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Abstract
As deep learning (DL) efficacy grows, concerns
for poor model explainability grow also. Attribu-
tion methods address the issue of explainability by
quantifying the importance of an input feature for
a model prediction. Among various methods, Inte-
grated Gradients (IG) sets itself apart by claiming
other methods failed to satisfy desirable axioms,
while IG and methods like it uniquely satisfy said
axioms. This paper comments on fundamental
aspects of IG and its applications/extensions: 1)
We identify key differences between IG function
spaces and the supporting literature’s function
spaces which problematize previous claims of IG
uniqueness. We show that with the introduction
of an additional axiom, non-decreasing positivity,
the uniqueness claims can be established. 2) We
address the question of input sensitivity by identi-
fying function classes where IG is/is not Lipschitz
in the attributed input. 3) We show that axioms
for single-baseline methods have analogous prop-
erties for methods with probability distribution
baselines. 4) We introduce a computationally effi-
cient method of identifying internal neurons that
contribute to specified regions of an IG attribu-
tion map. Finally, we present experimental results
validating this method.

1. Introduction
Deep neural networks have revolutionized the field of vi-
sion processing, showing marked accuracy for varied and
large scale computer vision tasks (Huang et al., 2017), (Ren
et al., 2016), (Bochkovskiy et al., 2020). At the same time,
deep neural networks suffer from a lack of interpretabil-
ity. Various methods have been developed to address the
interpretability problem by quantifying, or attributing, the
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importance of each input feature to a model’s output. Basic
techniques inspect the gradient of the output with respect
to an input (Baehrens et al., 2010). Deconvolutional net-
works (Zeiler & Fergus, 2014) employ deep networks to
produce attributions, while guided back-propagation (Sprin-
genberg et al., 2014) gives attributions to internal neuron
activations. Methods such as Deeplift (Shrikumar et al.,
2017) and Layer-wise relevance propagation (Binder et al.,
2016) employ a baseline to use as a comparison to the input
(called baseline attributions). Further methods include Zhou
et al. (2016), Zintgraf et al. (2016).

Sundararajan et al. (2017) introduced the baseline attribution
method of Integrated Gradients (IG). The paper identified a
set of desirable axioms for attributions, demonstrated that
previous methods fail to satisfy them, and introduced the IG
method which satisfied the axioms. Included was the claim
that any method satisfying a subset of the axioms must be a
more general form of IG (called path methods).

Contributions. This paper addresses multiple aspects of
the IG method: its foundational claims, mathematical be-
havior, and extensions. The IG paper of Sundararajan et al.
(2017) applies results from Friedman (2004) (given here
as Theorem 1) to claim that path methods (defined below)
are the only methods that satisfy a set of desirable axioms.
Upon inspection, we observe that there are key assumptions
of the function spaces of Friedman (2004), such as func-
tions being non-decreasing, which are not true in the DL
context. These differences in function spaces were unad-
dressed in Sundararajan et al. (2017). We show that because
the function spaces differ, Theorem 1 does not apply and
the uniqueness claim is false. This observation also inval-
idates other uniqueness claims found in Xu et al. (2020)
and Sundararajan & Najmi (2020). With the introduction of
an additional axiom, non-decreasing positivity (NDP), we
show that Theorem 1 can apply, and rigorously extend it
into a broad-ranging DL function space.

We address the mathematical behavior of IG and an exten-
sion. We identify a common class of functions where IG
may be hypersensitive to the input image by failing to be
Lipschitz continuous, as well as a function class where IG
is guaranteed to be Lipschitz continuous. We also note that
the axioms in Sundararajan et al. (2017) apply to single
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baseline attribution methods, but no such axioms have been
stated for methods that employ a distribution of baselines.
We identify/extend axioms for the distribution of baselines
methods that parallel those in the single baseline case.

Lastly, we introduce a computationally efficient method of
attributing to an internal neuron it’s contribution to a region
of the IG map. If an IG map indicated certain regions or
sub-features are important to an output, this method pro-
vides a means of inspecting which individual neurons are
responsible for that region or sub-feature.

2. Background
2.1. Attribution Methods and Integrated Gradient

For a, b ∈ Rn, define [a, b] to be the hyperrectangle with
a, b as opposite vertices. An example is a greyscale image,
which would have a = 0, b be the vectorized pixel values of
a white image, and n be the pixel count. We denote a class
of functions F : [a, b]→ R by F(a, b), or F if a, b may be
inferred from the context. An example is a single output of
a DL model classifying images in a classification task. A
baseline attribution method (BAM) is defined as follows:

Definition 1 (Baseline Attribution Method). 1 Given
x, x′ ∈ [a, b], F ∈ F(a, b), a baseline attribution method is
any function of the form A : [a, b]× [a, b]×F(a, b)→ Rn.

We may drop x′ and write A(x, F ) if the baseline is fixed,
or may be inferred. An attribution can be interpreted as as-
signing values to each input xi indicating xi’s contribution
to the model output, F (x). Obviously, many BAMs in the
function class do not practically track an input’s contribution
to an output. By considering properties desirable to an attri-
bution method, we may restrict the function space further to
those which more effectively track input contributions. To
this end, let us define a path function as follows:

Definition 2 (Path Function). A function γ(x, x′, t) :
[a, b] × [a, b] × [0, 1] → [a, b] is a path function if, for
fixed x, x′, γ(t) := γ(x, x′, t) is a continuous, piecewise
smooth curve from x′ to x.
We may drop x′ or both x, x′ when they are fixed, and
write γ(x, t), γ(t) respectively. If we further suppose that
∂F
∂xi

(γ(t)) exists almost everywhere2, then the path method
associated with γ can be defined as:
Definition 3 (Path Method). Given the path func-
tion γ(·, ·, ·), the corresponding path method is defined as

Aγ(x, x′, F ) =

∫ 1

0

∂F

∂xi
(γ(x, x′, t))× ∂γi

∂t
(x, x′, t)dt, (1)

where γi denotes the i-th entry of γ.

By definition, all path methods are baseline attribution meth-
ods. A monotone path method is a path attribution where

1It is possible to widen the definition of baseline attribution
methods to include the model’s implementation, not just the input
and output. We use our definition for the scope of the paper.

each path is monotone, i.e., γi(t) is monotone in t for all i.

The integrated gradient method is a path method where the
path is a straight line from x′ to x. Formally, choosing the
monotone path γ(t) = x′+ t(x−x′) yields the IG formula:

Definition 4 (Integrated Gradient Method3). Given x, x′ ∈
[a, b], and F ∈ F(a, b), the integrated gradient attribution
of the i-th component of x is defined as

IGi(x, x′, F ) = (xi − x′i)
∫ 1

0

∂F

∂xi
(x′ + t(x− x′))dt (2)

Sundararajan et al. (2017) uses a black baseline, i.e., x′ = 0.
IG corresponds to the Aumann-Shaply method in the cost-
sharing literature (Aumann & Shapley, 1974).

2.2. What makes IG unique?
The theoretical allure of IG stems from three key claims: 1)
IG satisfies stipulated axioms (desirable properties), 2) other
methods fail at least one of the axioms, and 3) only methods
like it (path methods) are able to satisfy these axioms. We
will review the stated axioms in Sundararajan et al. (2017),
and a reader can find an explanation of each axiom in ap-
pendix A. Let A be a BAM, x, x′ ∈ [a, b], F,G ∈ F . Then
the axioms are as follows:

1. Sensitivity(a): Suppose x, x′ vary in one component,
so that xi 6= x′i, and xj = x′j ∀j 6= i. Further suppose
F (x) 6= F (x′). Then Ai(x, x′, F ) 6= 0.

2. Implementation Invariance: A is not a function of
model implementation, but solely of the mathematical
mapping of the model’s domain to the range.

3. Completeness: ∀F ∈ F , x, x′ ∈ [a, b], we have:∑n
i=1Ai(x, x

′, F ) = F (x)− F (x′).

4. Linearity: For α, β ∈ R, we have: Ai(x, x′, αF +
βG) = αAi(x, x

′, F ) + βAi(x, x
′, G).

5. Sensitivity(b)/Dummy: ∀F ∈ F , if ∂iF ≡ 0, then
Ai(x, x

′, F ) = 0.

6. Symmetry Preserving: For a given (i, j), define x∗ by
swapping the values of xi and xj . Now suppose that
∀x ∈ [a, b], F (x) = F (x∗). Then whenever xi = xj
and x′i = x′j , we have Ai(x, x′, F ) = Aj(x, x

′, F ).

The argument in Sundararajan et al. (2017) is roughly as fol-
lows: other established methods fail to satisfy sensitivity(a)
or implementation invariance. IG satisfies: completeness, a
stronger claim that includes sensitivity(a); implementation

2A function exists almost everywhere if the set of points where
the function is not defined has Lebesgue measure 0.

3Practically speaking, IG is relatively easy to implement. The
IG is calculated by numerical integration with a recommended 20
to 300 calls of the gradient (Sundararajan et al., 2017).
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invariance; linearity; and sensitivity(b). It can be shown that
path methods are the unique methods that satisfy implemen-
tation invariance, sensitivity(b), linearity, and completeness.
IG is the unique path method that satisfies symmetry. Thus,
IG uniquely satisfies axioms 1-6. It was admitted that the
Shaply-Shubik method (Shapley & Shubik, 1971) also sat-
isfy these conditions, but it is computationally infeasible.

It should be noted that (Lerma & Lucas, 2021) pointed out
that other computationally feasible path methods (single
path methods) satisfying all axioms exist and are easy to
produce, although they are not as simple as IG. It should
also be noted that other axiomatic treatments of IG exist.
Sundararajan & Najmi (2020) introduced an alternative set
of axioms and claimed that IG uniquely satisfied them. Xu
et al. (2020) claimed that path methods uniquely satisfy
linearity, dummy, completeness, and an additional axiom.
These treatments will be discussed later.

2.3. Modifications and Extensions

One issue with IG is the noisiness of the attribution. Sharp
fluctuations in the gradient, sometimes called the shattered
gradient problem (Balduzzi et al., 2017), are generally
blamed. Another issue with integrated gradients is baseline
choice. If the baseline is a black image, then the (xi − x′i)
term will be zero for any black pixel in the input image,
causing those attributions to be zero. This is an issue if the
black input pixels do contribute to image recognition, such
as a model identifying an image of a blackbird.

A category of fixes to these issues rely on modifying the
choice of input and baseline. Smilkov et al. (2017) addresses
the noisiness issue by introducing noise into the input and
taking the average IG. A tutorial on Tensorflow.com (2022)
addresses baseline choice by averaging the results when
using a white and black baseline. Erion et al. (2021) claims
synthetic baselines such as black and white images are out
of distribution data points, and suggests using training im-
ages as baseline and taking the average. Pascal Sturmfels
(2020) investigates various fixed and random baselines using
blurring, Gaussian noise, and uniform noise.

Another category of fixes modifies the IG path. Kapishnikov
et al. (2021) identifies accumulated noise along the IG path
as the cause of noisy attributions, and employs a guided
path approach to reduce attribution noise. Xu et al. (2020)
is concerned with the introduction of information using a
baseline, and opts to use a path that progressively removes
Gaussian blur from the attributed image.

Some IG extensions employ it for tasks beyond input attri-
butions. Dhamdhere et al. (2018) calculates accumulated
gradient flow through neurons to produce an internal neu-
ron attribution method called conductance. Shrikumar et al.
(2018) later identifies conductance as an augmented path

method and provides a computational speedup. Lundstrom
et al. (2022) compares a neuron’s average attribution over
different image classes to characterize neurons as class dis-
criminators. Erion et al. (2021) incorporates IG attributions
in a regularization term during training to improve the qual-
ity of attributions and model robustness.

3. Remarks on Original Paper and Other
Uniqueness Claims

3.1. Remarks on Completeness, Path Definition

We first address a few claims of the original IG paper (Sun-
dararajan et al., 2017) to add mathematical clarifications.
Sundararajan et al. (2017, Remark 2) states:

“Integrated gradients satisfies Sensivity(a) because
Completeness implies Sensivity(a) and is thus a strength-
ening of the Sensitivity(a) axiom. This is because Sensi-
tivity(a) refers to a case where the baseline and the input
differ only in one variable, for which Completeness as-
serts that the difference in the two output values is equal
to the attribution to this variable.”

To clarify, completeness implies sensitivity(a) for IG, and
for monotone path methods in general. The form of IG guar-
antees that any input that does not differ from the baseline
will have zero attribution, due to the xi − x′i term in (2). If
only one input differs from the baseline, and F (x) 6= F (x′),
then the value F (x)− F (x′) 6= 0 will be attributed to that
input by completeness. However, completeness does not
imply sensitivity(a) for general attribution methods, or for
non-monotone path methods specifically.

In Sundararajan et al. (2017), monotone path methods (what
they simply term path methods) are introduced as a general-
ization of the IG method. The section reads:

“Integrated gradients aggregate the gradients along the
inputs that fall on the straightline between the baseline
and the input. There are many other (non-straightline)
paths that monotonically interpolate between the two
points, and each such path will yield a different attri-
bution method. For instance, consider the simple case
when the input is two dimensional. Figure 14 has ex-
amples of three paths, each of which corresponds to a
different attribution method.

Formally, let γ = (γ1, ..., γn) : [0, 1]→ Rn be a smooth
function specifying a path in Rn from the baseline x′ to
the input x, i.e., γ(0) = x′, and γ(1) = x.”

By the referred figure, P1 is identified as a path, but it is not
smooth. It is simple enough to interpret smooth here to mean
piecewise smooth. Note that monotonicity is mentioned, and
all examples in Figure 1 are monotone, but monotonicity is

4See Figure 5, Appendix B.
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not explicitly included in the formal definition. The cited
source on path methods, Friedman (2004), only considers
monotone paths. Thus, we assume that Sundararajan et al.
(2017) only considers monotone paths. The alternative is
addressed in the discussion of Conjecture 1.

3.2. On Sundararajan et al. (2017)’s Uniqueness Claim

In the original IG paper, an important uniqueness claim is
given as follows (Sundararajan et al., 2017, Prop 2):

“(Friedman, 2004) Path methods are the only attribution
methods that always satisfy Implementation Invariance,
Sensitivity(b), Linearity, and Completeness.”

The claim that every method that satisfies certain axioms
must be a path method is an important claim for two reasons:
1) It categorically excludes every method that is not a path
method from satisfying the axioms, and 2) It characterizes
the form of methods satisfying the axioms. However, no
proof of the statement is given, only the following remark
(Remark 4):

“Integrated gradients correspond to a cost-sharing
method called Aumann-Shapley (Aumann & Shapley,
1974). Proposition 2 holds for our attribution problem
because mathematically the cost-sharing problem cor-
responds to the attribution problem with the benchmark
fixed at the zero vector.”

The cost-sharing problem does correspond to the attribu-
tion problem with benchmark fixed at zero, with some key
differences. To understand the differences, we review the
cost-share problem and results in Friedman (2004), then
rigorously state Sundararajan et al. (2017, Proposition 2).
We will then point out discrepancies between the function
spaces that make the application of the results in Friedman
(2004) neither automatic nor, in one case, appropriate.

In Friedman (2004), attributions are discussed within the
context of the cost-sharing problem. Suppose F gives the
cost of satisfying the demands of various agents, given
by x. Each input xi represents an agent’s demand, F (x)
represents the cost of satisfying all demands, and the at-
tribution to xi represents that agent’s share in the total
cost. It is assumed F (0) = 0, naturally, and because in-
creased demands cannot result in a lower total cost, F (x)
is non-decreasing in each component of x. Furthermore,
only C1 cost functions are considered. To denote these
restrictions on F formally, we write that for a positive
vector a ∈ Rn+, the set of attributed functions for a cost-
sharing problem is denoted byF0 = {F ∈ F(a, 0)|F (0) =
0, F ∈ C1, F non-decreasing in each component}. There
are also restrictions on attribution functions. The compar-
ative baseline in this context is no demands, so x′ is fixed
at 0. Because an agent’s demands can only increase the
cost, an agent’s demands should only have positive cost-
share. Thus cost-shares are non-negative. Formally we

denote the set of baseline attributions in Friedman (2004)
by A0 = {A : [a, 0]×F0 → Rn+}.
Before we continue, we must define an ensemble of path
methods. Let Γ(x, x′) denote the set of all path func-
tions projected onto their third component, so that x, x′

are fixed and γ ∈ Γ(x, x′) is a function solely of t. We
may write Γ(x) when x′ is fixed or apparent. Define the
set of monotone path functions as Γm(x, x′) := {γ ∈
Γ(x, x′)|γ is monotone in each component}. We can then
define an ensemble of path methods:

Definition 5. A BAM A is an ensemble of path methods
if there exists a family of probability measures indexed by
x, x′ ∈ [a, b], µx,x

′
, each on Γ(x, x′), such that:

A(x, F ) =

∫

γ∈Γ(x)

Aγ(x, F )dµx(γ) (3)

An ensemble of path methods is an attribution method
where, for a given x′, the attribution to x is equivalent to an
average among a distribution of path methods, regardless
of F . This distribution depends on the fixed x′ and choice
of x. If we only consider monotone paths, then we say that
a BAM A is an ensamble of monotone path methods, and
swap Γ(x) for Γm(x).

We now present Friedman’s characterization theorem:

Theorem 1. (Friedman (2004, Thm 1))

The following are equivalent:

1. A ∈ A0 satisfies completeness, linearity5, and sensitiv-
ity(b).

2. A ∈ A0 is an ensemble of monotone path methods.

To rigorously state Sundararajan et al. (2017, Prop 2), we
must interpret the claim: “path methods are the only attribu-
tion methods that always satisfy implementation invariance,
sensitivity(b), linearity, and completeness.” By “path meth-
ods”, Sundararajan et al. (2017) cannot exclude ensembles
of path methods. Simply stated: if some path methods
satisfy the axioms, then some ensembles of path methods,
such as finite averages, satisfy the axioms also. Neither
can it mean non-monotone path methods, since Theorem 1
only addresses monotone path methods, and, supposedly,
the theorem applies immediately. Thus we will interpret
“path methods” as in Theorem 1, as an ensemble of mono-
tone path methods. Define FD to be the set of DL models
where one output is considered, and define AD to be the set
of attribution methods defined on FD. We now state the
characterization theorem in Sundararajan et al. (2017):

Claim 1. (Sundararajan et al. (2017, Prop 2)) Suppose
A ∈ AD satisfies completeness, linearity, sensitivity(b),
and implementation invariance. Then for any fixed x′,
A(x, x′, F ) is an ensemble of monotone path methods.

5Friedman (2004) uses a weaker form of linearity: A(x, F +
G) = A(x, F ) +A(x,G).
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As stated previously, there are several discrepancies between
the function classes of Theorem 1 and Claim 1. F ∈ FD

need not be non-decreasing nor C1. x′ need not be 0, and
F (x′) has no restrictions. Additionally, attributions in AD

can take on negative values while those in A0 can not. The
differences between F0 and FD, A0 and AD make the ap-
plication of Theorem 1 problematic in the DL context. In
fact, Claim 1 is actually false.

Note that monotone and non-monotone path methods sat-
isfy completeness6, linearity, sensitivity(b), and implemen-
tation invariance. Fixing the baseline to zero and [a, b] =
[0, 1]n, there exists a non-monotone path ω(t) and non-
decreasing F s.t. Aω(x, x′, F ) has negative components.
However, if path γ(t) = γ(x, x′, t) is monotone and F
is non-decreasing, ∂γi

∂t ≥ 0 and ∂F
∂xi
≥ 0, ∀i. By Eq. 1,

Aγ(x, x′, F ) ≥ 0 for monotone γ and non-decreasing F ,
implying any ensemble of monotone path methods would
be non-negative. Thus, Aω is not an ensemble of monotone
path methods. For a full proof, see Appendix C.

Why did this happen? Note that in the context of Theo-
rem 1, this counterexample is disallowed. A0 only includes
attributions that give non-negative values. Non-monotone
path methods can give negative values for functions in F0,
so they are disallowed. However, what is excluded in the
game-theoretic context is allowed in the DL context: FD
functions can increase or decrease from the their baseline,
so by completeness, negative and positive attributions must
be included. Thus, non-monotone path methods are not pro-
hibited, they are fair game. Without additional constraints,
this implies that non-monotone path methods are allowed.

The above example shows that the set of BAMs satisfy-
ing axioms 3-5 cannot be characterized as an ensemble of
path methods over Γm. Since the counter example was a
non-monotone path method, perhaps the set BAMs can be
characterized as an ensemble of path methods over Γ.

Conjecture 1. The following are equivalent:

• A ∈ AD satisfies completeness, linearity, sensitivity(b),
and implementation invariance.

• For a fixed x′, A ∈ AD is equivalent to an ensemble
of path methods where the maximal path length of the
support of µx is bounded.7

If Conjecture 1 were true, it would somewhat preserve the
intention of Claim 1: that BAMs satisfying axioms 3-5 are
path methods. However, it is not clear how Theorem 1 can
be used to support Conjecture 1, since it proves characteri-
zations exclusively with monotone path ensembles. On the
other hand, it is an open question whether conjecture 1 is

6Path methods satisfy completeness because∑
iA

γ
i (x, x

′, F ) =
∫ 1

0
∇F ∗ dγ = F (x) − F (x′) by the

fundamental theorem for line integrals.
7For the necessity of bounding maximal path length, see the

Appendix F

false, that is, perhaps there is a BAM satisfying axioms 3-5
that is not an ensemble of path methods.

Even if we do not have any path characterization for BAMs
satisfying axioms 3-5, we submit an insight into BAMs
satisfying axioms 4 and 5.

Lemma 1. Suppose a BAM A satisfies linearity and sensi-
tivity(b), and ∇F is defined on [a, b]. Then A(x, x′, F ) is a
function solely of x, x′, and the gradient of F . Furthermore,
Ai(x, x

′, F ) is a function solely of x, x′ and ∂F
∂xi

.

3.3. On Other Uniqueness Claims

There are other attempts to establish the uniqueness of IG or
path methods by referencing cost-sharing literature, each of
which succumbs to the same issue as Claim 1. The claims
make use of an additional axiom, Affine Scale Invariance
(ASI).8 We denote the function composition operator by ”◦”.
The ASI axiom, seventh in our list, is as follows:

7. Affine Scale Invariance (ASI): For a given index
i, c 6= 0, d, define the affine transformation
T (x) := (x1, ..., cxi + d, ..., xn). Then whenever
x, x′, T (x), T (x′) ∈ [a, b], we have A(x, x′, F ) =
A(T (x), T (x′), F ◦ T−1).

Xu et al. (2020, Prop 1) claims that path methods are the
unique methods that satisfy dummy, linearity, completeness,
and ASI. Here the situation is similar to Sundararajan et al.
(2017): they import game-theoretic results from Friedman
(2004) which assumes functions are non-decreasing and at-
tributions are non-negative. As mentioned in our discussion
of claim 1, the referenced result can not be correctly applied
to the context where attributions can be negative and no
additional constraints are imposed. For a fuller treatment
and counterexample, see Appendix E.

In another paper, Sundararajan & Najmi (2020, Cor 4.4)
claims that IG uniquely satisfies a handful of axioms: lin-
earity, dummy, symmetry, ASI, and proportionality. This
argument is a corollary of another claim: any attribution
method satisfying ASI and linearity is the difference of two
cost-share solutions (Sundararajan & Najmi, 2020, Thm 4.1).
By breaking up an attribution into two cost-share solutions,
the aim is to apply cost-share results. The argument roughly
is as follows: for any attribution, input, baseline, and func-
tion, they use ASI to formulate the attribution as A(x, 0, F ),
with x > 0. They write F = F+ − F−, where F+ and
F− are non-decreasing. Then by linearity, A(x, 0, F ) =
A(x, 0, F+ − F−) = A(x, 0, F+) − A(x, 0, F−), which,
the claim states, is the difference of two cost-share solutions.
However, there are methods that satisfy ASI and linearity,
but generally give negative values for cost-sharing problems.

8Xu et al. (2020) and Sundararajan et al. (2017) gives an incor-
rect definition of ASI, saying A(x, x′, F ) = A(T (x), T (x′), F ◦
T )). The source definition is from Friedman & Moulin (1999).
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Thus neither A(x, 0, F+) nor A(x, 0, F−) are necessarily
cost-share solutions to cost-share problems. See Appendix E
for a counterexample.

4. Establishing Uniqueness Claims with
Non-Decreasing Positivity

We now seek to salvage the uniqueness claims identified in
the previous section for a robust set of functions. To this end,
we introduce the axiom of non-decreasing positivity (NDP).
We say that F is non-decreasing from x′ to x if F (γ(t)) is
non-decreasing for every monotone path γ(t) ∈ Γ(x, x′)
from x′ to x. We can then define NDP as follows:
Definition 6. A BAM A satisfies NDP if A(x, x′, F ) ≥ 0
whenever F is non-decreasing from x′ to x.

F being non-decreasing from x′ to x is analogous to a cost
function being non-decreasing in the cost-sharing context.
NDP is then analogous to requiring cost-shares to be non-
negative. Put another way, NDP states that if F (y) does
not decrease when any input yi moves closer to xi from
x′i, then A(x, x′, F ) should not give negative values to any
input. The addition of NDP enables Theorem 1 to extend
closer to the DL context.

Theorem 2. (Characterization Theorem with NDP) Let x′

be fixed. Define F1 to be the intersection of FD and C1.
Define A1 to be the set of baseline attributions with the
domain restricted to F1. Then the following are equivalent:

1. A ∈ A1 satisfies completeness, linearity, sensitivity(b),
and NDP.

2. A ∈ A1 is an ensemble of monotone path methods.

A sketch of the proof is as follows. Let x be fixed, and
F ∈ F1. It can be shown that the behavior of F outside
of [x, x′] is irrelevant to A(x, x′, F ). Using this, apply a
coordinate transform T that maps [x, x′] onto [|x− x′|, 0],
so that A(x, x′, F ) = A0(0, |x − x′|, F 0), where A0, F 0

have proper domains to apply Theorem 1. F 0 is C1 and
defined on a compact domain, so its derivative is bounded,
and there exists c ∈ Rn such that F 0(y) + cT y is non-
decreasing in y. Apply Theorem 1 toA0(x, x′, F 0(y)+cT y)
and simplify to show A(x, x′, F ) is an ensemble of path
methods for function F 0 and paths in Γ[|x−x′|, 0]. Reverse
the transform to get the ensemble in terms of F and Γ(x, x′).

To expand Theorem 2 further to non-C1 functions, we con-
sider a class of feed forward neural networks with layers
composed of real-analytic functions and the max function.
These include connected layers, activation functions like
tanh, mish, swish, residual connections,9 as well as ReLU
and Leaky ReLU which can be formulated in terms of a
max function. Denote the set of neural networks composed
of these layers F2. We then define A2 to be any A ∈ AD

with domain limited to F ∈ F1 ∪ F2. Thus A2 is a more

robust attribution method than A1 in that it is defined for a
broader class of functions.

We begin with a lemma regarding the topology of the do-
main of F ∈ F2.

Lemma 2. Suppose F ∈ F2. Then [x, x′] can be parti-
tioned into a nonempty region D and it’s boundary ∂D,
where F is real-analytic on D, D is open with respect to the
topology of the dimension of [x, x′], and ∂D is measure 0.

We now present a claim extending Theorem 2 to non-C1

functions. Let D denote the set as described above, and
denote the set of points on the path γ by P γ .

Theorem 3. (Extension to class of non-C1 functions) Let
x′ be fixed. Suppose A ∈ A2 satisfies completeness, lin-
earity, sensitivity(b), and NDP, and that F ∈ F2. For some
x ∈ [a, b], let µx be the measure on Γm(x.x′) from The-
orem 2. If A(x, F ) is defined, and for almost every path
γ ∈ Γm(x, x′) (according to µx), ∂D ∩ P γ is a null set,
then A(x, F ) is equivalent to the usual ensemble of path
methods.

With the addition of NDP, we also establish the other unique-
ness claims of Section 3.3. For details, see Appendix E.

4.1. Lipschitz Continuity

DL models can be extremely sensitive to slight changes in
the input image (Goodfellow et al., 2014). It stands to reason
that IG should also have increased sensitive in the output for
more sensitive models, and less sensitivity in the output for
less sensitive models. The question of whether IG is locally
Lipshchitz, and what its local Lipschitz constant is, has been
studied previously by experimental means. Previous works
searched for the Lipschitz constant when the domain is re-
stricted to some ball around the input, either by Monte Carlo
sampling (Yeh et al., 2019) or exhaustive search of nearby
input data (Alvarez-Melis & Jaakkola, 2018). In contrast to
these, we provide theoretical results on the global sensitivity
of IG for two extremes: a model with a discontinuous gradi-
ent (as with a neural network with a max or ReLU function),
and a model with a well behaved gradient:

Theorem 4. Let F be defined on [a, b], x′ be fixed. If F has
the usual discontinuities due to ReLU or Max functions, then
IG(x, F ) may fail to be Lipschitz continuous in x. If ∇F
is Lipschitz continuous with constant L and | ∂F∂xi

| attains
maximum M , then IGi(x, F ) is Lipschitz continuous in x
with Lipschitz constant at most M + |ai−bi|

2 L.
9Products, sums, and compositions of analytic functions are

analytic. Quotients of analytic functions where the denominator is
non-zero are analytic.



Review and Extensions of Integrated Gradients

5. Distribution Baseline Axioms
As mentioned in 2.3, some extensions of IG use a dis-
tribution of baselines. Here we give a formal definition
of the distributional IG, and comment on some axioms it
satisfies. We denote the set of distributions on the input
space by D. The set of distributional attributions, E , is
then defined as the set containing all functions of the form
E : [a, b] × D × F → Rn. Given a distribution of base-
lines images D ∈ D, we suppose the baseline random
variable X ′ ∼ D. Then the distributional IG is given by
EG(x,X ′, F ) := EX′∼DIG(x,X ′, F ). Particular axioms,
namely implantation invariance, sensitivity(b), linearity, and
ASI can be directly carried over to the baseline attribution
context. Distributional IG satisfies these axioms. The ax-
ioms of sensitivity(a), completeness, symmetry preserving,
and NDP do not have direct analogues. Below we identify
distributional attribution axioms that extend sensitivity(a),
completeness, and symmetry preserving axioms to the dis-
tributional attribution case. Distributional IG satisfies these
axioms as well.10 See Appendix K for details.

Let E ∈ E , D ∈ D, X ′ ∼ D, and F,G ∈ F :

1. Sensitivity(a): Suppose X ′ varies in exactly one input,
X ′i, so that X ′j = xj for all j 6= i, and EF (X ′) 6=
F (x). Then Ei(x,X ′, F ) 6= 0.

2. Completeness:
∑n
i=1Ei(x,X

′, F ) = F (x) −
EF (X ′).

3. Symmetry Preserving: For a given i, j, define x∗ by
swapping the values of xi and xj . Now suppose that for
all x, F (x) = F (x∗). Then whenever X ′i and X ′j are
exchangeable11, and xi = xj , we haveEi(x,X ′, F ) =
Ej(x,X

′, F ).
4. NDP: If F is non-decreasing from every point on the

support of D to x, then E(x,X ′, F ) ≥ 0.

6. Internal Neuron Attributions
6.1. Previous Methods

Previous works apply IG to internal neuron layers to obtain
internal neuron attributions. We review their results before
discussing extensions. Suppose F is a single output of a
feed forward neural network, with F : [a, b]→ R. We can
separate F at an internal layer such that F (x) = G(H(x)).
Here H : [a, b] → Rm is the first half of the network
outputting the value of an internal layer of neurons, and
G : Rm → R is the second half of the network that would
take the internal neuron values as an input. We assume
the straight line path γ, although other paths can be used.
Following Dhamdhere et al. (2018), the flow of the gradient
in IGi through neuron j, labeled IGi,j , is given by:

10Completeness has been observed by Erion et al. (2021).
11Xi and Xj are exchangeable if X and X∗ are identically

distributed.

IGi,j = (xi − x′i)
∫ 1

0

∂G

∂Hj
(H(γ))

∂Hj
∂xi

(γ)dt (4)

By fixing the input and summing the gradient flow through
each internal neuron, we get IGi, or, what we equivalently
denote for this context, IGi,∗. This is what we should expect,
and is accomplished by moving the sum into the integral
and invoking the chain rule.∑

j

IGi,j = (xi − x′i)
∫ 1

0

G ◦H
dxi

(γ)dt = IGi,∗ (5)

If we fix an internal neuron and calculate the total gradient
flow through it for each input, we get an internal neuron
attribution, or what Dhamdhere et al. (2018) calls a neu-
ron’s conductance:

IG∗,j =
∑
i

IGi,j

=
∑
i

(xi − x′i)
∫ 1

0

∂G

∂Hj
(H(γ))

∂Hj
∂xi

(γ)dt

=

∫ 1

0

∂G

∂Hj
(H(γ))

∑
i

[
∂Hj
∂xi

(γ)× (xi − x′i)]dt

=

∫ 1

0

∂G

∂Hj
(H(γ))

d(Hj ◦ γ)
dt

dt (6)

Shrikumar et al. (2018) recognized the last line above,
which, since Hj(γ) is a path, formulates conductance as
a path method. Note that this path may not be monotone,
implying the usefulness of non-monotone path methods.

The above formulations can be extended to calculating the
gradient flow through a group of neurons in a layer, or
through a sequence of neurons in multiple layers. But here
we run into a computational issue. Calculating eqs. 4 or 6
for each neuron in a layer could be expensive using standard
programs. We hypothesize this is because they are designed
primarily for efficient back-propagation, which finds the
gradient of multiple inputs with respect to a single output,
not the Jacobean for a large number of outputs.

6.2. Neuron Attributions for an Input Patch

An IG attribution map usually highlights regions or features
that contributed to a model’s output, e.g., highlighting a
face in a picture of a person. A pertinent question is: are
there internal neurons that are responsible for attributing
that feature? In our example, are there neurons causing IG
to highlight the face? We propose an answer by attributing
to a layer of internal neurons for an input patch.

If we index each input feature, then we can denote a patch
of input features by S. Then the gradient flow through a
neuron j for the patch S is given by:

IGS,j =
∑
i∈S

IGi,j

=

∫ 1

0

∂G

∂Hj
(H(γ))

∑
i∈S

∂Hj
∂xi

(γ)(xi − x′i)dt
(7)
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As noted in section 6.1, computing Eq. 7 for a full layer of
neurons can be expensive. We introduce a speedup inspired
by Shrikumar et al. (2018). Let d be a vector with di =
xi−x′i if i ∈ S, and di = 0 if i /∈ S. Denote the unit vector
d
||d|| by d̂. Formulating a directional derivative, then taking
Reimann sum with N terms, we write:

IGS,j =
∫ 1

0

∂G

∂Hj
(H(γ))

∑
i∈S

∂Hj
∂xi

(γ)(xi − x′i)dt

=

∫ 1

0

∂G

∂Hj
(H(γ)) Dd̂Hj(γ) ||d||dt

≈ ||d||
∫ 1

0

∂G

∂Hj
(H(γ))

Hj(γ(t) +
d̂
N
)−Hj(γ(t))

1/N
dt

≈ ||d||
N∑
k=1

∂G

∂Hj
(H(γ(

k

N
)))

× [Hj(γ(
k

N
) +

d̂

N
)−Hj(γ(

k

N
))]

With this speedup, we bypass computing the Jacobean to
find ∂Hj

∂xi
for each input and internal neuron. For an accurate

calculation, choose N such that IGS,j + IGSc,j ≈ IG∗,j .

7. Experimental Results
Here, we present experiments validating the methods in
Section 6. We experiment on two models/data sets: ResNet-
152 (He et al., 2016) trained on ImageNet (Deng et al.,
2009), and a custom model trained on Fashion MNIST (Xiao
et al., 2017). Some results for ImageNet appear here,
while further results appear in the appendix. The gen-
eral outline of each experiment is: 1) calculate a perfor-
mance metric for neurons in an internal layer using IG
attributions, 2) rank neurons based on the performance
metric, and 3) prune neurons according to rank and ob-
serve corresponding changes in model. The goal is to val-
idate the claim that the methods of Section 6 identify neu-
rons that contribute to a particular task. The code used in
our experiments is available at: https://github.com/
optimization-for-data-driven-science/XAI

7.1. Preliminaries: Pruning Based on Whole Input
Internal Neuron Attributions

The first experiment (Figure 1) calculates a general perfor-
mance metric for each each internal neuron in a particular
layer. We calculate the average neuron conductance over
each input in the training set, where the output of F is the
confidence in the correct label. We use a black image as
a baseline. Following the method of “deletion and inser-
tion” (Petsiuk et al., 2018), we progressively prune (zero
out) a portion of the neurons according to their rank and
observe changes in model accuracy on the teseting set.12

We zero-out internal neurons because we wish to mask the
indication of feature presence, and ResNet uses the ReLU
activation function, which encodes no feature presence with
a neuron value of zero. These experiments are preformed

twice: once on a dense layer (2nd to last), and once on a
convolutional layer (the output of the conv2x block).

Figure 1. Pruning neurons by conductance values versus random
pruning. IG ↓ means pruning neurons by conductance values in
descending order. IG ↑ means pruning neurons by conductance
values in ascending order.

When pruning the dense layer, we see that the order of prun-
ing makes little difference in performance. We attribute
this effect to the dense layer having an evenly distributed
neuron importance, something likely in a 1000 category
classifier. In the convolutional layer, we see that pruning by
descending order rapidly kills the model’s accuracy, while
pruning by ascending order generally maintains model ac-
curacy better than random pruning. This shows that average
conductance can help identify neuron importance.

The second experiment (Figure 2) calculates a performance
metric indicating a neuron’s contribution in identifying a par-
ticular image category. We follow Lundstrom et al. (2022)
and calculate the same performance metric as previously, but
average over a particular category of images (e.g. Lemons).
We then rank and prune neurons, observing changes in the
model’s test accuracy identifying the particular category.

In both layers, pruning to kill performance quickly reduces
the model’s accuracy identifying Lemon. This is compared
to the median category’s performance, and the random prun-
ing baseline. When we prune to keep performance in the
dense layer, we see that Lemon performs well below the me-
dian with random pruning, but swaps to above the median
with IG pruning. Pruning in the convoluional layer quickly
causes Lemon to become very accurate while the median
accuracy dips below the random baseline.

7.2. Pruning Based on Internal Neuron Attributions for
Image Patchs

Here we show results of an experiment using image-patch
based internal neuron attributions. In a picture of two traf-
fic lights (Figure 3, top-left), we identify an image-patch
around one traffic light as a region of interest. We then find
the attributions of each internal neuron in a convolutional
layer for this image patch and rank them. Using this rank-
ing, we progressively prune the neurons (top-ranked first),

12While similar, our experiment differs from others by zeroing
the filter, not ablating it (Dhamdhere et al., 2018) or fixing it to a
reference input (Shrikumar et al., 2018)

https://github.com/optimization-for-data-driven-science/XAI
https://github.com/optimization-for-data-driven-science/XAI
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Figure 2. Testing accuracy when neurons are pruned according to
their IG values corresponding to the class Lemon. Top: neurons
pruned in dense layer. Bottom: neurons pruned in a convolutional
layer. Left: Neurons pruned by IG values in descending order.
Right: Neurons pruned by IG values in ascending order. “Random,
Median”, “IG, Median” report median accuracy of all classes for
random/ranked pruning. “Random, Lemon”, “IG, Lemon” report
accuracy of class Lemon for random/ranked pruning.

periodically reassessing the total IG attributions inside and
outside the specified region. This procedure is repeated,
instead ranking neurons by their conductance for the image.

From Figure 4, we see that using global conductance rank-
ings causes the sum of IG inside and outside the bounding
box to briefly fluctuate, then converge to zero. In compari-
son, pruning by region-targeted rankings consistently causes
a positive IG sum outside the box and negative IG sum in-
side the box. This reinforces the claim that image-patch
based rankings give high ranks to neurons causing positive
IG values in the bounding box. Interestingly, we also see
that (

∑
IG, all) quickly drops for the global pruning but

stays elevated for the regional pruning. By completeness,
this indicates the model quickly looses confidence in the
former case, but keeps a high confidence for up to 50%
pruning when pruned using region-targeted rankings.

In Figure 3, we prune the top-1% of neurons in a convolu-
tional layer according to both conductance and image-patch
rankings, then re-visualize the IG. The model gives an ini-
tial confidence score of 0.9809. When pruning according
to conductance, the confidence changes to 0.9391, but the
model’s attention loses focus, and a broad region receives a
cloudy mixture of positive and negative attributions. When
pruning according to the image-patch rankings, the confi-
dence score is 0.9958, but the model’s attention shifts from
the right traffic light to the left one. This validates that the
image-patch method indeed highly ranked internal neurons
associated with the right traffic light, and ranked neurons is
a region-targeted way compared to general neuron conduc-
tance. Further experiments can be found in Appendix L.

Figure 3. Top Left: The original image and bounding box indicat-
ing specified image patch. Top Right: IG attributes visualized.
Green dots show postive IG, red dots show negative IG. We see
most IG attributes are within or around the bounding box. Bottom
Left: IG attributes visualized after top 1% of neurons pruned based
on image-patch attributions. We see IG attributes moved from the
right light to the left light. Bottom Right: IG attributes visualized
after top 1% neurons pruned based on the global ranking. We see
IG attributes are scattered.

Figure 4. Sum of IG attributes inside and outside the bounding
box when neurons are pruned according to certain rankings. Left:
Neurons are pruned based on IG global ranking. Right: Neurons
are pruned based on the IG ranking inside the bounding box.

8. Summary
In this paper, we touched on several aspects of IG. We
showed that three uniqueness claims of IG were false due to
discrepancies between the cost-sharing and deep-learning
function spaces. With the addition of NDP, these results can
be salvaged. We showed that depending on the behaviour
of the model, IG may or may not be Lipschitz in the input
image. We presented distribution-baseline analogues of
certain axioms from Sundararajan et al. (2017), all of which
the distributional IG satisfy. We reviewed extensions of IG
to internal neurons and introduced an efficient means of
calculating internal neuron attributions for an image patch.
Finally, we presented experiments validating internal neuron
attributions using IG.
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Appendix

A. Explanation of Axioms
Here we give an explanation of each axiom. 1) Sensitivity(a) stipulates that if altering a baseline by a single input yields a
different output, then that input should have some attribution score. 2) Implementation Invariance states that an attribution
method should depend on the form of the function alone, not by any particular way it is coded up. In our formulation, this is
a given, but it is possible to consider attribution methods that are a function of model implementation. 3) Completeness
states that the sum of the attributions equals the change in function value. It allows an interpretation of each attribution as a
contribution to a portion of the function value change. It does this by ensuring that the attribution function has a complete
accounting of said change. 4) Linearity would be desirable in ensemble voting models, and indicates that the attribution to
an input is the weighted sum of its attributions for the individual models, with the weights equal to the ensemble weights.
5) Sensitivity(b) is called dummy or dummy-consistency in Friedman (2004), and simply means that if an input does
not affect the output, then it should have zero attribution. 6) Symmetry Preservation indicates that if two variables are
universally interchangeable in the function, and their values are identical in the input and baseline, then their attributions
should not differ. 7) Affine Scale Invariance implies that if the baseline and input are shifted are stretched, but the model was
adjusted for this shifting and stretching, then the attributions would not change. As an example, if a model were designed
for Fahrenheit, and then adjusted to Celcius, the attributions would not change for the same absolute-temperature input and
baseline. For further comments, see Sundararajan et al. (2017), Sundararajan & Najmi (2020).

B. Figure 1 from Sundararajan et al. (2017) Axiomatic Attribution for Deep Networks

r1,r2

s1,s2

P1

P2 P3

Figure 1. Three paths between an a baseline (r1, r2) and an input
(s1, s2). Each path corresponds to a different attribution method.
The path P2 corresponds to the path used by integrated gradients.

tifacts that stem from perturbing the data, a misbehaving
model, and a misbehaving attribution method. This was
why we turned to an axiomatic approach in designing a
good attribution method (Section 2). While our method
satisfies Sensitivity and Implementation Invariance, it cer-
tainly isn’t the unique method to do so.

We now justify the selection of the integrated gradients
method in two steps. First, we identify a class of meth-
ods called Path methods that generalize integrated gradi-
ents. We discuss that path methods are the only methods
to satisfy certain desirable axioms. Second, we argue why
integrated gradients is somehow canonical among the dif-
ferent path methods.

4.1. Path Methods

Integrated gradients aggregate the gradients along the in-
puts that fall on the straightline between the baseline and
the input. There are many other (non-straightline) paths
that monotonically interpolate between the two points, and
each such path will yield a different attribution method. For
instance, consider the simple case when the input is two di-
mensional. Figure 1 has examples of three paths, each of
which corresponds to a different attribution method.

Formally, let γ = (γ1, . . . , γn) : [0, 1] → Rn be a smooth
function specifying a path in Rn from the baseline x′ to the
input x, i.e., γ(0) = x′ and γ(1) = x.

Given a path function γ, path integrated gradients are ob-
tained by integrating the gradients along the path γ(α) for
α ∈ [0, 1]. Formally, path integrated gradients along the
ith dimension for an input x is defined as follows.

PathIntegratedGradsγi (x) ::=

∫ 1

α=0

∂F (γ(α))
∂γi(α)

∂γi(α)
∂α dα

(2)
where ∂F (x)

∂xi
is the gradient of F along the ith dimension

at x.

Attribution methods based on path integrated gradients are

collectively known as path methods. Notice that integrated
gradients is a path method for the straightline path specified
γ(α) = x′ + α× (x− x′) for α ∈ [0, 1].
Remark 3. All path methods satisfy Implementation In-
variance. This follows from the fact that they are defined
using the underlying gradients, which do not depend on the
implementation. They also satisfy Completeness (the proof
is similar to that of Proposition 1) and Sensitvity(a) which
is implied by Completeness (see Remark 2).

More interestingly, path methods are the only methods
that satisfy certain desirable axioms. (For formal defini-
tions of the axioms and proof of Proposition 2, see Fried-
man (Friedman, 2004).)

Axiom: Sensitivity(b). (called Dummy in (Friedman,
2004)) If the function implemented by the deep network
does not depend (mathematically) on some variable, then
the attribution to that variable is always zero.

This is a natural complement to the definition of Sensitiv-
ity(a) from Section 2. This definition captures desired in-
sensitivity of the attributions.

Axiom: Linearity. Suppose that we linearly composed
two deep networks modeled by the functions f1 and f2 to
form a third network that models the function a×f1+b×f2,
i.e., a linear combination of the two networks. Then we’d
like the attributions for a× f1 + b× f2 to be the weighted
sum of the attributions for f1 and f2 with weights a and b
respectively. Intuitively, we would like the attributions to
preserve any linearity within the network.
Proposition 2. (Theorem 1 (Friedman, 2004)) Path meth-
ods are the only attribution methods that always satisfy
Implementation Invariance, Sensitivity(b), Linearity, and
Completeness.
Remark 4. We note that these path integrated gradients
have been used within the cost-sharing literature in eco-
nomics where the function models the cost of a project as
a function of the demands of various participants, and the
attributions correspond to cost-shares. Integrated gradi-
ents correspond to a cost-sharing method called Aumann-
Shapley (Aumann & Shapley, 1974). Proposition 2 holds
for our attribution problem because mathematically the
cost-sharing problem corresponds to the attribution prob-
lem with the benchmark fixed at the zero vector. (Imple-
mentation Invariance is implicit in the cost-sharing litera-
ture as the cost functions are considered directly in their
mathematical form.)

4.2. Integrated Gradients is Symmetry-Preserving

In this section, we formalize why the straightline path cho-
sen by integrated gradients is canonical. First, observe that
it is the simplest path that one can define mathematically.

Figure 5. Three paths between an a baseline (r1, r2) and an input (s1, s2). Each path corresponds to a different attribution method. The
path P2 corresponds to the path used by integrated gradients.

C. Counterexample to Claim 1
Let F (x1, x2) = x1x2 be defined on [0, 1]2, x′ = (0, 0), x = (1, 0). Suppose that Aγ is defined by a monotone path. Note
that ∂F

∂xi
≥ 0, ∂γi∂t ≥ 0 for all i. Thus Aγ(x, x′, F ) ≥ 0 by Eq. 1. Thus any ensemble of monotone path methods has a

non-negative output for the input (x, x′, F ).

Let γ′ be the path that travels via a straight line from (0, 0) to (0, 1), then to (1, 1), and ends at (1, 0). Aγ
′

satisfies
completeness, linearity, sensitivity(b), and implementation invariance. Aγ

′
(x, x′, F ) = (1,−1) � 0. Thus not every

baseline attribution that satisfies completeness, linearity, sensitivity(b), and implementation invariance is a probabilistic
ensemble of monotone path methods.

D. Proof of Lemma 1
Proof. Suppose A satisfies linearity and sensitivity(b), and F ∈ F has defined ∇F in [a, b]. Let and x, x′ ∈ [a, b], and
let G ∈ F be such that ∂F

∂xi
= ∂G

∂xi
for some i. Then ∂(F−G)

∂xi
= 0, and by sensitivity(b), Ai(x, x′, F ) − Ai(x, x′, G) =

Ai(x, x
′, F − G) = 0. Thus Ai(x, x′, F ) = Ai(x, x

′, G), and Ai is a function solely of x, x′ and ∂F
∂xi

. By extension,
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A(x, x′, F ) is a function solely of x,x’, and∇F .

E. Counterexamples to Other Uniqueness Claims and Proof with NDP
E.1. Counterexample to Xu et al. (2020, Proposition 1) and Proof with NDP

In this section we present a counterexample to Xu et al. (2020, Proposition 1) and establish the claim with the addition of
NDP. The original statement of Xu et al. (2020, Proposition 1) is as follows:

“Path methods are the only attribution methods that always satisfy Dummy, Linearity, Affine Scale Invariance and
Completeness.”

As with the statement of Sundararajan et al. (2017, Proposition 2), the definition of “path methods” here is informed by the
work of Friedman (2004), which is a referent given as proof of the theorem and specifies the statement. We first rigorously
re-state the claim, filling in gaps. The work of Friedman (2004, Theorem 1), which was given above as Theorem 1, is given
in the context of monotone path methods and their ensembles. Since this theorem is referenced without further proof, it is
assumed they do not mean to include non-monotone path methods, since otherwise the theorem would not be justifiably
applied. Furthermore, it is known that if a path method satisfies the axioms, then an ensemble of path methods satisfies the
axioms. Thus we assume they mean to include ensembles of path methods. Thus, we can interprete the statement as:
Claim 2. (Xu et al. (2020, Proposition 1)) If an attribution method satisfies dummy, linearity, ASI, and completeness, then
that method is an ensemble of monotone path methods.

Here we present a counterexample to this claim in the form of a non-monotone path method that satisfies the axioms. Let
n = 2, [a, b] = [0, 1]. Define γ(x, x′, t) as follows. Set T to be the affine transformation T (y) = x′+ (x−x′)� y. Inspired
by Friedman (2004)’s treatment of ASI, we define a non-monotone path method γ(x, x′, t) as such. We set γ(1, 0, t) as
the constant velocity path which travels in straight lines as such: (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0) → (1, 1).
Define γ(x, x′, t) = T (γ(0, 1, t)). Thus γ(x, x′, t) is affine transformation of the reference path γ(0, 1, t). Note that
γ(0, 1, t) ∈ [0, 1], so if x, x′ ∈ [0, 1], then the path γ(x, x′, t) ∈ [x, x′], and will not exit out of the box [0, 1]. This ensures
that Aγ(x, x′, F ) is well defined for any x, x′.

Note thatAγ is a non-monotone path method satisfying completeness, dummy, and linearity. To complete the counterexample,
it remains to show that Aγ satisfies ASI. Let T ′ be any affine transformation as in the definition of ASI. All that remains
is to show that if x, x′, T ′(x), T ′(x′) ∈ [a, b], then Aγ(x, x′, F ) = Aγ(T ′(x), T ′(x′), F ◦ T ′−1). First we note that
T ′(T (γ(1, 0, t))) = γ(T ′(T (1)), T ′(T (0)), t) = γ(T ′(x), T ′(x′), t). Applying this, we show that for any index i:

Aγi (x, x′, F ) =

∫ 1

0

∂F

∂xi
(γ(t))

dγi
dt
dt

=

∫ 1

0

∂F

∂xi
(T (γ(1, 0, t)))

d(T (γ(1, 0, t)))i
dt

dt

=

∫ 1

0

∂F

∂xi
(T ′−1(T ′(T (γ(1, 0, t)))))

d(T ′−1(T ′(T (γ(1, 0, t)))))i
dt

dt

=

∫ 1

0

∂F

∂xi
(T ′−1(γ(T ′(x), T ′(x′), t)))

d(T ′−1(γ(T ′(x), T ′(x′), t)))i
dt

dt

=

∫ 1

0

∂F

∂xi
(T ′−1(γ(T ′(x), T ′(x′), t)))

dT ′−1
i

dxi
(γ(T ′(x), T ′(x′), t)))

d(γ(T ′(x), T ′(x′), t))i
dt

dt

=

∫ 1

0

∂(F ◦ T ′−1)

∂xi
(γ(T ′(x), T ′(x′), t))

d(γ(T ′(x), T ′(x′), t))i
dt

dt

= Aγi (T ′(x), T ′(x′), F ◦ T ′−1)

(8)

ThusAγ is an attribution method that satisfies dummy, linearity, ASI, and completeness, but is not in the form of an ensemble
of monotone path methods. We now prove that Aγ is not equivalent to a ensemble of monotone path methods. We do this by
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introducing a context where Aγ gives negative attributions, and note that monotone path methods (and thus ensembles of
monotone path methods) cannot give negative attributions in this context.

Let F (x1, x2) = x1x
2
2. We calculate Aγ(1, 0, F ) by calculating the five straight paths that comprise it. We denote the

path P 1 to be the path from (0, 0) → (1, 0), P 2 to be the path from (1, 0) → (1, 1), and so on. By this decomposition,
we have Aγ(1, 0, F ) =

∑5
i=1 IG(P i, F ), where P i indicates the input and baseline of IG in the obvious way. Calculating

IG(P 1, F ),..., A(P 4, F ) is simple if we observe that ∂F
∂xi

= 0 for one variable, which causes that component to be
zero, and then apply completeness. This yields: IG(P 1, F ) = (0, 0), IG(P 2, F ) = (0, 1), IG(P 3, F ) = (−1, 0), and
IG(P 4, F ) = (0, 0).

Because parameterization will not affect the integral, we parameterize P 5(t) = (t, t). Calculating AP
5

(1, 0, F ),

IG1(P 5, F ) =

∫ 1

0

∂F

∂x1

dP 5
1

dt
dt

=

∫ 1

0

t2dt

=
1

3

By completeness we get IG(P 5, F ) = ( 1
3 ,

2
3 ). Thus, Aγ(1, 0, F ) = (− 2

3 ,
5
3 ), and Aγ can give negative values to a non-

decreasing C1 function with baseline 0 and input 1. Because monotone path methods cannot give negative values in this
case, and by extension, ensemble of monotone path methods cannot either, Aγ cannot be represented as an ensemble of
monotone path methods.

We note that many non-monotone, piece-wise smooth paths could suffice for the counterexample. We also note that since
non-monotone path methods satisfy the above axioms, it is an open questions whether other methods that are not an ensemble
of path methods also satisfy the axioms.

We now establish Claim 2 with the additional assumption of NDP for a particular class of functions.
Corollary 1. (Claim 2 with NDP for F1 ∪ F2 Functions) Let x′ be fixed, x ∈ [a, b]. Suppose A ∈ A2 satisfies dummy,
linearity, completeness, ASI, and NDP. 1) If F ∈ F1, A(x, x′, F ) is equivalent to the usual ensemble of path methods.
2) If F ∈ F2, let µx be the measure on Γm(x.x′) from Theorem 2. If A(x, F ) is defined, and for almost every path
γ ∈ Γm(x, x′) (according to µx), ∂D ∩ P γ is a null set, then A(x, F ) is equivalent to the usual ensemble of path methods.

Proof. These are two specific cases of Theorems 2 and 3.

E.2. Counterexample to Sundararajan & Najmi (2020, Thm 4.1) and Proof with NDP

The original statement of Sundararajan & Najmi (2020, Thm 4.1) is as follows:

“(Reducing Model Explanation to Cost-Sharing). Suppose there is an attribution method that satisfies Linearity and ASI.
Then for every attribution problem with explicand x, baseline x′ and function f (satisfying the minor technical condition
that the derivatives are bounded), then there exist two costsharing problems such that the resulting attributions for the
attribution problem are the difference between cost-shares for the cost-sharing problems.”

Sundararajan & Najmi (2020) defines “cost-sharing problems” to be attributions where x′ = 0, x ≥ 0, and F is non-
decreasing in each component. Interprating ”cost-shares”, we look to the referenced work, Friedman & Moulin (1999),
which restricts cost-share solutions to non-negative solutions to cost-sharing problems. A restatement of the theorem is then:
Claim 3. (Sundararajan & Najmi (2020, Proposition 1)) Suppose A is an attribution method that satisfies linearity and ASI.
Then for every attribution problem x, x′, and F with bounded first derivative:

1. There exists z, z̄ ≥ 0, G,H non-decreasing (There are 2 cost-share problems)

2. A(x, x′, F ) = A(z, 0, G)−A(z̄, 0, H) (The original attribution equals the difference
between attributions for the cost-share problems)
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3. A(z, 0, G), A(z̄, 0, H) ≥ 0 (A gives cost-share solutions to the cost-share problems)

Let n = 1, and define the attribution method A by A(x, x′, F ) := F (x′)− F (x). Note that A satisfies linearity since:

A(x, x′, F1 + F2) = F1(x′) + F2(x′)− F1(x)− F2(x) = A(x, x′, F1) +A(x, x′, F2) (9)

A also satisfies ASI since for any linear transformation T we have:

A(T (x), T (x′), F ◦ T−1) = F ◦ T−1(T (x′))− F ◦ T−1(T (x))

= F (x′)− F (x)

= A(x, x′, F )

(10)

Now let x = 1, x′ = 0, F (y) := y. We proceed by contradiction. Suppose there exists z, z̄ ≥ 0, G,H non-decreasing such
thatA(z, 0, G), A(z̄, 0, H) ≥ 0 andA(1, 0, F ) = A(z, 0, G)−A(z̄, 0, H). Now observe thatA(1, 0, F ) = F (0)−F (1) =
−1, which implies A(z̄, 0, H) > 0. However, A(z̄, 0, H) = H(0)−H(z̄) ≤ 0, a contradiction. Thus the theorem does not
hold for A with the stipulated x, x′, F , and is false.

We now establish Claim 3 with the addition of NDP.
Theorem 5. (Claim 3 with NDP) Suppose A is an attribution method that satisfies linearity, ASI, and NDP. Then for every
x, x′, and F with bounded first derivative:

1. There exists z, z̄ ≥ 0, G,H non-decreasing (There are 2 cost-share problems)

2. A(x, x′, F ) = A(z, 0, G)−A(z̄, 0, H) (The original attribution equals the difference
between attributions for the cost-share problems)

3. A(z, 0, G), A(z̄, 0, H) ≥ 0 (A gives cost-share solutions to the cost-share problems)

Proof. We follow the proof from Sundararajan & Najmi (2020, Proposition 1), but employ NDP. Since A satisfies ASI,
there exists an affine transformation T such that A(x, x′, F ) = A(T (x), 0, F ◦ T−1), where T (x) ≥ 0 and F ◦ T−1 has
bounded derivative. Since F ◦ T−1 has a bounded derivative, there exists a c ∈ Rn such that F ◦ T−1 + cT y, cT y are
non-decreasing. By linearity, A(T (x), 0, F ◦ T−1) = A(T (x), 0, F ◦ T−1 + cT y)−A(T (x), 0, cT y). Because A satisfies
NDP, we have A(T (x), 0, F ◦ T−1 + cT y), A(T (x), 0, cT y) ≥ 0.

F. Comment on Conjecture 1
If no qualifications are put on the set of paths that µx is supported on, then A may take on infinite values, contradicting
completeness, or may simply be undefined. Consider the following example. Let n = 2, [a, b] = [0, 1]. Let F (y) = y1y2,
x = (1, 1), x′ = (0, 0). Define the path γn(x, x′, t) to be the path obtained by traveling completely around the boundary of
the domain clockwise n times, then following the straight line from (0, 0) to (1, 1). We define γ−n(x, x′, t) similarly to γn,
but with counterclockwise paths. Aγ

0

(x, x′, F ) = (0.5, 0.5). Aγ
n

(x, x′, F ) = (0.5 + n, 0.5− n), n ∈ Z. Now define the
support of µx(γ) to be {γ(−2)k : k ∈ N}. We then define µx on it’s support to be µx(γ(−2)k) = 1

2k .

A(x, x′, F )

=

∫

γ∈Γ(x,x′)

Aγ(x, x′, F )dµx(γ)

=

∞∑

k=1

(0.5 + (−2)k, 0.5− (−2)k)
1

2k

=

∞∑

k=1

(
0.5

2k
+ (−1)k,

0.5

2k
− (−1)k)
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The above sum is not convergent in either component, so A(x, x′, F ) is not defined.

A similar construction only allowing clockwise paths may yield A(x, x′, F ) = (∞,−∞), contradicting completeness.

G. Proof of Theorem 2
Proof. We begin by supposing the assumptions. Let x′ be fixed, F1 and A1 be as stipulated, and A ∈ A1. We introduce the
notation A1(c, d), c, d ∈ Rn, to be defined as the set A1, but with specified region [c, d] instead of [a, b]. The set F1(c, d) is
defined likewise.

2) → 1): Suppose A is an ensemble of monotone path methods as in the theorem statement. It is trivial to show that A
satisfies linearity, completeness, and sensitivity(b). Suppose F is non-decreasing from x′ to some x. Then for any monotone
path γ from x′ to x, Aγ(x, x′, F ) ≥ 0. Thus A(x, x′, F ) ≥ 0, and A satisfies NDP.

1)→ 2): Let A satisfy completeness, linearity, sensitivity(b), and NDP. Let F ∈ F1(a, b) and x ∈ [a, b]. WLOG, we may
assume that F (x′) = 0, since if not, consider G(y) := F (y)− F (x′) and apply Lemma 1.

Our strategy will be to first define a transform such that A can be represented as a baseline attribution with baseline 0. Define
T : Rn → Rn as Ti(y) = (yi − x′i) × (−1)

1x′
i
>xi . One can think of T as a transform from the baseline x′ space to the

baseline 0 space. T transforms [a, b], by shifting and reflections about axes, into some other rectangular prism [c, d], for
some c, d ∈ Rn. More importantly, T transforms x′ to 0 and x to |x− x′|. Specifically, we get T ([x, x′]) = [|x− x′|, 0],
with T (x′) = 0 and T (x) = |x− x′|. Note further that T transforms the set of monotone paths from x′ to x into the set of
monotone paths from 0 to |x− x′|, or T (Γm(x, x′)) = Γm(|x− x′|, 0). T is one-to-one and has a well defined inverse over
Rn. So one can think of T−1 as a transform from the baseline 0 space to the baseline x′ space.

For y, y′ ∈ [c, d], G ∈ F1(c, d), define A′ ∈ A1(c, d) by A′(y, y′, G) := A(T−1(y), T−1(y′), G ◦ T ). Essentially A′ is a
reformulation of A in the baseline 0 space. By definition, A(x, x′, F ) = A′(|x−x′|, 0, F ◦T−1). A′ satisfies completeness,
linearity, sensitivity(b), and NDP.

Note that to apply Theorem 1, we must restrict the domain of A′ to not include inputs with negative components. If we
restrict the domain of A′, it is not clear that this attribution will behave the same. It seems possible that the attribution
A′(x, x′, F ) depends on the behavior of F in the domain we want to remove. If this were the case, issues could arise, such
as the restricted A′ not being equivalent to the unrestricted A′. To address this issue, we turn to the development of an
important lemma.

Lemma 3. If A ∈ A1 satisfies completeness, linearity, sensitivity(b), and NDP, then A(x, x′, F ) is determined by x, x′ and
the behavior of F inside [x, x′].

Proof. Suppose G,H ∈ F1 have the same behavior in [a, b]. So for y ∈ [a, b], G(y) − H(y) = 0 = H(y) − G(y).
Thus both are non-decreasing from x′ to x. Because A satisfies NDP, A(x, x′, H − G) ≥ 0, and A(x, x′, G − H) =
−A(x, x′, H −G) ≥ 0. Thus 0 = A(x, x′, G)−A(x, x′, H), and A(x, x′, G) = A(x, x′, H).

Now we define a BAM to apply Theorem 1 on. DefineA′′ : [T (x), 0]×F0(T (x), 0)→ R as such: A′′(y,G) := A′(y, 0, H),
where H ∈ F1[c, d] is any function such that H = G when restricted to [T (x), 0]. A′′ is a properly defined BAM by
Lemma 3. Note that for G ∈ F1 with G(0) = 0, G non decreasing, and y ∈ [T (x), 0], we may go backwards and say
A′(y, 0, G) = A′′(y,G). Furthermore, A′′ satisfies completeness, linearity, sensitivity(b), and NDP.

Write F 0 = F ◦ T−1. F 0 is a C1 function defined on a compact domain, so∇F 0 is bounded. So there exists c ∈ Rn such
that∇(F 0(y) + cT y) = ∇F 0 + c ≥ 0 on the compact domain. This implies that F 0(y) + cT y is non-decreasing, C1, with
F 0(0) = 0. So F 0(y) + cT y ∈ A0. Employing Theorem 1, there exists a measure µ such that:
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Ai(x, x
′, F (y) + cTT (y))

=A′i(T (x), 0, F 0(y) + cT y)

=A′′i (T (x), F 0(y) + cT y)

=

∫

γ∈Γm(T (x),0)

Aγi (T (x), 0, F 0(y) + cT y)× dµ(γ)

Inspecting the interior term, we find that for γ a monotone path from 0 to T (x),

Aγi (T (x), 0, F 0(y) + cT y)

=

∫ 1

0

[
∂F 0

∂γi
+ ci]

dγi
dt
dt

=

∫ 1

0

∂F ◦ T−1

∂γi
× dγi

dt
dt+

∫ 1

0

ci
dγi
dt
dt

=

∫ 1

0

∂F

∂(T−1 ◦ γ)i
(T−1(γ(t))× ∂T−1

i

∂γi
(γ(t))× dγi

dt
dt+ ci(Ti(x)− Ti(x′))

=

∫ 1

0

∂F

∂(T−1 ◦ γ)i
(T−1(γ(t)))× ∂(T−1 ◦ γ)i

∂t
dt+ ciTi(x)

=A
(T−1◦γ)
i (x, x′, F ) + ciTi(x)

Set µ′(γ) := µ(T (γ)) so that µ′ is a measure on the monotone paths from x′ to x. Combining previous results, we have,

Ai(x, x
′, F (y)) +Ai(x, x

′, cTT (y))

=Ai(x, x
′, F (y) + cTT (y))

=

∫

γ∈Γm(T (x),0)

Aγi (T (x), 0, F 0(y) + cT y)× dµ(γ)

=

∫

γ∈Γm(T (x),0)

[A
(T−1◦γ)
i (x, x′, F ) + ciTi(x)]× dµ(γ)

=

∫

γ∈Γm(T (x),0)

A
(T−1◦γ)
i (x, x′, F )× dµ(γ) + ciTi(x)

=

∫

γ∈Γm(x,x′)

Aγi (x, x′, F )× dµ(T (γ)) + ciTi(x)

=

∫

γ∈Γm(x,x′)

Aγi (x, x′, F )× dµ′(γ) + ciTi(x)

From a previous result, Ai(x, x′, G) is a function only of x, x′ and ∂G
∂xi

. So Ai(x, x′, cTT (y)) = Ai(x, x
′, ciTi(y)). By

sensitivity(b), Aj(x, x′, ciTi(y)) = 0 for j 6= i. So by completeness, Ai(x, x′, ciTi(y)) = ciTi(x)− ciTi(x′) = ciTi(x).
Subtracting the term from both sides of the above equation yields:

Ai(x, x
′, F (y)) =

∫

γ∈Γm(x,x′)

Aγi (x, x′, F )× dµ′(γ)

Note that A′′ is determined by A and choice of x and x′, since T is determined by x, x′. Note further that A′′ and T
determines µ′. So for any F ∈ F1 and fixed x′, we can index on x to get µ′x, a probability measure on Γ(x, x′). Thus for a
fixed x′, F ∈ F1, we have:
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Ai(x, x
′, F ) =

∫

γ∈Γm(x,x′)

Aγi (x, x′, F )dµ′x(γ)

H. Proof of Lemma 2
Proof. Proceed by induction. Let F : Rn → R be a one-layer feed forward neural network with F ∈ F2. If the layer is
an analytic function, then F is analytic since the composition of analytic functions is analytic. Precisely, F is analytic in
the interior of [x, x′], which has a boundary of measure 0. If the layer is a max function, then F is analytic except on the
boundary of [x, x′] and potentially some hyper-plane, which is a null set. In either case, the result is obtained.

Now suppose that F : Rn → Rm is a k-layer feed forward neural network with Fi ∈ F2 for each i. Further suppose [x, x′]
can be partitioned into and open set Di and ∂Di, where each output Fi is analytic on Di and ∂Di a null set. If H : Rm → R
is an analytic function, then H ◦ F is analytic on D = ∩ni=1Di, ∂D = ∪ni=1∂Di is a null set, and D ∪ ∂D is a null set.

Now suppose instead that H is a max function. Since the max of more than two functions is the composition of the two-input
max function, we will only consider the two-input max. Let H be the max function of the ith and jth components, so
that H ◦ F = max(Fi, Fj). First, we inspect points in Di ∩Dj . Let y ∈ Di ∩Dj , and consider three disjoint cases: 1)
if Fi(y) − Fj(y) 6= 0, then by continuity of F , Fi − Fj 6= 0 in some ball centered around y. This implies that either
H ◦ F ≡ Fi or H ◦ F ≡ Fj in some ball around y. Thus H ◦ F is analytic at y. Note the set of case 1 points form an
open set. Denote the set of case one points D1. 2) If Fi(y) = Fj(y), and Fi = Fj for some ball centered around y, then
H = Fi = Fj in that ball, and H ◦ F is analytic at y. Note the set of case 2 points form an open set. Denote the set of case
2 points D2. 3) We denote the set of all other points in Di ∩Dj by D3. For y ∈ D3, Fi(y) = Fj(y), but Fi 6= Fj for some
point in every open ball centered at y. Set D = D1 ∪D2, and note that D is open, H ◦ F is analytic in D.

Since Di ∩ Dj is an open set, there exists a countable sequence of open balls, {Bi}, such that Di ∩ Dj = ∪∞i=1Bi.
For any Bi, set B1

i := Bi ∩ D1, B2
i := Bi ∩ D2, and B3

i := Bi ∩ D3. Let G(y) = Fi(y) − Fj(y), and note that
since Fi, Fj are analytic on Bi, G is analytic on Bi also. Note that for any y ∈ B3

i , G(y) = 0. If m(B3
i ) > 0, then,

m({y ∈ Bi|G(y) = 0}) > 0, and since G is analytic, G ≡ 0 on Bi. This is a contradiction, since this implies Bi = B2
i and

m(B3
i ) = 0. Thus m(B3

i ) = 0, and D3 = ∪B3
i is a null set.

D1, D2, D3, and ∂Di ∪ ∂Dj partition [x, x′], a closed and bounded set. D = D1 ∪D2 is an open set in the interior of
[x, x′] and ∂Di ∪ ∂Dj ∪D3 is null and thus has no interior. Thus ∂D = ∂Di ∪ ∂Dj ∪D3, a null set.

Since D3 points are boundary points of D1, we have that ∂Di, ∂Dj , and D3 are all boundary points of D. Since D1, D2,
D3, and ∂Di ∪ ∂Dj partition [x, x′], and D is an open set in the interior of [x, x′], we have ∂D = D3 ∪ ∂Di ∪ ∂Dj , a null
set.

I. Proof of Theorem 3
Proof. Suppose the suppositions of the theorem. We may assume that x′ = 0, x ≥ 0, for otherwise we may use the
transformation technique applied in theorem 2. Further suppose x 6= x′, for otherwise the result is trivial. Denote the open
region where F is C1 by D. Note that since each layer of F is a Lipschitz function, F is Lipschitz.

We now turn to a useful lemma, but before we do, we give the following definitions. For a given i, y ∈ [x, x′], we define a
function that travels from one side of the rectangle [x, x′], through y, and to the other side, while varying only in the ith

component. Formally, define `(y,i)(t) with 0 ≤ t ≤ |xi−x′i| as such: `(y,i)i (t) = x′i + sign(xi−x′i)t, and `(y,i)j (t) = yj for
j 6= i. We say that F is non-decreasing from x′ to x in it’s ith component if, for all y ∈ [x, x′], F ◦ `(y,i) is non-decreasing
in t.

Lemma 4. Let A satisfy linearity, completeness, sensitivity(b), and NDP. Suppose F ∈ F is Lipschitz continuous and
non-decreasing from x′ to x in its ith component. Then Ai(x, x′, F ) ≥ 0.

Proof. Since F is Lipschitz, there exists c with ci = 0 such that for each j, F + cT y is non-decreasing from x′ to x in
the jth component. Set G(y) = F (y) + cT y. For any monotone path γ from x′ to x, if t ≤ t′ then G ◦ γ(t) ≤ G ◦ γ(t′),
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implying G is non-decreasing from x′ to x. Note that ∂i(F − G) = −∂i(cT y) = 0. Thus, by Dummy, Ai(x, x′, F ) =
Ai(x, x

′, F −G) +Ai(x, x
′, G) = Ai(x, x

′, G) ≥ 0.

Our goal now is to construct a sequence of C1 functions {Fm} such that limm→∞Ai(x, x
′, Fm) = Ai(x, x

′, F ). Fix i and
define f = ∂F

∂xi
for x ∈ D. For x ∈ ∂D, define f(x) = −L, where L is the Lipschitz constant of F . f is continuous in D

and minimized on ∂D, thus f is lower semi-continuous. By Baire’s Theorem, there exists a monotone increasing sequence
of continuous functions, {gm}, such that gm → f point-wise. Because f is bounded, it is possible to construct this sequence
as being bounded below. By the Stone-Weierstrass Theorem, for each gm there exists ξm such that ξm is a polynomial in
Rn and |gm − ξm| < 1

m . Define a sequence {fm} with fm = ξm − 1
m . Thus for the sequence {fm} we have:

• fm is C1 (C∞ in fact).

• fm = ξm − 1
m < gm ≤ f .

• lim fm = f . Furthermore, for x ∈ D, lim fm = ∂F
∂xi

.

• There exists k such that ||fm|| ≤ k for all m.

That is, {fm} is a sequence of bounded C1 under-approximations of ∂F
∂xi

with a limit of ∂F
∂xi

.

Define Fm(y) :=
∫ yi

0
fm(y−i, t)dt, so that ∂Fm

∂xi
= fm. For y ∈ [0, x], consider `(y,i). Since `(y,i) is a straight line

path that varies only in the ith component and has a velocity of 1, d(Fm◦`(y,i))
dt is analogous to the partial derivative of

Fm with respect to i. Specifically, d(Fm◦`(y,i))
dt = (fm ◦ `(y,i))sign(xi − x′i) = fm ◦ `(y,i). Similarly, on D we have

d(F◦`(y,i))
dt = (f ◦ `(y,i))sign(xi − x′i) = f ◦ `(y,i).

Now, when `(y,i) is on the region D we have,

d(F ◦ `(y,i))
dt

=
∂F

∂xi
◦ `(y,i) = f ◦ `(y,i) > fm ◦ `(y,i) =

d(Fm ◦ `(y,i))
dt

where the inequality is gained because `(y,i) is a strictly increasing function in this case, and f > fm by construction.

Note F ◦ `(y,i) is Lipschitz with Lipschitz constant L. If d(F◦`(y,i))
dt exists on ∂D, then when `(y,i) is on the region ∂D we

have

d(F ◦ `(y,i))
dt

≥ −L = f ◦ `(y,i) > fm ◦ `(y,i) =
d(Fm ◦ `(y,i))

dt

This implies d(F◦`(y,i))
dt − d(Fm◦`(y,i))

dt is non-negative where it exists.

Finally, F ◦ `(y,i) is Lipschitz, so it’s derivative exists almost everywhere, and
∫ α

0
d(F◦`(y,i))

dt = F ◦ `(y,i)(α)−F ◦ `(y,i)(0).
From this, we gain

∫ α

0

d(F ◦ `(y,i))
dt

− d(Fm ◦ `(y,i))
dt

dt = F ◦ `(y,i)(α)− Fm ◦ `(y,i)(α) + F ◦ `(y,i)(0)− Fm ◦ `(y,i)(0)

The above is the integral of a non-negative function, and is thus non-decreasing in α. This implies that F − Fm is non-
decreasing from 0 to x in the ith component. So Ai(x, x′, F − Fm) ≥ 0 and Ai(x, x′, F ) ≥ Ai(x, x

′, Fm). Employing
Theorem 2, we have
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Ai(x, x
′, F )

≥ lim
m→∞

Ai(x, Fm)

= lim
m→∞

∫

γ∈Γm(x)

Aγi (x, Fm)dµx(γ)

= lim
m→∞

∫

γ∈Γm(x)

∫ 1

0

fm
∂γi
∂t

dtdµx(γ)

=

∫

γ∈Γm(x)

∫ 1

0

lim
m→∞

fm
∂γi
∂t

dtdµx(γ)

=

∫

γ∈Γm(x)

∫ 1

0

∂F

∂γi

∂γi
∂t

dtdµx(γ)

We move the limit inside the integral by the dominated convergence theorem. We can move the limit inside the interior
integral because fm is bounded, ∂γi∂t is bounded using the constant velocity path parameterization, and the interior terms
have a point-wise limit of ∂F

∂γi

∂γi
∂t almost everywhere for almost every γ. To move the limit into the first integral, note

that for particular values of ci we can employ Lemma 3 to bound Aγi (x, Fm + ciyi) = Aγi (x, Fm) + cixi above or below
zero. Thus Aγi (x, Fm) has an upper and a lower bound. Using an over-approximating sequence for {fm} instead of an
under-approximating sequence yields the same inequality in reverse, gaining our result.

J. Proof of Theorem 4
First, we begin the case were IG may fail to be Lipschitz. Consider F (y1, y2) = max(y2 − y1, y1 − y2). Let ε > 0. Set
x′ = (0, 0) and consider x = (1, 1 + ε

2 ), x̄ = (1, 1− ε
2 ). Let γ, γ̄ be the IG paths corresponding to x, x̄, respectively.

First, note that ||x − x̄|| = ε. We find that ∂F
∂y1

= 1 if y1 > y2, and ∂F
∂y1

= −1 if y1 < y2. So IG1(x, x′, F ) =

(x1 − x′1)
∫ 1

0
(−1)dt = 1, while IG1(x̄, x′, F ) = −1. So |IG1(x, x′, F )− IG1(x̄, x′, F )| = 2 for ε > 0. Thus IG(x, x′, F )

is not Lipschitz continuous in x.

Now we present the proof of the second claim:

Proof. Fix x′ and let F be such that∇F is Lipschitz continuous with constant L. Since∇F is continuous on a bounded
domain, | ∂F∂xi

| attains a maximum on [a, b], call it M . Choose any x, x̄ ∈ [a, b]. We will denote the uniform-velocity paths
for x, x̄ by γ, γ̄, respectively. Then,
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|IGi(x, x′, F )− IGi(x̄, x′, F )|

=|(xi − x′i)
∫ 1

0

∂F

∂xi
(γ(t))dt− (x̄i − x′i)

∫ 1

0

∂F

∂xi
(γ̄(t))dt|

=|(xi − x̄i)
∫ 1

0

∂F

∂xi
(γ(t))dt− (x̄i − x′i)

∫ 1

0

[
∂F

∂xi
(γ̄(t))− ∂F

∂xi
(γ(t))]dt|

≤|xi − x̄i|
∫ 1

0

| ∂F
∂xi

(γ(t))|dt+ |x̄i − x′i|
∫ 1

0

| ∂F
∂xi

(γ̄(t))− ∂F

∂xi
(γ(t))|dt

≤||x− x̄||M + |bi − ai|
∫ 1

0

L||γ(t)− γ̄(t)||dt

=||x− x̄||M + |bi − ai|L
∫ 1

0

||(x− x̄)t||dt

=(M +
|bi − ai|

2
L)||x− x̄||

Thus IGi(x, x′, F ) is Lipschitz continuous with Lipschitz constant at most M + |bi−ai|
2 L.

K. Distributional IG Satisfies Distributional Attribution Axioms
Here we provide proofs that distributional IG satisfies given axioms.

Sensitivity(a). Suppose X ′ varies in exactly one input, X ′i , so that X ′j = xj for all j 6= i, and EF (X ′) 6= F (x). Then

EGi(x,X ′, F ) = EIGi(x,X ′, F )

= E(F (x)− F (X ′))

= F (x)− EF (X ′) 6= 0

The second line is gained because IG satisfies completeness and xj = Xj causes IGj(x,X ′, F ) = 0 for j 6= i.

Completeness.

n∑

i=1

EG(x,X ′, F ) =

n∑

i=1

EIG(x,X ′, F )

= E
n∑

i=1

IG(x,X ′, F )

= EF (x)− F (X ′) (IG satisfies completeness.)
= F (x)− EF (X ′)

Symmetry Preserving. Suppose that for all x, F (x) = F (x∗), X ′i and X ′j are exchangeable, and xi = xj . Let 1k represent
a vector with every component 0 except the kth component, which is 1. First observe:

∂F

∂xi
(x) = lim

t→0

F (x+ 1it)− F (x)

t

= lim
t→0

F (x∗ + 1jt)− F (x∗)
t

=
∂F

∂xj
(x∗)
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From this, we have

EGi(x,X ′, F ) = EX′∼D(xi −X ′i)
∫ 1

0

∂F

∂xi
(X ′ + (x−X ′)t)dt

= EX′∼D(xi −X ′i)
∫ 1

0

∂F

∂xj
((X ′ + (x−X ′)t)∗)dt

= EX′∼D(x∗j −X ′∗j )

∫ 1

0

∂F

∂xj
(X ′∗ + (x∗ −X ′∗)t)dt (xi = x∗j )

= EX′∗∼D(x∗j −X ′∗j )

∫ 1

0

∂F

∂xj
(X ′∗ + (x∗ −X ′∗)t)dt (X ′∗ ∼ D ⇐⇒ X ′ ∼ D)

= EGj(x∗, X ′∗, F )

= EGj(x,X ′, F ) (x = x∗;X ′, X ′∗ ∼ D)

NDP. Suppose F is non-decreasing from every point on the support of D to x. Then for any x′ on the support of X ′,
IG(x, x′, F ) ≥ 0. Thus, for any i

EGi(x,X ′, F ) = EIGi(x,X ′, F ) ≥ 0

L. Additional Experiments from Section 7
L.1. Further ImageNet Results

To further explore the pruning based on internal neuron attributions for image patches. We pick an often referenced image
for IG, a fireboat, and repeat the experiments in Section 7.2. The results are shown in Figures 6 and 7.

Figure 6. From left to right are images A,B,C,and D. A: The original image and bounding box indicating specified image patch. B: IG
attributes visualized. Green dots show positive IG, red dots show negative IG. C: IG attributes visualized after top 1% of neurons pruned
based on image-patch attributions. D: IG attributes visualized after top 1% neurons pruned based on the global ranking.

Figure 6 shows that pruning 1% of the neurons based on targeted-pruning results in some scattering of activity, but the IG’s
focus on the leftmost water jets is still present. On the contrary, when pruned by global ranking, the IG is broadly scattered,
and the focus on the leftmost water jest is diminished.
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Figure 7. Sum of IG attributes inside and outside the bounding box when neurons are pruned according to certain rankings. Left: Neurons
are pruned based on IG global ranking. Right: Neurons are pruned based on the IG ranking inside the bounding box.

Figure 7 reinforces the observations we have in Figure 4. We see that pruning by IG rankings inside the bounding box make
the IG sum inside the box more negative and outside the box more positive compared to the pruning by global ranking. The
observation again supports that image-patch based ranking gives higher ranks to the neurons that are responsible for positive
IG inside the box.

L.2. Fashion MNIST Results

Here we present experiments on internal neuron attributions with a custom model trained on the Fashion MNIST data set.
Information about the model can be found in the Appendix M.

In this experiment we identify a sub-feature common to each image in the category Sneaker: the heel. We stipulate a
bounding box for the heel, seen in Figure 8. For each Sneaker image we calculate image-patch attributions for neurons in
the second to last dense layer. To calculate the each neuron’s rank, we average it’s attributions over all Sneaker images. We
then progressively prune based on rankings while noting the IG sums inside and outside the bounding box.

Figure 8. Left: IG attributes with respect to the sneaker images. Green dots show positive IG attributes and red dots show negative IG
attributes. Bounding boxes are shown in yellow. Right: Recomputed IG attributes with respect to the sneaker images after internal neurons
are pruned.

Figure 9. Summation of the recomputed IG attributes inside the bounding box, outside the bounding box and both. Summations are
averaged over 64 samples chosen from testing set. Left: Pruning by the IG ranking in descending order. Middle: Pruning by the IG
ranking in ascending order. Right: Randomly pruning.
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When we prune in descending order, the average IG sum inside the box initially drops while the sum outside the box
increases. A gap between the IG sums widens, and is sustained through the pruning process. This shows that the pruning
targeted neurons that contributed to positive IG values in the box. Thus the regional IG accurately identified neurons
postively associated with the heel region.

M. Model Architecture and Training Parameters
Table 1 presents the architecture of the model used in the MNIST experiments.

Layer Type Shape

Convolution + tanh 5× 5× 5
Max Pooling 2× 2
Convolution + tanh 5× 5× 10
Max Pooling 2× 2
Fully Connected + tanh 160
Fully Connected + tanh 64
Softmax 10

Table 1. Model Architecture for the Fashion MNIST dataset


