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Abstract
An ideal strategy in zero-sum games should not
only grant the player an average reward no less
than the value of Nash equilibrium, but also ex-
ploit the (adaptive) opponents when they are sub-
optimal. While most existing works in Markov
games focus exclusively on the former objective,
it remains open whether we can achieve both ob-
jectives simultaneously. To address this problem,
this work studies no-regret learning in Markov
games with adversarial opponents when compet-
ing against the best fixed policy in hindsight.
Along this direction, we present a new complete
set of positive and negative results: When the poli-
cies of the opponents are revealed at the end of
each episode, we propose new efficient algorithms
achieving

√
K-regret bounds when either (1) the

baseline policy class is small or (2) the opponent’s
policy class is small. This is complemented with
an exponential lower bound when neither condi-
tions are true. When the policies of the opponents
are not revealed, we prove a statistical hardness re-
sult even in the most favorable scenario when both
above conditions are true. Our hardness result is
much stronger than the existing hardness results
which either only involve computational hardness,
or require further restrictions on the algorithms.

1. Introduction
Multi-agent reinforcement learning (MARL) studies how
multiple players sequentially interact with each other and
the environment to maximize the cumulative rewards. Re-
cent years have witnessed inspiring breakthroughs in the
application of multi-agent reinforcement learning to various
challenging AI tasks, including, but not limited to, GO (Sil-
ver et al., 2016; 2017), Poker (Brown & Sandholm, 2019),
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real-time strategy games (e.g., StarCraft and Dota) (Vinyals
et al., 2019; OpenAI, 2018), autonomous driving (Shalev-
Shwartz et al., 2016), decentralized controls or multi-agent
robotics systems (Brambilla et al., 2013), as well as complex
social scenarios such as hide-and-seek (Baker et al., 2020).

Despite its great empirical success, MARL still suffers from
limited theoretical understanding with many fundamental
questions left open. Among them, one central and chal-
lenging question is how to exploit the (adaptive) suboptimal
opponents while staying invulnerable to the optimal oppo-
nents. Achieving this objective requires a solution concept
beyond Nash equilibria. As a motivating example, we con-
sider the game of rock-paper-scissors with a suboptimal
opponent who plays rock in the first K/2 games and then
switches to paper in the next K/2 games. A strategic player
in this case should be able to learn from the behavior of
the opponent and exploit it to get a return of Ω(K). In con-
trast, playing a Nash equilibrium (which plays all actions
uniformly) only yields an average return of zero.

In classical normal-form games (which can be viewed as
special cases of MARL without transition and states), the
question of exploiting adaptive opponents has been exten-
sively studied under the framework of no-regret learning,
where the agent is required to compete against the best
fixed policy in hindsight even when facing adversarial op-
ponents (see e.g., Cesa-Bianchi & Lugosi, 2006). On the
other hand, addressing general MARL brings a number of
new challenges such as unknown environment dynamics
and sequential correlations between the player and the op-
ponents. Consequently, all existing results (e.g., Brafman
& Tennenholtz, 2002; Wei et al., 2017; Tian et al., 2021;
Jin et al., 2021) have only focused on competing against
Nash equilibria when facing adversarial opponents. This
motivates us to ask the following question for MARL:

Can we compete against the best fixed policy in
hindsight and achieve no-regret learning in MARL?

In this paper, we consider two-player zero-sum Markov
games (Shapley, 1953; Littman, 1994) as a model for
MARL, and address the above question by providing a com-
plete set of positive and negative results as follows. We
refer to general policies as policies which can depend on



Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits

the entire history, in contrast to Markov policies, which can
only depend on the state at the current step.

Statistical efficiency (standard setting). We first con-
sider the most standard setting, in which only the actions
of the opponents are observed, and prove an exponential
lower bound for the regret. Importantly, the lower bound
holds even if the baseline policy class only contains Markov
policies and the opponent only alternates between a small
number of Markov policies. Besides, this hardness result
is much stronger than the existing ones which either only
involve computational hardness (Bai et al., 2020), or require
further restrictions on the algorithms (Tian et al., 2021).
The proof of the lower bound builds upon the key obser-
vation that we can simulate any POMDP/latent MDP by
a Markov game of similar size and an opponent playing
general/Markov policies. This directly implies no-regret
learning in MGs is no easier than learning POMDPs/latent
MDPs which is statistically intractable in general (Jin et al.,
2020; Kwon et al., 2021).

Statistical efficiency (revealed-policy setting). Given
that only observing actions of opponents is insufficient for
achieving sublinear regret, we then consider a setting more
advantageous to the learner, in which the opponent reveals
the policy she played at the end of each episode.

• When baseline policies—the set of policies we are
competing against in the definition of regret (see
Definition 3.1)—are Markov policies, we propose
Optimistic Policy EXP3 (OP-EXP3, Algorithm 1)
that has Õ(

√
H4S2AK)-regret even when the oppo-

nent can play arbitrary general (history-dependent)
policies, where H is the length of each episode, S
is the number of states, A is the number of actions, and
K is the number of episodes.

• When baseline policies are general policies, We fur-
ther propose adaptive OP-EXP3 (Algorithm 2) that
achieves regret Õ(

√
H4S2AK +

√
|Ψ?|SAH3K +√

|Ψ?|2H2K) when the opponent only chooses poli-
cies from an unknown policy class Ψ?.

• Finally, we complement our upper bounds with an
exponential lower bound for competing against general
policies, which holds even when the opponent only
plays deterministic Markov policies.

Computational efficiency. Finally, we prove that achiev-
ing sublinear regret is computationally hard even in the very
favorable setting where (a) the learner only competes against
the best fixed Markov policy in hindsight, (b) the opponent
only chooses policies randomly from a known small set of
Markov policies and reveals the policy she played at the end

of each episode, (c) the MG model is known. We empha-
size that this computational hardness holds under very weak
conditions as stated above, and applies to all the settings
studied in this paper.

To summarize, we provide a complete set of results includ-
ing both efficient algorithms and fundamental limits for
no-regret learning in Markov games with adversarial oppo-
nents. We refer the reader to Table 1 for a brief summary of
our main results.

2. Related Work
Learning Nash equilibria in Markov games. There has
been a long line of literature focusing on learning the Nash
equilibrium of Markov games when either the dynamics
are known, or the amount of collected data goes to infin-
ity (Littman, 1994; Hu & Wellman, 2003; Hansen et al.,
2013; Lee et al., 2020). Later works have considered self-
play algorithms that incorporate exploration and can find
Nash equilibrium in Markov games with unknown dynam-
ics (Wei et al., 2017; Bai et al., 2020; Bai & Jin, 2020; Xie
et al., 2020; Liu et al., 2021).

When the algorithm is only able to control one player and
the other player is potentially adversarial, Brafman & Ten-
nenholtz (2002) proposed the R-max algorithm, and showed
that it is able to obtain average value close to the Nash value.
Later works (Wei et al., 2017; Tian et al., 2021; Jin et al.,
2021) obtain similar or improved results also for comparing
to the Nash value.

Learning latent MDPs. In latent MDPs, sometimes also
referred as multi-model MDPs, a latent variable is drawn
from a fixed distribution at the start of each episode, and the
dynamics of the MDP would be a function of this latent vari-
able. Steimle et al. (2021) has shown that finding the optimal
Markov policy in the latent MDP problem is computational
hard; Kwon et al. (2021) considered reinforcement learning
in latent MDPs, providing both statistical lower bounds for
the general case and sample complexity upper bounds under
further assumptions. Latent MDPs, and in fact POMDPs
(Smallwood & Sondik, 1973; Azizzadenesheli et al., 2016;
Jin et al., 2020) in general, can be simulated using Markov
games with adversarial opponents as proved in this paper;
thus learning latent MDPs can be viewed as a special case
of the setting considered in this paper.

Adversarial MDPs. Another line of work focuses on the
single-agent adversarial MDP setting where the transition or
the reward function is adversarially chosen for each episode.
When the adversary can arbitrarily alter the transition, Ab-
basi Yadkori et al. (2013) prove that no-regret learning is
computationally at least as hard as learning parity with noise.
Later work by Bai et al. (2020) adapt similar hard instance
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Baseline Policies Opponent’s Policies Standard Setting Revealed-policy Setting

Markov policies General policies
Ω(min{K, 2H}/H)

Õ(
√
H4S2AK)

General policies
Finite class Ψ? Õ(

√
H4S2AK +

√
|Ψ?|SAH3K +

√
|Ψ?|2H2K)

Markov policies Ω(min{K, 2H})

Table 1. A summary of the main results. Baseline policies refer to the policies the algorithm competes against in the definition of regret
(see Definition 3.1). General policies include both Markov and history-dependent policies.

for Markov games and prove that achieving sublinear regret
in MGs against adversarial opponents is also computation-
ally hard. On the other hand, if the transition is fixed and the
adversary is only allowed to alter the reward function, sub-
linear regret can be achieved by various algorithms (Jin et al.,
2019; Zimin & Neu, 2013; Rosenberg & Mansour, 2019;
Shani et al., 2020) in competing against the best Markov
policy in hindsight.

Matrix games and extensive form games. For matrix
games, it is well known that playing EXP-style algorithms
would allow one to compete with the best policy (action pro-
file) in hindsight (see e.g., Cesa-Bianchi & Lugosi, 2006).
For extensive form games (EFGs), similar no-regret guar-
antees can be achieved via counterfactual regret minimiza-
tion (Zinkevich et al., 2007) or online convex optimiza-
tion (Gordon, 2007; Farina et al., 2020; Farina & Sandholm,
2021; Kozuno et al., 2021). EFGs can be viewed a special
subclass of MGs where the transition admits a strict tree
structure. Therefore, results for EFGs do not directly apply
to MGs.

3. Preliminaries
In this paper, we consider Markov Games (MGs, Shapley,
1953; Littman, 1994), which generalize the standard Markov
Decision Processes (MDPs) into the multi-player setting,
where each player seeks maximizing her own utility.

Formally, we study the tabular episodic version of two-
player zero-sum Markov games, which is specified by a
tuple (S,A, H,P, r). Here S denotes the state set with
|S| ≤ S. A = Amax × Amin (with |A| ≤ A) denotes
the action-pair set that is equal to the Cartesian product
of the action set of the max-player Amax and the action
set of the min-player Amin. H denotes the length of each
episode. P = {Ph}h∈[H] denotes a collection of transi-
tion matrices, so that Ph(·|s,a) gives the distribution of the
next state if action-pair a ∈ A is taken at state s at step
h. r = {rh}h∈[H] denotes a collection of expected reward
functions, where rh : S ×A → [0, 1] is the expected reward
function at step h. This reward represents both the gain of
the max-player and the loss of the min-player, making the
problem a zero-sum Markov game. For cleaner presentation,

we assume the reward function is known in this work.1

In each episode, the environment starts from a fixed ini-
tial state s1. At step h ∈ [H], both players observe state
sh ∈ S, and then pick their own actions ah,max ∈ Amax

and ah,min ∈ Amin simultaneously. After that, both play-
ers observe the action of their opponent, receive reward
rh(sh,ah), and then the environment transitions to the next
state sh+1 ∼ Ph(·|sh,ah). The episode terminates immedi-
ately once sH+1 is reached.

We use τh = (s1,a1, . . . , sh−1,ah−1, sh) ∈ (S×A)h−1×
S to denote a trajectory from step 1 to step h, which includes
the state but excludes the action at step h. We use box
brackets to denote the concatenation of trajectories, e.g.,
[τh,ah, sh+1] ∈ (S ×A)h × S gives a trajectory from step
1 to step h+ 1 by concatenating τh with an action-state pair
(ah, sh+1).

Policy. We consider two classes of policies: Markov poli-
cies and general policies. A Markov policy µ = {µh :
S → ∆Amax}h∈[H] of the max-player is a collection of H
functions, each mapping from a state to a distribution over
actions. (Here ∆Amax

is the probability simplex over action
set Amax.) Similarly, a Markov policy of the min-player
is of form ν = {νh : S → ∆Amin

}h∈[H]. Different from
Markov policies, a general policy can choose actions de-
pending on the entire history of interactions. Formally, a
general policy µ = {µh : (S×A)h−1×S → ∆Amax}h∈[H]

of the max-player is a collection of H functions where each
function maps a trajectory to a distribution over actions.
The definition of general policies of the min-player follows
similarly. We remark that Markov policies are special cases
of general policies, which pick actions only conditioning on
the current state.

Value function. Given any pair of general policies (µ, ν),
we use V µ×ν1 (s1) to denote its value function, which is
equal to the expected cumulative rewards received by the
max-player, if the game starts at state s1 at the 1th step and
the max-player and the min-player follow policy µ and ν

1Our results immediately generalize to unknown reward func-
tions effortlessly, since learning the transitions is more difficult
than learning the rewards in tabular MGs.
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respectively:

V µ×ν1 (s1) := Eµ×ν

[
H∑
h=1

rh(sh,ah)

∣∣∣∣∣ s1

]
, (1)

where the expectation is taken with respect to the random-
ness of a1, s2,a2, . . . , sH ,aH .

Best response and Nash equilibrium. Given any gen-
eral policy of the max-player µ, there exists a best re-
sponse of the min-player ν†(µ) so that V µ×ν

†(µ)
1 (s1) =

infν V
µ×ν
1 (s1). For brevity of notations, we denote V µ,†1 :=

V
µ×ν†(µ)
1 . By symmetry, we can also define µ†(ν) and V †,ν1 .

Moreover, previous works (e.g., Filar & Vrieze, 2012) prove
that there exist policies µ?, ν? that are optimal against the
best responses of the opponents, in the sense that

V µ
?,†

1 (s1) = sup
µ
V µ,†1 (s1), V †,ν

?

1 (s1) = inf
ν
V †,ν1 (s1).

We refer to such strategies (µ?, ν?) as the Nash equilibria
of the Markov game. Importantly, any Nash equilibrium
satisfies the following minimax theorem 2:

sup
µ

inf
ν
V µ×ν1 (s1) = V µ

?×ν?

1 (s1) = inf
ν

sup
µ
V µ×ν1 (s1).

The minimax theorem above directly implies the value
function of Nash equilibria is unique, which we denote
as V ?1 (s1). Furthermore, it is also known that there always
exists a Markov Nash equilibrium in the sense that both µ?

and ν? are Markov. Intuitively, a Nash equilibrium gives
a solution in which no player can benefit from unilateral
deviation.

Learning objective. In this work, we study no-regret
learning of Markov games with adversarial opponents, and
measure the performance of an algorithm by its regret
against the best fixed policy in hindsight from a prespecified
set of policies. From now on, we refer to this policy set as
the baseline policy class, and denote it by Φ?.

Definition 3.1 (Regret). Let (µk, νk) denote the policies de-
ployed by the algorithm and the opponent in the kth episode.
After a total of K episodes, the regret is defined as

RegretΦ?(K) = max
µ∈Φ?

K∑
k=1

(V µ×ν
k

1 − V µ
k×νk

1 )(s1). (2)

When the baseline policy class Φ? includes all the gen-
eral policies, we will omit subscript Φ? and simply write
Regret(K).

2We remark that the minimax theorem for MGs is differ-
ent from the one for matrix games, i.e. maxxminy x

>Ay =

minymaxx x
>Ay for any matrix A, because V µ×ν1 (s1) is in gen-

eral not bilinear in µ, ν.

Compared to previous works (e.g., Brafman & Tennenholtz,
2002; Wei et al., 2017; Tian et al., 2021; Jin et al., 2021)
that only pursue achieving the Nash value, i.e., considering
the following version of regret

K∑
k=1

(V ?1 − V
µk×νk

1 )(s1), (3)

our regret defined in (2) is a much stronger criterion because
it forces the algorithm to exploit the opponents to achieve
higher value than Nash equilibria whenever the opponent is
exploitable. In stark contrast, the regret defined in (3) only
requires the algorithm itself to be invulnerable. Moreover,
if the baseline policy class includes all the Markov policies,
then the regret defined in (2) is an upper bound for the latter
one because there always exists a Markov Nash equilibrium
as mentioned before.

Finally, observe that the regret defined in (2) does not de-
pend on the payoff function of the min-player, so it is still
well-defined in the general-sum setting. Actually, all the
results derived in this work can be directly extended to the
general-sum setting, although the current paper assumes
zero MGs for cleaner presentation and more direct compari-
son to previous works.

4. Results for the Standard Setting
In this section, we consider the standard setting where the
opponent only reveals her actions to the learner during their
interaction. We show that achieving low regret in this setting
is impossible in general even if (a) the baseline policy class
consists of Markov policies, and (b) the opponent sticks to a
fixed general policy or only alternates between H different
Markov policies. Our hardness results build on the general-
ity of Markov games, i.e., the ability to simulate POMDPs
and latent MDPs with specially designed opponents.

4.1. Against opponents playing a fixed general policy

To begin with, we show competing with the best Markov
policy in hindsight is statistically hard when the opponent
keeps playing a fixed general policy.
Theorem 4.1. There exists a Markov game with S,A =
O(1) and an opponent playing a fixed unknown general
policy, such that the regret for competing with the best fixed
Markov policy in hindsight is Ω(min{K, 2H}).

Theorem 4.1 claims that even in a Markov game of constant
size, if the learner is only able to observe the opponent’s
actions instead of the opponent’s policies, then there exists a
regret lower bound exponential in the horizon length H for
competing with the best fixed Markov policy in hindsight
when the opponent plays a fixed unknown general policy.

The proof relies on the fact that a POMDP can be simulated
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Figure 1. Simulating a POMDP using a Markov game with a
history-dependent opponent. The player and the opponent dictates
the transition dynamics in turn. The opponent, which has access to
the full history {o1, a1, o2, · · · , oh, ah}, can always sample her
action bh from P[oh+1 = ·|o1, a1, o2, · · · , oh, ah] in the POMDP
above, and the next state is exactly equal to bh.

by a Markov game of similar size and with an opponent
who plays a fixed history-dependent policy.

Proposition 4.2 (POMDP ⊆ MG + opponent playing a
general policy). A POMDP with S hidden states, A actions,
O observations, and episode lengthH can be simulated by a
Markov game with opponent playing a fixed general policy,
where the Markov game has OA+O states, A actions for
the learning agent, O actions for the opponent, and episode
length 2H .

The idea of simulating a POMDP is demonstrated in Fig-
ure 1: the opponent dictates the next state every two
time steps, and since the opponent knows the full tra-
jectory {o1, a1, o2, · · · , oh, ah}, she can choose bh ac-
cording to the conditional distribution of oh+1 given
{o1, a1, o2, · · · , oh, ah} in the POMDP. Thus we can sim-
ulate the POMDP with a Markov game whose number of
states and actions are polynomially related to the original
POMDP. We remark that in POMDPs the reward is typically
included in the observation so here we do not need to handle
it separately. A detailed proof of Proposition 4.2 is provided
in Appendix A.2.

Given that there exists exponential regret lower bound for
learning POMDPs (e.g., Jin et al., 2020), Proposition 4.2
immediately implies no-regret learning in Markov games
is in general intractable if the opponent plays a fixed gen-
eral policy. The proof is a straightforward combination of
Proposition 4.2 and the hard instance constructed in Jin et al.
(2020), which can be found in Appendix A.1.

4.2. Against opponents playing Markov policies

Theorem 4.1 shows that it is statistically hard to compete
with the best Markov response to a non-Markov opponent,
which is in stark contrast to the case where the opponent
plays a fixed Markov policy and the Markov game can be re-
duced to a single-agent MDP. However, when the opponent
is able to choose from a small set of Markov policies, the
task of competing with the best Markov policy in hindsight
becomes intractable again.
Theorem 4.3. There exists a Markov game with S,A =
O(H) and an opponent who chooses policy uniformly at
random from an unknown set of H Markov policies in each
episode, such that the regret for competing with the best
fixed Markov policy in hindsight is Ω(min{K, 2H}/H).

Theorem 4.3 claims that even restricting the opponent to
only play a finite number of Markov policies is insufficient
to circumvent the exponential regret lower bound for com-
peting with the best Markov policy in hindsight, as long as
the opponent only reveals her actions to the learner.

The proof of Theorem 4.3 utilizes the following fact that
we can simulate a latent MDP by a Markov game of similar
size and an opponent who only plays a small set of Markov
policies.
Proposition 4.4 (Latent MDP ⊆MG + opponent playing
multiple Markov policies). A latent MDP with L latent
variables, S states, A actions, and episode length H and
binary rewards can be simulated by a Markov game with
opponent playing policies chosen from a set of L Markov
policies, where the Markov game has SA + S states, A
actions for the learning agent, 2S actions for the opponent,
and episode length 2H .

The proof of Proposition 4.4 is deferred to Appendix A.4,
which is in a similar spirit to Proposition 4.2. Proposi-
tion 4.2 and 4.4 can be alternatively characterized by the
Venn diagram in Figure 2.

Combining Proposition 4.4 with the hardness instance for
learning latent MDPs (Kwon et al., 2021) immediately
implies the exponential lower bound for playing against
Markov opponents in Theorem 4.3. A detailed proof is
provided in Appendix A.3.

5. Results for the Revealed-policy Setting
In this section, we study the setting where the opponent
reveals the policy she just played to the learner at the end
of each episode. Formally, in each round of interaction:
first the learner and the opponent choose their policies µ
and ν simultaneously, then an episode is played following
µ×ν, and after that the learner gets to observe the opponent
policy ν. For this setting, we propose two algorithms with√
K-regret upper bounds, when either the log-cardinality
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Figure 2. Relation between Markov games (reveal action only),
latent MDPs and POMDPs.

of the baseline policy class or the cardinality of the oppo-
nent’s policy class is small. This is complemented with an
exponential lower bound when neither conditions are true.

5.1. Finite baseline policy class Φ?

We first consider the case when the baseline policy class
Φ? to compete with is finite but the opponent’s policy class
is arbitrary. Importantly, we allow both the opponent’s
polices and the baseline polices to be non-Markov (history-
dependent).

Algorithm. We propose OP-EXP3 (Algorithm 1), which
represents Optimistic Policy EXP3, for no-regret learning
in this setting. At a high level, OP-EXP3 performs any-time
EXP3 with optimistic gradient estimate in the baseline pol-
icy class Φ? by viewing each baseline policy as an“action”.
Specifically, OP-EXP3 maintains a distribution p over the
baseline policy class, and in each episode k

• Interaction (Line 4-5). The learner samples a policy
µk from Φ? according to pk and the opponent chooses
her policy νk simultaneously. Then a trajectory is
sampled by following µk × νk.

• Optimistic EXP3 (Line 6-7). The opponent’s policy
νk is revealed to the learner, and for every baseline
policy µ in Φ?, the learner computes an optimistic
estimate of the value function of µ× νk by using the
Optimistic Policy Evaluation (OPE) subroutine. Then
the EXP3 update is incurred with the optimistic value
estimates as the negative gradient.

• Model estimate update (Line 8). Using the newly
collected data, we update the empirical estimate of the
MG model.

In Subroutine 1, we formally describe the optimistic policy
evaluation step. In brief, it utilizes the Bellman equation
for general policies to perform dynamic programming from
step H to step 1, by using the empirical transition and addi-
tionally adding bonus to ensure optimism.

Algorithm 1 Optimistic Policy EXP3
1: input: bonus function β : N → R, learning rate

(ηk)Kk=1, basesline policy class Φ?

2: initialize: initial distribution p1 ∈ R|Φ| to be uniform
over Φ, visitation counters Nh(s,a) = Nh(s,a, s′) =
0 for all (s,a,a′, h)

3: for k = 1, . . . ,K do
4: the learner samples µk ∼ pk and the adversary

chooses νk simultaneously
5: follow πk = µk × νk to sample {skh,akh, rkh}Hh=1

# optimistic EXP3
6: observe νk, and for all µ ∈ Φ? compute

V µ×ν
k

1 (s1) = OPE(N, β, µ× νk)

7: then update pk+1(µ) ∝ exp(ηk ·
∑k
t=1 ·V

µ×νt

1 (s1))
# update the counters

8: for all h ∈ [H]: Nh(skh,a
k
h)← Nh(skh,a

k
h) + 1 and

Nh(skh,a
k
h, s

k
h+1)← Nh(skh,a

k
h, s

k
h+1) + 1

9: end for

Subroutine 1 Optimistic Policy Evaluation (N, β, π)

initialize VH+1(τH+1) = 0 for all τH+1

for (s,a, h, s′) ∈ S ×A× [H]× S do

P̂h(s′ | s,a) =

{
Nh(s,a,s′)
Nh(s,a) , if Nh(s,a) 6= 0

1/S, otherwise
end for
for h = H, . . . , 1 do

for all τh = (s1,a1, . . . , sh) ∈ (S ×A)h−1 × S do
Qh(τh,a) = Es′∼P̂h(·|sh,a) [Vh+1([τh,a, s

′])]

+rh(sh,a) + β(Nh(sh,a))
Qh(τh,a) = min {Qh(τh,a), H − h+ 1}
Vh(τh) = Ea∼π(·|τh)[Qh(τh,a)]

end for
end for
return V1(s1)

Theoretical guarantee. Below we present the main theo-
retical guarantee for OP-EXP3.

Theorem 5.1. Let c be a large absolute constant. In Al-
gorithm 1, choose ηk =

√
log |Φ?|/(kH2) and β(n) =√

H2Sι/max{n, 1} where ι = c log(SAHK/δ). Then
with probability at least 1− δ, for all k ∈ [K]

RegretΦ?(k) ≤ O
(√

kH2 log |Φ?|+
√
kS2AH4ι2

)
.

Theorem 5.1 claims that OP-EXP3 with standard UCB-
bonus achieves O(

√
k)-regret with high probability, when

competing with the best policy in hindsight in the baseline
class. Notably, the regret only depends logarithmically on
the cardinality of the baseline class and is independent of
the opponent’s policy class. In particular, if we choose the
baseline policy class to be the collections of all determin-
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istic3 Markov policies (|Φ?| = ASH ), then Theorem 5.1
immediately impliesO

(√
kS2AH4ι2

)
regret upper bound

for competing with the best Markov policy in hindsight.
Moreover, it further implies the same regret upper bound
for competing against the value of Nash equilibria, i.e., the
regret in equation (3), because there always exists a Markov
Nash equilibrium. The proof of Theorem 5.1 can be found
in Appendix B.1.

5.2. Finite unknown opponent policy class Ψ?

In Section 5.1, we study the problem of competing with
a finite baseline policy while allowing arbitrary opponent
polices. In this subsection, we turn to a complementary
setting where the baseline policy class consists of all the
general polices while the opponent policy class Ψ? is finite
but unknown.

Algorithm. Based on OP-EXP3, we propose Adap-
tive OP-EXP3 (Algorithm 2), which represents adaptive
Optimistic Policy EXP3. Compared to its prototype, adap-
tive OP-EXP3 incorporates the following two key modifi-
cations

• Lazy model update (Line 9-10). Adaptive OP-EXP3
maintains two empirical model estimates: the latest
version and a lazy version that are computed by us-
ing counter N and N lazy respectively. Counter N is
promptly updated in each episode as in OP-EXP3,
while counter N lazy copies the values in N each time
a state-action counter in N is doubled or a new oppo-
nent policy is observed. Importantly, adaptive OP-
EXP3 always uses the lazy model estimate for opti-
mistic policy evaluation (Line 6).

• Adaptive player policy class (Line 9-12). Each time
the opponent reveals a new policy (i.e., a policy not in
the historical opponent policy set Ψk) or the lazy model
is updated, the learner recomputes its policy class Φ to
include the optimistic best responses to all the possible
mixtures of historical opponent policies. After that,
EXP3 is restarted from the uniform distribution over
Φ.

We formally describe how to recompute the player policy
class in Subroutine 2 where we in fact only consider an
ε-cover of all the possible mixtures of historical opponent
policies. And for each such mixture, we compute an op-
timistic best response, by invoking the optimistic policy
evaluation subroutine with the lazy model estimate.

3Competing against all Markov policies is equivalent to com-
peting with all deterministic Markov policies because for any
general policy there always exists a Markov best-response that is
also deterministic.

Intuitively, the reason for only including the best responses
to policy mixtures in the player policy class is that the best
general policy in hindsight is always a best response to
a mixture of the historical opponent policies. Moreover,
by doing so, we effectively shrink the log-cardinality of
the baseline policy class to Õ(|Ψ?|) that is the size of the
opponent policy class, while still remaining competitive
with any general policy.

Algorithm 2 Adaptive Optimistic Policy EXP3
1: input: bonus function β : N → R, learning rate

(ηk)Kk=1, grid resolution ε.
2: initialize: baseline policy class Φ and distribution

p1 ∈ R|Φ| arbitrarily, visitation counters Nh(s,a) =

Nh(s,a, s′) = N lazy
h (s,a) = N lazy

h (s,a, s′) = 0 for
all (s,a,a′, h), Ψ1 = ∅, m1 = 0

3: for k = 1, . . . ,K do
4: the learner samples µk ∼ pk and the adversary

chooses νk simultaneously
5: follow πk = µk × νk to sample {skh,akh, rkh}Hh=1

# optimistic EXP3
6: observe νk, and for all µ ∈ Φ compute

V µ×ν
k

1 (s1) = OPE(N lazy, β, µ× νk)
7: then update

pk+1(µ) ∝ exp(ηk ·
∑k
t=mk+1 ·V

µ×νt

1 (s1))
# update the counters

8: for all h ∈ [H]: Nh(skh,a
k
h)← Nh(skh,a

k
h) + 1 and

Nh(skh,a
k
h, s

k
h+1)← Nh(skh,a

k
h, s

k
h+1) + 1

# update the lazy model and policy class
9: if νk /∈ Ψkor ∃h s.t. Nh(skh,a

k
h) ≥ 2N lazy

h (skh,a
k
h)

then
10: N lazy ← N , Ψk+1 ← Ψk ∪ {νk}, mk+1 ← k
11: Φ← OBR(N lazy, β,Ψk+1, ε)
12: reset pk+1 to be uniform over Φ
13: else
14: Ψk+1 ← Ψk and mk+1 ← mk

15: end if
16: end for

Theoretical guarantee. Now we present the theoretical
guarantee for adaptive OP-EXP3, under the following
adaptive learning rate schedule

ηk =

√
|Ψk| log(K)

(k −mk)H2
, (4)

where Ψk contains all the different policies the opponent
has played before the kth episode, andmk denotes the index
of the most recent episode when EXP3 is restarted (Line 11)
before the kth episode.

Theorem 5.2. Let c be a large absolute constant. In
Algorithm 2, choose the learning rate adaptively by (4),
ε = 1/K and β(n) =

√
H2Sι/max{n, 1} where ι =



Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits

Subroutine 2 Optimistic Best Response (N lazy, β,Ψ, ε)

initialize: BR = {}
denote the polices in Ψ by ν(1), . . . , ν(|Ψ|)

denote by ∆ε
|Ψ| an ε-cover of ∆|Ψ| w.r.t. `1-norm

for w ∈ ∆ε
|Ψ| do

Select an arbitrary
µ ∈ argmaxµ̂

∑|Ψ|
i=1 wi × OPE(N lazy, β, µ̂× ν(i))

BR← BR ∪ {µ}
end for
return BR

c log(SAHK/δ). Then with probability at least 1− δ, for
all k ∈ [K]

Regret(k) ≤ O
(√

k (S2AH2 + |Ψk|SAH + |Ψk|2)H2ι2
)
.

Given that the opponent only plays policies from a fi-
nite class Ψ?, Theorem 5.2 guarantees that adaptive OP-
EXP3 suffers regret at most

O
(√

k (S2AH2 + |Ψ?|SAH + |Ψ?|2)H2ι2
)

in competing with the best general policy in hindsight.
Moreover, note that the bound in Theorem 5.2 depends
linearly on the number of different historical opponent poli-
cies. As a result, the regret of adaptive OP-EXP3 is still
sublinear even if the opponent policy class keeps expanding
as k increases, as long as its cardinality is order o(

√
k). The

proof of Theorem 5.2 can be found in Appendix B.2.

5.3. Statistical hardness with large Φ? and Ψ∗

Theorem 5.1 and 5.2 show that when either log |Φ?| (the
log-cardinality of the baseline policy class) or |Ψ∗| (the
cardinality of the opponent’s policy class) is ploynomial, a
sublinear regret bound is obtainable. We now complement
these two results with a lower bound when both conditions
are violated, i.e., when the size of Φ? is doubly exponential
and the size of Ψ∗ is exponential.

Theorem 5.3. There exists a Markov game with S = 1,
|Amax| = |Amin| = 2, |Ψ∗| = 2H such that the regret
for competing with the best general policy in hindsight is
Ω(min{K, 2H}), even if the adversary reveals her policy
after each episode.

The construction for this lower bound is quite simple. Con-
sider a Markov game with horizon H and only 1 state.
The agent only receives non-zero reward if at the final
time step, it plays the same action as the opponent, i.e.,
rH(s, (a, b)) = 1[a = b]. Now, suppose that in each
episode, the opponent samples randomly from the set of all
deterministic Markov policies; any algorithm would have

an expected value of 1/2, as bH ∼ Ber(1/2). However, the
best history-dependent policy in hindsight would be able
to predict bH by memorizing b1, · · · , bH−1 when the num-
ber of episodes is not exponentially large. This gives the
claimed Ω(min{K, 2H}) lower bound. A formal proof can
be found in Appendix B.3.

6. Computational Hardness
Finally, we provide a computational lower bound for this
problem. We remark that this lower bound holds even if
(a) the transitions of the Markov game are known, (b) the
opponent reveals the policy she just played at the end of each
episode, and (c) the opponent can only choose from a small
known set of Markov policies (|Ψ∗| = O(H)). Therefore,
the lower bound applies to all the settings considered in this
paper.

Theorem 6.1. If an algorithm achieves poly(S,A,H) ·
K1−c expected regret with a constant c > 0 in the setting
that satisfies the above condition (a), (b), (c), then its com-
putational complexity cannot be poly(S,A,H,K) unless
NP ⊆ BPP.4

This computational lower bound suggests that the best we
can hope for is a statistically efficient but computationally
intensive algorithm. It also renders statistically efficient
value-iteration or Q-learning style algorithms for this prob-
lem unlikely, unless they employ NP-hard subroutines.

The proof of Theorem 6.1 depends on the construction in
Proposition 6 of Steimle et al. (2021), which reduces solving
3-SAT to finding the best Markov policy in a latent MDP.
We provide a full proof in Appendix C.1.

7. Conclusion
This paper studies no-regret learning of Markov games with
adversarial opponents. We provide a complete set of posi-
tive and negative results for competing with the best fixed
policy in hindsight. In the standard setting where only the
actions of opponents are revealed, we prove it is statistically
intractable to compete with the best fixed Markov policy in
hindsight, even if the opponent only chooses from a limited
number of Markov policies. In the revealed-policy setting,
we propose new algorithms with

√
K-regret bound when

either the log-cardinality of the baseline policy class or the
cardinality of the opponent’s policy class is small. Addi-
tionally, an exponential lower bound is derived when both
quantities are large. Finally, we turn to the computational
efficiency and prove achieving sublinear regret is in general
computationally hard even in the very benign scenario.

4BPP is the probabilistic version of P, and NP ⊆ BPP is be-
lieved to be highly unlikely in computational complexity literature.
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A. Proofs for Section 4
A.1. Proof of Theorem 4.1

Because we can simulate any POMDP with a MG by using Proposition 4.2, it suffices to show there exists a hard POMDP
instance with O(1) number of states, actions and observations so that any algorithm will suffer Ω(min{4H ,K}) regret
when competing with the optimal Markov policy of this POMDP.

We use the hard instance constructed in Jin et al. (2020). There are two states sg, sb and four actions. There is special
action sequence a?1, . . . , a

?
H−1 sampled independently and uniformly at random from the action set, which is unknown to

the learner. The transition dynamics are constructed so that (a) the agent always starts in sg at step 1, (b) at each step h
the agent will transition to sg if and only if she is currently in sg and plays the special action a?h, and otherwise will go to
sb. At the first H − 1 steps, the two states emit the same observation that contains reward 0. At step H , sg emits reward 1
while sb still emits a zero-reward observation. It is straightforward to see the optimal policy is to play the special action
sequence, which is Markov. However, because sg and sb are totally indistinguishable from observations at the first H − 1
steps, finding this action sequence will cost at least Ω(4H) episodes in general, which implies a Ω(min{4H ,K}) regret
lower bound for competing with the optimal Markov policy.

A.2. Proof of Proposition 4.2

We describe how to simulate a POMDP with a Markov game and an opponent playing a fixed general policy.

Each step in the POMDP is simulated by two consecutive steps in the Markov game, and the transition dynamics of the
Markov game have the following special structures:

• At an even step, the transition only depends on the action of the opponent. Moreover, the next state is always equal to
the opponent’s action regardless of the current state.

• At an odd step, the transition only depends on the action of the learner, and the next state is simply an augmentation of
the current state and the learner’s action.

Specifically, suppose in the POMDP, at step h, the learner starts with history o1, a1, . . . , oh and plays action ah, then
observes oh+1 sampled from P(oh+1 = · | o1, a1, . . . , oh, ah). In this case, the corresponding two steps in the POMG will
be: at step 2h− 1, the learner starts at state oh and takes action ah, then the environment transitions to state (oh, ah); at
step 2h, the opponent starts at state (oh, ah) and takes action oh+1 sampled from P(oh+1 = · | o1, a1, . . . , oh, ah), then the
environment transitions to oh+1 that is exactly equal to the action of the opponent. Note that here the opponent is playing a
history-dependent policy.

It is direct to see there are OA+O distinct states, A actions for the learner and O actions for the opponent in this Markov
game. Besides, the episode length is 2H .

A.3. Proof of Theorem 4.3

By Proposition 4.4, we can simulate any latent MDP with a MG. As a result, it suffices to show there exists a hard latent
MDP with O(1) states, O(H) actions and H latent variables so that any algorithm will suffer Ω(min{4H ,K}/H) regret
when competing with the optimal Markov policy of this latent MDP.

We utilize the hard latent MDP instance constructed in Theorem 3.1 (Kwon et al., 2021).5 In the latent MDP instance, there
is a collection of H unknown MDPs, each of which has O(1) states, O(H) actions and binary rewards. At the beginning of
each episode the environment secretly draws an MDP uniformly at random from these H MDPs, and then the algorithm
interacts with this MDP without knowing which one it is. Kwon et al. (2021) prove that it takes Ω(4H) episodes to learn a
policy that is O(1/H)-optimal compared to the best Markov policy, where the optimality is defined using the average value
over the H MDPs. By the standard online-to-batch conversion (e.g., Lattimore & Szepesvári, 2020), it immediately implies
a Ω(min{4H ,K}/H) regret lower bound for competing with the optimal Markov policy.

5Despite Kwon et al. (2021) study the stationary setting, their constructions can be trivially adapted to handle the nonstationary setting
and gives a stronger lower bound which is the one we state here.
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A.4. Proof of Proposition 4.4

To begin with, we recall the definition of latent MDPs (Kwon et al., 2021). At the beginning of each episode the environment
secretly draws an MDP uniformly at random from L unknown MDPs, then the algorithm interacts with this MDP without
knowing which one it is.

Denote by q ∈ ∆L the latent distribution over these L MDPs and Pih(s′|s, a) (rih(s, a)) the transition (reward) function of
the ith MDP. In each episode of the Markov game

• The opponent secretly samples t ∼ q before step 1, and keeps it hidden from the learner throughout.

• At step 2h−1, the transitions are deterministic, and only depend on the current state and the learner’s action. Specifically,
the environment will transition to an augmenting state (s, a) if the learner takes action a at state s regardless of what
action the opponent picks. There is no reward at this step.

• At step 2h, the transitions and rewards are still deterministic, but only depend on the opponent’s action. Formally, the
environment will transition to state s′ from an augmenting state (s, a) and the learner will receive reward r′ ∈ {0, 1},
if the opponent takes action (s′, r′), the probability of which is given by

ν2h ((s′, r′)|(s, a), t) = Pth(s′|s, a)× 1
(
rth(s, a) = r′

)
.

It is direct to see interacting with this MG is exactly equivalent to interacting with the original latent MDP. In particular,
there is no additional information revealed in the MG because the opponent’s action is always equal to the next state and the
reward.

B. Proofs for Section 5
B.1. Proof of Theorem 5.1

We first introduce several notations that will be frequently used in our proof. Let τh = [s1,a1, . . . , sh−1,ah−1, sh]. Denote
by Nk the collection of counters at the beginning of episode k. Denote by P̂k the empirical transition computed by using
Nk, i.e., for any (s,a, h, s′) ∈ S ×A× [H]× S

P̂kh(s′ | s,a) =

{
Nk

h (s,a,s′)

Nk
h (s,a)

if Nh(s,a) 6= 0,

1/S otherwise.

Given an arbitrary policy π, we define V π,k (Qπ,k) that is the optimistic estimate of V π (Qπ) as following: for any h ∈ [H],V
k,π
h (τh) = Ea∼π(·|τh)

[
Qk,πh (τh,a)

]
,

Qk,πh (τh,a) = min
{
Es′∼P̂k

h(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]

+ rh(sh,a) + β(Nk
h (sh,a)), H − h+ 1

}
,

(5)

and we define V k,πH+1 ≡ 0. We comment that by definition V k,π1 (s1) = UCB-VI(Nk, β, π) for all k, π.

For the purpose of proof, we further introduce the following auxiliary function for controlling the optimism of V π,k (Qπ,k)
against the true value function V π (Qπ): for any h ∈ [H]Ṽ

k,π
h (τh) = Ea∼π(·|τh)

[
Q̃k,πh (τh,a)

]
,

Q̃k,πh (τh,a) = min
{
Es′∼Ph(·|sh,a)

[
Ṽ k,πh+1([τh,a, s

′])
]

+ 2β(Nk
h (sh,a)), H − h+ 1

}
,

(6)

and we define Ṽ k,πH+1 ≡ 0. Compared to V k,π , Ṽ k,πh is defined using the groundtruth transition function P, it does not contain
the reward function and the bonus function is doubled.

Finally, recall we choose the bonus function to be

β(t) = H

√
Sι

max{t, 1}
,

where ι = log(KHSA/δ) with c being some large absolute constant.
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Lemma B.1 (Optimism). With probability at least 1− δ, for all (k, h) ∈ [K]× [H + 1] and all general policy π,

0 ≤ V k,πh (τh)− V πh (τh) ≤ Ṽ k,πh (τh) for all τh.

Proof of Lemma B.1. To begin with, by the Azuma-Hoeffding inequality and standard union bound argument, we have that
with probability at least 1− δ:

‖P̂kh(· | s,a)− Ph(· | s,a)‖1 ≤
1

H
β(Nk

h (s,a)) for all (s,a, h, k) ∈ S ×A× [H]× [K].

Below, we prove the lemma conditioning on the event above being true. We prove the lemma by induction and start with the
upper bound. The inequality holds for step H + 1 trivially because V k,πH+1 = V πH+1 = Ṽ k,πH+1 = 0. Assume the inequality
holds for step h+ 1. At step h, notice that

Ṽ k,πh (τh) =Ea∼π(·|τh)

[
Q̃k,πh (τh,a)

]
,

V k,πh (τh)− V πh (τh) =Ea∼π(·|τh)

[
Qk,πh (τh,a)−Qπh(τh,a)

]
.

Therefore, it suffices to prove

Qk,πh (τh,a)−Qπh(τh,a) ≤ Q̃k,πh (τh,a) for all τh,a,

which follows from

Qk,πh (τh,a)−Qπh(τh,a)

≤min
{
Es′∼P̂k

h(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]
− Es′∼Ph(·|sh,a)

[
V πh+1([τh,a, s

′])
]

+ β(Nk
h (sh,a)), H − h+ 1

}
= min

{
Es′∼P̂k

h(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]
− Es′∼Ph(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]

+ Es′∼Ph(·|sh,a)

[
V k,πh+1([τh,a, s

′])− V πh+1([τh,a, s
′])
]

+ β(Nk
h (sh,a)), H − h+ 1

}
≤min

{
2β(Nk

h (sh,a)) + Es′∼Ph(·|sh,a)

[
Ṽ k,πh+1([τh,a, s

′])
]
, H − h+ 1

}
= Q̃k,πh (τh,a),

where the last inequality follows from the induction hypothesis and ‖P̂kh(· | sh,a)− Ph(· | sh,a)‖1 ≤ β(Nk
h (sh,a))/H .

Similarly, for the lower bound, we only need to show

Qk,πh (τh,a) ≥ Qπh(τh,a) for all τh,a,

which follows similarly from

Qk,πh (τh,a)−Qπh(τh,a)

≥min
{
Es′∼P̂k

h(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]
− Es′∼Ph(·|sh,a)

[
V πh+1([τh,a, s

′])
]

+ β(Nk
h (sh,a)), 0

}
= min

{
Es′∼P̂k

h(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]
− Es′∼Ph(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]

+ Es′∼Ph(·|sh,a)

[
V k,πh+1([τh,a, s

′])− V πh+1([τh,a, s
′])
]

+ β(Nk
h (sh,a)), 0

}
≥min

{
− β(Nk

h (sh,a)) + Es′∼Ph(·|sh,a)

[
V k,πh+1([τh,a, s

′])− V πh+1([τh,a, s
′])
]

+ β(Nk
h (sh,a)), 0

}
≥0,

where the last inequality follows from the induction hypothesis and the second last one uses ‖P̂kh(· | sh,a) − Ph(· |
sh,a)‖1 ≤ β(Nk

h (sh,a))/H .
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Proof of Theorem 5.1. In the remainder of this section, we show how to control Regret(K). The upper bound for Regret(k)
(k ∈ [K]) can be derived by repeating precisely the same arguments.

For simplicity of notations, denote πk = µk × νk. By the optimism of V (Lemma B.1), with probability at least 1− δ,

max
µ?

K∑
k=1

V µ
?×νk

1 (s1)−
K∑
k=1

V π
k

1 (s1)

≤

(
max
µ?

K∑
k=1

V µ
?×νk,k

1 (s1)−
K∑
k=1

Eµ∼pk [V µ×ν
k,k

1 (s1)]

)
+

(
K∑
k=1

Eµ∼pk [V µ×ν
k,k

1 (s1)]−
K∑
k=1

V π
k

1 (s1)

)
.

The first term is upper bounded by the regret bound of anytime EXP3, which is of orderO(H
√

log(|Φ?|)K) (e.g., Lattimore
& Szepesvári, 2020). Below, we focus on controlling the second term. Since µk ∼ pk, by the Azuma-Hoeffding inequality,
with probability at least 1− δ,

K∑
k=1

Eµ∼pk [V µ×ν
k,k

1 (s1)]−
K∑
k=1

V π
k

1 (s1) ≤
K∑
k=1

V µ
k×νk,k

1 (s1)−
K∑
k=1

V π
k

1 (s1) +O(H
√
K log(1/δ)).

By Lemma B.1 and the Azuma-Hoeffding inequality, with probability at least 1− 2δ,
K∑
k=1

V µ
k×νk,k

1 (s1)−
K∑
k=1

V π
k

1 (s1) ≤
K∑
k=1

Ṽ µ
k×νk,k

1 (s1)

≤
K∑
k=1

H∑
h=1

E(sh,ah)∼πt

[
2β(Nk

h (sh, ah))
]

≤2

H∑
h=1

K∑
k=1

β(Nk
h (skh, a

k
h)) +O(H2

√
KSι2)

≤O
(√

KS2AH4ι2
)
,

where the final inequality follows from the definition of β and the standard pigeon-hole argument.

Combining all the relations above, taking a union bound and rescaling δ complete the proof.

B.2. Proof of Theorem 5.2

At the very beginning of the proof of Theorem 5.1, we define several useful quantities P̂k, V k, Ṽ k using the regular counter
Nk. In this section, with slight abuse of notations, we change their definitions by replacing Nk with Nk,lazy that is the
collection of the lazy counters at the beginning of episode k. Formally, denote by P̂k the empirical transition computed by
using Nk,lazy, i.e., for any (s,a, h, s′) ∈ S ×A× [H]× S

P̂kh(s′ | s,a) =


Nk,lazy

h (s,a,s′)

Nk,lazy
h (s,a)

if Nh(s,a) 6= 0,

1/S otherwise.

Given an arbitrary policy π, we define V π,k (Qπ,k) that is the optimistic estimate of V π (Qπ) as following: for any h ∈ [H],V
k,π
h (τh) = Ea∼π(·|τh)

[
Qk,πh (τh,a)

]
,

Qk,πh (τh,a) = min
{
Es′∼P̂k

h(·|sh,a)

[
V k,πh+1([τh,a, s

′])
]

+ rh(sh,a) + β(Nk
h (sh,a)), H − h+ 1

}
,

(7)

and we define V k,πH+1 ≡ 0. We comment that by definition V k,π1 (s1) = UCB-VI(Nk,lazy, β, π) for all k, π.

For the purpose of proof, we further introduce the following auxiliary function for controlling the optimism of V π,k (Qπ,k)
against the true value function V π (Qπ): for any h ∈ [H]Ṽ

k,π
h (τh) = Ea∼π(·|τh)

[
Q̃k,πh (τh,a)

]
,

Q̃k,πh (τh,a) = min
{
Es′∼Ph(·|sh,a)

[
Ṽ k,πh+1([τh,a, s

′])
]

+ 2β(Nk,lazy
h (sh,a)), H − h+ 1

}
,

(8)
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and we define Ṽ k,πH+1 ≡ 0. Compared to V k,π , Ṽ k,πh is defined using the groundtruth transition function P, it does not contain
the reward function and the bonus function is doubled.

Finally, recall we choose

β(t) = H

√
Sι

max{t, 1}
,

where ι = log(KHSA/δ) with c being some large absolute constant.

Lemma B.2 (Optimism). With probability at least 1− δ, for all (k, h) ∈ [K]× [H + 1] and all general policy π,

0 ≤ V k,πh (τh)− V πh (τh) ≤ Ṽ k,πh (τh) for all τh.

Proof. The proof of Lemma B.2 follows exactly the same as that of Lemma B.1 except that we replaceNk withNk,lazy.

Proof of Theorem 5.2. In the remainder of this section, we show how to control Regret(K). The upper bound for Regret(k)
(k ∈ [K]) can be derived by repeating precisely the same arguments.

Denote by Φk (Ψk) the player (opponent) policy set at the beginning of episode k. Recall in Algorithm 2, each time we
encounter a new opponent policy or one of the counters is doubled, we update the lazy counters to be the latest counters,
recompute the player policy set, and restart EXP3 from the uniform distribution. We denote the indices of episodes where
such restarting happens by T1, . . . , TL. Observe that L ≤ O(SAH log(K) + |ΨK |).

To begin with, we decompose the cumulative regret of K episodes into the regret within L + 1 segments divided by
T1, . . . , TL:

max
µ

K∑
k=1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

≤
L−1∑
i=1

max
µ

Ti+1−1∑
k=Ti+1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

+ max
µ

K∑
k=TL+1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

+ max
µ

L∑
i=1

(
V µ×ν

Ti

1 (s1)− V µ
Ti×νTi

1 (s1)
)

≤
L−1∑
i=1

max
µ

Ti+1−1∑
k=Ti+1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

+ max
µ

K∑
k=TL+1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

+HL.

(9)

Below we show how to control
∑Ti+1−1
k=Ti+1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

for any i ∈ [L − 1]. The second term can be
bounded in the same way. By Lemma B.2, with probability at least 1− 2δ,

max
µ

Ti+1−1∑
k=Ti+1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

≤max
µ

Ti+1−1∑
k=Ti+1

(
V k,µ×ν

k

1 (s1)− V k,µ
k×νk

1 (s1)
)

+

Ti+1−1∑
k=Ti+1

(
V k,µ

k×νk

1 (s1)− V µ
k×νk

1 (s1)
)

≤max
µ

Ti+1−1∑
k=Ti+1

(
V k,µ×ν

k

1 (s1)− Eµ′∼pk

[
V k,µ

′×νk

1 (s1)
])

+O
(
H
√

(Ti+1 − Ti − 1)ι
)

+

Ti+1−1∑
k=Ti+1

(
V k,µ

k×νk

1 (s1)− V µ
k×νk

1 (s1)
)
,

(10)



Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits

where in the second inequality we use the Azuma-Hoeffding inequality and take a union bound for all the possible values of
Ti and Ti+1. Specifically, we use the fact that with probability at least 1− δ, for all p, q ∈ [K],

q−1∑
k=p+1

Eµ′∼pk

[
V k,µ

′×νk

1 (s1)
]
− V k,µ

k×νk

1 (s1) ≤ O
(
H
√

(q − p− 1)ι
)
.

The key to controlling the RHS of equation (10) is to show that the first term is approximately upper bounded by the regret
of EXP3. Recall that for k lying between Ti and Ti+1, the opponent does not play any new policy and the lazy counter is
never updated. As a result, for all k satisfying Ti < k < Ti+1, we have

• V k,π = V Ti+1,π for all π.

• Φk = ΦTi+1, Ψk = ΨTi+1, and νk ∈ ΨTi+1.

Moreover, by the definition of the UCB-BestResponse subroutine, we have that for any policy ν̃ that is a mixture of the
policies in ΨTi+1, there exists µ̃ ∈ ΦTi+1 so that

max
µ

V Ti+1,µ×ν̃
1 (s1)− V Ti+1,µ̃×ν̃

1 (s1) ≤ εH.

By utilizing the three relations above, we have

max
µ

Ti+1−1∑
k=Ti+1

(
V k,µ×ν

k

1 (s1)− Eµ′∼pk

[
V k,µ

′×νk

1 (s1)
])

= max
µ

Ti+1−1∑
k=Ti+1

(
V Ti+1,µ×νk

1 (s1)− Eµ′∼pk

[
V Ti+1,µ′×νk

1 (s1)
])

≤ max
µ̃∈ΦTi+1

Ti+1−1∑
k=Ti+1

(
V Ti+1,µ̃×νk

1 (s1)− Eµ′∼pk

[
V Ti+1,µ′×νk

1 (s1)
])

+ (Ti+1 − Ti − 1) εH

≤O
(√

log |ΦTi+1| (Ti+1 − Ti − 1)H2 + (Ti+1 − Ti − 1) εH

)
,

(11)

where the first inequality follows from 1
Ti+1−Ti−1

∑Ti+1−1
k=Ti+1 ν

k being a mixture of policies in ΨTi+1, and the second

inequality follows from Algorithm 2 running anytime EXP on ΦTi+1 and using −V Ti+1 as gradients for iterations between
Ti and Ti+1.

Finally, combining equations (9), (10), and (11) together, we obtain

max
µ

K∑
k=1

(
V µ×ν

k

1 (s1)− V µ
k×νk

1 (s1)
)

≤min

{
O
(
HL+H

√
KLι+KHε+

√
KLH2 log |ΦK |

)
,KH

}
+

k∑
k=1

(
V k,µ

k×νk

1 (s1)− V µ
k×νk

1 (s1)
)
.

For the second term, note that Nk,lazy
h (s,a) = Θ(Nk

h (s,a)) for all (s,a, h, k), so following the identical arguments in the
proof of Theorem 5.1 gives: with probability at least 1− δ

K∑
k=1

(
V k,µ

k×νk

1 (s1)− V µ
k×νk

1 (s1)
)
≤ O

(√
KS2AH4ι2

)
.
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For the first term, plug in ε = 1/K and notice that min{HL,HK} ≤ H
√
KLι as well as log

∣∣ΦK∣∣ ≤ O(|ΨK | log(K)),

min

{
O
(
HL+H

√
KLι+KHε+

√
KLH2 log |ΦK |

)
,KH

}
≤O

(
H
√
KLι+

√
KL|ΨK |H2ι

)
≤O

(
H
√
K|ΨK |SAHι2 +H

√
K|ΨK |2ι

)
,

where the second inequality uses L ≤ O(SAH log(K) + |ΨK |). Combining all relations, we conlude the final upper bound
is

O
(√

KS2AH4ι2 +
√
K|ΨK |SAH3ι2 +

√
K|ΨK |2H2ι

)
.

B.3. Proof of Theorem 5.3

Proof. Consider the following Markov game with one state s and horizon H . The action set for both the max-player and the
min-player (adversary) is {0, 1}. For h = 1, · · · , H − 1, rh(s, ·) = 0. rH(s, (a, b)) = I[a = b].

Suppose that at episode t, the adversary chooses a policy νt which plays bth at time step h, where each bth is sampled
independently from Unif({0, 1}).6 It can be easily seen that for each episode, the expected value for the max-player is
always 1

2 . However, the best general policy in hindsight will be able to predict bH from b1:h−1 to a large extent. Specifically,
for each possible value of b1:h−1, define N(b1:h−1) :=

∑T
t=1 I[bt1:h−1 = b1:h−1]. If T < 2H−2,

Pr [N(b1:h−1) > 1] ≤ E[N(b1:h−1)]

2
≤ 1

4
.

If N(b1:h−1) = 1, denote the only episode in which it appears by t. The best general policy in hindsight could set
µ(s, b1:h−1) = btH and achieve value 1 on episode t. In other words, there exists general policy µ such that

E

[
T∑
t=1

V µ,νt1 (s)

]
≥ E

[
T∑
t=1

I[N(bk1:h−1) = 1]

]
≥ 3

4
T.

Therefore regret is at least 1
4T , unless T ≥ 2H−2.

C. Proofs for Section 6
C.1. Proof of Theorem 6.1

The proof of this theorem is essentially a reduction to Proposition 6 of Steimle et al. (2021). We present a full proof here for
the sake of clarity and completeness.

We would prove the theorem via reduction from 3-SAT. Consider a 3-SAT instance with m clauses and n variables:
∧mi=1(yi1 ∨ yi2 ∨ yi3), where yij ∈ {x1, · · · , xn, x̄1, · · · , x̄n}. We would then construct a Markov game with H = n,
|Amax| = 2 and |Amin| = m as follows. The set of states are {s1, · · · , sn,T,F}. The action set is {0, 1} for the max-player
and [m] for the min-player. The transitions are deterministic, independent of h, and are specified as follows:

P(T|si, (a, j)) =

{
1 (setting xi = a sets clause j to True)

0 (otherwise)

P(si+1|si, (a, j)) = 1− P(T|si, (a, j)), (i¡n)
P(F|sn, (a, j)) = 1− P(T|sn, (a, j)).

6The policy itself is deterministic.
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For h < n, rh(·, ·) = 0; for h = n, rn(T, ·) = 1, rn(F, ·) = 0. Every Markov policy µ of the max-player induces an
assignment of the variables, i.e. xi = µ(si). Moreover, denote the min-player’s policy of playing action j at all states by νj .
Notice that

V
µ,νj
1 (s1) =

{
1 (assignment induced by µ satisfies clause j)
0 (assignment induced by µ violates clause j)

.

If an algorithm achieves E[Regret(T )] = poly(S,A,H) · T 1−c regret, then there exists T = poly(n,m) such that
T ≥ max

{
4m · E[Regret(T )], 20m

√
T
}

. Now consider the following algorithm for 3-SAT:

1. Construct the aforementioned Markov game

2. Run algorithm A, with the opponent playing νj with j sampled from Unif([m]) at the start of each episode indepen-
dently

3. Calculate R, the total reward accumulated by the algorithm. Decide True (satisfiable) if R > (1− 1/2m)T , and False
otherwise.

We now claim that if the input instance is satisfiable, this algorithm returns True with probability at least 0.99. This is
because satisfiability implies ∃µ∗ :,

∑T
t=1 V

µ∗,νt(s1) = T. By the definition of regret,

E

[
T∑
t=1

(
V µ
∗,νt − V µt,νt

)
(s1)

]
≤ T

4m
.

By Hoeffding’s inequality, with probability at least 0.99,

R ≥ E

[
T∑
t=1

V µt,νt

]
− 5
√
T > T − T

4m
− T

4m
=

(
1− 1

2m

)
T.

Meanwhile, if the input instance is insatisfiable, then with probability 0.99, the algorithm returns False. This is because with
probability 0.9,

Et∼[T ],j∼[m]

[
T∑
t=1

V πt,νj

]
≥ R− 5

√
T > R− T

4m
.

Conditioned on this event, if the algorithm returns True, then

Et∼[T ],j∼[m]

[
T∑
t=1

V πt,νj

]
≥ T − T

2m
− T

4m
>

(
1− 1

m

)
T.

This implies that ∃t:

Ej∼[m]

[
T∑
t=1

V πt,νj

]
>

(
1− 1

m

)
T,

which contradicts with the fact that the input is not satisfiable. Therefore the probability that the algorithm returns True
when the input is not satisfiable is at most 0.01.

The reduction above suggests that, if algorithm A runs in poly(S,A,H, T ) time, we can obtain an algorithm that decides
3-SAT with high probability and runs in poly(m,n) time. In other words, this implies 3-SAT∈BPP, which further implies
NP⊆BPP since 3-SAT is NP-complete.


