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Abstract

Follow-the-Regularized-Leader (FTRL) and On-
line Mirror Descent (OMD) are regret minimiza-
tion algorithms for Online Convex Optimiza-
tion (OCO), they are mathematically elegant but
less practical in solving Extensive-Form Games
(EFGs). Counterfactual Regret Minimization
(CFR) is a technique for approximating Nash equi-
libria in EFGs. CFR and its variants have a fast
convergence rate in practice, but their theoreti-
cal results are not satisfactory. In recent years,
researchers have been trying to link CFRs with
OCO algorithms, which may provide new theo-
retical results and inspire new algorithms. How-
ever, existing analysis is restricted to local deci-
sion points. In this paper, we show that CFRs
with Regret Matching and Regret Matching+ are
equivalent to special cases of FTRL and OMD,
respectively. According to these equivalences, a
new FTRL and a new OMD algorithm, which
can be considered as extensions of vanilla CFR
and CFR+, are derived. The experimental results
show that the two variants converge faster than
conventional FTRL and OMD, even faster than
vanilla CFR and CFR+ in some EFGs.

1. Introduction

An Extensive-Form Game (EFG) involves multiple players
and sequential decisions. In this paper, we focus on two-
player zero-sum EFGs with imperfect information, for exam-
ple, heads-up no-limit Texas hold’em poker (HUNL). One
can approximate a Nash equilibrium in this kind of game
using iterative regret minimization algorithms, e.g., Counter-
factual Regret Minimization (CFR) (Zinkevich et al., 2007).
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CFR minimizes the total regret of each player by minimiz-
ing the counterfactual regrets in local decision points. CFRs
usually use Regret Matching (RM) (Zinkevich et al., 2007)
and Regret Matching+ (RM+) (Tammelin et al., 2015) for
minimizing the counterfactual regrets, resulting in CFR-RM
and CFR-RM+ algorithms, respectively. In recent years,
many variants of CFR have been proposed (Tammelin et al.,
2015; Brown & Sandholm, 2019b; Farina et al., 2021). Al-
though CFRs can only guarantee to converge to a Nash equi-
librium at a rate of O(1/+/T), they usually converge much
faster in practice. Because of the superior performance and
the parameter-free property, CFR and its variants have been
applied in multiple super-human HUNL agents (Moravcik
et al., 2017; Brown & Sandholm, 2018; 2019a). However,
the theoretical results for CFRs are not satisfactory. Fun-
damentally, CFR-RM and CFR-RM+ are specialized for
EFGs, which makes them difficult to analyze.

Follow-the-Regularized-Leader (FTRL) (Abernethy et al.,
2008) and Online Mirror Descent (OMD) (Beck & Teboulle,
2003) are two prominent Online Convex Optimization
(OCO) algorithms (Shalev-Shwartz, 2012; Hazan, 2016).
OCO algorithms are mathematically elegant and the theo-
retical results are promising. In (Farina et al., 2019b), the
optimistic variants of FTRL and OMD have been applied to
EFGs, showing a theoretical convergence rate of O(1/T).
However, they remain less competitive than the SOTA CFRs
(Brown & Sandholm, 2019b; Farina et al., 2021) in practice.
There are some other first-order methods (Hoda et al., 2010;
Kroer et al., 2020) for EFGs. However, they are also inferior
in performance to the SOTA CFRs.

Recently, researchers have been interested in linking CFRs
with OCO (and first-order) algorithms (Waugh & Bagnell,
2015; Farina et al., 2021), which may provide some in-
sight on the superior performance of CFRs or may help to
design new regret minimization algorithms for EFGs. In
(Waugh & Bagnell, 2015), the authors have proven that RM
is equivalent to dual average (a form of FTRL) (Nesterov,
2009). In (Farina et al., 2021), it has been proven that the
results of RM and RM+ can be recovered by FTRL and
OMD, respectively. And based on these relationships, the
optimistic variants of CFR and CFR+ have been proposed.
However, these work only considers the connection between
RM (RM+) and FTRL (OMD), which can not be extended to
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the equivalence between CFR-RM (CFR-RM+) and FTRL
(OMD).

In this paper, we first propose a Future-Dependent FTRL
(FD-FTRL) and a Future-Dependent OMD (FD-OMD),
which have a special regularizer that depends on future
decisions. Crucially, they belong to the FTRL and OMD
families and are able to leverage many existing theoretical
results. Then, we prove that CFR-RM and CFR-RM+ are
equivalent to special cases of FD-FTRL and FD-OMD, re-
spectively. The equivalences reveal that: 1) the cumulative
counterfactual regrets in CFRs can be viewed as adaptive
regularization parameters; 2) CFRs are special adaptive
FTRL and OMD, which may partially explain the superior
performance of CFRs over FTRL and OMD; 3) FTRL and
OMD are more general than CFRs, and, contrary to previ-
ous findings (Farina et al., 2019b), they are not necessarily
worse than CFRs in EFGs, as long as they are configured
properly. In order to investigate whether (FD-)FTRL and
(FD-)OMD can converge faster than CFRs in EFGs, two
practical implementations of FD-FTRL and FD-OMD are
presented, and various configurations are tested. Experimen-
tal results show that FD-FTRL and FD-OMD can recover
vanilla CFR and CFR+, respectively, and they can even con-
verge faster than vanilla CFR and CFR+ in some EFGs. In
conclusion, the contributions of the paper are:

* An equivalence between CFR-RM (CFR-RM+) and
FTRL (OMD) is established, which may provide op-
portunities for communication between CFR and OCO.

* As the bridges, FD-FTRL and FD-OMD with a future-
dependent regularizer are proposed. Besides, experi-
ments involving various configurations are performed,
showing that (FD-)FTRL and (FD-)OMD can be com-
petitive compared with CFRs.

2. Preliminaries

The process of a player in a two-player zero-sum EFG can
be described as a sequential decision process (Farina et al.,
2019a). A sequential decision process consists of two kinds
of points: decision points and observation points. The set of
decision points is denoted by .7, and the set of observation
points is denoted by /. At each decision point j € 7,
the agent has to make a (local) decision &; € A", where
A" is a simplex over the action set A; and n; = |A,|.
The set of all actions is denoted by .A. The combination
of &, in all decision points is called a strategy. Let &;a]
be the probability of choosing action a € A;. Each action
leads the agent to an observation point k£ € K, denoted
by k = p(j,a). At each observation point, the agent will
receive a signal s € Si. After observing the signal, the
agent reaches another decision point j' € J, written as
j" = p(k,s). The set of decision points that are earliest

reachable after choosing action a at j is denoted by Cj ,.
Formally, C; , = {p(p(j,a),s) : s € Sy(ja)}- If §’ € Cjas
we say that 5 is a child of j and j is the parent of j'. Denote
the set of all descending decision points of j (including j)
by Cy; = {it YU ec;. aea, CLir- We assume that the
process forms a tree. In other words, Cj, N Cjr o = 0
for any (j,a) # (j',a’). This is equivalent to the perfect-
recall assumption in EFGs. We assume a sequential decision
process always starts from a decision point, named the root
decision point and denoted by o. An illustration is given in
Appendix B.

2.1. Sequence-Form Strategy

A strategy can be represented in a sequence form (Von Sten-
gel, 1996). A sequence is a series of (j,a) starting from
the root in a sequential decision process. In sequence-form
representation, a strategy is the combination of the prob-
abilities of playing each sequence. In this paper, we will
formulate the sequence-form strategy space as a treeplex
(Hoda et al., 2010) and follow the construction in (Farina
et al., 2019b). Formally, denote the sequence-form strategy
space by X, and denote a strategy in X by . X can be
obtained recursively: at every decision point j € 7, let
Xja= Hj'ecm X+ (cartesian product); let

X = {(@), &j[a1]zja, - Ejlan,|Tja,,) :

. n.
T cA J;wj,al S Xj,alv . 7Il3j7anj € Xj-,anj },

where £; € A™ and (a1, ...,a,;) = Aj; let X = &,. As
we can see, each entry is corresponding to a sequence with
the value representing the probability of playing the whole
sequence. Crucially, X" and all X; are treeplexes, so they
are convex and compact (Hoda et al., 2010). Intuitively, X
is the sequence-form strategy space of the sub-sequential
decision process that starts from decision point j.

Given a concatenated vector z = (2;,,...,%2j,,) €
RXk= "k, e.g., an x € X, we may need to isolate a sub-
vector related to decision point j only. Formally, let z[j]
represent the n; entries related to decision point j, and let
z[j, a] represent the entry corresponding to (4, a). Besides,
let z[] j] denote the sub-vector corresponding to the deci-
sion points in C'; ;. For any vector z € R"7, e.g., a decision
&, at j, we use z[a] to represent the entry corresponding to
a. Let p; denote the pair (5, a’) such that j € C}s 4. Then,
x[p;] = x[j’,d’] is the probability of reaching decision
point j. Note that p, is undefined. For convenience, we let
x[p,] = 1. Based on the above definitions, there are simple
mappings among an x € &, an ; € X;, and a decision
&; € A" . Formally, we redefine that =; = x[| j]/z[p,]
and &; = x[j]/x[p;] for any j € 7. In the rest of the paper,
we use normal symbols, e.g.,  and x;, to represent the
variables that are related to the sequence-form space, and
use symbols with hats, e.g., &, to represent the variables
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that are related to local decision points.

2.2. Nash Equilibrium and Regret Minimization

Based on the sequence-form representation, the problem of
finding a Nash equilibrium in a two-player zero-sum EFG
with perfect recall can be formulated as a bilinear saddle-
point problem (BSPP) (Kroer et al., 2020). A BSPP for an
EFG has the form

min max T Ay = max min " Ay, (1)
TEX yey yey zeX

where X and ) are the strategy spaces for player 1 and
player 2, respectively. A is a matrix encoding the losses
for player 1, so ™ Ay is the expected loss for it. Without
loss of generality, the main results will be represented under
the viewpoint of player 1. Define the strategy profile as
(z,y) € X x Y. The exploitability of (x,y) is defined as

e(z,y) = max =T Ay’ — min 2'TAy. )

A Nash equilibrium is a strategy profile (x*, y*) such that
e(x*,y*) = 0. Let I = Ay. The expected loss for player
1 can be reformulated as (I, x), which is linear in x. Note
that (L,2) = ;e 0 2ll) = Xjeq bl ).
Based on this linearity, the sequence-form representation
has been used with linear programming (Koller et al., 1996),
first-order methods (Hoda et al., 2010; Kroer et al., 2020),
and regret minimization algorithms (Farina et al., 2019b)

for approximating Nash equilibria in zero-sum EFGs.

A regret minimization algorithm observes a loss I at ev-
ery iteration and chooses a strategy 't! € X based on
the losses I', - - - , I* and the previous strategies !, - - - , .

The target is to minimize the fotal regret, defined as
T
RT =max > {{',a") - (', 2')}. 3)

Define the cumulative loss as LT = Zf 1 U'. The frame-
work is given in Algorithm 1. It is well known that in a
two-player zero-sum game, ¢(Z’, 5’ ) = (RT + RY)/T,
where RT and RI are the total regrets for player 1 and
player 2, respectively, T and y are the average strategies.
Therefore, if RT and R] grow sub-linearly, (z”,y”) will
converge to a Nash equilibrium as T' — oo.

Algorithm 1 Regret Minimization Framework

1: for iterationt = 1to T do

2: 1" + ObserveLoss(z?").

3:  x!t! « Update(lt,...,
4: end for

Algorithm 2 Localized Regret Minimization Framework

: function Update(l', ... It !, ... =)
for node j € J in bottom-up order do
:i;“ + LocalUpdate(l',... Itz ... xt).

Construct and Return **1.

1
2
3:
4:  end for
5
6: end function

2.3. Counterfactual Regret Minimization (CFR)

CFR is a regret minimization algorithm for two-player zero-
sum games. It has been proven that the total regret of each
player after T iterations is bounded by O(+/T') and thus
the average strategies will converge to a Nash equilibrium
at a rate of O(1/v/T) (Zinkevich et al., 2007). In (Farina
et al., 2019a), CFR has been reformulated based on the
sequence-form representation. In this paper, we will follow
the formulation. Given a strategy ! € X and a loss I €
R2-ic7 ™ CFR constructs a counterfactual loss lAE € R
recursively for each 7 € J:

Lol =Ula+ 3 ({.2h). @

J'€Cj.a

Note that (I}, &,) = (I', ) Deﬁne the cumulative coun-

terfactual loss as LT = 7/, It. According to (4),
t
Lifa) = L'[j,a] + (Zaf i-f)) )
§'€C5a \k=1

Besides, the instantaneous counterfactual regret is defined
as 7t = (I}, &%)1 — I’, where 1 is an all-ones vector. The
cumulative counterfactual regret is defined as

t t

Zf; = (Z (1, Ak>> 1- L (6)

k=1 k=1
Let RJT = maxeea, ﬁjT [a]. The point of CFR is that
R < Y. ;R AT} where [-]7 = max {-,0} (Zinkevich
et al., 2007). Accordlngly, CFR instantiates a local regret
minimizer to minimize RJT for each decision point j € J.
A loss I received by a CFR algorithm is processed as fol-
lows: (i) the loss is decomposed into {l;};c7; (ii) each
local minimizer observes the corresponding loss i; and re-
turns the next local decision :ct+1 e A" (iii) constructs
2t according to the local de01510ns.

Many local minimizers can be used, for example, RM
and RM+, resulting in CFR-RM and CFR-RM+, respec-
tively. The updates are summarized in Table 1, which can
be plugged into Algorithm 2. As we can see, instead of
tracking Rt, RM+ tracks a special truncated cumulative

counterfactual regret Q§ at every decision point. Note
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Table 1: The local updates of the algorithms, can be plugged into Algorithm 2.

Algorithm CFR-RM CFR-RM+
lla] < Ul.al + Yjee, , (025, Bla] = Vlj.al + Y, , @),
LocalUpdate R « R.™' + (%, &' 1_lt t t—1 tAtl_t
o Atj+1 JAt + i t i RM ?t+1 [Q t i 7 j] RM+
&« [R/IIR 2 — QL /1Q% -
Algorithm  (FD-)FTRL (FD-)OMD
N . Ua] < U'[j,a] + 3, I't, where
L?*a] « L'[j o, —UH(=LY), ’ €050 " A
LocalUpdate At]+[?] Ev a] j’ltzj €Cja dj] ( j ) l/t (_ d)*tfl(thfl(:& /)) 1/J*t(V7,ZJ;Tl(:i:§,) . l;t/),
m] = Vw] <_LJ ) At-‘rl — v,(/)*f(th 1( ) l/t)
Algorithm  FD-FTRL(R) FD-FTRL(R)
LMa) « L'j,a] + X icq, , @b o] 1,0 + X cq, , b
LocalUpdate solve o w.r.t. (13), solve o w.r.t. (14),

R;-t — 042.1 — IA};-t,
& [RIT/([RY]T |-

Qf + QI +at1

_[/t]+
] b
st+1 1t A1t

T« QF /1R

that R§ < Qt, which means R; will also been minimized

when minimizing Qj Intuitively, RM+ is more sensitive
to positive instantaneous regrets and thus can minimize the
cumulative regrets faster. We assume that

Assumption 2.1. ||[R§]+H1 > 0 and ||Q§||1 >0,VjeJ
and t > 0.

This assumption is needed for the equivalence analysis be-
low. It can be satisfied by initializing R? and Q? to a small
value €1 > 0." A discussion is given in Appendix C.

Finally, there is a useful lemma provided in (Liu et al., 2022),
as shown in Lemma 2.2. The proof is given in Appendix C.
As a result, the famous regret bound RT < 3 jeg [RT]*

Y~ (@2} =

is immediately recovered as Zthl {1, =

Zjey [ }<Zt 1 T t />

Lemma 2.2. (Liu et al., 2022) For any x,x' € X and loss
l e RXjes " let 7 be the instantaneous regret at decision
point j under strategy x and loss 1, then, (l,x) — (l,x’) =

Z]ejw [pﬂ(m,w/)

2.4. Online Convex Optimization (OCO)

The total regret can also be minimized using OCO al-
gorithms, e.g., FTRL and OMD. There are many vari-
ants of FTRL and OMD (McMahan & Streeter, 2010;
Rakhlin & Sridharan, 2013). In this paper, we follow
the generalized definitions of FTRL and OMD in (Joulani
et al., 2020).2 Formally, for any & € X, define the reg-
ularizer at iteration ¢ as ¢**(x) = >_,_,¢"(x), where

!"This has been adopted in OpenSpiel (Lanctot et al., 2019).
In (Joulani et al., 2020), they are named Ada-FTRL and Ada-
OMD, respectively. Besides, we ignore the “proximal” regularizer.

¢": D — R, X C D. Assume ¢"*(x) is differentiable and
strictly convex on X'. FTRL updates the strategy according
to ! = argmin .y ¢°(x) and

mt+1

z) + "' ()}, (7)

= argmin {(L*
TeEX

where L' = 22:1 1¥ is the cumulative loss. OMD updates
the strategy according to ! = argming. » ¢°(x) and

t+1

x'™! = argmin { (I

z) + ¢'(z) + Byoe—1 (z||z") }, (8)
xeX

where Bgo:+-1 is the Bregman divergence of function
¢"*1. Formally, By« (z||lz’) = ¢%(x) — ¢"(z') —
(V@ ('), — ) for any @, &’ € X. Relatively, ¢**
is called the Distance-Generating Function (DGF).

To solve (7) and (8), one needs to compute the gradient
V¢%(z) for x € X and the gradient of the convex con-
jugate ¢**%: Vg™ (g) = argmax,e v {(9,2) — ¢" (@)}
for any g € R:"™ . Then, (7) has a solution &'+ =
Vq*o:t(_Lt); and (8) has wt+1 — Vq*O:t(qu:t71($t) _
1) (Orabona, 2019). Both FTRL and OMD can achieve
a regret bound of O(v/T) when the regularizers and the
parameters are configured properly (Joulani et al., 2020).

2.5. Dilated DGF and Localized FTRL (OMD)

To apply FTRL and OMD to EFGs, dilated DGF (Hoda
et al., 2010) is proposed to serve as the regularizer. For any
sequence-form strategy « € X, a dilated DGF is defined
as d(x) = e 7 ®[p;l; (&), where 2; = x[j]/x[p;] €
A" and ¢; : E — R,A™ C FEis alocal DGF. Assume
1; is differentiable and strictly convex on A™i. Note that
d is strictly convex as long as ; is strictly convex at all
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7 € J (Hoda et al., 2010). Examples of dilated DGFs can
be found in (Kroer et al., 2020) and (Farina et al., 2019b).

Let the regularizer ¢% at iteration ¢ be a dilated DGF:

¢"H(@) =Y wlps vl (&), ©)

jeT

where % (&;) is differentiable and strictly convex on A",
It is known that the updates of FTRL and OMD can be de-
composed into local updates (Hoda et al., 2010; Farina et al.,
2019b). In this paper, we introduce notations f/;t and i;t to
denote the local losses in FTRL and OMD, respectively, as
shown in Proposition 2.3 and 2.4.

Proposition 2.3. The update of FTRL in (7) with ¢"! ()
being a dilated DGF defined in (9) can be decomposed as
At—H Vst (=LY), j € J, where

+ > UL (g0

j'€Cj,a

L .
Lila)=L'[j,a
Proposition 2.4. The update of OMD in (8) with ¢"!(z)

being a dilated DGF deﬁned in (9) can be decomposed as
At+1 Vi/)*t(Vz/)t e L) =), where

+ > i (11)

J'€Cj.a

l/t[ ]

and I = 31 (Wl (@) — v (el (@) — 1),

In the propositions,
Pii(g) = maxg eams {(9, %)
R", and Vi¢i'(g) is the gradient: Vi¢i'(g) =
argmaxg can; {(g, ;) — ¥4(2;)}.  The propositions
mainly leverage the recursive nature of the sequence-form
strategy space and the recursive property of the dilated DGF.
The proofs are given in Appendix D. According to these two
propositions, FTRL and OMD algorithms can be formulated
into localized forms, as shown in Table 1.

w;ft is the convex conjugate:
— i(a;)} for any g €

3. Equivalence Analysis and Its Application

By comparing the updates of CFR-RM (CFR-RM+) and
FTRL (OMD) in Table 1, we can see that these two al-
gorithms have similar recursive structures. To examine
whether they are equivalent under certain settings, we first
give an example of FTRL and analyze the equivalence at
terminal decision points. In this paper, we only consider the
case where the regularizer is a dilated Euclidean DGF with
Uj(@5) = 385 #;13 + CF, 85 > 0,Cf € R.
Example 3.1. In FTRL with a dilated Euclidean regularizer
where % (Z;) = 2ﬁt||wj||27 Bt > 0, we have /"' =
,(/J*t( i/t) — [ th]—&-/ﬁt and w*t( L/t) —

of — 385l At+1H2, wherea € R satisfies ||:ct+1||1 Ll

- IA'/t}*/ﬂt when
1 _

Example 3.1 shows that mH'l = [af1
C = 0, which is similar to the updatlng rule of RM (z;
[REF/IRT |y = [y (0%, @)1 Lﬁ]*/H[Rﬁ-]ﬂh)-
In the example, a§- is arisen to constrain the solution to a
simplex. Note that the o} that fulfills ||§c§+1||1 =1,ie,
[[[ef1 — ﬁﬂ* |1 = B5, exists and is unique when 3% > 0.

Now, Let us focus at terminal decision points where C; , =
(). At such a point j, we have both L’ ! in FTRL and Lt
in CFR-RM equal Lt[j]. What is more when 7 in Ex-
ample 3.1 equals H[R;]ﬂ‘l in CFR-RM, we have of =
S (15, &%) since [[[at1 — LYf]* |y = B} (recall that
cﬁ exists and is unique) in FTRL and 1D (OF, 25)1 —
LiT*|l1 = [|[RE]* ]|y in CFR-RM. This means that FTRL
and CFR-RM have the same local decision at terminal de-
cision point j when 3% = [|[R]*||;. The same conclusion
can also be found in (Waugh & Bagnell, 2015). However,
this is not true at non-terminal decision points because it is
not guaranteed that L’} = LY at such a point j.

By comparing the local updates of CFR-RM and FTRL in
(5) and (10), we can see that L/ will be equal to L} at any
.. . .. % ~ t ~ N .
decision point j if —¢¥f (= Lh) = Y7, _ (I, &%) atall its
children. However, as shown in Example 3.1, when ﬁff =
H[Rt]JrHl, —5t(— ﬁ’t) #30_ 1<lk &%) even at terminal
decision point, although we have af = 37, _, (%, &¥). But
can we design an FTRL with a §pema1 regularlzer such
that —w;t.(—L;-t) = 053 =3 (1%, &%) at every decision
point? With this question, we propose FD-FTRL and FD-
OMD and then we prove that CFR-RM and CFR-RM+ are
equivalent to special cases of them, respectively.

3.1. Future-Dependent FTRL (OMD): the Bridge

In this subsection, we propose FD-FTRL and FD-OMD.
As shown in Definition 3.2, FD-FTRL (FD-OMD) have
a regularizer, called FD regularizer, at every iteration that
depends on the next iteration strategy.

Definition 3.2. FD-FTRL (FD-OMD) is an FTRL (OMD)
with ¢*!(z) being a dilated DGF defined in (9) and
V(@) = 385155 + § 651253, 85 > 0,v) € J.

Remark 3.3. In FD-FTRL (FD-OMD), according to Propo-
sition 2.3 (2.4), dc;*l does not depend on itself. So, d:;“
can be solved and then z'*! can be constructed bottom-up.

Similar to Example 3.1, we have Example 3.4. Also, FD-
OMD has &/ = [87 12} + ol 1 — l’t]+/5§ and I’f = af
where o, € R satisfies Haz”lﬂl

In FD-FTRL, we have &it!

j
— L]t /B and

Example 3.4. =
_w;«t( L/t) _ 3’
t+1H1 —1.

,(/J*t( i/t) — [ t1

where o} € R satlsﬁes |E3
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As we can see, the only difference between Example 3.1 and

Example 3.4 is that the latter one drops the — 3 B ||:i:§+1 IE:

term in —¢¥*(—L’f), which is canceled out by the term in
the regularizer. From a global viewpoint, FD-FTRL has
an extra linear regularizer (or an extra loss) (m, ), where
mlj,a] = e, ., 5051125 ||3, than the FTRL in Ex-
ample 3.1. Therefore FD- FTRL has more preference for
reaching decision points that have lower /o norm. In other
words, FD-FTRL is more conservative than the FTRL in
Example 3.1. Nevertheless, the FD regularizer is still a di-
lated Euclidean DGF, and FD-FTRL (FD-OMD) belongs
to FTRL (OMD) family. Leveraging multiple analysis tech-
niques for FTRL (OMD), the convergence of FD-FTRL
(FD-OMD) is provable, as shown in Theorem 3.5.

Theorem 3.5. The total regret R™ of FD-FTRL (FD-OMD)
after T iterations is bounded by
_ || t t+1|| ] )

T at)(2 t—1 .2
T L7505 + 1185 25113
> (#3 o
J
The proof for Theorem 3.5 is given in Appendix E. The

jeJ t=1
theorem is mainly based on Theorem 3 in (Joulani et al.,
2020) and Lemma 2.2 in this paper. We assume

Assumption 3.6. |85~ '& (13 < |81t |3 forall j € J.

This assumption is easy to be satisfied after reparameterizing

j, will be discussed later. If the assumption is true, we

have BT < 0, (BT + X0, I713/(26)). In this
case, there are many ways to bound the total regret of FD-
FTRL (FD-OMD) by O(v/T) (Note that |73 is bounded).
For example, we can set ¢ = ©(v/1), or 8} = O(VT) if

T is known. Otherwise, we can set 35 = N> [75]]3 to

obtain RT <237,/ Sy [|7¥]13. The last setting is
known as adaptation. The first adaptive FTRL was proposed
in (McMahan & Streeter, 2010). Usually, adaptive regret
minimization algorithms have better regret bounds.

3.2. Equivalence Theorem

In this subsection, we prove the equivalence between FD-
FTRL (FD-OMD) and CFR-RM (CFR-RM+). According
to Example 3.4, it is natural to conjecture that the a§ in
FD-FTRL is equal to >, _, (I¥, &
when 8¢ = || R%||;. In other words we may have @
o (0% @51 — Lt /|| R:||y and L = L, Wthh are
exactly the local updates of CFR-RM. It turns out that this
conjecture can be proven recursively.

Theorem 3.7. CFR-RM (CFR-RM+) is equivaleqt to a
special case of FD-FTRL (FD-OMD) with B; = || [R§]+||1
(1Q%1), Vj € T,t > 0.

I > at every decision point
bl

The proof is given in Appendix E. We name the FD-FTRL
with ﬁ‘; = || [R;]+ |l as FD-FTRL(CFR) and the FD-OMD

with 3 = HQE |l as FD-OMD(CFR). From different per-
spectives, the equivalences indicate that:

e The cumulative counterfactual regrets in CFR-RM
(CFR-RM+) can be viewed as adaptive regulariza-
tion parameters: the greater ||[1§§]+||1 (HQ§»||1), the
stronger the regularization. This is intuitive as the
decisions should be more conservative when the past
strategies have failed in controlling the regrets.

* CFR-RM (CFR-RMH+) is an excellent adaptive FTRL
(OMD). As mentioned before, we can guarantee R7 <
23, Sy [|7¥]3 in a case. However, when 3% =
IR 11 (|Q%l1). CFR-RM (CFR-RM+) is recov-
ered, and we have RT < 37 max, [RT]+? which

is an even better regret bound as max, [R]T}Jr <

> 1 I75]13 (Zinkevich et al., 2007). Since adap-
tive FTRL (OMD) can adapt to the losses, they are gen-
erally faster than the non-adaptive versions. This may
partially explain the superior performance of CFRs.

* FTRL and OMD can perform as well as CFRs in prac-
tice if the parameters are configured properly. While
setting (35 to || [R§]+ |1 or ||Q§ ||1 is unpractical (as this
requires running a CFR-RM or a CFR-RM+ in paral-
lel), let 3} ~ ||[R§]+||1 or ||Q§||1 may still result in
fast algorithms. Note that this intuition is not restricted
to FD-FTRL and FD-OMD, and may apply to general
FTRL and OMD with Euclidean regularizers.

3.3. Practical Implementation of FD-FTRL (FD-OMD)

As we have mentioned, the total regret of FD-FTRL is
bounded by O(+v/T) after T iterations if 1) Assumption
3.6 is fulfilled; and 2) 3} = (v/t) (or ©(V/T)). How-
ever, Assumption 3.6 is non-trivial, as it depends on the

future decision /" (we need to set 3} before we compute

&, Alternatlvely, we introduce a new parameter A} > 0

and reparameterize 3% as |/AL/|| At+1||2 Consequently,
Assumption 3.6 can be reformulated as
Assumption 3.8. A/~ < X! forall j € J.

FD-FTRL. Recall that in FD-FTRL, the next decision is
computed according to 2! = [af1 — L7/] /3L, where

a§» eR, s.t. ||[oz§1 — f/;t]+||1 = ﬁ;, (12)

= \/AL/|[&5 |2, the

3Can be deduced from Lemma 2.2, but not from Theorem 3.5.

and —w;-‘t(—i};-t) = af. Since 3]
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constraint becomes
a1 = LY]H|[5 = A (13)

Note that the a in (13) exists and is unique when )\t
0, so it must equal the at in (12). Based on the above
analysis, we can 1mplement an FD-FTRL algorithm that

computes the oz;- at every decision point with respect to

(13), which is then can be used to replace —¢5*(— i/;f) and
compute the next strategy ac§+1 Let R’t =afl - ﬁ;f The
updates are summarized in Table 1, and the algorithm is
named FD-FTRL(R). According to Theorem 3.7, when
AL = ||[R§]+||§, which is equivalent to Bt = [R5,
FD-FTRL(R) is equivalent to CFR-RM.

FD-OMD. Recall that FD-OMD Ahas a constraint
|\az-t+1||1 =1, ie, [[[85 1%t + af1 — U], = BL. Since

\/AG/ N1 £+1||,, the constraint is equivalent to

H[y*@m@m+¢1_ﬂ+ﬁzg. (14)

Note that the o} in (14) exists and is unique when A} >

0. Let QF = 5t U= [B71@E + all — ). The

updates Wlth respect to (14) is summarized in Table 1, and
the algorithm is named FD-OMD(R). When X! = ||Q}3,

which is equivalent to 8¢ = [|Q}]|1, according to Theorem
3.7, we have FD-OMD(R) equivalent to CFR-RM+.

Notably, FD-FTRL(R) recovers an algorithm named ReCFR
(Liu et al., 2022), which is inspired by a warm starting CFR
algorithm (Brown & Sandholm, 2016). So, ReCFR is also a
special case of FD-FTRL.

As we mentioned before, we may let 3} ~ \|[R§]+||1 or
| Q] to construct a fast FD-FTRL or FD-OMD. Notice
that |[[R}]7 5 (1Q5113) < )y 5113 (Zinkevich et al.,
2007; Tammelin et al., 2015), we proposed to set /\§- such
that X > 0%, 73, € (0.00).

Corollary 3.9. If nY i, |73 < A and X7 <
)\é, Vi € J, t > 0, then, the total regret of FD-
FTRL(R) (FD-OMD(R)) after T iterations is RT <

Tier (V5 +3) YN

The proof is given in Appendix E. Clearly, the total regret
of FD-FTRL(R) (FD-OMD(R)) is O(v/T) if /\3 = O(t) or
O(T), which is achievable as Hf'f”% = O(||A||%). Both
FD-FTRL(R) and FD-OMD(R) have the same space com-
plexity as vanilla CFR. However, FD-FTRL(R) and FD-
OMD(R) need to solve a piecewise constraint at every deci-
sion point, which has a time complexity of O(n ) If binary
search and Quicksort are used, an O(n; log nj) complexity
can be obtained. So, FD-FTRL(R) and FD-OMD(R) are | .A|
or log | A| times more expansive than CFR.

To some extent, FD-FTRL(R) and FD-OMD(R) can be con-
sidered as the extensions of CFR-RM and CFR-RM+, re-
spectively. However, they are able to leverage theoretical
results in OCO, since they belong to FTRL and OMD fami-
lies. Another advantage of them over CFRs is that they do
not track the counterfactual regrets. Note that, FD-FTRL(R)
does not track the cumulative loss in practice, too. This
is because L' = 3_; Ay* = tAg' only depends on the
average strategy of the opponent, which is available during
the process. The disadvantage of FD-FTRL(R) and FD-
OMD(R) is that they have a set of parameters. In the next
section, we will try two configurations for these parameters.

4. Experimental Investigation

To better understand the properties of FD-FTRL(R) and
FD-OMD(R), we test two different methods for setting
the weighting parameters )\3-: 1) Linear Weighting (LW):
A= nying||AllZt; 2) Constant Weighting (CW)*:
AL = ngin;||A||Z,T. In the equations, y denotes the
probability of reaching j of the opponent, and y§- is
the average probability. 1 € (0,00) is a global hyper-
parameter. These configurations are inspired by the obser-
vations that [#1]}3 = O(y!n; || Al|2,) and Yi,_, [#4]3 =
O(yin;||All%,t) (Brown & Sandholm, 2016). According
to Corollary 3.9, FD-FTRL(R) and FD-OMD(R) with both
weighting methods have a sub-linear regret bound O( VT ).
For computing the average strategy, we use: 1) Uniform
Averaging (UA): z° = % Zthl x!; 2) Linear Averag-
ing (LA): 21 = ﬁ Zle tat. FD-FTRL(R) and FD-
OMD(R) use CW and LA by default.

The algorithms are compared with FTRL, OMD and CFRs.
For a fair comparison, the competitors also use LA for
computing the average strategies, namely Linear CFR
(LCFR) (Brown & Sandholm, 2019b), CFR+, FTRL(LA),
and OMD(LA). FTRL(LA) and OMD(LA)> are the algo-
rithms with LA and a regularizer ¢*!(z) = ¢°(xz) =
dieT x[p;]3 8,23 for t > 0. We set 3; for each point
7 in FTRL(LA) and OMD(LA) according to (Farina et al.,
2019b): B; = 20 + 2maxaea, Z ec; . Bjr, where o is
a hyper-parameter. In FD- FTRL(R) and FTRL(LA), the
losses are also weighted linearly, as in LCFR. All the algo-
rithms use alternating updates, as in CFRs.

We run a coarse grid search for tuning the hyper-parameter
in each algorithm, and the best one will be used for the
comparison. The tuning results of FD-FTRL(R) and FD-
OMD(R) are given in Appendix G. We conduct our experi-
ments in eight benchmark games, including Leduc (Southey
et al., 2012) and FHP (Brown et al., 2019). A description of

4Since @; changes slowly, we can consider it constant.

5 A primary experiment shows that the LA versions of FTRL
and OMD are significantly faster than the UA versions.
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Figure 1: Exploitability curves of FD-FTRL(R) and FD-OMD(R) in different configurations in Leduc. The x-axis is the
number of iterations. (a, b): weighting methods and averaging methods. (¢, d): FD regularizer and CW. FD-FTRL(R"FD)
is an FD-FTRL(R) without FD regularizer, i.e., an FTRL(LA) with CW. FD-FTRL(R"CW) is an FD-FTRL(R) without CW,
i.e., an FTRL(LA) with FD regularizer. FD-OMD(R"FD) and FD-OMD(RCW) are configured similarly.

(a) Leduc (b) Leduc(2, 9) (c) Goofspiel 4 (d) Goofspiel 4(imp.)
2
= 107! 4
g
B NN e e e, .
= oo 7w
s .

5(‘)0 1 0‘00 1 5‘00 2000 5(’)0 1 0’00 1 5'00 2000
(g) Liar’s dice (h) Battleship
2 10
= 1071 44 !
E 107" 4\8es
2
% 1073 4 107 5
5
1073 4
T T T T T T T T T T T T
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Iterations Iterations Iterations Iterations
—— FD-FTRL(R) —— FD-OMD(RR) == LCFR =—- CFR+ ==  FTRL(LA) —- OMD(LA)

Figure 2: Exploitability curves of FD-FTRL(R), FD-OMD(R), and the competitors in eight games.

the games is given in Appendix F. The experiments use part
of the code of project OpenSpiel (Lanctot et al., 2019).°

We first compare FD-FTRL(CFR) and FD-OMD(CFR) with
vanilla CFR (i.e., CFR-RM) and CFR+ (i.e., CFR-RM+
with LA) in the benchmark games. The results are given
in Appendix G, showing that the exploitability curves of
FD-FTRL(CFR) (FD-OMD(CFR)) and vanilla CFR (CFR+)
are overlapping with each other in every game. Therefore,
the equivalences are also verified empirically. Then, we
test FD-FTRL(R) and FD-OMD(R) in different configu-
rations. The results in Leduc are given in Figure 1. In
plot 1(a), the results show that both FD-FTRL(R.LW) and
FD-FTRL(R.UA) are slower than the default FD-FTRL(R),
which indicates that both CW and LA contribute to the
performance of FD-FTRL(R). In plot 1(b), as we can see,
the default FD-OMD(R) with LA and CW is much faster.
This is not surprising, since it is also observed in CFR+ that
LA can improve the performance significantly (Tammelin
et al., 2015). However, the reason is still not clear. In plots

Shttps://github.com/deepmind/open_spiel

1(c, d), we perform an ablation study for FD-FTRL(R) and
FD-OMD(R), respectively. The results show that CW has a
significant impact on the performance, while FD regularizer
has a much weaker effect. Since FD-FTRL(R"FD) is essen-
tially an FTRL(LA) with CW, the results indicate that CW
can also apply to conventional FTRL algorithms. The re-
sults in the other games are reported in Appendix G, which
are basically consistent with the results in Leduc. It is worth
noting that FD-FTRL(R"FD) is faster than FD-FTRL(R) in
some benchmark games. This suggests that FD-FTRL(R)
(as well as vanilla CFR and LCFR) may be too conservative
in some games as it tends to keep the /5 norms of the de-
cisions low. However, FD-OMD(R) is always (one of) the
fastest.

The results of FD-FTRL(R) and FD-OMD(R) in all the
benchmark games are shown in Figure 2. As we can see,
FD-FTRL(R) is tied with LCFR and FTRL(LA). However,
the results show that FD-OMD(R) behaves more like a
CFR instead of an OMD: it is always faster than LCFR
and OMD(LA), and only slower than CFR+ in Leduc(2, 9)
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and FHP(2, 5). Note that Leduc(2, 9) and FHP(2, 5) are
the most stochastic among the benchmark games. So, it
seems that the weighting methods (CW and LW) can not
handle stochastic games well. We suspect FD-FTRL(R) and
FD-OMD(R) may perform better in stochastic games when
Al is set closer to ||[R§]+||% and ||Q§H§

We also compare FD-FTRL(R) and FD-OMD(R) with
PCFR and PCFR+ (Farina et al., 2021). The results are
given in Appendix G, showing that FD-FTRL(R) and FD-
OMD(R) are also competitive compared with them. Finally,
we compare FD-FTRL(R) and FD-OMD(R) with FTRL,
OMD, and vanilla CFR that use UA for computing the aver-
age strategies. The results are given in Appendix G, showing
that both FD-FTRL(R) and FD-OMD(R) are always faster
than them.

5. Conclusions and Future Work

In the paper, It is proven that CFR-RM and CFR-RM+ are
equivalent to special cases of FTRL and OMD, respectively.
The equivalences provide a new understanding of the coun-
terfactual regrets in CFRs and may partially explain the
superior performance of CFRs. As the bridges, FD-FTRL
and FD-OMD have been proposed, and have been exten-
sively tested in eight benchmark EFGs. The experimental
results show that they are competitive compared with con-
ventional FTRL, OMD, and CFRs. The results also suggest
that FTRL and OMD are not necessarily slower than CFRs
in EFGs. Therefore, more research is required in applying
OCO algorithms to EFGs.

The equivalence analysis in this paper is relatively primitive,
e.g., the analysis is restricted to RM, RM+, and Euclidean
regularizers. Also, the analysis does not improve the theo-
retical results of CFR and CFR+. However, it can explain
CFRs as an adaptive FTRL (OMD) and provide new ways
to apply FTRL and OMD to EFGs. Besides, since there are
optimistic variants of FTRL and OMD (Farina et al., 2019b)
that converge at a rate of O(1/7"), we may also be able to
develop new optimistic variants of CFRs.

In recent years, function-approximate CFRs (Waugh et al.,
2015; Brown et al., 2019; Li et al., 2020; Liu et al., 2022)
have been found to have problems in approximating cumu-
lative counterfactual regrets. Combining FD-FTRL(R) or
FD-OMD(R) with function approximation would not have
these problems, since they do not rely on the cumulative
counterfactual regrets. Furthermore, it is known that CFR-
RM+ works much better with function approximation than
CFR-RM (Morrill, 2016; D’Orazio, 2020). It would be in-
teresting to see whether FD-OMD(R) is more favorable than
FD-FTRL(R) in this setting.
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A. Notation Table

In this section, we list the notations that appear in the article. See table 2. We mainly follow the notations in (Farina et al.,
2019b) and (Farina et al., 2021). However, as this paper discusses the equivalences between algorithms in different areas,
it is unavoidable to introduce new notations. Also, some notations may not be consistent with the ones defined in the
mentioned literature. For example, we use x; to denote a sequence-form strategy in AX’;, while (Farina et al., 2019b) uses it
to denote a sub-vector of x that corresponds to decision point j.

B. An illustration of Sequential Decision Process

As an illustration, consider the game of Kuhn poker. Kuhn poker consists of a three-card deck: King, Queen, and Jack. The
sequential decision tree for the first player is shown in Figure 3. For example, we have decision set 7 = {0, 1,2,3,4,5,6},
and action sets Ay = {start}, Ay = Ay = A3 = {bet, pass}, and Ay = A5 = Ag = {call, fold}. Moreover, we have
CO,start = {1, 2,3}, Cl,bet =0, 037;,,(135 = {6}, CJ,O =J, Cu = {1,4}, and et al.

For a sequence-form strategy @ € X in Kuhn poker, we have an xg in X5 equals an &5 € AZ, an x3 in X3 equals
(23, T3[pass|zs) = (&3, £3[pass]de), and
T = (&,, To[start|xy, To[start|es, To[start]es)

= (1, &1, &1[pass|@y, &2, T2 [pass|Es, T3, T3[pass]Ee) .

start

[Ex s N )

S0 NS N
sl

A

Figure 3: The sequential decision tree for the first player in the game of Kuhn poker, e denotes an observation point, A
denotes the end of the decision process. Adapted from (Farina et al., 2019b).

C. Counterfactual Regret Minimization
C.1. A Discussion on Assumption 2.1

CFRs usually initialize IA%? and Q? to zero for all j € J. In this paper, we set R? and Q? to a small value vector
€l > 0foreachj € J .7 As shown in Lemma C.1 and C.2, the l5-norm of the cumulative counterfactual regret at every
decision point is monotonically increasing. Therefore, the initialization guarantees that || [Rﬁ]+ |1 > 0and ||Q§ lh >0
for any ¢ > 0. Note that, according to Lemma C.1, this initialization has a negligible effect on the convergence, as
R;F < [R;f]+ |2 < \/ enj+ S, |7£]13 = O(VT). The effect on CFR-RM+ is similar. Note that for simplicity, we let
€ — 0 in the following proofs.

[REH3 < [I[RYFN3 < I[RSTFIR + (17413 forall j € T and t > 0.

Proof. First, we prove that H[R;*l]ﬂ@ < ||[RL]*||3. Ttis trivial when ||[R§’1]+||§ = 0. When ||[R§*1]+||% > 0, we have,

"This setting has been adopted in OpenSpiel project (Lanctot et al., 2019): https://github.com/deepmind/open_spiel
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Table 2: Notation Table

J the set of decision points.
j J € J. A decision point.
K the set of observation points.
k k € K. An observation point.
A; the action set at decision point j.
a a € A;. An action in A;.
A the set of all actions.
n; nj = |A,|, the size of the action set at decision point j.
Cia the set of earliest reachable decision points after taking action a at j.
Cy; the set of all decision points reachable from j, including j.
o the root decision point.
1 an all-ones vector.
A" an n-dimensional simplex.
T ; € A™. A decision at point j.
X the sequence-form strategy space of player 1.
X the sequence-form strategy space in a sub-sequential decision process starting from j.
y the sequence-form strategy space of player 2.
T x € X. A sequence-form strategy of player 1.
x; x; € Xj. A sequence-form strategy of player 1 in AX.
T the average strategy of player 1.
Y y € ). A sequence-form strategy of player 2.
y the average strategy of player 2.
x[p;] the entry in @ corresponding to the sequence of reaching j.
z[j] the n; entries related to j for any z € RXk=1 i,
z[j, d] the entry corresponding to (j, a) for any vector z € RXk=1 "1,
z[a) the entry corresponding to action a for any vector z € R™7.
l the loss vector. I = Ay in a two-player zero-sum game.
l Uila] =1'[j,a] + 32 e, , (I, 25/). The counterfactual loss.
LT LT = "], I'. The cumulative loss.
AJT iz = Zthl I%. The cumulative counterfactual loss at j.
7 f; = (i;, &5)1 — i; The instantaneous counterfactual regret.
: RL =3 7= (I% &¥)1 — L. The cumulative counterfactual regret.
:;‘F 1?;"1 = MaXg cams Zthl <7A'j: Z') = maxaea, R;F [a]. The immediate counterfactual regret.
: Q%+ [Q'" + (I}, 25)1 — I']™. The truncated cumulative counterfactual regret.
@tx) Y x) = X)_, ¢"(x). The regularizer. ¢* : D — R, X C D is a proper function.
d(x) d(x) =3 ;c 7 x[p;]; (25). A dilated DGF. ¢; : E — R, A" C E.
Bi(x'||lz) Ba(a'||x) =d(z') — d(x;) — (Vd(x), 2z’ — ). The Bregman divergence of DGF d.
L LMa) = L'[j,a] + e, —¥3! (—L/\). The local loss of FTRL.
l:;t l:;t [a] = lt[lj’ al + %:j’ecj,a Z;€ The locill loss ofAOMD.
T = g (@) - (VT (@) ~ 1),
Rf R =all- L
L Q= st (e el )
j B% > 0. The weighting parameter for DGF ¢}
)\t

AL > 0. The weighting parameter for reparameterizing 3%: % = | /AL/ H:i:;+1 II2-
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v

(R, (R

< t 1+7gt [Rt 1] >
<Rt 1 [Rt 1] >
RT3

(R [RST)

The second equality is because

(5 [RT) =(, &) 1RSI — (@5, (R

=(%, &R — (@ &) R
=0.

Secondly, according to Cauchy—Schwarz inequality, we have

(R IR <R 1+|| e ANaE
<\JUR [RTOIR o

+, [R;‘l]ﬂ > \\[R§—1]+|\§ > 0, we have

IRF13 < [RHI3

Besides, we have

RT3 =i + 7517113
=[|[RSHFIS + 2075, (RS + 11751113

[R5
<[RS+ #5113
L3
=IRS I3 + 175113

Lemma C.2. In CFR-RM+, | Q"3 < |Q4)13 < |Q" I3 + |#4/13 for all j € J and t > 0.

Proof. First, we prove that ||Q§_1||§ < ||Q§||§ It is trivial when ||Q§_1||§ = 0. When HQ§_1H§ > 0, we have,

(@), Q") =@ +75,Q57)
=@ Q)
=195 3.

The Second equality is because

(P QY = &)y h — (B, Q
=15, &) 15 Il — {15, #)1Qy Il
=0.

Secondly, according to Cauchy—Schwarz inequality, we have

(Q5. QY <IQy l211Q5 12
/(@5 Q5 HIQS -

15)

(16)

a7

(18)

(19)

(20)

2L

(22)
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So,
195113 < Q5113 (23)
Besides, we have
Q513 =IQj " + #1713
t—1 | st
IQ + #12 oo
=[1Q5 I3 +2(75, Q1) + 175113
<NQSHIZ + [I75113.
O
C.2. Proof for Lemma 2.2
Proof. According to the definition of counterfactual loss ij [a] =1]j,a] + > JEC; <ij/ , &), it is easy to see that
' [p)(l;, &%) =/ [p;| A1), &) + 'Ip;] > Y #lal(ly, &50)
a6A~j’€Cj a
(25)
='[p;|(l Z Z [P] Zj)
a€A; j'€Cj q

Then, according to the definition of instantaneous counterfactual regret 7; = (i G &)1 — l j» the right side of the equation is

a5 =Y @, a5) — > @[], &)

JjeET JjeET JjeT
=Y a[pld &) — < > AL+ >0 Y Y il &)
JjeTJ jeJ JET a€A; j'€Cj 4 (26)
= Z ' [p;] l],m] Z Z Z (t; ,33] e - Z ' [p; (1[5, 25)
Jj€T JET a€A; j'€Cjq JjeET

=(ly, &) — (I,&') = (I, x) — (I, ).

So both sides of the equation are equal. The last equality is because (I,,#,) = (I, ), according to the definition of
counterfactual losses.

O
D. Online Convex Optimization and Distance-Generating Function
D.1. Recursive Definition of Dilated DGF
Given a sequence-form space X', a dilated DGF is defined as
d(z) =Y xlp;l; (&5). (27)

JjeET
A dilated DGF can also be defined recursively. Specifically, define
d(x) =do(x,),
dj(a) =;(@;) + Y &jlaldy (xp). (28)

a€A;,j'e€Cjq
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D.2. Recursive Definition of Bregman Divergence

Let’s begin by computing the gradient of d;(«x;) for any j € J.

Lemma D.1. Given a DGF d;(x;) = ¥;(Z;) + X oca, jicc, ., Eilald; (), then the partial derivative of d;(x;) with
respect to ;[j] is

ad; .
B[] %) = Vi (#9) + Yo (dy () = (Vdy (zg) ,z)) : (29)
ilJ] JeCha »
and for any a € Aj, j' € Cjq,
0d; B ‘ .
ol g1 ) T Ve &0

Proof. Let’s first see partial derivative of d;(x;) with respect to ;[J, al:

oy o (ZIYY o
Tt (®) = et J[J1>+j%aa( ialdy (2223)) sl an
e L7 7] WA 2l s
T alda [ B i lial = do (B2 _ (=il i\ J
o(wtiaity () st =ar (2550) - (vor (37) 25) @
we have
od, )
() = V(@) + | Y (dyr () — (Vi (x50) , @50) ~ (33)
3w][3] J€C)a ca

For 0d,;(x;)/0x;[l j'], we have,

Based on the above lemma, we can construct the Bregman divergence recursively for any dilated DGF.

Lemma D.2. A Bregman divergence By(x||x’) constructed from a dilated DGF d(x), which is differentiable and strictly
convex on a sequence-form space X, can be constructed recursively as follows:

By(z|z") =B, (xol|z},),

By, (wj|a}) =By, (&;&)) + > &;lalBa, (z;|x}), (35)
(ZEAJ' ,j’eCj,a

where By, (Z;]|2";) is the Bregman divergence constructed from (&), which is differentiable and strictly convex on A™.

Proof. According to Lemma D.1, we have

<Vdj(w;-), x; —x))

J
= (V@) & @)+ Y (&la] - &a]) (dy () — (Vdy () ,@]))
a€A;,j' €C;.a
+ <Vdj/ (CC;/) ,ﬁzj[a]wj/ — .’f}; [a]a:;/>
a€A;,j'€Cjq (36)
=(Vyi(@)), & — &)+ D (&5laldy (2)) - &laldy (2)))
a€A;,j'€Cja

+ Z Ci’j [(1] <Vdj’ (SC;/) L IL';/>

a€A;,j'€C.a
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So, the Bregman divergence defined on the dilated DGF is
Ba, (x5]|x)) = dj(x;) — dj(x}) — (Vd;(x)), x; — )
=1;(;(7]) — ¥ (x5[5]) + Z (fvj[a]dj/ (@) — &[aldy () = (Vd;(a]), @; — @})

aEAj7jIECj a

=1;(x;[i]) — ¥j(z H) <v1/’]( ) L £;> (37)
+ Y #ld (dy (xg) — dy () = (Vdy () 25— a)

a€A;,j'€Cjq

=By, (&;]|2;)+ > @jlalBa, (z]|2)).

a€A;,j'€Cjq

D.3. Proof for Proposition 2.3
Proof. When ¢%t(z) =, jes ps]Yt (&) is a dilated DGF, according to the recursive definition of dilate DGF, we let

a5t (x) = D @iy (&), (38)
J'€C;
Define the target function for FTRL as
F'(x) =(L',z) + ¢" (). (39)

Then, we have '*! = argmin, ., F*(x). Furthermore, define
Fj(z;) = (L'} ], ;) + 4" (x5). (40)

Note that F'(x) = F!(x,) and ¢"*~!(z) = ¢¥"*~!(x,). Since both the sequence-form space and the dilated DGF are
defined recursively, we have

Fi(z;) =(L'[L ], %) + ¢ (2;)

) ) y y . . . 41)
=G+ > (B i) i@+ Y dylalg)’ ()
a€A;,j €C) 0 a€A;,j’€Cja
Since x;[| j'|/x;[j, a] = x; and x,[j, a| = &;[a], we have
Fi(xy) =(L'[j), &) + @)+ Y #lal (L5 ay) + 65 (=50))
aEAj,j'ECj,a (42)
=(L'[jl, &) + vi(@) + Y, &lalFl ().
a€A;,j'€Cj a
Let gt = (Zj ee, ., Pl ))aeAv,then
Fj(x;) = (L'[j] + g5, &5) + ¢5(&5), 43)
i, i) = iy, (@01 4555+ ve)
= iy, (D0 ming ) + o)} "
= min, (L] + g5, &5) + j(@5) }

=— ¥ (-L'[j] - g)).
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where g; [a] = Zj/ecj,a min:i:j/ EXJ-/ FJt’ (:Bj/)’ and

UL - g5) = max {(-L°[] - g5, @) — 0 (25)}- (45)
More importantly, we have
:%;H = argrilin{ (L'[5] + gj,:B]> + 1/Jt } V?/)*t L'[j] - Q;) (46)
X €

This means we can compute the decision at point j locally. The above equation holds for all j € 7, so we have
gilal = Yjec,, Ming  ex,, Fl () = > jec;. —5H(=L*[j'] — g§,). In conclusion, at every decision point j € 7,
we have ' ' "

ﬁ:;“'l = argmin{<ﬁ}t,ij> + 1/15(@)} = Vib;t(*j—/;t)» (@7)
PRIN
where R .
Lffa) = L'lj,al + Y. —uj'(-L}) (48)
J'€Cj.a
O

D.4. Proof for Proposition 2.4
Proof. As in the proof for Proposition 2.4, we let
¢ ay) = dj(xy) = Y @[p vk (). (49)
J'€Cy;
Define the target function for OMD as
G'(z) = (I, ) + ¢'(x) + Byou—1 (x| z"). (50)
Then, we have ‘! = argmin, , G*(z) for OMD. Furthermore, define

Gt () = (U'[L 4], 5) + qj () + qu:t—l(fﬂj\\wﬁ-)o (51)

Note that G*(x) = G! (x,). Since both the sequence-form space and the Bregman divergence are defined recursively, we
have

Gi(y) = (I'[) j], =5) + ¢ (5) + quwfl(wjﬂmﬁ’)

= UL+ Y (UH el )

aEAj ,j/GCj,a

V@)~ @) + By @)+ ) aild] (CI;"(-’EJ")+Bq§ii*1(wj'\|$§‘f))

a€A;,j'€Cja (52)
:<lt[j]v:ﬁj> + 1/15(:%]) - w;il(ij) + Bw;—l(i:]H:f:;)
Y gl (W) + ) + B )
a€A;,j'€C q J
=[], &) + (@) — i (@ §) + By (&5]125) + > &[dGh(ay).
a€A;,j'€C a
Let g = (ZJ rec, ., Gy (@) ))GGA , then

J

Gi(x;) = (U] + g5, 25) +05(25) — 05 (&5) + By (5] 25), (53)
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min G (w;) = min {@[]+ g @5) + V() = 17 (@5) + By (5]124) }

T;EX; x; EX;
= i, (D] wmingla5) + @) ) @)+ By (el (54)
= min {(0'0] +95 &) + 0§(@;) — v}~ (@) — (Ve 1( i) &= 25)})
=5 (Ve (@) — i (Vg (@) — 1) - g))-
where gt [a] = > jec,, Ming ex,, G% (), and
w;t_l(v¢§_1(:ﬁ§)) Fenchel-Young Inequality < 1/J§_1(£§),j3§> _¢§—1(£§)’
. (55)

(VTN (@) — U] - g5) = max {(VeiTH (@) — U[j] - g5, &) — Uj(@;) )

EA’I‘L
Importantly, we can compute the decision at point j locally:
&07! =argmin {(@1])] + 61, ;) + 0 (@5) — 01 (@5) + By (&512) |
&jCA™ (56)
RN t—1(t tra _ At
=Vi; (ij (mg) =1"[j] = gj)'

The above equation holds for all 5 € J. In conclusion,

£;+1 Vw*t(v/wt 1( ) l/t) (57)
where A N
Ula) =l + >0 {up (Ve @) - wut(vel @) — 1)} (58)
7'€Cj.a
O

E. Equivalence Analysis and Its Application
E.1. Proof for Theorem 3.5
Proof. According to Lemma 2 and Theorem 3 in (Joulani et al., 2020), for both FD-FTRL and FD-OMD, we have

T

T T
> (') — @2) <30 (@) — (@) + 3 (' -t — B @ o)
t=1 t=0

(59)

MH

0T (') — )+ 't + (' 2" — ') — Byow—r (2" ||2")) .

t:l

where ¢*~!(@) = Y., ®[p;]8; 5 (#5115 + | 25]13) and Byo:er (@ |l2) = 30, , 2 [p;] 557 @5 — 2413
Note that Assumptions 1, 2, 3, 5, and 8 in (Joulani et al., 2020) have already been fulfilled.

Firstly, for the first term ¢%7 (z’) — ¢°(«!) in the above equation, according to the definition of the regularizer, we have

. . 1. 1.
7@ - ) < @) = S @] (S0 + 516 8) < X ollnle] (60
JjET JjeET
Then, for —q*(x!*1), we have
_ qt(mtJrl) _ qO:tfl(mthl) o qO:t($t+1)
_ 1, . 1, . 1, . 1, .
=Y el (e B+ el ) - X et nlal (Sla i + el 13)
jeg jeg (61)

1 ., 4. | R N
= S 0] (585715 + 584 el - Bilal IR

JjeTJ
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For the term (I*, ¢ — x'™1), according to Lemma 2.2 in the paper,

t t t+1 t+1 Af At+1
(et —ath) =3 = &) (62)
jeTg

Besides, according to the definition of Bregman divergence, we have

1 N
B (@t ah) = = Y 2 [p]5y S5 = &5l13
JjET
(63)
1, 10 1 1. .
=3 a ] (—2[3§ 1\Im§+1|\§—§B§ R e R i mﬁ))
JjeET
Therefore, for the second term in the first equation, we have
_qt( t+1) <lt t_ t+1>—qu:t71(£L't+1||:l:t)
= > ap) (8@ &) — Bl S + (7L ) )
Jjeg
_Zwt—O—lp ﬁt 1 t Bt t-‘rl_'_ At At+l>
j J
JjeET
According to the Fenchel-Young inequality, we have
(B1a! — BLat T 4 it ) <||B§’1i§+f§l\% O 1 1 o e
B , ” ” (65)
T R e e
26;?
The first equality is because (7%, 2) = <l§, &%) — <lt t%) = 0. Combining the above equations, we have
T T
> (1 a') <" (@) — (') + Y (—¢' (@) + (', 2" — 2'™) — Boaa (2! ||2))
t=1 t=1
T
<Z [I)J BT ZZ t+1[pj 6:& 1z t ﬂt t+1+,,qt At+1>
JjeT €J t=1
(66)
74115 + 1185 @413 — 11852113
<> (w'[Pj]ﬂjT—FZw”l[Pj] ’ ’ 2;;
jeg t=1
At (|2 t—1 1 t H—l
T 74113 + 185" @413 — |18tk 13]
SHEESS e
jeg t=1 J
O

E.2. Proof for Theorem 3.7

Proof. We prove the equivalence by recursively proving that the local loss ﬁ;t and the local decision :i;“ in FD-FTRL
equal L} and [R!]" /||[R%]* |, in CFR-RM, respectively, i.e., the following equations hold at all decision points:

L“ Lf (67)
-
it = BT ) (68)

’ IR
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Let the depth of a decision point j € J be the maximum length of the sequence to the end of the game, denoted by D;. First,
at any decision point j € 7 that has D; = 1, we have L = L*[j] = L. So (67) holds. Besides, according to Proposition
2.3 in the paper, we have

[al1 — LL]*

a5 = Vit (L) = Vui(- L)) = (69)

where o, € R satisfies [|[a%1 — ﬁ§]+ |1 = Bj. Since function f(af) — [|[a}f1 — Lt]+ |1 is monotone ascending and convex

; in Tt ; t [k 4k t
in the range of [min, L[a], o0) with the minimum equals zero, o} exists and is unique. Since Rj = Zk:l (7, z5)1 - Lj,

when g% = || [R;]* |1, we can conclude that the unique solution of o} in the equation is 22:1 (lAf, ﬁ:é‘) So
o1 laf1—LY* [Zk (&1 - L [RYT
Tp = 7 7 yeuma (70)
o) B; IR

So (68) holds at every decision point j € J that has D; = 1.

Now, assume that (68) and (67) are satisfied at decision points whose depth is less than or equal to k. For a decision point
j € J thathas D; = k 4 1, we have

Lila] = L'j.al+ Y —vj(-Lj (71)
J'€Cj,a
where ;‘,t is the convex conjugate:
—5H (=L =(L &) + v (@), (72)
Since (70) holds at decision point j' whose depth is less than or equal to k, we have Bt t“ = [IAIE, - 221 <if, , ﬁcf,>]+,
d
an , ,
—r (=L =Y (i, @k + <Lt > k. ah), :ﬁ§f1> + ok (@5)
k=1 k=1
t
= (&) — Bylls 3 + Bt 12513 + Bt 12513 (73)
k=1
t
== <l‘l;-:/7 QAZ‘];)/>
k=1
Therefore,

t
Lfa] = L'j,al + Y (i, &k, (74)

j'€Cj q k=1

which is equal to the cumulative counterfactual loss L; [a] in CFR-RM, i.e., (68) holds. Again, we have

A R e
&t = vyrt(-LY) = vyt (-L}) = Jﬁitf (75)
j

lelere ol satisfies [[[af1 — Lt]*||y = 8L = ||[RY]* 1. Since R, = 7 _ (I¥,25)1 — Lt, we have o}, = ) _ (¥, &%),
and,

Qfﬂt+1 _ [Oé§1 — L§]+ _ [R§]+ (76)

i gt MR EIL
j I[[R5]* (|1

So, (67) holds. Since the local decisions between FD-FTRL and CFR—RM at all decision points are equal, we can conclude
that CFR-RM is equivalent to a special case of FD-FTRL with 3% = [|[R}]* ||, at all decision points.

Now, we prove the equivalence between FD-OMD and CFR-RM+. We prove the equivalence by recursively proving that the
following equations hold at all decision points: R .
U =1, (77)
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gt = L (78)

First, at decision point j € J that has D; = 1, we have i;-t =1'j] = i; So, (77) holds. Then, according to Proposition 2.4,
we have

(B dh + al1 —11)*

B = Vit (Ve (&) - 1) = v (VS (@) — 1) = B E— (79)
J
where o fulfills the constraint Hact+1 lh =1,ie., [6;71535- +afl— l?]+ |1 = Bj. Note that o} exists and is unique. Recall
that, in CFR RM+,
Q) =1Q; ' + ({1, 5) — LI = [1Q) ' haj + (I}, &5) - 1j]" (80)
So, when 3 ~! = |\Q§71||1 and B¢ = ||Q"]|1, we can conclude that o, = <i§, &%) and

t=lgt 4ty gl (@b al — i @
:%54-1 _ [B] w] ﬁ?ﬂ .7] [6 <ﬁt > J] _ AQtJ ) (81)
J J HQ]”1

So, (78) holds at every decision point j € J that has D; = 1.

Now, assume that (77) and (78) are satisfied at decision points whose depth is less than or equal to k. For a decision point
j € J thathas D; = k + 1, we have
I"[a] = + 0y (82)

]ecja

where
U =t (Vi (@) — it (Ve (@) — 1)
_ N . . N 1 N N
— (o et 2l - 5o 118 - 385 Ial3) — (55 ah — o) - 3618 - 5ob el

=%, &) + (I — gl &l — (1, &%), &) + ph |23
=03}
(83)
Therefore,
la) =VGal+ Y (&), @9
7'€Cj.q
which is equal to the counterfactual loss i; [a] in CFR-RMH, i.e., (77) holds. Again, we have
t—1st ¢ Jt1+
N Tt 4+ okl =1
B = (Vi @) — 1) = V(v e — ) = Tl Tl (85)

t )
fi

where o fulfills [[[5;~'&} + af1 - 4], = Bt = Q1. Since Q% = [Q! + (It,at) — I']* = [|Q\[1& +

R
<l§, &h) — lt] we have L= (l;, &%) and

(86)

At1 [6;_1:%2 + O[; - l§}+ QE
(BJ = Bt = At 9
J HQ]HI

So, (78) holds. Since the local decisions between FD-OMD and CFR-RM+ at all decision points are equal, we can conclude
that CFR-RM+ is equivalent to a special case of FD-OMD with 8% = [|Q" ||, at all decision points. O
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E.3. Proof for Corollary 3.9

We first present a lemma from (Orabona, 2019). For completeness, the proof is also quoted.

Lemma E.1. (Orabona, 2019) Let ag > 0 and f : [0,4+00) — [0, +00) a non-increasing function. Then

T t 'Z;‘F:o a:
> af (ao + Zak> < / f(a)da. (87)
k=1 E

t=1 Y

Proof. (Orabona, 2019). Denote by s, = > _, ay.

t s
af (ao + Zak) =aif(s) < / f(z)dx. (88)
k=1 St—1
Summing over ¢t = 1,...,T, we have the stated bound. O

Proof. According to Theorem 3.5, the total regret is

t t—1 +
S

j€edJ
T 174113
<2 (4 +Z 20 (89
j€edJ
(173
< n; AT +

(90)

N 175113
s mEo Ly
=1 24/ =1/ S PRI

The second inequality is because of Lemma E.1. So,

R" <Y ( n,AT+ )\]T> =y (wTj+ 717) AT 91)

jedJ

F. Benchmark Games

In this section, we describe the benchmark games used in the experiments.

F.1. Description of the Games

e Leduc (Southey et al., 2012) is a two-player zero-sum EFG. It can be considered as a simplified Heads-up Limit Texas
Hold’em (HULH).® In Leduc, there are two suits cards, each suit comprises three ranks, and two rounds of betting are
allowed. At the beginning of the game, each player places an ante of one chip in the pot and is dealt with one card,
which is only visible to itself. In the first round of betting, player 1 has to choose an action between Call and Raise.
Taking the action Call means that the player will place or has placed the same chips as the opponent and leaves the
choice to the opponent. Taking the action Raise means that the player will place more chips than the opponent to the pot.

8https://en.wikipedia.org/wiki/Texas_hold_%27em
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It is only two raises allowed in the first round of betting. Sometimes when a player bets fewer chips than his opponent
and is asked to take an action, he can choose to Fold. If he does so, the game is over, and the player loses all chips. The
first round ends if one of the players has chosen Fold or if both players agree to end. If no player folds, a public card is
revealed to both of the players and then the second round of betting takes place, with the same dynamic as the first round.
After the two rounds of betting, if one of the players has a pair with the public card, that player wins the pot. Otherwise,
the player with a higher private card wins. In the first round, the player taking action Raise should place 2 (named raise
size) more chips to the pot than the opponent. In the second round, the raise size is 4.

Leduc(2, 9) has the same rules as Leduc, except that it has two suits of cards with each suit comprises nine ranks.

FHP(2, 5) (Brown et al., 2019) is a simplified HULH, and it has two suits of cards with each suit comprises five ranks.
At the beginning of the game, each player places an ante of 50 chips in the pot and is dealt with two cards. It has the
same dynamic in each round of betting as Leduc. However, it allows three raises and a raise size of 100 in each round of
betting, and the first player to act in the second round is player 2. After the first round of betting, three public cards are
revealed to the players. After two rounds of betting, the rank of the 5 cards (2 private cards + 3 public cards) of each
player is evaluated, and the player with the higher rank wins the pot. We use the standard hand evaluating method® used
in HULH.

Goofspiel (Ross, 1971) is popular benchmark EFG. The game has three suits of cards with each suit comprises five
ranks. At the beginning of the game. Each player is dealt with one suit of private cards. Another suit of cards is served
as the prize and kept face down on the desk. At each round of the game, the topmost prize card is revealed. Then the
players are asked to select a card from their own cards and reveal the cards simultaneously. The player who has a higher
card wins the prize card. If the ranks are equal, the prize card is split. After all prize cards are revealed, the score of each
player is the sum of the rank of the prize cards it won. Then, the payoff for the player with the higher score is 41, and
the payoff for the opponent is —1. If the scores are the same, the payoffs for the players are (0.5,0.5).

Goofspiel 4 is the same as Goofspiel, except that Goofspiel 4 has three suits of cards with each suit comprises four ranks.

Goofspiel 4 (imp) Goofspiel 4 (imp), i.e., Goofspiel 4 with imperfect information, is a variant of Goofspiel 4, which is
first proposed in (Lanctot et al., 2009). In each round, the cards that the players selected are not revealed to each other.
Instead, a coordinator will see the cards and determine which player wins the prize card.

Liar’s dice (Lisy et al., 2015) is another popular benchmark EFG. At the beginning of the game. Each player secretly
rolls a dice. Then the first player claims the outcome of their roll, in the form of Quantity-Value, e.g., a claim of 1-2
means that the player believes that there is one dice with a face value of 2. The second player can make a higher claim:
either to claim a higher Q with any V or to claim the same Q with a higher V. Otherwise, he can call his opponent a
“liar”. When the player calls a liar, the dice are revealed. If the opponent’s claim is false, the player that called a liar on
the opponent wins the game; otherwise, the player loses the game.

Battleship (Farina et al., 2019c) is a classic board game. At the beginning of the game, each player secretly places a set
of ships on separate grids without overlapping. In this setting, the size of the ship is 1 x 2 and the value is 4. The size of
the grid for each player is 3 x 2. After all the ships are placed. The players take turns to fire the opponent’s ship. Ships
that have been hit at all their cells are considered sunk. The game ends if a player’s all ships are all sunk or each of the
players has completed 3 shots. Finally, the payoff of the player is calculated as the sum of the values of the opponent’s
ships that were sunk, minus the sum of the values of the player’s ships that were lost.

F.2. Measuring the Sizes of the Games

To better measure the sizes of the games, another model known as the history tree is used to describe the games. For a

two-player imperfect information EFG, we have two players P = {1, 2}. A special player, the chance player c, is introduced

to take action for random events in the game. A history h € H (i.e., a full information state) is represented as a string of
actions that taken by all the players and the chance player. The histories of an EFG form a history tree by nature. Given a

non-terminal history h € H, A(h) C A gives the set of legal actions, and P(h) € P U {c} gives the player that should act
in the history. If action a € A(h) leads from h to h/, then h’ = ha. Denote the set of histories that are reached immediately
after taking any action a € A(h) for h as Cy, = {I'|h/ = ha,a € A(h)}. In an imperfect information game, histories of

“https://en.wikipedia.org/wiki/List_of_poker_hands
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player p € P that are indistinguishable are collected into an information set (infoset) I € Z,,. According to the definition of
decision points, we know that infosets are actually decision points. So, J, = I, for any player p € P.

With the above definitions, we can measure the sizes of the games in many dimensions. In Table 3, we give some data about
the games. In the table, #Histories measures the number of histories of the game. Depth measures the depth of the history
tree of the game, i.e., the maximum length of the histories. #Leaves measures the number of leaves of the history tree. The
size of decisions measures the maximum number of histories that belong to the same decision point (infoset). The action
factor, denoted by m, measures the contribution of the players to the number of leaves. We define m recursively: if history
h belongs to p € P, then my, = Eh’ech mp,; otherwise, mp, = maxp cc, Mp . Then, the action factor m is defined as
m = m,. The stochastic factor, denoted by s, measures the contribution of the chance player to the number of leaves. The
stochastic factor is defined as follows: if history h belongs to p € P, s, = maxp ¢, Sk/; otherwise, sp = > hiec, Shi-
Then, the stochastic factor s is defined as s = s,. Note that m x s = #Leaves.

Table 3: Sizes of the games

Game #Dec.ision #Histories  #Leaves  Depth siz'e.of Action Stochastic
points decisions factor factor
Leduc 936 3780 5520 8 5 49 120
Leduc(2, 9) 9288 1.5 x 10° 2.2 x 10° 8 17 49 4896
Goof. 4 7304 1.1 x10* 1.4x10* 6 4 576 24
Goof. 4 (imp) 3608 1.1 x10* 1.4 x10* 6 14 576 24
FHP(2, 5) 1.4 x10° 1.4x10% 2.3 x 106 12 9 98 2.5 x 10*
Goofspiel 9.1 x10° 1.4x105 1.7x108 8 5 1.4 x 10* 36
Liar’s dice 2.5 x10*  1.5x10° 1.5x10° 13 6 4095 24
Battleship 4.1x10° 23x10% 7.0x 108 10 22 7.0 x 106 1

G. Additional Results
G.1. Full Results in the Benchmark Games

In Figure 4, we compare FD-FTRL(CFR), FD-OMD(CFR) with CFRs in eight games. As we can see, FD-FTRL(CFR)
recovers vanilla CFR and FD-OMD(CFR) recovers CFR+. So, the equivalences are verified empirically. Note that both
FD-OMD(CFR) and CFR+ use LA for computing the average strategies.

In Figure 5, we compare FD-FTRL(R) in different configurations in eight games. As we have stated in the paper, the default
FD-FTRL(R) (with LA and CW) has the fastest convergence rate. In Figure 6, we compare FD-OMD(R) in different
configurations in eight games. Similar to the conclusion for FD-FTRL(R), the default FD-OMD(R) is the fastest, it is
even faster than CFR+ in four games. In Figure 7 and 8, we perform an ablation study for FD-FTRL(R) and FD-OMD(R),
respectively. As we have stated in the paper, CW has a significant impact on performance. Sometimes, FD-FTRL(R"FD) is
faster than the default FD-FTRL(R). However, FD-OMD(R) is always faster than the other variants.

In Figure 9, we compare FD-FTRL(R) and FD-OMD(R) with Predicted CFR (PCFR) and Predicted CFR+ (PCFR+) (Farina
etal., 2021). We implement PCFR with UA and implement PCFR+ with LA. As we can see, FD-OMD(R) is still competitive
compared with PCFR+.

In Figure 10, the results of conventional FTRL, OMD, and vanilla CFR that use UA to compute the average strategies are
given. As we can see, both FD-FTRL(R) and FD-OMD(R) are always faster than them.

G.2. Hyper-Parameter Tuning

For each game, We perform a coarse hyper-parameter () tuning for FD-FTRL(R) and FD-OMD(R). For most of the games,
we choose 77in {0.1,0.01,1072,10~4,107°}. In Figure 11 (12), the results of FD-FTRL(R) (FD-OMD(R)) with different
hyper-parameters are given. As we can see, FD-OMD(R) is more sensitive to the hyper-parameter than FD-FTRL(R). In
(Liu et al., 2022), the authors have proposed a method for adapting the hyper-parameter in ReCFR, which may be available
for adapting the hyper-parameters in FD-FTRL(R) and FD-OMD(R), too.
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