GACT: Activation Compressed Training for Generic Network Architectures

Xiaoxuan Liu !

Lianmin Zheng' Dequan Wang' Yukuo Cen?> Weize Chen?> Xu Han? Jianfei Chen?

Zhiyuan Liu?> Jie Tang? Joseph E. Gonzalez' Michael W. Mahoney ! >* Alvin Cheung '

Abstract

Training large neural network (NN) models re-
quires extensive memory resources, and Activa-
tion Compression Training (ACT) is a promis-
ing approach to reduce training memory footprint.
This paper presents GACT, an ACT framework to
support a broad range of machine learning tasks
for generic NN architectures with limited domain
knowledge. By analyzing a linearized version of
ACT’s approximate gradient, we prove the con-
vergence of GACT without prior knowledge on
operator type or model architecture. To make
training stable, we propose an algorithm that de-
cides the compression ratio for each tensor by
estimating its impact on the gradient at run time.
We implement GACT as a PyTorch library that
readily applies to any NN architecture. GACT
reduces the activation memory for convolutional
NN, transformers, and graph NNs by up to 8.1,
enabling training with a 4.2x to 24.7x larger
batch size, with negligible accuracy loss.

1. Introduction

In recent years, we have witnessed the trend of using larger
and larger neural network (NN) models to deliver improved
accuracy and generalization in various machine learning
tasks (Devlin et al., 2018; Fedus et al., 2021). However,
training these models requires a considerable amount of
on-device GPU memory. Unfortunately, the increase of
GPU memory capacity has been relatively slow, leading to a
fundamental barrier to the development of large NN models.

Activation Compression Training (ACT) is a promising ap-
proach to reduce the memory footprint of models during
training. As all layers’ activations need to be kept in the

'UC Berkeley ?Dept. of Comp. Sci. & Tech., Institute for Al,
Tsinghua-Bosch Joint Center for ML, BNRist Center, State Key
Lab for Intell. Tech. & Sys., Tsinghua University >ICST “LBNL.
Correspondence to: Jianfei Chen <jianfeic @tsinghua.edu.cn>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

memory for computing the gradients during training, ACT
reduces memory consumption by compressing these saved
activations. Prior work (Chakrabarti & Moseley, 2019; Fu
et al., 2020; Chen et al., 2021; Evans & Aamodt, 2021)
has shown the effectiveness of ACT by reducing activation
footprint by up to 12x with 2-bit activations.

Although ACT has already demonstrated impressive com-
pression capabilities, previous work on ACT is restricted to
specific NN architectures. For example, ActNN (Chen et al.,
2021) is a quantization framework for convolutional NN
only; Mesa (Pan et al., 2021) proposes a per head/layer quan-
tization method for vision transformers; and AC-GC (Evans
& Aamodt, 2021) derives convergence error bound for dif-
ferent types of operators separately.

Developing a generic ACT framework is challenging. The-
oretically, convergence guarantees must be made without
assumptions on the network architecture. Algorithmically,
the framework should find effective compression strategies
for all kinds of networks automatically. From the system
perspective, the framework should support arbitrary NN
operations, including user-defined ones.

In this work, we propose GACT, a general framework for
ACT that is agnostic to the NN architecture. Neither special-
ized mathematical derivations nor customized implemen-
tation is needed to support different operators. To enable
this, we develop a general convergence theory by analyz-
ing the stochastic gradient (SG) introduced by ACT. We
show that the SG can be well approximated by a linearized
version, which is unbiased to stochastic compressors. The
variance of the linearized gradient has a particularly simple
structure that allows a numerical algorithm to predict the
variance given a compression strategy. Then, we generate
the strategy by approximately solving an integer program.

We implement our method as a library based on PyTorch
that can be quickly integrated into real-world machine learn-
ing systems. The library also provides several optimization
levels to explore the trade-off between memory and speed.
We demonstrate the flexibility and efficiency of GACT on
various tasks, including image classification, object detec-
tion, text, and graph node classification. Our evaluation
shows that GACT can reduce activation memory by up to
8.1, enabling training with a 24.7 x larger batch size on the

GACT: Activation Compressed Training for Generic Network Architectures

same GPU. In sum, our main contributions are as follows:

* We propose a general convergence theory for ACT.

* We develop an algorithm that automatically estimates
the sensitivity of each compressed tensor and selects
the optimal compression strategy.

* We build efficient implementation of GACT in PyTorch
with an easy-to-use API that can also be combined with
other memory-saving techniques seamlessly.

2. Related Work

Activation Compression Training. ACT has been applied
to convolutional NNs using different compressors, such as
quantizers (Chakrabarti & Moseley, 2019; Fu et al., 2020;
Chen et al., 2021), JPEG (Evans et al., 2020), or scien-
tific data compression algorithms (Jin et al., 2021; Evans &
Aamodt, 2021). ACT is also applied to transformers (Pan
et al., 2021) and graph NNs (Anonymous, 2022).

However, the existing theory for ACT (Chakrabarti & Mose-
ley, 2019; Fu et al., 2020; Chen et al., 2021; Evans &
Aamodt, 2021) relies on the case-by-case analysis of spe-
cific network operators, such as convolution, ReLU, and
batch normalization. It also requires dedicated implemen-
tations for each operator. On the contrary, GACT focuses
on the generality of activation compressed training, not a
specific quantizer design, which is the main topic of previ-
ous work. Instead of assuming that the network is a stack of
layers, GACT formulates the problem as a computational
graph of operators. This is general enough to cover trans-
formers (Vaswani et al., 2017), graph NNs (Kipf & Welling,
2016), second-order derivatives, and unknown future archi-
tectures.

Reduced Precision Training. Apart from ACT, reduced
precision training (Micikevicius et al., 2018; Wu et al., 2018;
Wang et al., 2018c; Banner et al., 2018; Chen et al., 2020a;
Sun et al., 2020) performs calculations directly on low preci-
sion data, reducing the computation cost and memory foot-
print simultaneously. To achieve this, specialized kernels
are used to calculate on low precision data. In contrast, ACT
only considers storage, and it can thus use more flexible
compression strategies and achieve a much better compres-
sion ratio with the same accuracy loss.

Memory-Efficient Training. Gradient checkpoint-
ing (Chen et al., 2016; Jain et al., 2019) trades computation
for memory by dropping some of the activations in the for-
ward pass from memory and recomputing them in the back-
ward pass. Swapping (Kirisame et al., 2020; Huang et al.,
2020; Wang et al., 2018b; Peng et al., 2020) offloads activa-
tion or model parameters to an external memory (e.g., CPU
memory). Recent work (Beaumont et al., 2021) explores
the possibility of combining the gradient checkpointing and
swapping. All these methods save memory by storing fewer

tensors on the GPU. In contrast, GACT compresses the
saved tensors and is complementary to these approaches.
Moreover, the generality of GACT enables easy combina-
tion with these methods, which we explore in this paper.

3. Formulation

We first present the mathematical formulation of our activa-
tion compressed training (ACT) framework. As we would
like to develop a general ACT algorithm, applicable to a
wide range of NN architectures, we make minimal assump-
tions on our formulation. Throughout the paper, we define
the variance of a vector x as Var [z] = E [||x||2} —||E [=]]|.

3.1. Activation Compressed Training

In this work, we abstract the forward propagation as two
functions ¢(x; #) and h(x;#). Both take a datum z and the
model parameter 6 as the input. The loss function ¢(z; 6)
outputs the loss of the network # on datum x. The context
function h(x;6) outputs tensors to be stored in the mem-
ory for computing the gradients, which are referred as the
context. Assume that the context consists of L tensors,
where each tensor h(!)(z; 0) is represented by a flattened
D,-dimensional vector. Denote h(x;6) = (h(V(z;0))f,.
Our notations are somewhat unconventional in the sense
that we do not explicitly define each layer’s activation. We
do not even assume that there is a NN. It could be any
computational graph that saves context tensors.

Given a dataset X = {x,})_,, define the batch loss
L) =+ 25:1 £(x;0). The dataset can be equivalently
represented as an empirical data distribution py(z) :=
~ 25:1 0(x — x,), where ¢ is the Dirac delta function.
The batch loss can be written as £(6) = Ex [¢(x; 0)], where

Ex denotes for taking expectation over py.

The network is trained with stochastic gradient descent
(SGD) (Bottou, 2010). Starting from an initial model 6, at
the t-th iteration, SGD updates the model with:

0141 < 0 —nVol(x;0y), (1
where 7) is a learning rate, and the SG V£ (z; 6) is computed
on a random datum = ~ py. Notice that Ey [Vl(x;0)] =
VoL(0), i.e., the SG is an unbiased estimator of the batch
gradient VyL(6).

Crucially, the SG can be written in the form Vgl(z; ;) =
g(h(z;6:);0:). In other words, the back propagation only
depends on the forward propagation through the context
h(x;0;). The entire context must be kept in memory for
computing the gradients. The context dominates the mem-
ory consumption in many applications.

ACT reduces the training memory footprint by compressing
the context. Let Q(h) be a compressor, which converts h

GACT: Activation Compressed Training for Generic Network Architectures

~

- Forward Computation Graph
—_
_/ ----- — []

_x, model(6)

c [oomw
| Pack hook
/GACT contexlth(x;e) I\
bits Adaptive

[commenar]| Sl |
CPU Swap| out T
Memory ___| , Compressed context tensors (GPU) £(x;0)

Swap| in }

Q(h(x; 0)) 2
l Unpack hook |
O Backward Computation Graph

-----]

Figure 1. The architecture of GACT.

to compact formats while keeping Q(h) ~ h. Then, ACT
computes the gradient with compressed context:

041 < 00 — ng(Q(h(x;6:)); 0). 2
We refer to g(Q(h(x; 0;); 0;) as the activation compressed
(AC) gradient. ACT is significantly more memory efficient
then the plain SGD, Eq. (1), since it only needs to store a
compressed version of the context. Suppose the original
context h(x;0;) consists of 32-bit floating point tensors,
and Q(-) is a compressor which quantizes tensors to 2-bit
integers, ACT will reduce the context memory by 16x.
Fig. 1 illustrates the computational graph of ACT with these
notations. In the following presentation, we might denote
h(x,0) simply by h when there is no confusion.

gradient

9(Q(h(x;0)); 9)

3.2. Convergence of ACT

ACT is a lossy approximation of SGD, as it uses an ap-
proximate gradient g(Q(h);). Therefore, some kind of
theoretical guarantee is required for ACT to be useful. For-
tunately, analyzing ACT is made significantly simpler by
introducing an unbiased stochastic compressor Q(+), such
that Eq [Q(z)] = z for any z. Eq [-] means taking expec-
tation over the compressor. In this way, g(Q(h);6) can
be viewed as a stochastic estimator of the batch gradient
V L(6), but the randomness comes not only from the datum
2 but also the compressor Q(-). Therefore, ACT is still an
SGD algorithm. Standard analytical tools for SGD (Bottou
et al., 2018) are applicable for studying ACT.

SGD algorithms have particular good properties when the
SG is unbiased. In our case, this means Eg [¢(Q(h);6)] =
g(h;). However, the SG is biased general, even when the
stochastic compressor itself is unbiased.'

The key technique in this work is to construct an unbiased
approximation of the AC gradient by linearizing the gradient
function g(-; @). Consider the first-order Taylor expansion

!Consider the example g(h) = I(h > 0.5), where h € [0, 1]
and its AC gradient g(Q(h)) = I(Q(h) > 0.5) with the com-
pressor Q(h) ~ Bernoulli(h). Then, E [¢(Q(h))] = P(Q(h) =
1) = h # g(h).

of g(-;0) at h:

9(Q(h); h,0) := g(h;0) + J(h,0)Ah, 3)
where J(h,0) = agg;b;a) is a Jacobian matrix, Ah :=
Q(h) — h is the compression error. We further denote
9o0(Q(h);h) = g(Q(h); b, 0)[h=n(u;0) and Jzo(h) :=
J(h,0)|h=n(z;6) for short. Since E[Ah(z;0)] = 0,
9z0(Q(h); h) is an unbiased SG, Furthermore, the approxi-
mation error is small:

Proposition 1. Assuming that g(h; 0) is twice differentiable
w.r.t. h, and the second order derivative is bounded, then

E[llg(Q(R); 0) = g20(Q(R); h)ll5] = O(Varg [Ah]).

Since A itself is unbiased, Varq [Ah] = Eq {\\Ahnﬂ is

simply the expected compression error. Prop. 1 implies that
the linearization error is bounded by the compression error.
The linearized gradient § is accurate if the compression is
accurate. Using g as a bridge, we arrive in the following
convergence theorem:

Theorem 1. Assume that:

Al. L(0) is a continuous differentiable, VL(0) is [-
Lipschitz continuous.

A2. L(0) is bounded below by L..

A3. g(h;0) is differentiable w.rt. h and 3b > 0, s.t.
V0. lg(QUh(36)):6) = 320 QR)] < b

A4. 0% >0, s.t, VH Var [§.0(Q(h); h)] < o2

Then, for all n < Qﬁ, if we run ACT defined as Eq. (2) for
T iterations, then we have

mi%«,lE NVE(Ol } M + 3b? + nBo?

t=0,...,

Remark: The analytical technique used in Thm. 1 is rather
standard, see Thm. 4.8 in Bottou et al. (2018). However,
we consider the variance term o2 of the linearized gradient,
rather than the SG itself. This formulation brings better ana-
lytical properties and an adaptive algorithm for determining
the compression scheme, as we shall see soon in Sec. 4.

The convergence of ACT is affected by both the linearization
error (A3) and the variance of the unbiased gradient §(-; 0)
(A4). The latter is characterized as:

Proposition 2. Var [§,0(Q(h);h)] = Varx [g(h;0)] +
Ex [Varg [gz0(Q(h); h)]] , where the second term on the
RHS equals to Ex [Varg [Jze(h)Ah]] = O (Varg [AR]) .

Prop. 2 separates the variance from different noise
sources. Vary [g(h(z,0);0)] is the variance raised
by random sampling of data (“sampling variance”).
Ex [Varg [Jyo(h)Ah(z, 0)]] is the variance raised by com-
pression. Now, the convergence in Thm. 1 is depicted by
3b2 4+ nBo2. By Prop. 1, b2 = O(Varg [Ah]?). By Prop. 2,
02 = O(1) +O(Varg [Ah]), since the sampling variance is
not affected by compression. Therefore, when the compres-
sion is accurate (Ah — 0), the impact of the linearization

GACT: Activation Compressed Training for Generic Network Architectures

error is negligible, and the variance of the unbiased gradient
dominates. ACT behaves as if the AC gradient is unbiased.

4. Adapting the Compression Rate

In a network, some context tensors (such as those stored for
computing the cross entropy loss) are extremely sensitive,
a small amount of compression would result in diverged
training, while other tensors are quite robust to compression.
Therefore, we must apply different amounts of compression
for each context tensor. As a general framework, we have no
prior knowledge of the users’ model architecture, so we de-
signed an algorithm to infer the sensitivity for each context
tensor and determine their compression rate automatically.

There is a tradeoff between the compression error and the
storage requirement. We represent the storage requirement
of the compressed context in bits per dimension. We assume
that b bits/dim. are used for compression ("), and Q;, (h(")
be the compression result. Let b = (b;)%_, be a compression
scheme, Qy(h) := {Qy, (h)}{~,, and Ayh = Qy(h) — h.

4.1. Structure of Variance

As discussed in Sec. 3.2, when the compression is relatively
accurate, the variance plays the main role in determining
the convergence. Therefore, we would like to investigate
how the compression scheme would impact the variance.
Formally, we are interested in:
V(b;h,0) = Varg [§(Qu(h); h.6)]

Once V (b, h; 0) is known, we can find the minimum vari-
ance compression scheme under a given total bits budget B,

by solving the integer programming problem:
L

min V(b; h(z;0),6), st ;lel <B, &
where D is the dimensionality of 2(!). To proceed, we need
the following assumptions on the compressor Q(+):
Assumption B1: The compressed result is element-
wise uncorrelated. That is, for any ¢ # 7,
Cov [Qs(h)i, Qu(h);] = 0.
Assumption B2: For compressing h(")(z;6) to b; bit-
s/dim., the compression error can be written in the form
Var [Ay, hD(z;0);] < Ryj(x;0)S(b), where S(b;) is a
known function. This isolates the effect of b; through the
unary factor S(b;).
Both assumptions can be achieved by a stochastic rounding
quantizer (Courbariaux et al., 2015), where R;;(z;6) =

2
1 (maxk h;l) — ming hl(f)) and S(b) = (2% —1)72. See
Appendix A.4 for the derivations.

The following theorem reveals the structure of the variance:

Theorem 2. Under assumptions Bl, B2, there exists a fam-
ily of functions {c;(h,0)}-_,, such that the compression

Algorithm 1 Numerical algorithm for computing ¢;(h, 9).

Require: A gradient evaluation function g(+; #)
Require: A series of L + 1 random seeds (r;) .
Require: Any compression scheme b = (b))%,

Vi, seed QW) with r;

go < g(Qp(h); 0) {First iteration}

Vi, seed Q) with r;

seed Q(l) with rp 1

g1 < g(Qp(h);) {Second iteration, with another seed }

Return % llgo — 91||2 /S(br)

variance can be written in the form

L
V(b;h,0) <> ci(h,0)S(br). (5)
=1

4.2. Computing Sensitivity

Thm. 2 reveals two good properties of the variance: (1)
the impact of compressing different context tensors simply
sums up, without affecting each other; and (2) the com-
pression scheme only impacts the variance through S(b;).
Both properties are brought about by linearization. Since
S(+) is a known function, we only need to know ¢;(h,) to
solve problem Eq. (4). ¢;(h,0) can be understood as the
sensitivity of the AC gradient to the compression of the [-th
tensor. We can compute ¢;(h, 6) numerically by leveraging
the idempotence of compressing a tensor:

Assumption B3: If h = Q(h') for some h’ with non-zero
probability, then Q(h) = h and Varg [Q(h)] = 0.

Let Q, " (h) = {Qy, (hV),..., kD, ..., Qp, (hE)} be

some tensors, where every tensor except h(") is compressed.
Plug h = Q;(l) (h) into Eq. (5), and use B3, we have
V(5:Q, Y (1).0) < a(@Q V() 0)S(b).

The left hand side can be approximated by taking
3(Qp(h); h,0) = g(Qu(h); 0). Assume that ¢;(-,0) is rea-
sonably continuous, we have

ci(h,0) ~ Varg [9(Qp(h); 0)] \h:Q;<Z>(h)/5(bl)-
The variance can be replaced by empirical variance.

Alg. 1 illustrates this idea. To compute Varg [g(Qs(h); 6)]

ath = Q;(l) (h), we keep the random seeds fixed for all the
compressors except the [-th one. We compute the empirical
variance by two evaluations of g(Qy(h);), which are two
NN iterations (forward + backward propagation).

Finally, we assume that c(h, 8) remains stable for different
mini-batches h, and along the training trajectory (6;). There-
fore, we maintain a ¢; for each tensor /, which is updated by
periodically running Alg. 1. Eq. (4) is approximately solved
by the O(L log, L) greedy algorithm (Chen et al., 2021).

Another useful feature of this approach is predicting fail-
ure (in an a posteriori manner). If the compression vari-

GACT: Activation Compressed Training for Generic Network Architectures

import torch
import gact

model = ... # user defined model
controller = gact.controller(model, opt_level='L2")
controller.install_hook()

NV A WN R

training loop
9 for epoch in ...
10 for iter in ...

12 # instruct gact how to perform forward and backward
13 def fwdbwdprop():

14 output = model(data)

15 loss = loss_func(output, target)

16 optimizer.zero_grad()

17 loss.backward()

18

19 controller.iterate(fwdbwdprop)

Figure 2. Usage example of GACT

ance V' (b; h, 6) is dominating the overall gradient variance
Var [g(Q(h); 6;)], compression is adding too much noise to
the gradient, and the convergence might be affected. The
overall gradient variance can be computed by maintaining a
running mean of the gradient. If V'(b; 0) /Var [§(Q(h); 6;)]
is too large, we can raise an alert to the user to increase the
storage budget.

5. System Implementation

We implemented GACT as a lightweight library in PyTorch.
Users can use GACT for any NN architecture with sev-
eral lines of code change. GACT uses low-level PyTorch
hooks to capture context tensors, so it supports arbitrary
operators, including custom operators defined by users. We
implemented efficient CUDA kernels to infer tensor sensi-
tivity and to perform compression during run time. GACT
uses the same per-group quantizer in ActNN (Chen et al.,
2021) as the compressor. However, GACT differs from
ActNN in several aspects. ActNN relies on manual ana-
Iytical deduction to compute the sensitivity for different
operators, while GACT infers tensor sensitivity automati-
cally, as described in Sec. 4.2. Moreover, ActNN performs
layer-level quantization. It has to implement an activation
compressed version for each operator and substitute opera-
tors during the training (e.g., replace torch.nn.Conv2d
with actnn.Conv2d). In contrast, GACT runs at tensor
level and uses a single hook interface to compress saved
tensors for all operators.

5.1. General API

As shown in Fig. 2, the interface of GACT is straightfor-
ward and intuitive, requiring the user to (i) initialize the
GACT controller and specify an optimization level (Line 5);
(i1) install hooks (Line 6); and (iii) instruct GACT how to
perform forward and backward propagation (Lines 13-17)
and pass it as a function (fwdbwdprop) to the controller
(Line 19). We require users to specify (iii) because GACT
needs to numerically run the forward and backward pass to
infer tensor sensitivity. Although fwdbwdprop is passed

to the controller every iteration, it is only called internally
every adapt_interval iterations when tensor sensitivity
changes. As shown in Sec. 6.1, tensor sensitivity stabilizes
quickly after the first several epochs, adapt_interval
can thus be set to a large number, introducing negligible
impact on training speed.

5.2. System Architecture

Fig. 1 shows an overview of GACT. The GACT controller
has three modules: Adaptivate Algorithm; Compressor; and
Decompressor. In the forward pass, the controller uses
PyTorch pack_hook to capture all context tensors. Then
Adaptive Algorithm infers tensor sensitivity based on gra-
dients and assigns higher bits to more sensitive tensors, as
described in Sec. 4.2. The bits information is used to in-
struct Compressor to perform quantization. In the backward
pass, Decompressor dequantizes context tensors and uses
unpack_hook to send the dequantized results back to the
PyTorch’s auto differentiation engine. The controller is also
responsible for swapping quantized tensors to the CPU and
prefetching them back during the backward propagation if
swapping is enabled.

5.3. Identifying Tensors to Quantize

The pack_hook and unpack_hook process all types of
context tensors, including activation, parameters trained by
the optimizer, and training states such as running mean/vari-
ance used by batch normalization. To guarantee that only
the activations are quantized, we filter out saved parameters
by recording the data pointers of all the model parameters
before training, and we skip quantization if the input tensor
pointer exists in the parameter pointer set. Similarly, GACT
does not quantize training states by checking if the input
tensor requires gradients.

However, using hooks blindly disables some memory-saving
optimization. For example, in a transformer’s self-attention
layer, the keys, query, value tensors are all calculated from
the same input tensor. The saved objects of the three opera-
tions thus all refer to the same tensor. In this case, PyTorch
triggers the pack_hook three times. If we perform quanti-
zation blindly, we waste computation resources and intro-
duce extra memory consumption because the same underly-
ing tensor is quantized and saved more than once. GACT
avoids duplication by generating footprints for each input
context tensor. We use the CUDA data pointer, sampled
data points, and the tensor statistics (e.g., sum) as the foot-
print. GACT manages all quantized context tensors and
uses the footprint to differentiate them. If a tensor is already
quantized, GACT will skip quantization and return previous
results directly.

GACT: Activation Compressed Training for Generic Network Architectures

5.4. Parallel Swap and Prefetch

To further reduce activation memory, we combine GACT
with swapping. All compressed tensors are offloaded to
the CPU during the forward pass and swapped back in the
backward pass. Here, we replace the original tensor with
quantized activation, as data movement is more expensive
than computation. Swapping the original tensor saves the
quantization overhead but adds more data movement cost
between CPU and GPU. As shown in Sec. 6.4, quantization
overhead is much smaller than copying full-precision data
to CPU in modern GPU architecture.

Furthermore, we create two new streams (swap in/out) to
parallelize the computation and swapping operation to re-
duce the swap overhead. The forward computation and
swap-out process happen in parallel during the forward pass.
During the backward pass, in each layer the swap-in stream
is responsible for prefetching the compressed activation of
the previous layer to avoid synchronization overhead. We
leverage the CUDA event to ensure tasks in different streams
are executed in the correct order.

5.5. Other Memory Optimizations

Gradient checkpointing. Gradient checkpointing (Chen
et al., 2016) works by dividing the NN into segments. The
algorithm only stores the inputs of each segment and recom-
putes the dropped activations segment by segment during
backpropagation. The memory consumption is thus the
cost of storing the inputs of all segments plus the maxi-
mum memory cost to backpropagate each segment. When
combined with gradient checkpointing, GACT can reduce
the memory consumption of both parts. GACT reduces
the memory consumption of the first part by quantizing the
segment inputs. Moreover, the activations saved during the
recompute phase are also quantized, reducing the memory
cost of the second part. Combining GACT with gradient
checkpointing might introduce more training noise because
the recompute starts from quantized segment inputs, making
the forward pass of recompute phase not exact. However, in
Sec. 6.4, we show the noise introduced by forwarding from
the quantized tensors is negligible.

Memory efficient self-attention. When the batch size is
very large, the single layer after dequantization occupies a
large amount of memory and prevents the batch size from
increasing further. We observe this problem in transformer-
based models where self-attention has quadratic space com-
plexity in terms of sequence length. To reduce the memory
footprint of the self-attention layer, we implement the al-
gorithm introduced in (Rabe & Staats, 2021) that achieves
linear space complexity, and combines it with GACT.

Table 1. Optimization levels for GACT.

Level Compression Strategy Bits
LO Do not compress 32
L1 per-group quantization with auto-precision 4
L2 L1 + swapping/prefetching 4

CB1 L1 + gradient checkpointing 4

CB2 CBI + efficient self-attention 4

5.6. Optimization level

To exploit the trade-off between memory saving and training
speed, GACT provides several optimization levels. Higher
levels can save more memory but with more overhead.
Tab. 1 lists these optimization levels. L1 uses per-group
quantization with the adaptive algorithm. L2 combines per-
group quantization with swapping and prefetching. For
transformer-based models, CB1 combines GACT with gra-
dient checkpointing. CB2 further reduces the peak memory
by adding efficient self-attention to CB1.

6. Experiments

We first demonstrate the effectiveness of the GACT adaptive
algorithm. We further apply GACT to a wide range of ma-
chine learning tasks, including image classification, object
detection, text, and graph node classification. We compare
the training accuracy and activation compression rate for
full precision, adaptive 4/3/2 (using GACT to adaptively de-
cide quantization bits with an average of 4/3/2 bit) and fix-4
bit (quantizating all tensors uniformly with 4 bits). Next, we
study the trade-off between compression rate and training
throughput and compare GACT with other state-of-the-art
memory-saving methods. Lastly, we demonstrate the flexi-
bility of GACT by exploring the possibility of combining
it with other memory optimization methods (CB1, CB2 as
listed in Table 1). We use open-source model implementa-
tions for all tasks.

6.1. Compression Strategy

We first test the effectiveness of our adaptive compression
rate algorithm for training VGG-11 (Simonyan & Zisser-
man, 2015) on ImageNet. Fig. 3(a) plots the inferred per-
tensor sensitivity ¢; and the corresponding optimal bits/dim.
GACT assigns more bits to more sensitive layers. The con-
text tensor saved by the cross-entropy loss operator is most
sensitive. A small amount of compression leads to a huge
gradient variance. This makes sense since the loss is the
first operator to back-propagate through, where the error
accumulates. Therefore, GACT assigns 32 bits/dim. for
the tensors in the classification head. With the adaptive
algorithm, GACT with an average of 4 bits/dim. achieves
smaller gradient variance than uniformly assigning 8 bit-
s/dim. for all the tensors, as shown in Fig. 3(b). Finally,
Fig. 3(c) shows that the sensitivity ¢;(h; 0;) remains stable
during training. Therefore, periodically updating c; at a large

GACT: Activation Compressed Training for Generic Network Architectures

32 4 F 10

L 1(]()

bits
&1

F 107!

loss 4

(a) Inferred per-tensor ¢; (line) and bits/dim. (bar)
for VGG-11. Layers with * have a preceding ReLU
layer with shared context. drop=dropout, loss=cross
entropy loss.

10' 4
)\Q —%— uniform 10* 4
adapt
5 1075 7 102 A
=3
'g 10-1 4 \(© 1004 r-/'/*
b
1072 5 10721
—T T T T T T
12 4 8 0 50 100
bits/dim. epoch

(b) Gradient variance. (c) Evolution of the per-
tensor sensitivity. Each line
is ¢; for a tensor.

Figure 3. Effectiveness of the adaptive algorithm.

Table 2. For classification, we train VGG11 (Simonyan & Zisser-
man, 2015), ResNet-50 (He et al., 2016), and Swin-Tiny (Liu et al.,
2021) on ImageNet (Deng et al., 2009). For object detection, we
train RetinaNet (Lin et al., 2017), Faster R-CNN (Ren et al., 2015)
on Coco (Lin et al., 2014). We report accuracy on validation sets
(Div. indicates diverge) and the compression rate of context tensors
(numbers in brackets) for both tasks.

‘ ‘ ‘ GACT GACT
Task Model FP32 | Adapt 4bit (L1) Adapt 2bit
Cls VGG11 68.75 | 68.77 (2.84x) | 68.49 (3.34x%)
’ ResNet-50 | 77.29 | 76.96 (6.69%) | 76.13 (11.39%)
Swin-tiny | 81.18 | 80.92 (7.44x) | 77.91 (13.73%)
Det ‘ Faster RCNN ‘ 37.4 ‘ 37.0 (4.86%) ‘ 36.1 (6.81 x)
: RetinaNet 36.5 36.3 (3.11%) Div.

interval is reasonable, and this introduces negligible impact
on training speed.

6.2. Optimization level

We apply GACT on various computer vision tasks, including
image classification and object detection, as shown in Fig. 2.
We also vary the average bits used by the adaptive algorithm
to explore the memory accuracy trade-off. On both tasks,
GACT L1 achieves comparable (< 0.5% accuracy drop)
or even better results than the full precision training, while
reducing activation memory by up to 7.44 x. Here, we list
the accuracy of FP32 as the strongest accuracy baseline. For
other lossy methods we consider in Sec. 6.3, the accuracy
is no better than FP32, and we list their training accuracy
in Appendix C. Notice that here GACT Adapt 2bit diverges

on the detection task. This is because, as shown in Sec.3.2,
although ACT has unbiased gradients, the compression error
and learning rate affect the convergence. When using 2 bit,
the compression error is large and the learning rate has to
be reduced accordingly to guarantee convergence. However,
we do not want to slow training by decreasing the learning
rate. All experiments are run with the same learning rate
as the full precision. Therefore when compression error
is large, the training diverges. Furthermore, we observe
that the memory reduction varies among networks because
GACT does not quantize intermediate states, and the size of
intermediate states differs between networks. For example,
in VGG11, when the batch size is 128, GACT reduces the
saved tensor size from 5889MB to 2080MB, among which
78% (1494MB) is used to store the intermediate index for
the max-pooling layer that is not quantized by GACT.

Next, we demonstrate the flexibility of GACT by applying
it to a wider variety of natural language processing (NLP)
and graph machine learning (Graph) tasks. We run mul-
tiple seeds for each task, and we report the mean-=std of
accuracy/F1 across runs as shown in Tab. 3. We include the
detailed experimental setup in Appendix B. For both NLP
and Graph tasks, GACT L1 achieves comparable training
results with FP32, introducing less than 0.3% accuracy/F1-
score drop, while reducing activation memory by 4.18x to
7.93x. Moreover, the results are stable across runs, intro-
ducing similar accuracy variance as FP32. We also show the
training results of fix-4bit quantization, where all tensors
are uniformly quantized with 4 bits. As shown in Tab. 3,
fix-4 bit quantization causes significant accuracy/F1-score
loss on various graph models. For Bert-large, fixed-4 bit
quantization works fine because all the context tensors have
similar sensitivity. On the other hand, GACT L1, using a
similar amount of memory as always quantizing each layer
to 4 bits, still performs on par with full precision training
on all the models. This shows the necessity of using adap-
tive algorithms to assign bits based on tensor sensitivity
for stabilized training. Moreover, for Bert-large and three
graph models (GCN/GAT/GCNII), GACT converges and
gives lossless results with 3 bits. Remarkably, across all
the graph models, training with 2-bit GACT causes little
accuracy loss (< 1%). This shows the robustness of our
adaptive algorithm.

6.3. Memory Saving and Computational Overhead

Settings and baselines. We implement the benchmark with
PyTorch 1.10 and measure the memory saving and over-
head of GACT on an AWS g4dn.4xlarge instance, which
has a 16GB NVIDIA T4 GPU and 64GB CPU memory. On
ResNet-50, we compare with ActNN (Chen et al., 2021), a
dedicated quantization framework for convolutional NNs,
and DTR (Kirisame et al., 2020), a state-of-the-art remate-
rialization method for dynamic graphs. “swap” is a simple

GACT: Activation Compressed Training for Generic Network Architectures

Table 3. Accuracy and activation compression rate for NLP and Graph tasks. Accuracy that drops > 1% is in italic font.

| GACT Adapt 4bit (L1)

GACT Adapt 3bit

GACT Adapt 2bit

51.08 £ 0.18 (7.93x)
95.32 £ 0.07 (7.90%)
40.06 £ 0.74 (6.42x)
71.35 £ 0.36 (8.09%)
52.26 £ 0.31 (4.34x)
96.02 £ 0.09 (4.29%)
52.18 £0.38 (4.18%)
71.80 £ 0.47 (5.09%)
5231 £0.16 (4.91x)
96.11 £ 0.22 (4.52x)
62.28 +0.26 (5.34%)
72.28 £ 0.35 (6.74x)

51.14 £0.18 (11.34x)
95.31 £0.07 (9.70%)
40.21 £ 0.82 (7.46 %)
70.82 £ 0.95 (10.45x)
51.68 £ 1.13 (5.04x)
95.96 £ 0.06 (4.64x)
51.63 £0.83 (4.53%)
71.47 £ 0.50 (6.14x)
52.36 £0.16 (5.54%)
96.01 £ 0.33 (5.16%)
62.53 £ 0.36 (6.29%)
72.22 £0.28 (7.98 %)

51.20 £ 0.18 (17.56x)
95.34 £ 0.06 (13.68x)
39.89 4+ 1.45 (9.00%)
70.87 £ 0.66 (13.75%)
51.62 £1.19 (5.46x)
95.82 £ 0.06 (5.24%)
51.15 £ 0.53 (5.24x)
71.21 £0.68 (6.98x)
5223 £0.15 (6.44x)
95.54 £0.29 (5.92x)
62.33 £0.37 (7.28%)
71.74 £0.26 (10.24x)

86.61 +0.11 (7.38x%)
93.54 £0.52 (7.30%)
87.90 + 0.10 (7.40x)
92.44 £ 0.07 (7.42x)

86.68 + 0.08 (9.13x)
93.20 £ 0.37 (9.05%)
87.69 + 0.07 (9.19%)
92.43 £0.31 (9.19%)

84.24 £ 0.74 (12.87%)
91.90 + 1.04 (12.91x)
82.54 £0.38 (12.91x)
90.74 £ 0.13 (12.95%)

Model ‘ Dataset ‘ FP32 ‘ Fix 4bit
Flickr 51.17 £ 0.19 | 50.93 £ 0.16 (7.56x)
GCN Reddit 95.33 +£0.07 | 9442 +£0.11 (7.55%)
Yelp 39.86 £0.94 | 39.85 + 1.22 (5.94x)
ogbn-arxiv | 71.51 £0.65 | 68.61 £ 0.77 (7.54x)
Flickr 5240 +0.28 | 35.24 + 11.90 (4.23x)
GAT Reddit 95.95 +0.06 | 59.37 + 11.48 (4.12%)
Yelp 52.41 +0.69 | 36.09 + 13.70 (4.04x)
ogbn-arxiv | 71.68 + 0.54 | 54.64 £ 5.62 (5.04x)
Flickr 52.37 £ 0.16 | 52.28 £0.16 (4.84x)
GCNII Reddit 96.32 +0.24 | 86.50 + 1.08 (4.51x)
Yelp 62.33 +£0.20 | 62.21 £0.22 (5.26x)
ogbn-arxiv | 72.52 £0.12 | 44.57 £ 5.01 (6.54%)
MNLI 86.74 £0.24 | 85.98 + 0.16 (7.55%)
Bert- SST-2 93.69 + 0.30 | 93.46 £ 0.23 (7.55%)
large MRPC 88.20 £ 0.02 | 87.36 + 0.19 (7.55%)
QNLI 92.29 +0.14 | 92.34 £ 0.07 (7.55%)
=]
_g; LO ResNet-50| .- ptr
Z 100 . —= Swap
= g = ActNN
= x L1 : >ve X -
@ = 50 12 GACT
£ X 4.3x
£ 0 T T T .
0 200 400 600 800
Batch Size
=
& 20110 Bert-large | — zeroofr
) 1 L1
E : L2 « — Swap
R L on i, SRRSO CB1. = Mesa
® :0 10 4 MEZ — CKPT
>4 o
- 24.7x | |[=cAcT
[+
£ 0 T T T T T T
0 100 200 300 400 500 600
Batch Size
5 : —
_g; 754 LO y Swin-tiny | yvesa
3 L2 == Swap
£ 50 e X oX | - GACT
© . ;
C o0
2 -
P X 5.6x
<
£ 0 r r r r r r
0 100 200 300 400 500 600
Batch Size

Figure 4. Training throughput vs batch size. Red cross mark means
out-of-memory. The shaded yellow region denotes the batch sizes
with full precision training given the memory budget. CKPT:
Gradient checkpointing, ZeroOff: ZeRO-Offload.

swapping strategy that swaps all activations to the CPU. For
Bert-large, we also show the results on Mesa (Pan et al.,
2021), a memory-saving resource-efficient training frame-
work for transformers, and ZeRO-Offload (Ren et al., 2021),
a highly optimized system for training large-scale language
models. Gradient checkpointing uses the default checkpoint-
ing policy provided by the transformer library (Wolf et al.,
2020), where only the input to each transformer block is
saved before the backward pass. On Swin-tiny, we only
include Mesa and swap because other baselines lack the
support for this network.

Results. We compare the training throughput of GACT
against other memory saving systems in Fig. 4. On ResNet-
50, GACT achieves similar throughput as ActNN (ActNN
optimization L5 is not listed because it optimizes PyTorch
memory allocation, which is unrelated to quantization and
can also be applied to GACT), but ActNN enables training
with a larger batch size. This is expected because ActNN
implements efficient, customized layers for different opera-
tors in convolutional NNs. For Bert-large, Zero-offload fails
quickly because it only offloads optimizer states that occupy
a small portion of total memory to CPU. GACT L1 outper-
forms Mesa because Mesa only compresses tensors to 8 bit.
When the batch is bigger, the activation size of each seg-
ment becomes the memory bottleneck and prevents gradient
checkpointing from increasing the batch size. Moreover,
combining GACT with gradient checkpointing and efficient
self-attention further reduces the peak memory, increasing
the batch size by up to 24.7x. Meanwhile, it introduces a
small throughput overhead compared with the original gra-
dient checkpointing. Across all the network architectures,
GACT enables training with a 4.2 to 24.9x larger batch
size under the same memory budget.

Network scaling. With GACT, we can construct larger
models or train with a higher image resolution. Tab. 4 com-
pares the largest model we can train against full precision.
With the same batch size and memory budget, GACT can
scale a ResNet-152 to 7.0x deeper, 3.6x wider or 3.0x
higher resolution. Similarly, Bert-large can be scaled to
2.0x deeper or 1.6x wider. In GCN, GACT enables train-
ing 10.0x deeper and 1.7 x wider network. Overall, GACT
maintains 75% - 136% original training throughput.

6.4. Other Optimizations

We evaluate the idea of combining GACT with swapping
on Bert-large-cased. As shown in Tab. 5, swapping com-
pressed tensors is faster than swapping the original ones
because communication between CPU and GPU is more
time-consuming than computation. Combining GACT with

GACT: Activation Compressed Training for Generic Network Architectures

Table 4. Largest models GACT can train with 16G GPU memory.
In ResNet (batch size=64), D (depth): number of layers, W (width):
base width of the bottleneck block, R (resolution): width and height
of input images. In Bert-large (batch size=16) and GCN, D (depth):
number of transformer/gen blocks, W (width): hidden size.

Dim Maximum Value Throughput (TFLOPS)
FP L1 L2 FP L1 L2
ResNet- D 160 460 1124 | 043 047 0.41
152 W 88 304 320 | 0.44 0.89 0.6
R 232 548 716 | 041 0.39 0.44
Bert- D 32 56 64 | 0.67 0.56 0.53
large w 1280 1488 2032 | 0.68 0.61 0.60
GCN D 24 152 240 | 0.20 0.14 0.15
W 2464 3948 4244 | 036 0.38 0.40

Table 5. Swap and prefetch speed/memory on Bert-large.

‘ Speed Peak Mem. ‘ Total Mem.
Algorithm (sequence/s) (MB) (MB)
FP32 16.41 9573 9527
FP32 + swap 6.02 5215 5093
GACT swap 12.95 5426 5325
GACT swap + prefetch 14.02 5426 5324

swapping increases training speed by up to 2.3x. Notice
here that the peak memory use of “GACT swap” is slightly
higher than “FP32 + swap” because GACT does not quan-
tize and swap intermediate states such as running mean/var
of BatchNorm layer. Moreover, prefetch increases the speed
by about 7% with negligible memory overhead.

We next demonstrate combining GACT with gradient check-
pointing (CB1). Gradient checkpointing is performed at the
beginning of each transformer block, thus avoiding saving
tensors generated within the block. We then apply GACT
with gradient checkpointing, where the saved tensors are
quantized with 4 bits. As shown in Tab. 6, the accuracy is
unaffected. We also compare the activation memory and
peak memory of CB1 and CB2 in Tab. 7. AM2 denotes the
peak activation memory, which is the size of saved tensors
after reforwarding the first transformer block. When batch
size = 288, compared with gradient checkpointing on full
precision (FP32), CB1 and CB2 reduce the peak activation
size by 4.7x and 5.4 respectively.

7. Conclusion

This paper presents GACT, an ACT framework for generic
NN architectures. We prove the convergence of GACT
without prior knowledge about operator type or network ar-
chitecture by analyzing a linearized approximation of ATC’s
gradients. With the adaptive algorithm, GACT achieves neg-

Table 6. Accuracy of Bert-large-cased on SST-2 and QNLI datasets
Algorithm SST-2 QNLI ‘ Algorithm SST-2 QNLI
FP32 93.58 9242 ‘ CB1 93.81 9226

Table 7. Memory use of different algorithms on Bert-large. AM1:
Activation size before backward, AM2: Activation size after re-
forwading the first transformer block. When batch size = 288, LO
runs out of memory, and therefore it is not listed below.

‘ AMI1 ‘ AM?2 | Peak Mem.
Batch Size Algorithm (MB) | (MB) (MB)
LO 4434 - 9573
16 FP32 + CKPT | 210 394 5541
CB1 37 99 5286
CB2 31 79 5269
FP32 + CKPT | 3783 | 7092 12885
238 CBI 515 1497 8251
CB2 486 1307 8102

ligible accuracy loss on various tasks, reducing activation
memory by up to 8.1 and enabling training with up to
24.7x batch size compared with full precision training.

Acknowledgements

This work was supported by the National Key Research
and Development Project of China (No. 2021ZD0110502);
NSF of China Project (No. 62106120), by the National Sci-
ence Foundation through grants IIS-1955488, 11S-2027575,
CCF-1723352, ARO W911NF2110339, ONR N00014-21-
1-2724, and DOE award DE-SC0016260. We would also
like to acknowledge partial support from DARPA, IARPA,
the Sloan Foundation, NSF, and ONR. Our conclusions
do not necessarily reflect the position or the policy of our
sponsors, and no official endorsement should be inferred.

References

Anonymous. EXACT: Scalable graph neural networks
training via extreme activation compression. In Submit-
ted to The Tenth International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=vkaMaqg95_rX. under review.

Banner, R., Hubara, 1., Hoffer, E., and Soudry, D. Scal-
able methods for 8-bit training of neural networks. In
Advances in Neural Information Processing Systems, pp.
5145-5153, 2018.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Efficient
combination of rematerialization and offloading for train-

ing dnns. Advances in Neural Information Processing
Systems, 34, 2021.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT 2010,
pp- 177-186. Springer, 2010.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223-311, 2018.

Cen, Y., Hou, Z., Wang, Y., Chen, Q., Luo, Y., Yao, X.,
Zeng, A., Guo, S., Zhang, P., Dai, G., Wang, Y., Zhou, C.,

https://openreview.net/forum?id=vkaMaq95_rX
https://openreview.net/forum?id=vkaMaq95_rX

GACT: Activation Compressed Training for Generic Network Architectures

Yang, H., and Tang, J. Cogdl: Toolkit for deep learning
on graphs. arXiv preprint arXiv:2103.00959, 2021.

Chakrabarti, A. and Moseley, B. Backprop with approxi-
mate activations for memory-efficient network training.
arXiv preprint arXiv:1901.07988, 2019.

Chen, J., Gai, Y., Yao, Z., Mahoney, M. W., and Gonzalez,
J. E. A statistical framework for low-bitwidth training of
deep neural networks. In Advances in neural information
processing systems, 2020a.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, 1., Mahoney,
M. W., and Gonzalez, J. E. Actnn: Reducing training
memory footprint via 2-bit activation compressed training.
In International Conference on Machine Learning, 2021.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Sim-
ple and deep graph convolutional networks. In Interna-
tional Conference on Machine Learning, pp. 1725-1735.
PMLR, 2020b.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. In Advances in neural information
processing systems, pp. 3123-3131, 2015.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In IEEE conference on computer vision and pattern recog-
nition, pp. 248-255. Teee, 2009.

Devlin, J., Chang, M.-W.,, Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In 2019 Conference of the North
American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4171-4186, 2019.

Evans, R. D. and Aamodt, T. AC-GC: Lossy activation
compression with guaranteed convergence. Advances in
Neural Information Processing Systems, 34, 2021.

Evans, R. D., Liu, L., and Aamodt, T. M. Jpeg-act: ac-
celerating deep learning via transform-based lossy com-
pression. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 860—
873. IEEE, 2020.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Fu, F, Hu, Y., He, Y., Jiang, J., Shao, Y., Zhang, C., and
Cui, B. Don’t waste your bits! squeeze activations and
gradients for deep neural networks via tinyscript. In

International Conference on Machine Learning, pp. 3304—
3314. PMLR, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE conference on
computer vision and pattern recognition, pp. 770-778,
2016.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Huang, C.-C., Jin, G., and Li, J. Swapadvisor: Pushing
deep learning beyond the gpu memory limit via smart
swapping. In Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 1341-1355, 2020.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P,
Keutzer, K., Stoica, 1., and Gonzalez, J. E. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. arXiv preprint arXiv:1910.02653, 2019.

Jin, S., Li, G., Song, S. L., and Tao, D. A novel memory-
efficient deep learning training framework via error-
bounded lossy compression. In 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 485-487, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J., He,
M., Roesch, J., Chen, T., and Tatlock, Z. Dynamic ten-
sor rematerialization. arXiv preprint arXiv:2006.09616,
2020.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollar, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740-755. Springer, 2014.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollér, P.
Focal loss for dense object detection. In International
Conference on Computer Vision (ICCV), pp. 2980-2988,
2017.

GACT: Activation Compressed Training for Generic Network Architectures

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,
and Guo, B. Swin transformer: Hierarchical vision trans-
former using shifted windows. International Conference
on Computer Vision (ICCV), 2021.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training. In
International Conference on Learning Representations,
2018.

Pan, Z., Chen, P., He, H., Liu, J., Cai, J., and Zhuang, B.
Mesa: A memory-saving training framework for trans-
formers. arXiv preprint arXiv:2111.11124,2021.

Peng, X., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q., Yang,
F., and Qian, X. Capuchin: Tensor-based gpu memory
management for deep learning. In Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 891-905,
2020.

Rabe, M. N. and Staats, C. Self-attention does not need
o(n?) memory. arXiv preprint arXiv:2112.05682, 2021.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload: De-
mocratizing billion-scale model training. arXiv preprint
arXiv:2101.06840, 2021.

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN:
Towards real-time object detection with region proposal
networks. Advances in neural information processing
systems, 28:91-99, 2015.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2015.

Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A., Cui,
X., Venkataramani, S., El Maghraoui, K., Srinivasan,
V. V., and Gopalakrishnan, K. Ultra-low precision 4-bit
training of deep neural networks. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, A., Singh, A., Michael, J., Hill, F,, Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In 2018
EMNLP Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pp. 353-355, 2018a.

Wang, L., Ye, J., Zhao, Y., Wu, W,, Li, A., Song, S. L., Xu,
Z., and Kraska, T. Superneurons: Dynamic GPU memory
management for training deep neural networks. In 23rd
ACM SIGPLAN symposium on principles and practice of
parallel programming, pp. 41-53, 2018b.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrish-
nan, K. Training deep neural networks with 8-bit floating
point numbers. In Advances in Neural Information Pro-
cessing Systems, pp. 7675-7684, 2018c.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P, Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. M. Trans-
formers: State-of-the-art natural language processing.
In 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38-45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos. 6.

Wu, S., Li, G., Chen, F,, and Shi, L. Training and inference
with integers in deep neural networks. In International
Conference on Learning Representations, 2018.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

GACT: Activation Compressed Training for Generic Network Architectures

A. Proof of Theorems
A.1. Theorem 1: Convergence of ACT

Assume that:
Al. £(0) is a continuous differentiable, VL(0) is S-Lipschitz continuous. .
A2. £(0) is bounded below by L..
A3. g(h; 0) is differentiable w.r.t. h and 3b > 0, s.t. V0, E ||g(Q(h(x,0));0) — g(h(x,0);0)] <b.
A4. 302 > 0, s.t,, VG Var [§(h(z,0)] < o2
Then, for all n < if we run ACT defined as Eq. (2) for T iterations, then we have
. 4(LO0) = Ls) | o 2
iy E [||vz:(M] —eE s T nge

=0,...,

25’

Proof. Denote m := VoL(6), € :== §(h(x,0:);0;) —m, d = g(Q(h(z;6:));0:) — g(h(x,0:);6;). Then, by A3 and A4,

we have
Ele] = E[g(h(z,0:);0¢) — VoL (0))] + E [(J (2, 0:), AQ((x,6:)))]
= (J(z,0:), E[AQ(R(, 61))]) = 0.
E [llel*] = IE [+ Var [= Var [§(h(z, 6,);6,)] < o
Efldl] <.
By the definitions, the ACT dynamics can be written as
Orp1 < 0 —n(m+d+e).
By A1, we have

||m+d+6|\
By Eq.s (6,8) , ,
E[(m,m+d+e)] = [m[” = [lm| |d]| + (m,E[e]) = [|[m|" — [[m]|b.

By Eq.s (6,7,8), and ||z + y||* < 2]|z|* + 2]|y[*,

E||m+d+ eﬂ =E [||m + dﬂ + Var [¢] < 2 [||m][]* + 2E[||d[|]* + Var [¢] = 2E [||m]|]* + 2b* + o”.

Taking expectation on both sides of Eq. (9), plug in Eq.s (10, 11), and use n < we have

2;3’
E[£(0:41)] <L(0:) — n(m|* — [Iml| b) + ﬁl(ﬂ@ [Iml]* + 2b% + o?).

ﬂ

=L(6:) — (n = B°) |ml” +n [ml| b+ == (26" + 0°)

B’

=£(0) = 2 lmll* + Il b+ - <2b2+a>

Completing the squares,

E [L(0:41)] < L(6:) — g(||m|| — 577

Take expectation on both sides and sum up for ¢t = O , T —1,

E [£(07)] — L(00) < —5 ZE (VL@ =) +

t=0

ZL (2% + 0?).

Reorganize the terms,
2(£L£(00) — L(07))
nT

E (VL@ - b)*] <
Let t, = argmin, E [||VL(6;)||], and use A1, we have
2(L(0o) — L+)
E —p)? < Y =)
(Ive.)) -v? < 20
Use (a + b)? < 2a? + 2b%, we have

o1 4(L(00) — L)
E[Ivee.)I?] < ==

+nB(2b* +0?).
+1B(20% + o).

+ 302 + nBo>.

+ (281 + 2)b® + nBo? < 74“(90){ L)

(6)
(7
(®)

9

(10)

Y

GACT: Activation Compressed Training for Generic Network Architectures

A.2. Proposition 1: The Linearization Error

Proof. Consider the gradient function g(Q(h(z;6);6)), whose output is a P-dimensional vector. Since it is twice differen-
tiable, we construct the Taylor’s expansion at h(x; #) with Lagrange remainder:

where J;(h(x;0),0) := w. By the assumption, there exists P > 0, such that the linearization error is

P
l9(Q(h(;6));6) — §(h(z; 0); h(w;6),0)ll, = > Ah(,6) H;Ah(z,0) < vP || Ah(z, 0)||”.
i=1
Taking expectation,

E [lg(@(h(x;0)); h(x: 0),0) — g(h(w; 0); 0)|l,] < E [g(Q(h(x:0)); 0) — g(h(w;0); h(w;0),0)ll,]
< yPVar [Ah(z,0)] = O(Var [Ah(z,0)]).

A.3. Proposition 2: The Order of the Variance
The following proposition is convenient for isolating the different noise sources.

Proposition A. (Law of Total Variance)
Var [X] =E[Var [X | Y]]+ Var[E[X | Y]].

Proof. By definition
Var [§(h(z;0;); h(z;0),0:)] = Var [g(h(z, 0);0)] + Var [J(h(x;0),0)Ah(x,0)],
where Var [g(h(z, 6);)] is the noise introduced by subsampling the data z. By law of total variance,
Var [J(h(x;0),0)Ah(z,0)] = Ex [Varg [J(h(x;0); 0:) Ah(z, 0)]] + Vary [Eq [J(h(x;0); 0,) Ah(z, 0)]],

=0

where
Varg [7(h(z: 0); 0) Ah(w,0)] =Eq [I1(h(x; 0); 00) bz, 0)|°] < Bq [(h(z:0):00)* | An(z, 0)]

= (17 (h(a30); 00)|I* Eq [AR(,0)|] = O (Var [Ah(z, 0)])

A.4. Proposition 3: The Structure of the Variance

Before investigating the structure of Varq [J(x; 6:)Ah(z, 0)], let’s do some recap: the parameter 6, is a P-dimensional
vector; the context difference Ah(z, §) is a D-dimensional vector, and J(x; 6;) is a P x D matrix. Recall that Ah(z, 6)
is the concatenation of L-vectors, Ah() (z,0), and let JU (2,0) := 5299 ((h)(2;0)){,,0), which is a P x D; matrix.

Furthermore, let hy) (z,0) be the j-th dimension, and .J ;l) (z,0) be its j-th column.
To proceed, we need to make the following assumptions to the compressor Q(-) : RP — RP:
B1: The compressed result is element-wise uncorrelated. That is, for any ¢ # j, Cov [Q(h);, Q(h);] = 0.

B2: For compressing a vector h to b bits, the compression variance of each dimension can be written in the form
Var [Q(h);] < R;j(h)S(b), where S(-) is a known function.

Both assumptions can be achieved by a stochastic rounding (Courbariaux et al., 2015) quantizer, where

T (IThw(h)1) wop. Thp(hy) — [Ths(hy)]
Qh); = {ThJ} (|Thp(hj)]) otherwise

where Tj, (h;) = (20 — l)w Since each dimension is quantized independently, B1 is met. Moreover,

max; h—min; h°

1 /max; h — min; h >

1< & (max;h —min; h b_ 12 _ p.

Var Qi) < § (St) @ 1) = RSO,

)

GACT: Activation Compressed Training for Generic Network Architectures

where)
1 (max; h —min; h b 9
. = - —) 7 = -1 .

Proof. By definition,

L D
J(h;0)Ah =33 T (0 AR,
=1 j=1
Using Assumption B1, we have
L D 2
Varg [J(h;0)Ah] = Eq [||>_ 3" 70 (h:0,) AR
=1 j=1
—ZZEQ {H (hs o)A | }
=1 j=1
- ZZ |0 (s 00) “Varg [an"]
=1 j=1
Using Assumption B2, we have
L D, L
Varg [J(h; 0)Ah] < T (h:6,) ’ S) =" alh,
=1 j=1 =1
where ¢;(0, h) := R;(h) HJ()(h39t)||p' O
B. Experiment Setup

B.1. Node classification task on graphs

We conduct experiments on four node classification datasets with standard splits, including Flickr, Reddit, Yelp from
GraphSAINT (Zeng et al., 2019), and ogbn-arxiv from Open Graph Benchmark (OGB) (Hu et al., 2020). The four datasets
cover extensive downstream applications with different scales. We use accuracy as the evaluation metric for multi-class
classification and micro-F1 for multi-label classification. We run ten seeds (0 to 9) and report the average accuracy
across runs.

We evaluate GACT on three representative GNN models, including GCN (Kipf & Welling, 2016), GAT (Velickovié
et al., 2017), and GCNII (Chen et al., 2020b) under the full-batch training setting. All three models are implemented by
CogDL (Cen et al., 2021), a toolkit for graph neural networks.

B.2. Text classification task

We select four largest datasets, MNLI, QQP, SST-2, and QNLI, from the GLUE benchmark (Wang et al., 2018a). The four
datasets cover different aspects of natural language understanding, including sentiment classification, natural language
inference and paraphrase detection. We use the mainstream transformer implementation (Wolf et al., 2020) to train
Bert-large (Devlin et al., 2019). We run three seeds (42, 43, 44) and report F1 for QQP, accuracy for the others.

C. Training Accuracy of Baselines

For all the baselines we compared in Sec. 6.3, only ActNN, Mesa, and ZeRO-Offload are lossy methods. All other methods
are lossless and have the same training accuracy as FP32. For ResNet-50 on ImageNet, the training accuracy for FP32,
GACT, ActNN L2, and ActNN L3 are 77.3, 77.0, 77.4, and 76.9. For Bert-Large on SST-2, the accuracy for FP32, GACT,
Mesa, and ZeRO-Offload are 93.7, 93.5, 93.8, and 93.3. For Swin-tiny on ImageNet, the training accuracy for FP32, GACT,
and Mesa are 81.2, 81.0, and 81.3 respectively.

