃
CNk

. Specifically, we have:

∀x ∈ Pk,Class(x) ∈ CPk ;

∀x ∈ Uk,Class(x) ∈ CPk

⋃
CNk

.
(4)

Note that different clients have different set of positive
classes, and all of the positive classes should cover the
whole classes in the dataset, i.e.,

⋃
Pk

CPk = C.

In this setting, the conventional federated learning algo-
rithms cannot be directly applied. Fortunately, PU (Positive
and Unlabeled) learning (Liu et al., 2003) has been proposed
to solve this problem. However, traditional PU learning
methods regard the negative class as a single class, which
is inappropriate in federate learning since negative class
in one client may consists of multiple positive classes in
other clients. Therefore, we meet a MPMN (Multi-Positive
and Multi-Negative) PU learning problem, which cannot be
directly handled by existing methods.

3.2. Federated Learning with Positive and Unlabeled
Data

To address the MPMN PU learning problem, we propose
our FedPU (Federated learning with Positive and Unlabeled
data) method. We assume to utilize FedAvg as the federated
aggregation method for simplicity.

Here we first present our MPMN PU learning scheme in a
single client (or without federate setting) for convenience.
Denote the training samples as {(xi,yi)}ni=1 ∈ S. In
classical multi-class classification, given the class prior
πi = p(y = i), i = 1, 2, ...C, the classifier f(x;w) (short
as f(x)), in which w is the parameter of the classifier, can
be learned by minimizing the expected misclassification rate
R(f):

R(f) =

C∑
i=1

πiRi(f) =

C∑
i=1

πiPi(f(x) 6= i), (5)

where
∑C
i=1 πi = 1 and Pi(·) denotes the probability calcu-

lated in i-th class samples. Therefore, Pi(f(x) 6= i) denotes
the expected misclassification rate on i-th class.

However, in MPMN PU setting, only samples in a few
classes are labeled in the training set for each client. Some of
classes in Eq. 5 is unlabeled and the expected risk cannot be
directly calculated in each client. Therefore, it is necessary
to analyze the expected risk in the negative classes using
the unlabeled data. Here we first introduce RU (f) to denote
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the sum of probability that the unlabeled samples does not
belong to each of the negative class:

RU (f) =
∑

m∈CN

PU (f(x) 6= m)

=
∑
i∈CP

∑
m∈CN

πiPi(f(x) 6= m) +
∑
j∈CN

∑
m∈CN

πjPj(f(x) 6= m)

=
∑
i∈CP

∑
m∈CN

πiPi(f(x) 6= m) +
∑
j∈CN

πjPj(f(x) 6= j)

+
∑

j,m∈CN,j 6=m
πjPj(f(x) 6= m),

(6)

where PU (·) denotes the probability calculated in unlabeled
samples. Since the unlabeled samples may from both posi-
tive and negative classes, the probability PU (·) can be sepa-
rated into

∑
i∈CP

Pi(·) and
∑
j∈CN

Pj(·). Finally, RU (f)
can be divided into three terms, where the first term is the
probability of positive data have not been classified to the
set of negative classes, the second term is the probability
of negative data have not been classified to the correspond-
ing negative class, and the third term is the probability of
negative data have not been classified to the other negative
classes. Note that the second term is exactly the expected
risk in the negative classes, Eq. 5 can be reformulated as:

R(f) =
∑
i∈CP

πiRi(f) +
∑
j∈CN

πjRj(f)

=
∑
i∈CP

πiRi(f) + RU (f)−
∑
i∈CP

∑
m∈CN

πiPi(f(x) 6= m)

−
∑

j,m∈CN,j 6=m
πjPj(f(x) 6= m)

=
∑
i∈CP

πi[Pi(f(x) 6= i)−
∑

m∈CN

Pi(f(x) 6= m)]

+
∑

m∈CN

PU (f(x) 6= m)−
∑

j,m∈CN,j 6=m
πjPj(f(x) 6= m).

(7)

Through calculating the RU (f) in unlabeled data, we can
successfully obtain the expected risk in the negative classes.
Now we are ready to solve the federated learning problem
with MPMN-PU data. Here we turn to the federated learning
setting, the expected risk can be formulated as:

Rall(f) =

K∑
k=1

Rk(f), (8)

where Rk(f) denote the expected risk in client k. Given
Eq. 7, the corresponding expectation of the expected risk
using in PU setting can be reformulated as:

E[Rk(f)] =
∑

i∈CPk

πiEki

P (f(x) 6= i)−
∑

m6∈CPk

P (f(x) 6= m)


+

∑
m 6∈CPk

EkU [P (f(x) 6= m)]

−
∑

j,m6∈CPk
,j 6=m

πjEkj [P (f(x) 6= m)] ,

(9)

Algorithm 1 The proposed FedPU learning algorithm.
Input: Training dataset Sk in each client k with nk train-

ing samples, class prior πi for each class i = 1, ..., C,
communication round T and training iteration I for
each client.

1: Server executes:
2: Initialize the network f(x;w0).
3: for each round t = 1, 2, . . . , T do
4: for each client k ∈ {1, 2, ...,K} in parallel do
5: wkt+1 ← ClientUpdate(k,wt)
6: end for
7: wt+1 ←

∑K
k=1

nk

n w
k
t+1

8: end for
9:

10: ClientUpdate(k,wt): // Run on client k
11: for each local epoch i from 1 to I do
12: Randomly select a batch of positive and unlabeled

data {xk} from the dataset Sk;
13: Calculate the first term and second term in Eq. 10

using labeled data by f(xP ;wt).
14: Calculate the third term in Eq. 10 using unlabeled

data by f(xU ;wt).
15: Minimize the loss function in Eq. 10 and update the

weights wkt according to the gradient.
16: end for
17: Return the updated weight wkt+1 to server.
Output: The model f(x;wT ) trained by PU data.

where Eki means the expectation for the labeled data of
ith class in client k, and EkU means the expected risk for
unlabeled data in client k.

Note that the federated MPMN-PU learning problem has
several negative classes, which is fundamentally different
with conventional PU learning problem (Liu et al., 2003; Xu
et al., 2017) whose negative class is a single class. We have
an additional term

∑
j,m 6∈CPk

,j 6=m πjEj [P (f(x) 6= m)] in
Eq. 9. Actually, this term denotes the misclassifiation loss
between the negative classes, which have not appeared in tra-
ditional PU problem since they only have a single negative
class.

Considering that the negative classes are un-
labeled, it is difficult to directly calculate∑
j,m 6∈CPk

,j 6=m πjEj [P (f(x) 6= m)]. Fortunately,
we have

⋃
Pk

CPk = C, which means that although we
have no information for the negative class in one client,
there exists labeled data for these classes in other clients.
Since the weights in central server is derived from the
combination of each client, we can calculate this term by
the labeled data in other clients. Specifically, assuming that
data in the same class in different clients follows the same
distribution, when updating the weights in client k1, we
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abundant the term
∑
j,mCNk1

,j 6=m πjE
k1
j [P (f(x) 6= m)],

while when updating the weights in client k2, we add
the term

∑
j,m∈CPk2

,j 6=m πjE
k1
j [P (f(x) 6= m)], where

j ∈ CNk1
, j ∈ CPk2

. According to the Eq. 8, since the
weights in central server is derived from the combination of
each client, the overall risk R(f) remains the same after
applying this approximation.

By applying the above technique to Eq. 9, we can success-
fully formulated the PU learning risk as:

E[Rk(f)] =
∑

i∈CPk

πiEki

P (f(x) 6= i)−
∑

m6∈CPk

P (f(x) 6= m)


+

∑
m 6∈CPk

EkU [P (f(x) 6= m)]

−
∑
kq 6=k

∑
i∈CPk

,i,m 6∈CPkq
,i 6=m

πiEki [P (f(x) 6= m)] ,

(10)

where the first and second terms are the risks from the
current client while the second term is derived from other
clients. Different with Eq. 9 that contains risk of negative
classes, the above equation can be easily minimized since
it only consists of the risk of positive data and unlabeled
data. Therefore, the overall expected risk in Eq. 5 can
be minimized by minimizing the above risk in each client.
Algorithm 1 shows the detailed procedure of the proposed
FedPU method.

3.3. Theoretical Analysis

In this section, we analyze the generation bound of the
proposed FedPU. We first evaluate the bound in each client.
Then the overall bound can be derived by summing these
bounds. Note that the proof of theorems and lemma can be
found in the supplementary materials.

Since the Eq. 10 has three terms, we begin with the first and
second terms.

Theorem 3.1. Fix f ∈ F , for any 0 < δ < 1, with proba-
bility at least 1− δ, the generalization bound holds:

Eki

P (f(x) 6= i)−
∑

m 6∈CPk

P (f(x) 6= m)


− 1

nki

nki∑
j=1

P (f(xj) 6= i)−
∑

m 6∈CPk

P (f(xj) 6= m)


≤2CV (

∑
s∈CPk

1√
nks

+
1√
nkU

) +

√
log 1

δ

2nki
,

(11)

where i ∈ CPk , V is a constant related to the VC-dimension
of f and the bound of function f , nki and nkU denotes the
number of samples in i-class and unlabeled classes in k-th
client, respectively.

Theorem 3.2. Fix f ∈ F , for any 0 < δ < 1, with proba-
bility at least 1− δ, the generalization bound holds:

Eki [P (f(x) 6= m)]− 1

nki

nki∑
j=1

P (f(xj) 6= m)

≤ CV (
∑

s∈CPk

1√
nks

+
1√
nkU

) +

√
log 1

δ

2nki
.

(12)

Theorem 3.1 and 3.2 presents the classical generalization
bound for the labeled data in each class, which can be sum-
marized to get the error bound for the first two terms in
Eq. 10. These bounded is related to the number of training
samples and the VC dimension of the function f .

However, it is difficult to derive the error bound of the last
term in Eq. 10 since the expectation is calculated on unla-
beled data, so we decompose this term using the following
lemma.

Lemma 3.3. Define

P ′(f(x) 6= m) =
kCUk

kCUk +
∏
i 6∈CPk

|k − i|
P (f(x) 6= m),

(13)
whereCUk denotes the number of unlabeled classes in client
k. The last term in Eq. 10 can be decomposed as:

∑
m 6∈CPk

EkU [P (f(x) 6= m)]

=
∑

i∈CPk

πi(

∏
i6∈CPk

|k − i|

kCUk
)
∑

m 6∈CPk

Eki
[
P ′(f(x) 6= m)

]
+

∑
m 6∈CPk

EkU
[
P ′(f(x) 6= m)

]
.

(14)

Here we briefly explain the decomposition of the above
lemma. We perform a transformation in the risk of unla-
beled data, which introducing the term of labeled data in
Eq. 14. Therefore, based on Lemma 3.3, we can present
the generalization bound for the unlabeled data utilizing the
labeled data with the following theorem.

Theorem 3.4. Fix f ∈ F , for any 0 < δ < 1, with proba-
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Table 1. Classification result on iid data.
Num of Clients Num of P-class Overlap Baseline-1 Proposed Method Baseline-2

10 2 ! 85.47% 92.50% 97.95%
4 6 ! 92.10% 95.08% 98.05%
2 9 ! 93.15% 95.37% 98.20%

10 1 % 37.13% 84.15% 97.95%
5 2 % 73.41% 93.45% 98.03%
2 5 % 74.00% 93.73% 98.20%

bility at least 1− δ, the generalization bound holds:

∑
m6∈CPk

EkU [P (f(x) 6= m)]−
1

nkU

nk∑
j=1

∑
m6∈CPk

Ekj
[
P

′
(f(x) 6= m)

]

≤
∑

i∈CPk

πi

nki
(1 +

∏
i6∈CPk

|k − i|

k
CUk

)

nki∑
j=1

∑
m6∈CPk

Ekj
[
P

′
(f(x) 6= m)

]
+ (

∑
i∈CPk

πi + 1)CV (
∑

s∈CPk

1√
nks

+
1√
nkU

) +
∑

i∈CPk

πi(1 +

∏
i6∈CPk

|k − i|

k
CUk

)

√
log 1

δ

2nki
+

√
log 1

δ

2nkU
.

(15)

Now we are ready to present the generalization bound for
Eq. 10.

Theorem 3.5. As nki , n
k
U → ∞, i ∈ CPk , k ∈ {1, ...,K},

the generalization bound of the proposed FedPU is of order:

O

 K∑
k=1

C2(
∑
i∈CPk

1√
nki

+
1√
nkU

)

 . (16)

It should be noted that for fully labeled data, the general-
ization bound using federated learning should be of order

O

(∑K
k=1(

C2√∑
i∈CPk

nki+n
k
U

)

)
. As a result, the proposed

method is no worse than C
√
C times (assuming that each

class has the same order of samples) of the fully-supervised
models. Moreover, for the classical learning with fully la-
beled data (without federated learning), the generalization

bound would be of order O

 C2√∑K
k=1(

∑
i∈CPk

nki+n
k
U )

.

Therefore, the proposed method is no worse than CK
√
CK

times of the fully-supervised models without federated learn-
ing.

4. Experiments
In this section, we show the experimental results of the
proposed method in both iid data and non-iid data on the

MNIST and CIFAR-10 dataset. We also conduct ablation
study to verify the effectiveness of the proposed method in
different settings.

We first detail the training strategy used in the following ex-
periments. The SGD optimizer is used to train the network
with momentum 0.5. For federated learning, we set the com-
munication round as 200. For each client, the local epoch
and local batchsize for training the network in each round is
set as 1 and 100. The learning rate is initialized as 0.01 and
exponentially decayed by 0.995 over communication rounds
on the MNIST dataset. To show the effectiveness of the pro-
posed method, we compare the proposed method with two
different baselines. Baseline-1 denotes that the network
is trained using only positive data and FedAvg (McMahan
et al., 2017). Baseline-2 denotes that the network is trained
using conventional PU learning and FedAvg. Baseline-3
denotes that the network is trained using fully-supervised
data and FedAvg. Note that we also conduct experiments
on FedSGD (McMahan et al., 2017) and FedProx (Li et al.,
2020), which can be found in the supplementary materials.

4.1. Performance on iid Data with Balanced Positive
Classes

We evaluate our method in iid setting of federated learning,
where the training data in each client is uniformly sampled
from the original dataset. Specifically, we uniformly divide
the training set into K parts, where each part of data is
class-imbalanced. Since the ability of each client is lim-
ited, only a few classes can be labeled. Moreover, only part
of data in these classes is labeled. To fully investigate the
ability of the proposed method, we conduct different set-
tings as shown in Table 1, including using different number
of clients ({2, 4, 5, 10}) and different number of positive
classes ({1, 2, 5, 6, 9}). We also investigate the influence of
overlap of positive classes between different clients. Only
half of data in each positive class is labeled.

We conduct experiments on the MNIST dataset, which is
composed of images with 28× 28 pixels from 10 categories.
The MNIST dataset consists of 60,000 training images and
10,000 testing images. The results are shown in Table 1. We
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Table 2. Classification results with different number of positive classes in each client.
Division of P-class Overlap Baseline-1 Proposed Method Baseline-2

[2,3,4,6,7,8] ! 93.84% 95.32% 97.91%
[1,2,4,6,7] ! 93.81% 95.01% 98.03%
[2,4,6,8] ! 92.27% 95.28% 98.05%

[3,7] % 89.68% 94.68% 98.20%
[2,3,5] % 71.46% 93.65% 98.16%

[1,2,3,4] % 74.27% 94.48% 98.05%

Table 3. Classification result on non-iid data.
Num of Partitions Division of P-class Overlap Baseline-1 Proposed Method Baseline-2

5 [2,2,...,2] ! 25.47% 91.67% 97.47%
5 [1,1,...,1] % 24.37% 91.24% 97.47%
5 [4,4,3,3,2,2,1,1,1,1] ! 76.92% 92.16% 97.47%
2 [1,1,...,1] % 69.24% 91.29% 96.19%

first investigate the setting that each client has overlap in
positive classes and the number of clients varies from 2 to
10.

The Baseline-1 trained with positive data can only achieve
85.47%, 92.10% and 93.15% accuracies for 10, 4 and
2 clients, respectively. It can be seen that as the num-
ber of clients increases, the data is more discrete, which
makes the accuracies of learned networks lower. Although
the Baseline-2 can achieve higher performance (97.95%,
98.05% and 98.20%), the networks should be trained with
fully supervised data, which is usually unavailable in real-
world applications. In contrast, the proposed method
can achieve 92.50%, 95.08% and 95.37% accuracies, re-
spectively, which is consistently higher than those of the
Baseline-1 and comparable to Baseline-2.

We further investigate the non-overlap setting, where pos-
itive classes in each client are not overlaped. This set-
ting is challenging, since the information of every class
is contained in only one client. As a result, the Baseline-1
trained with positive data achieves only 37.13%, 73.41%
and 74.00% accuracies for 10, 5 and 2 clients, respectively.
The proposed FedPU can still achieve 84.15%, 93.45% and
93.73% accuracies by fully inheriting the information from
the unlabeled data. These experiments show that the pro-
posed method can perform well with iid data in federated
setting.

4.2. Performance on iid Data with Imbalanced Positive
Classes

To further investigate the effectiveness of the proposed
method, we study a more complicated setting that the num-
ber of positive classes is different in each client. The results

are in shown in Table 2. For example, the division of P-class
is [2, 3, 4, 6, 7, 8] means there are 6 clients consists of 2, 3,
4, 6, 7 and 8 positive classes, respectively. We also study
both the overlap and non-overlap settings.

The Baseline-1 achieves 93.84%, 93.81% and 92.27% accu-
racies for different divisions of positive classes in the over-
lap setting, while the proposed method can achieve 95.32%,
95.01% and 92.28% accuracies, respectively, which is much
higher than Baseline-1. The results in non-overlap setting
is worse than those in overlap setting, which is consistent
with the results in Table 1 where the number of positive
classes is the same in each client. The Baseline-1 achieves
only 89.68%, 71.46% and 74.27% accuracies. When the
number of clients grows, the performance of Baseline-1
drops dramatically. In contrast, the proposed method can
achieve 94.68%, 93.65% and 94.48% accuracies, which sur-
passes those of the Baseline-1 and is stable with different
numbers of clients. Note that although the Baseline-2 can
achieve a ∼98% accuracy in all settings, it should trained
with fully supervised data and violate most of the scenarios
in real-world applications.

4.3. Performance on Non-iid Data

Another important setting for federated learning is that the
data in different client is under the non-iid distribution.
Therefore, we follow the settings in (Li et al., 2018) to
construct the non-iid data, where the data is sorted by class
and divided to create two extreme cases: (a) 5-class non-iid,
where the sorted data is divided into 50 partitions and each
client is randomly assigned 5 partitions from 5 classes. (b)
2-class non-iid, where the sorted data is divided into 20
partitions and each client is randomly assigned 2 partitions
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Table 4. Classification results on CIFAR-10 dataset
Data Distribution Division of P-class Overlap Baseline-1 Proposed Method Baseline-2 Baseline-3

iid [2,2,2,2,2] % 65.52% 76.81% 81.13% 74.15%
iid [1,2,4,6,7] X 71.42% 75.41 % 81.13% -

non-iid [2,2,2,2,2,2,2,2,2,2] X 52.39% 61.05% 72.61% 58.77&
non-iid [4,4,3,3,2,2,1,1,1,1] X 55.57% 65.73% 72.61% -

Table 5. Comparison with semi-supervised methods on CIFAR-10 dataset
Methods Supervised FedAVG UDA FixMatch FedMatch Ours
IID Acc. 80.25% 47.45% 47.20% 52.13 % 58.25%

Non-IID Acc. 84.70% 46.31% 46.20% 52.25% 55.20%

Table 6. Classification results with different percentage of positive
samples.

Percentage Baseline-1 FedPU Baseline-2
1/3 91.22% 94.46% 98.05%
1/2 93.24% 95.31% 98.05%
2/3 94.11% 95.60% 98.05%

from 2 classes.

For 5-class non-iid, we study three different divide settings
for positive classes in each client, which is shown in Table 3.
Compared with the iid setting, the non-iid setting is more
challenging since the data distribution in each client is dif-
ferent and it is hard for the model to effectively learn the
latent distribution on the whole dataset. Therefore, Baseline-
1 can achieve only 25.47%, 24.37% and 79.62% accuracies
when dealing with non-iid and unlabeled data, which is
hard to optimize. In contrast, the proposed method can still
achieve 91.67%, 91.24% and 92.16% accuracies, respec-
tively, which outperforms Baseline-1 by a large margin.

For 2-class non-iid, Baseline-1 achieves a 69.24% accuracy
while the proposed method achieves a 91.29% accuracy,
which still shows the superiority of the proposed FedPU.
It should be noted that although the baseline method can
achieve ∼ 98% accuracy, it requires the fully labeled data
to train the model in each client. In contrast, the proposed
method requires only a small amount of labeled data and uti-
lizes the information on unlabeled data to learn an effective
model. In conclusion, the proposed method successfully
learns the latent distribution from the positive and unlabeled
data in the non-iid federated setting and achieve better per-
formance than conventional federated learning methods.

4.4. Ablation Study

In the above sections, we study the PU setting where there
are half of data in each positive classes are labeled on the
MNIST dataset. Here we make an ablation study to investi-

gate the impact of the percentage of labeled data in positive
class. We use 4 clients whose number of positive classes
are all equal to 6. The data is collected with iid distributions
from each client. As shown in Table 6, with the growth of
the percentage of labeled data (from 1/3 to 2/3), the accuracy
of the proposed method can be improved from 94.46% to
95.60%, which indicates the effectiveness of the proposed
method with different percentage of labeled data.

4.5. Experiments on CIFAR-10

After investigating the performance of the proposed FedPU
on MNIST dataset, we further evaluate our method on
the CIFAR-10 dataset. The CIFAR-10 dataset consists of
50,000 training images and 10,000 testing images with size
32× 32× 3 from 10 categories. The training strategy is the
same as that on the MNIST dataset. As shown in Table 4,
experiments on different settings (e.g., data distribution, divi-
sion of positive classes, overlap), are conducted to evaluate
the effectiveness of the proposed method.

We first investigate the results on the iid data. 5 clients
with 2 positive classes in each client are used to train the
model. The positive classes have no overlap. The FedAvg
method trained with positive data achieves only a 62.52%
accuracy. The proposed method achieves a 76.71% accuracy
with the help of unlabeled data, which is more close to the
result (81.13%) trained with fully supervised data. Then,
we turn to explore the challenging situation that each client
has different number of positive class ([1,2,4,6,7]). The
proposed method still achieves a 75.41% accuracy, which is
much higher than that of Baseline-1 (71.42%).

We further construct the non-iid data on CIFAR-10 dataset
following (Li et al., 2018), where each class of the train-
ing data is randomly divided into 5 partitions (50 partitions
for 10 classes) and each client is randomly assigned 5 par-
titions from 5 classes. We also investigate the situation
that each client has the same/different number of positive
classes. As shown in Table 4, the models trained by the
proposed method achieve accuracies of 61.05% and 65.73%
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and surpass those trained with the baseline method by a
large margin (8.66% and 10.16%). In conclusion, the pro-
posed method significantly improves the performance of the
existing federated learning method in different settings on
CIFAR-10 dataset.

4.6. Comparison with Semi-supervised Methods

To further show the superiority of the proposed method, we
conduct comparison with the semi-supervised algorithms
in federated setting. We follow the setting in (Jeong et al.,
2021) to use CIFAR-10 datasets. Specifically, 5 labeled
images are extracted in per class for each client (100 clients)
and the rest of images are used as unlabeled data. Table 5
shows the performance of FedAVG using supervised data,
UDA ((Xie et al., 2019)), FixMatch ((Sohn et al., 2020)),
FedMatch ((Jeong et al., 2021)) and the proposed FedPU.
The proposed method achieve the state-of-the-art perfor-
mance among all semi-supervised methods.

Table 7. Classification result on CIFAR-10 dataset.
Data Distribution Iid Non-iid

Baseline-1 65.52% 52.39%
Baseline-3 74.15% 58.77%

FedPU π=0.1 76.51% 61.05%
FedPU π=0.05 75.37% 60.13%
FedPU π=0.08 76.43% 60.67%

Baseline-2 81.13% 72.61%

4.7. Results with Different Class Prior

The class priors are necessary for applying the proposed
method, which is assumed to be given. When the class priors
are unknown, they can be estimated following (Du Plessis
& Sugiyama, 2014). Therefore, we further analyze the
sensitivity of the estimated class prior. Table 7 shows the
results of the proposed method using different class prior.
The proposed method can achieve similar performance using
different class priors and achieve the best performance when
the class prior is known (π=0.1), which suggest the proposed
method is robust with different estimated class priors.

5. Conclusion
We study a real-world setting in federated learning problem,
where each client could only label limited number of data
in part of classes. Existing federated learning algorithms
can hardly achieve satisfying performance since they cannot
minimize the expected risk for each class in each client. To
address this problem, we propose the Federated learning
with Positive and Unlabeled data (FedPU) algorithm, which
can effectively learn from both labeled and unlabeled data
for each client. Theoretical analysis and empirical experi-

ments demonstrate that the proposed method can achieve
better performance than the conventional federated learning
method learned by the positive data.
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A. Proofs
Theorem A.1. Fix f ∈ F , for any 0 < δ < 1, with proba-
bility at least 1− δ, the generalization bound holds:

Eki

P (f(x) 6= i)−
∑

m6∈CPk

P (f(x) 6= m)


− 1

nki

nki∑
j=1

P (f(xj) 6= i)−
∑

m6∈CPk

P (f(xj) 6= m)


≤2CV (

∑
s∈CPk

1√
nks

+
1√
nkU

) +

√
log 1

δ

2nki
,

(17)
where i ∈ CPk , V is a constant related to the VC-dimension
of f and the bound of loss function l, nki and nkU denotes
the number of samples in i-class and unlabeled classes in
k-th client, respectively.

Proof. According to (Koltchinskii et al., 2002), denoteR(f)
as the generalization error of hypothesis f , R̂S,ρ(f) as
its empirical margin loss with bound ρ, and Rm(f) as
Rademacher complexity of the family of loss functions f ,
with probability at least 1− δ, we have:

R(f) ≤ R̂S,ρ(f) +
4C

ρ
Rn(f) +

√
log 1

δ

n
, (18)

where n is the number of training samples and C is the
number of classes.

According to (Bousquet et al., 2003), we have:

Rm(f) ≤ V ′
√
d

n
, (19)

where d is the Vapnik–Chervonenkis (VC) dimension of f ,
V ′ is a constant. Taking m in nki and nkU , we have:

Rm(f) ≤ V ′
√
d(
∑

s∈CPk

1√
nks

+
1√
nkU

). (20)

Taking V = 4V ′
√
d
ρ , we then finish the proof.

Theorem A.2. Fix f ∈ F , for any 0 < δ < 1, with proba-
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Table 8. Classification result on iid data.
Num of Clients Num of P-class Overlap Baseline-1 Proposed Method Baseline-2

10 2 ! 89.59% 90.25% 97.95%
4 6 ! 94.08% 94.22% 98.05%
2 9 ! 94.36% 94.57% 98.20%
10 1 % 74.07% 89.78% 97.95%
5 2 % 90.58% 94.09% 98.03%
2 5 % 94.38% 94.62% 98.20%

Table 9. Classification results with different number of positive classes in each client.
Division of P-class Overlap Baseline-1 Proposed Method Baseline-2

[2,3,4,6,7,8] ! 89.21% 93.33% 97.91%
[1,2,4,6,7] ! 90.38% 93.53% 98.03%
[2,4,6,8] ! 93.20% 94.74% 98.05%

[3,7] % 93.56% 94.08% 98.20%
[2,3,5] % 89.24% 93.24% 98.16%

[1,2,3,4] % 89.18% 93.72% 98.05%

bility at least 1− δ, the generalization bound holds:

Eki [P (f(x) 6= m)]− 1

nki

nki∑
j=1

P (f(xj) 6= m)

≤ CV (
∑

s∈CPk

1√
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+
1√
nkU

) +

√
log 1

δ

2nki
.

(21)

The proof of Theorem 2 is the same as that of Theorem 1.

Lemma A.3. Define

P ′(f(x) 6= m) =
kCUk

kCUk +
∏
i 6∈CPk

|k − i|
P (f(x) 6= m),

(22)
where CUk denotes the number of unlabeled class in client
k. The decomposition is hold:∑

m 6∈CPk
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Proof. Given

P ′(f(x) 6= m) =
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we have:
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Theorem A.4. Fix f ∈ F , for any 0 < δ < 1, with proba-
bility at least 1− δ, the generalization bound holds:
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Table 10. Classification result on non-iid data.
Num of Partitions Division of P-class Overlap Baseline-1 Proposed Method Baseline-2

5 [2,2,...,2] ! 90.17% 92.54% 97.47%
5 [1,1,...,1] % 61.70% 89.69% 97.47%
5 [4,4,3,3,2,2,1,1,1,1] ! 81.74% 90.48% 97.47%
2 [1,1,...,1] % 85.07% 88.62% 96.19%

Table 11. Classification result using FedProx.
Stragglers Baseline-1 Proposed Method Baseline-2

0% 43.41% 47.50% 69.76%
50% 41.72% 43.05% 67.81%
90% 39.82% 41.35% 62.46%

With the evidence of Lemma 3, the proof of Theorem 4 is
the same as that of Theorem 1.

Theorem A.5. As nki , n
k
U →∞, i ∈ CPk , k ∈ {1, ...,K},

the generalization bound of the proposed FedPU is of order:

O

 K∑
k=1

C2(
∑
i∈CPk

1√
nki

+
1√
nkU

)

 . (27)

By concluding the result in Theorem 1, 2 and 4. We
can derive that the generalization bound in k-th client as

O
(
C2(

∑
i∈CPk

1√
nki

+ 1√
nkU

)

)
. By summing the bound

in each client, we then finish the proof.

B. Results on FedSGD
We conduct the proposed method and baseline using
FedSGD (McMahan et al., 2017). The results are shown
in Table 8, 9 and 10, which is consistent with those using
FedAvg in the main paper.

We evaluate our method in iid setting of federated learn-
ing, where the training data in each client is uniformly
sampled from the original dataset. The Baseline-1 trained
with positive data can only achieve 89.59%, 90.25% and
90.25, 94.22%, 94.57% and 95.37% accuracies, respectively,
which is consistently higher than those of the Baseline-1
and comparable to Baseline-2. We further investigate the
non-overlap setting. As a result, the Baseline-1 trained with
positive data achieves only 74.07%, 90.58% and 94.38% ac-
curacies for 10, 5 and 2 clients, respectively. The proposed
FedPU can still achieve 89.78%, 94.09% and 95.62% accu-
racies by fully inheriting the information from the unlabeled
data. These experiments show that the proposed method can
perform well with iid data in federated setting.

To further investigate the effectiveness of the proposed

method, we study a more complicated setting that the num-
ber of positive classes is different in each client. The results
are in shown in Table 9. The Baseline-1 achieves lower
performance than the proposed method. The results in non-
overlap setting is worse than those in overlap setting, which
is consistent with the results in Table 8. In contrast, the
proposed method can surpasses those of the Baseline-1 and
is stable with different numbers of clients.

Another important setting for federated learning is that the
data in different client is under the non-iid distribution. Com-
pared with the iid setting, the non-iid setting is more chal-
lenging since the data distribution in each client is different
and it is hard for the model to effectively learn the latent
distribution on the whole dataset. The proposed method
can still outperforms Baseline-1 by a large margin, which is
shown in Table 10.

C. Results on FedProx
To further demonstrate the effectiveness of the proposed
method, we conduct the proposed method and baseline us-
ing FedProx (Li et al., 2020). We test the non-iid settings
using the division of [2, 2, ..., 2]. We use 100 clients and
each client has 5 partitions. The select rate and positive
rate is set as 0.1. Table 11 shows the experimental results.
Under the different percentage of straggles, our methods
stably outperform the baseline-1, which demonstrate the
generality of the proposed method in different federated
learning method,


