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Abstract
Bayesian additive regression trees (BART; Chip-
man et al., 2010) have gained great popularity
as a flexible nonparametric function estimation
and modeling tool. Nearly all existing BART
models rely on decision tree weak learners with
axis-parallel univariate split rules to partition the
Euclidean feature space into rectangular regions.
In practice, however, many regression problems
involve features with multivariate structures (e.g.,
spatial locations) possibly lying in a manifold,
where rectangular partitions may fail to respect
irregular intrinsic geometry and boundary con-
straints of the structured feature space. In this pa-
per, we develop a new class of Bayesian additive
multivariate decision tree models that combine
univariate split rules for handling possibly high
dimensional features without known multivariate
structures and novel multivariate split rules for
features with multivariate structures in each weak
learner. The proposed multivariate split rules are
built upon stochastic predictive spanning tree bi-
partition models on reference knots, which are ca-
pable of achieving highly flexible nonlinear deci-
sion boundaries on manifold feature spaces while
enabling efficient dimension reduction computa-
tions. We demonstrate the superior performance
of the proposed method using simulation data and
a Sacramento housing price data set.

1. Introduction
In this paper, we focus on a nonparametric regression prob-
lem with response Y ∈ R (e.g., housing price) and a number
of features. We consider features s ∈M with known multi-
variate structures, whereM may be a known d-dimensional
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connected compact Riemannian manifold embedded in a Eu-
clidean space. For instance, s may represent the coordinates
of a location in a spatial domain with a boundary constraint.
In addition to s, we also consider features x ∈ X ⊆ Rp
either without multivariate structures or with unknown mul-
tivariate structures (e.g., square footage and housing age).
To be more precise, we model Y as

Y = f(s,x) + ε, ε
iid∼ N(0, σ2), (1)

where f : D → R is an unknown function defined on the
joint input feature spaceD ⊆M×X , and σ2 is an unknown
noise variance. Throughout the paper, we will refer to s
as structured features, x as unstructured features, and the
regression setting in (1) as semi-structured regression.

Semi-structured regression problems are increasingly com-
mon in many applications. Examples include spatial regres-
sions and image analysis on complex constrained domains
with non-trivial geometries, such as cities with irregular
boundaries or interior holes (e.g., lakes and parks), road
networks, and brain cortical surfaces, as well as predic-
tion problems on graphs/networks using both graph/network
topology and node attributes as predictors. The general
model formulation in (1) encompasses many classes of mod-
els as special specifications of f(s,x). Below, we focus
on reviewing semi-parametric or nonparametric methods
due to their flexibility in function estimation compared to
parametric methods.

Related work. Spline smoothings and Gaussian process
(GP) regressions are popular choices for nonparametric
semi-structured regression problems, and there have been
some recent extensions of these methods for data on com-
plex domains (Wood et al., 2008; Scott-Hayward et al.,
2014; Niu et al., 2019; Borovitskiy et al., 2020; Dunson
et al., 2022). However, these methods often assume glob-
ally smooth true functions and thus may not fully adapt
to functions with local discontinuities. And the effects of
structured features and other unstructured features are usu-
ally modeled separately. For example, conventional spatial
GP regressions (Gelfand et al., 2010) often assume an addi-
tive form, f(s,x) = f(x) + f(s), where f(x) is modeled
by a parametric function such as a linear regression and
f(s) is a spatial random effect modeled by a GP. However,
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parametric models for f(x) may suffer the risk of being mis-
specified, and more flexible nonparametric models for f(x)
have been introduced such as spatial generalized additive
models in Nandy et al. (2017) and spatial random forest in
Saha et al. (2021). Nonetheless, the additive form of f(s,x)
in these methods could not capture the potential interactions
between the effects of s and x.

Alternatively, ensemble and boosting tree methods such
as random forest (Breiman, 2001) and XGBoost (Chen &
Guestrin, 2016) have gained great success in nonparamet-
ric prediction tasks, owing to their ability to capture both
smooth and discontinuous patterns with strong local adaptiv-
ity for function estimations. In particular, Bayesian additive
regression trees (BART; Chipman et al., 2010) and their
variants (see, e.g., Tan & Roy, 2019; He et al., 2019) offer
a flexible Bayesian treatment of boosting to probabilisti-
cally model and estimate (latent) nonparametric functions
in various modeling contexts, while producing uncertainty
measures. These models are also appealing for handling a
relatively large number of unstructured features; the deci-
sion tree weak learner often assumes a simple axis-parallel
split rule based on a univariate feature at each decision node,
allowing the method to more conveniently adapt to the in-
creasing dimension of features. Nevertheless, the simple
axis-parallel univariate split rule comes with a cost: the
feature space can only be partitioned into (hyper) rectan-
gular shapes which may not comply with irregular domain
constraints and function discontinuity boundaries in the
multivariate structured feature space. This limitation has
motivated some attempts to relax the axis-parallel decision
boundary assumption by considering more flexible deci-
sion split rules based on multivariate features (for review,
see, e.g., Cañete-Sifuentes et al., 2021; Fan et al., 2021).
However, these attempts often make stringent parametric
assumptions such as linear or quadratic split rules (Yıldız,
2011; Blaser & Fryzlewicz, 2016), and their estimation
procedures are usually not likelihood-based and hence are
lacking uncertainty measures.

Most recently, Luo et al. (2021a) proposed a Bayesian addi-
tive model built upon random spanning tree partitions for
each weak learner. However, the method is applicable to the
case with structured features only. It is not straightforward
to extend the method in Luo et al. (2021a) to semi-structured
regression problems with additional unstructured features
since their partition model is not explicitly formulated as
decision trees. Moreover, their model is defined only for
a finite number of observations. Therefore, although func-
tion estimation can be done following Bayesian inference,
the out-of-sample prediction of their method is based on a
two-step soft nearest neighbor approach due to the lack of a
coherent Bayesian model defined on the whole manifold.

Our contributions. In light of these limitations in the cur-

rent literature, we propose a new Bayesian nonparametric
prior for the unknown function f in the context of semi-
structured regression, which is built upon an ensemble of
novel semi-multivariate decision trees (sMDTs). Specifi-
cally, our decision tree recursively splits data into tree nodes
starting from a root node. We model each node split rule
by a mixture model between a multivariate split based on
the structured feature, s, and a univariate split based on
one unstructured feature of x. This allows us to combine
their merits for capturing the complex effects of s and han-
dling possibly high dimensional x, and more importantly,
to model the interactions between s and x. The multivariate
split rules are built upon a novel bipartition model via pre-
dictive spanning trees. It differs from those of existing MDT
methods in that: 1) it allows highly flexible decision bound-
ary shapes while fully respecting the intrinsic geometry of
the structured feature space; 2) it is built on any arbitrary
subset of the manifold so that both parameter estimation and
prediction can be performed under a unified framework; 3)
the predictive spanning tree can be constructed on a reduced
dimensional reference knot set that is allowed to vary across
weak learners, which can be viewed as a multivariate ex-
tension of the binning ideas used in boosting methods such
as lightGBM (Ke et al., 2017) for reduced computations.
An implementation of the proposed model is available at
https://github.com/ztluostat/BAMDT.

2. Bayesian Semi-Structured Regression with
Additive Semi-Multivariate Decision Trees

2.1. Semi-Multivariate Decision Trees

In this subsection, we develop a novel semi-MDT model
(sMDT), that involves both multivariate splits for structured
features and univariate splits for unstructured features. An
sMDT recursively divides the joint input spaceD ⊆M×X
into subsets represented by tree nodes. Note that D may
not equal to the product space ofM and X , because x and
s may not be independent. For a generic set A, we use
π2(A) = {A1,A2} to denote a bipartition of A that satis-
fies ∅ $ A1 $ A andA2 = A\A1. Let η be a non-terminal
node in an sMDT and η1 and η2 be its two offspring nodes.
In an sMDT, η either performs a multivariate split using
all structured features, or a univariate split using one of
the unstructured features, to divide the associated subset
Dη ⊆ D into π2(Dη) = {Dη,1,Dη,2} corresponding to η1
and η2, respectively. We remark that interaction effects be-
tween structured and unstructured features can be naturally
captured when the hierarchical splitting of sMDTs involves
both s and x.

Multivariate splits using structured features. A multi-
variate split divides Dη by bipartitioningMη, the projec-
tion of Dη ontoM. For a givenMη, we utilize a tailored
spanning tree based method to be described in Section 2.2

https://github.com/ztluostat/BAMDT
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Figure 1. (a, c) Two sMDTs with an input domain D ⊆ M× R,
whereM is a two-dimensional U-shape domain. (b, d) Partitions
of D projected ontoM corresponding to the sMDTs in (a) and (c).
The spanning tree edges removed in multivariate splits are marked
in white. sh and sv refer to the horizontal and vertical coordinates
of s, respectively.

to splitMη into π2(Mη) = {Mη,1,Mη,2}, in a way that
the intrinsic geometry ofMη is fully respected. We then
set Dη,k = Dη ∩ (Mη,k ×X ) for k = 1, 2.

Univariate splits using unstructured features. In a uni-
variate split, Dη is divided into

Dη,1 = {(x, s) ∈ Dη : xj(η) ≤ cη} (2)
Dη,2 = Dη \ Dη,1, (3)

where xj(η) is the jth coordinate of x selected at node η,
and cη is a node-specific cutoff.

Figure 1 shows two examples of sMDTs and theMη corre-
sponding to their nodes. Note that the univariate splits may
create disconnectedMη .

2.2. Multivariate Splits via Predictive Spanning Tree
Bipartitions

Recall that at a node η of an sMDT, a multivariate split rule
requires a bipartition of a possibly disconnectedMη . Below,
we consider how to induce π2(Mη) from a bipartition of a
finite set of reference knots. Let S∗ = {s∗1, . . . , s∗t } ⊆ M
be a finite set of reference knots on M which may or
may not coincide with the observed structured features.
Typical choices of S∗ include grid points covering M
or a random subset of the observed values of s. Let
dg(s,B) := inft∈B dg(s, t) be the distance between s and a

non-empty subset B ofM, where dg is a geodesic distance
metric for the manifold M. Given a node-specific bipar-
tition πη2 (S∗) = {S∗,η1 ,S∗,η2 }, π2(Mη) = {Mη,1,Mη,2}
can be obtained by setting:

Mη,1 = {s ∈Mη : dg(s,S∗,η1 ) ≤ dg(s,S∗,η2 )}, (4)
Mη,2 =Mη \Mη,1. (5)

We now construct the bipartition model of S∗ at node η with
two considerations in mind. First, since similar structured
features tend to have similar effects on Y , it is desired
to guarantee local contiguity of πη2 (S∗), in the sense that
each local cluster in S∗,ηk only contains knots that are close
to each other with respect to distance dg. Second, πη2 (S∗)
needs to be a valid partition in a way that there is at least one
observation (s,x) ∈ Dη whose s belongs to the resulting
Mη,k for both k = 1, 2.

Spanning tree partition models have recently been proposed
as an effective tool to model contiguous partitions of graphs
(Li & Sang, 2019; Teixeira et al., 2019; Luo et al., 2021b;
Lee et al., 2021). They simplify the complicated combinato-
rial problem of graph partitions by representing partitions
as connected components induced by pruning an edge from
a spanning tree of the graph. However, there exist some ma-
jor challenges that prevent us from directly applying these
methods to model the bipartition of S∗. Specifically, there
may exist many knots with no nearby observations whose
unstructured features are inMη. As a result, removing an
arbitrary edge from the spanning tree graph on S∗η does not
necessarily lead to a valid πη2 (S∗). In addition, one also
needs to take into account the fact thatMη varies with η and
can be disconnected due to possible interactions between
multivariate splits and univariate splits.

In this paper, we propose a new spanning tree based bi-
partition model for πη2 (S∗) to overcome these challenges.
Specifically, let G∗T = (S∗, E∗) be an undirected spanning
tree graph on the reference knots set S∗ with edges E∗,
where each knot is only connected to its near neighbors
with respect to dg so that it represents the topology of the
structured feature space. For instance, G∗T can be specified
as the minimum spanning tree (MST) of a graph G∗ on S∗
using edge lengths under dg as edge weights. Following
Luo et al. (2021a), G∗ can be constructed using constrained
Delaunay triangulations (CDTs; Lee & Schachter, 1980) for
constrained domains in R2 or K nearest neighbor (K-NN)
graphs with respect to distance dg for general manifolds.
See Appendix A for more discussion on constructing G∗ in
practice.

At each decision node η, instead of arbitrarily removing
an edge from E∗, we first identify a subset of knots, de-
noted by S∗η ⊆ S∗, that contains the union of the nearest
reference knot of each s ∈ Mη under dg such that (s,x)
is an observation in Dη for some x. We then consider a
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Figure 2. (a) A spanning tree graph G∗T on reference knots S∗ and
a colored subset Mη of a U-shape domain. The subset S∗

η is
marked by blue points. A bipartition πη2 (S∗) after the blue edge
is removed from G∗T is shown by different point shapes, and the
induced multivariate split π2(Mη) is marked by different colors.
(b) A univariate decision tree partition that approximates π2(Mη),
where blue lines represent decision boundaries.

path in G∗T connecting two distinct knots s∗ and t∗ in S∗η ,
which is unique as G∗T is a spanning tree. By removing
an edge e∗ in the path from G∗T , we obtain two connected
components from the resulting two subgraphs of G∗T , which
naturally defines a bipartition of S∗ at node η by letting S∗,ηk
(k = 1, 2) be the vertices in the kth connected component,
and further induces a multivariate split ofMη via (4) and
(5). The resulting bipartition, πη2 (S∗), is guaranteed to be
valid since by construction and the definition of S∗η , each
Mη,k (k = 1, 2) contains an observation whose nearest
knot in M is either s∗ or t∗. This property motivates a
generative prior model for π2(Mη) induced from πη2 (S∗)
to be introduced in Section 2.3. Note that the endpoints of
e∗ may not belong to S∗η asMη can be disconnected.

Since the multivariate splits rely on geodesic distance, they
are capable to generate flexible shaped partitions of Mη

that respect the intrinsic geometry and boundary constraints.
Figure 2(a) illustrates an example of a spanning tree bipar-
tition πη2 (S∗) and the induced π2(Mη), where Mη is a
disconnected subset of a U-shape domain. Note that a sim-
ilar partition in Figure 2(b) given by a univariate decision
tree has more splits, and the univariate splits do not fully
respect the intrinsic geometry ofM.

Before introducing the sMDT generating process, we re-
mark that, although both sMDTs and spanning trees G∗T
are referred to as “trees”, they are fundamentally different
concepts for different purposes. An sMDT is a binary deci-
sion tree defining a partition of D, and its vertices represent
subsets of D. On the other hand, G∗T encodes an ordering of
the multivariate structured knots that facilitates multivariate
splits, and its vertices are the reference knots inM.

2.3. A Generative Prior Model for Semi-Multivariate
Decision Trees

Similar to the generative process for univariate decision
trees (Chipman et al., 1998), an sMDT can be recursively
generated in the following manner:

1. Start with a trivial sMDT that only contains a root node
representing the full input space D.

2. Split a terminal node η representing Dη with probabil-
ity psplit(η). If η splits, apply one of the following split
rules to obtain π2(Dη).

(a) With probability pm, perform a multivariate split
using the structured features s.

(b) Otherwise, perform a univariate split using one
of the unstructured features x.

3. If η splits, apply Step 2 to each offspring node of η by
setting η as η1 and η2, respectively.

To generate a multivariate split, we first partitionMη into
π2(Mη) by generating a node-specific bipartition of S∗,
πη2 (S∗). Motivated by the property in Section 2.2, we as-
sume the following generative process of π2(Mη):

1. Randomly sample two distinct knots s∗ and t∗ from
S∗η .

2. Randomly sample an edge e∗ from the unique path in
G∗T connecting s∗ and t∗.

3. Remove e∗ from G∗T to obtain πη2 (S∗) and the induced
π2(Mη) via (4) and (5).

Then, we let Dη,k = Dη ∩ (Mη,k × X ) be the subset
represented by η’s offspring ηk, for k = 1, 2.

The generating process of splits using unstructured features
follows a similar path as in Chipman et al. (1998) and Deni-
son et al. (1998). Specifically, one of the unstructured fea-
tures xj(η) is randomly chosen, and a random cutoff value
cη is uniformly drawn from its candidate set, which typi-
cally depends on the feature and training data. Then we set
Dη,1 and Dη,2 as in (2) and (3).

Probability for splits psplit. Following Chipman et al.
(1998), we specify psplit(η) as

psplit(η) = α(1 + dη)−β , (6)

where dη is the depth of a node η, and α and β are positive
constants. This specification implies that the probability of
a node being non-terminal decreases exponentially with its
depth and hence implicitly controls the size of an sMDT.
We will discuss the choice of α and β in Section 2.4, where
we adopt the sMDT generating process as a prior model.
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Probability for multivariate splits pm. This probability
controls the proportions of multivariate structured splits
among all decision tree nodes. The larger pm is, the more
structured information is used for growing an sMDT. When
there is no a priori information about the true function,
pm = d/(d+ p) is a reasonable default choice.

2.4. A Bayesian Sum-of-multivariate-decision-trees
Model

An sMDT, denoted by T , partitions the input space D into
` disjoint subsets {D1, . . . ,D`} represented by its ` termi-
nal nodes. To apply sMDTs to nonparametric regression
tasks, given T and µ = (µ1, . . . , µ`), we define a piecewise
constant mapping from D to R as

g(s,x|T,µ) = µj , if (s,x) ∈ Dj .

Using g as a weak learner, a Bayesian additive semi-
multivariate decision trees (BAMDT) regression model uti-
lizes a summation of piecewise constant functions to ap-
proximate the true function f by assuming

E(Y |s,x) =

M∑
m=1

g(s,x|Tm,µm),

where Tm is an sMDT with `m terminal nodes, µm =
(µm1, . . . , µm`m) are the terminal node specific constants
for Tm, and M ∈ N is the pre-specified number of weak
learners.

Like other additive tree models such as BART (Chipman
et al., 2010) and gradient boosting trees (Friedman, 2001),
BAMDT is able to adapt to different smoothness levels
and/or discontinuities in the true function. The highly flex-
ible sMDT partitions allow BAMDT to more effectively
capture irregularly shaped decision boundaries where dis-
continuities or sharp changes happen, while respecting the
intrinsic geometry of the structured feature spaceM.

The regularization prior model of BAMDT is specified in a
similar way as in BART, which admits the form

p
(
{Tm,µm}Mm=1, σ

2
)

=

{
M∏
m=1

p(µm|Tm)p(Tm)

}
p(σ2).

The sMDT generating process in Section 2.3 is adopted as
a prior for Tm’s, that is, we assume a priori that each Tm
is a sample from the generating process. We recommend
choosing the reference set of reduced size compared to the
number of observations so that computations can be done
more efficiently on a reduced spanning tree graph. Never-
theless, this dimension reduction strategy leads to coarser
decision tree boundaries in each weak learner. To increase
the diversity of sMDTs in the ensemble, we use different
sets of reference knots (and hence different spanning trees)

for each Tm, which allows each weak learner to explore
and learn a different portion of f so that finer discontinuity
boundaries in data might be better recovered from ensem-
bles. Following Chipman et al. (2010), we choose α = 0.95
and β = 2 in (6), which assigns most of the prior probabil-
ity to small sMDTs with 2 or 3 nodes and penalizes large
Tm’s. Shallow sMDTs encourage better mixing and faster
convergence in Markov chain Monte Carlo.

Conditional on Tm, we place a conjugate Gaussian prior for
µm:

µm|Tm ∼ N`m(0, σ2
µI`m),

where I` is an `× ` identity matrix and σ2
µ = 0.5/(a

√
M)

with a > 0. This prior imposes stronger shrinkage on
µm towards zero when we have more weak learners, and
therefore prevents overfitting given that we rescale Y into
[−0.5, 0.5]. We choose a = 2 by default, which assigns
0.95 prior probability to E(Y |s,x) within [−0.5, 0.5].

The shrinkage prior for µm’s, together with the prior for
Tm’s that favors small sMDTs, ensures that each weak
learner only explains a small proportion of response vari-
ability, and hence prevents each ensemble membership from
being too influential to the overall fit. This regularizes the
model to keep it from overfitting the training data.

We complete the prior specification by choosing a conjugate
inverse-χ2 prior for σ2 in the form of σ2 ∼ νλs/χ

2
ν for

λs > 0 and some degree of freedom ν. We choose ν = 3
and calibrate the prior by selecting λs such that P(σ2 <
σ̂2) = 0.90 a priori, where σ̂2 is the sample variance of the
responses.

3. Bayesian Inference
Bayesian inference of BAMDT is based on a tailored
backfitting Markov chain Monte Carlo (MCMC) sampler
(Hastie & Tibshirani, 2000), which successively draws
(T1,µ1), . . . , (TM ,µM ), and σ2 from their respective full
conditional distributions. To sample from [Tm,µm|−],
where − stands for all other parameters and the response
data Y = (Y1, . . . , Yn), we first draw Tm from the col-
lapsed full conditional p(Tm|−) =

∫
p(Tm,µm|−)dµm,

and then sample µm from [µm|Tm,−]. Thanks to the con-
jugate priors for µm and σ2, the distributions [µm|Tm,−]
and [σ2|−] admit straightforward closed-form expressions,
which are detailed in Appendix B.

To sample a new sMDT T ?m from p(Tm|−), we randomly
grow or prune the existing Tm with equal probability to
obtain a tree proposal. In a growing move, one of Tm’s
terminal nodes, denoted by η, is randomly chosen and split
into two offspring nodes following Step 2 of the sMDT
generating process in Section 2.3. A pruning step does
the opposite by first randomly selecting a node with two
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terminal offspring and then removing its children. The pro-
posed T ?m is then accepted or rejected following standard
Metropolis-Hastings (MH) procedure, and we leave the de-
tails to Appendix B. Note that the MH acceptance probabil-
ity involves a likelihood ratio L(Y|T ?m,−)/L(Y|Tm,−),
where L(Y|Tm,−) is the likelihood with µm integrated
out. This ratio can be evaluated using its analytical form,
thanks to the conjugate Gaussian prior for µm. The time
complexity to draw Tm is O(max{n, t}) since we utilize a
spanning tree that has t− 1 edges for multivariate splits.

Using posterior draws of {(Tm,µm)}Mm=1, we can per-
form prediction for Ynew given (snew,xnew). A poste-
rior sample of E(Ynew|snew,xnew) is obtained by summing
g(snew,xnew|Tm,µm) over m = 1, . . . ,M . A point pre-
dictor of Ynew can be taken as the posterior mean of
E(Ynew|snew,xnew) draws.

Similar to BART, BAMDT offers a natural importance met-
ric for variable selection based on MCMC samples. Let rw
be a split rule involving feature w, where w can be s or one
coordinate of x = (x1, . . . , xp). Forw = s, rw corresponds
to a multivariate split; when w = xj , rw refers to a univari-
ate split on xj . The relative importance of w is measured
by the proportion of rw used in the sum-of-sMDT model,
denoted by vw. We use the posterior mean of vw as a metric
to evaluate the importance of w. A higher metric indicates
that w is more favored in model fitting, and thus it is more
likely that w provides more information for predicting Y .

4. Experiments
We demonstrate the performance of BAMDT using some
synthetic data in Section 4.1 and 4.2, where we consider two
examples of manifold structured feature spacesM. In each
example, we generate n = 500 random locations inM. The
geodesic distance onM is approximated using the method
in Appendix A. The unstructured feature space is set to be
X ⊆ [0, 1]p with p ∈ {2, 10} (but only one coordinate of x
is involved in the true data generating process). We indepen-
dently generate xj for j = 1, . . . , p, but introduce spatial
dependence among locations within each xj to mimic real
applications. Using the same data generating scheme, we
simulate features for a test data set of size ntest = 200. De-
tailed data generating process can be found in Appendix C.1.
We also illustrate the application of BAMDT using a real
housing price data set in Section 4.3.

4.1. U-shape Example

The first structured feature spaceM that we consider is a
two-dimensional U-shape domain as shown in Figure 3(a)
that is divided into three subsets by a circle centered at the
origin with radius 0.9. As shown in Figure 3(a), we consider
a true piecewise smooth function defined on D, where we
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Figure 3. (a) True f(s,x) on a U-shape domainM in R2. (b-d)
Predictive surfaces f̂(s,x) of BAMDT, BART, and GP-iso using
one data set with p = 2 and σ = 0.1. Red circles indicate
discontinuity surfaces in the true function projected toM.

design two jumps across the surfaces {(sh, sv) ∈ M :
s2h + s2v = 0.92} × X . The true function only depends on
(s, x1) and their interaction. The responses in the training
and test data sets are generated according to (1) with noise
level σ = 0.1 (signal-to-noise ratio SNR = 33.7dB). We
simulate 50 replicates for each level of p.

We use M = 50 weak learners in BAMDT. For each weak
learner, we randomly sample t = 100 locations from the
training data as reference knots. We construct spatial graphs
G∗ on reference knots using CDTs as in Appendix A, and
choose their MSTs based on geodesic distance as the span-
ning trees for multivariate split rules. We use 100 equally
spaced grid points as candidates of univariate split cutoffs
for each unstructured feature. The probability of performing
a multivariate split is set to be pm = 2/(2 + p).

We compare BAMDT with the following methods:

• BART using x and the Cartesian coordinates of s as
input features.

• GP-iso: Spatial GP regression (Gelfand et al., 2010)
with a linear mean function of x and an isotropic
Matérn covariance kernel for s.

• GP-aniso: Same as GP-iso but with an anisotropic
Matérn covariance kernel for s.

• BAST-s: Bayesian additive regression spanning trees
(BAST; Luo et al., 2021a) using the structured features
s only.

• BAST-KNN: BAST using a 10-NN graph based on
the Euclidean distance among the scaled joint features,
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where each feature in (s,x) is scaled into [0, 1].
• GAM-additive: Generalized additive models (GAM;

see, e.g., Wood, 2017) with a mean function f(s,x) =
ftps(x) + fsfs(s), where ftps is a thin-plate spline
smoother and fsfs is a soap film smoother (SFS; Wood
et al., 2008).

• GAM-TP: GAM with f(s,x) = ftps(x) ⊗ fsfs(s),
where ⊗ is the tensor product of the two smoothers to
capture interaction effects between x and s.

We use the same number of weak learners (M = 50) for the
ensemble models BART and BAST. The implementation of
the competing methods can be found in Appendix C.1. For
the Bayesian methods BAMDT, BART and BAST, we run
the MCMC algorithms for 30, 000 iterations, discarding the
first half and retaining samples every 10 iterations.

We evaluate prediction performance of BAMDT and its
competitors using the test data set. We use mean square
prediction error (MSPE) and mean absolute prediction error
(MAPE) to measure point prediction accuracy. Point predic-
tors of BAMDT, BART and BAST are based on posterior
means, while the ones for GP regressions are the krigging
means. For the Bayesian models and GP regressions, we
also compare the accuracy of probabilistic prediction using
the continuous ranked probability score (CRPS; Gneiting &
Raftery, 2007), which is computed using posterior samples
of E(Ynew|snew,xnew) for Bayesian models and using the
kriging distributions for GP regressions. For all the metrics,
lower values indicate better performance.

Table 1(a, b) summarizes the average prediction perfor-
mance of BAMDT and its competitors over 50 replicates
in two settings of p. When p = 10, the large dimension of
spline basis prevents us from fitting GAM-TP with a limited
sample size using R package mgcv (Wood, 2017). In both
settings of p, BAMDT outperforms other methods in terms
of all performance metrics. In particular, the comparison
between BAMDT and BART suggests that the proposed
MDTs enhance the performance in complex restricted do-
mains while inheriting BART’s feature selection capacity.
Indeed, the feature importance metric from BAMDT can
better identify the truly relevant features (s, x1) compared
with BART. As an example, in the setting of p = 10 and
σ = 0.1, the average percentage of splits involving s or x1
in BAMDT is 73.98%, while the one in BART is 54.62%.

To better examine the prediction from all the models, we
present in Figure 3(b-d) the mean predictive surfaces (as a
function of s) from BAMDT, BART, and GP-iso fitted using
one randomly selected data set with p = 2 and σ = 0.1.
All three models can recover the general pattern of the true
function, but the result from BAMDT matches the ground
truth best. BAMDT performs fairly well in the interior of
each subregion ofM, while there are some visible errors
around the discontinuity surfaces marked by the red circle,

(a) (b)

(c) (d)

Figure 4. (a) True f(s,x) on a bitten torus domainM in R3. (b-d)
Predictive surfaces f̂(s,x) of BAMDT, BART, and GP-iso using
one data set with p = 2 and σ = 0.1. All plots are viewed along
the positive direction of the z-axis.

which are expected due to larger uncertainties in data around
discontinuities. The predictive surface from BART displays
some artificial rectangular decision boundaries such as those
in the upper arm, due to the sole use of univariate split rules.
There is also some noticeable “leakage” effect in the predic-
tion of BART as evidenced by the underestimation in some
regions in the lower arm that are near the upper arm. These
undesired patterns are overcome in BAMDT thanks to the
use of the multivariate split rules that can generate flexibly
shaped partitions and respect the domain boundary. Unlike
BAMDT or BART, the predictive surface from GP-iso is too
smooth relative to the truth and loses some small-scale spa-
tial patterns. We have also compared the predictive surfaces
and predictive uncertainty from all competing methods in
Appendix C.2. Our result suggests that the discontinuity
surfaces in the true function are characterized by higher
uncertainty from BAMDT, while this pattern does not ap-
pear in BART or GP regressions. We have also included
additional simulation settings with different n and SNR, a
sensitivity analysis of BAMDT, and some discussion on
computation in Appendix C.2.

4.2. Bitten Torus Example

We consider the scenario where s lies in a two-dimensional
manifold embedded in R3. Specifically, the manifold
we consider is a bitten torus whose Cartesian coordinate
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Table 1. Average prediction performance metrics over 50 replicate data sets in various simulation settings.

(a) U-shape example with n = 500, p = 2, and σ = 0.1

BAMDT BART GP-iso GP-aniso BAST-s BAST-KNN GAM-additive GAM-TP
MSPE 0.374 1.405 0.620 0.583 0.912 2.155 0.985 0.418
MAPE 0.281 0.612 0.499 0.488 0.543 0.641 0.720 0.345
Mean CRPS 0.219 0.508 0.398 0.390 0.398 0.479 — —

(b) U-shape example with n = 500, p = 10, and σ = 0.1
MSPE 0.495 1.219 0.662 0.632 0.911 1.214 1.168 —
MAPE 0.317 0.688 0.545 0.537 0.543 0.662 0.751 —
Mean CRPS 0.252 0.552 0.415 0.409 0.398 0.453 — —

(c) Bitten torus example with n = 500, p = 2, and σ = 0.1
MSPE 0.967 1.958 1.569 1.621 1.606 1.678 — —
MAPE 0.545 0.693 0.782 0.805 0.814 0.666 — —
Mean CRPS 0.431 0.573 0.636 0.646 0.591 0.529 — —

(d) Bitten torus example with n = 500, p = 10, and σ = 0.1
MSPE 1.169 2.092 1.563 1.601 1.606 2.056 — —
MAPE 0.620 0.792 0.802 0.819 0.814 0.845 — —
Mean CRPS 0.493 0.646 0.638 0.646 0.591 0.630 — —

(x, y, z) can be parameterized by x = (R + r cos θ) cosφ,
y = (R+ r cos θ) sinφ, and z = r sin θ, where θ ∈ [0, 2π]
is the angle for the torus, φ ∈ [−π/6, 5π/3] is the angle of
the tube, r = 4 is the fixed radius of the tube, and R = 6 is
the fixed distance from the tube center to the torus center.
See Figure 4(a) for the bitten torus domain. The true mean
function f(s,x) depends on s and x1 and has two discon-
tinuities across φ = 2π/3 and φ = 7π/6. We simulate
responses with noise level σ = 0.1 (SNR = 28.9dB) for 50
replicates.

We compare BAMDT to the same competing models as in
Section 4.1 except for the two GAM methods, as the SFS is
only applicable to constrained domains in R2. As shown in
Table 1(c, d), BAMDT achieves the best prediction perfor-
mance in terms of all metrics. Figure 4(b-d) and Figure S3
in the appendix show the predictive surfaces using one se-
lected data set with p = 2. Similar to the findings from the
U-shape domain, the prediction surface of BART suffers
from the “leakage” phenomenon near the bitten portion of
the torus, and the ones of GP regressions and BAST models
are too smooth compared to the true function. On the other
hand, the prediction from BAMDT well matches the truth.

4.3. Application to Sacramento Housing Price Data

We apply BAMDT to analyze housing price data in Sacra-
mento County, California, available in R package caret
(Kuhn, 2021). We focus on n = 405 data points from the
Cities of Sacramento and Elk Grove. The observed housing
price and city boundary 1 are shown in Figure 5(a). Note that
the City of Sacramento is divided by the American River
near 38.6◦N. We model the logarithm of housing price (in
U.S. dollars) as a function of the house location (in latitude
and longitude), number of bedrooms, number of bathrooms,

1City shape file is retrieved from Sacramento County GIS
(2015)
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Figure 5. (a) Observed housing data price (in U.S. dollars). (b-d)
Predicted price for a representative house from BAMDT, BART,
and GP-iso.

and square footage. We treat the location as a structured
feature s and all other covariates as unstructured features x.
The goal is to examine BAMDT’s performance in predicting
housing prices with new features.

We fit BAMDT, BART, GP-iso, BAST-KNN, and GAM-
additive to the data 2. The settings of them are identical

2We failed to fit GP-aniso using the R package GpGp (Guinness,
2018; 2021) due to numerical errors in Cholesky factorization.
BAST-s is based on a CDT which is not applicable to duplicate
observed s in this data set. Results of GAM-TP are not available
due to the large tensor basis dimension relative to sample size.
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Figure 6. Posterior predictive standard deviation of log-price for a
representative house from (a) BAMDT, (b) BART, and (c) GP-iso.

to those in Section 4.1, except that we use t = 150 knots
for BAMDT. We first compare the prediction performance
of the five models using 5-fold cross-validation. Table 2
shows the performance metrics computed using the original
price scale (instead of log scale). BAMDT achieves better
prediction accuracy than the other methods in all metrics.

Next, we turn to the mean predictive surface fitted using all
the observations. We consider a representative house with
median unstructured features, namely, three bedrooms, two
bathrooms, and 1436 square feet. We display its predicted
price at different locations from the selected models in Fig-
ure 5(b-d) to examine the marginal spatial effect on housing
prices. The predictive surfaces from BART and GP-iso
fail to respect the boundary constraints, especially near the
American River. In contrast, there is a clear jump across the
river on the surface from BAMDT. As in the simulation stud-
ies, BART only identifies axis-parallel discontinuities, while
BAMDT could detect more flexible discontinuity bound-
aries with meaningful interpretations such as the one along
U.S. Highway 50. Compared with BAMDT and BART,
GP-iso tends to give lower predictions in the regions of low
housing prices, possibly due to the lack of interaction be-
tween s and x in the model, and its predicted price changes
smoothly near U.S. Highway 50. See Appendix D for addi-
tional analyses on predictive surfaces, feature importance,
and the marginal effect of square footage.

Finally, we examine the prediction uncertainty for the rep-
resentative house. Figure 6 shows the predictive standard
deviation of log-price from the three models. There is a nar-

Table 2. Prediction performance in Sacramento housing data set.

Root MSPE MAPE Mean CRPS
BAMDT 62128 43110 34107
BART 64607 45224 35940
GP-iso 69701 48790 35633
BAST-KNN 79981 55208 43904
GAM-additive 66713 43527 —

row band with high uncertainty near U.S. Highway 50 and
Sacramento Zoo from BAMDT that separates the downtown
area and East Sacramento from the southern regions. This
band corresponds to an abrupt price change in Figure 5(b),
and thus it is associated with higher prediction uncertainty.

5. Conclusion and Discussion
In this paper, we proposed a new Bayesian additive decision
tree model for semi-structured regressions. The method
relaxes the limitations of conventional BART methods due
to axis-parallel split rules by allowing a flexible mixture of
univariate and multivariate split rules in decision tree weak
learners. The proposed multivariate split rules are built upon
a manifold bipartition model via predictive spanning trees
that is capable of complying with intrinsic geometry and
boundary constraints of the structured feature space.

Thanks to its Bayesian nature, BAMDT is promising to
serve as a flexible nonparametric prior for modeling latent
functions in various hierarchical modeling settings. The
method has great potential beyond predictive regression
tasks to other machine learning tasks such as classification,
density estimation, survival analysis, and causal inference,
to name a few. Moreover, since BAMDT is based on a
discretization of the manifold represented by graphs, it nat-
urally applies to the case where structured features lie on
a fixed graph such as in spatial areal unit data instead of a
compact Riemannian manifold. Besides these extensions,
future research may also include theoretical investigations
of function approximation performance via Bayesian poste-
rior concentration theories, and computational accelerations
via extensions of informed MCMC and importance sam-
pling (Zanella & Roberts, 2019; Griffin et al., 2021; Zhou
& Smith, 2022), spike and slab lasso (Ročková & George,
2018), or variational Bayes inference (Blei et al., 2017).
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A. Details on Spanning Tree Bipartitions
As discussed in Section 2.2, the spanning tree graph G∗T on reference knots S∗ can be obtained by finding the geodesic
distance-based MST of a graph G∗ = (S∗, E∗0 ), which is constructed following Luo et al. (2021a). In practice, however,
when the number of knots is small or when the shape ofM is highly irregular, the methods in Luo et al. (2021a) may result
in a disconnected G∗. To overcome this, one can augment E∗0 to make G∗ connected using Algorithm 1.

Algorithm 1 Connecting connected components in G∗

Input: a graph G∗ = (S∗, E∗0 ) with Nc connected components.
Initialize C to be the vertices in one connected component of G∗.
for i = 1 to Nc − 1 do

Find the pair of vertices v1 ∈ C and v2 ∈ S∗ \ C that has the minimal geodesic distance.
Add the edge (v1,v2) to E∗0 .
Set C ← C ∪ C′, where C′ is the connected component containing v2.

end for
Output: a connected graph G∗.

The constructions of the aforementioned graphs and π2(Mη) rely on the geodesic distance dg inM. For many manifolds,
dg has no analytical form. Fortunately, we can approximate dg between any two locations in a way similar to the Isomap
algorithm (Tenenbaum et al., 2000). To be more specific, we construct a dense weighted nearest neighbor graph based
on Euclidean distance on some fine grids inM and the locations of interest, and then approximate the geodesic distance
between the two locations by the length of the shortest path between them in the dense graph.

B. Details on Bayesian Inference
This appendix provides details on the Markov chain Monte Carlo (MCMC) algorithm in Section 3. Given data
(s1,x1, Y1), . . . , (sn,xn, Yn), let gm be the vector of in-sample fitted values from the mth weak learner, i.e., the ith
element of gm is g(si,xi|Tm,µm). Define the partial residual from the mth weak learner as

rm = Y −
∑
k 6=m

gk.

As discussed in Section 3, our MCMC sampler successively draw samples from the full conditional distributions of
(T1,µ1), . . . , (TM ,µM ), and σ2. To sample from each p(Tm,µm|−), we proceed in two steps. First, we update Tm using
a Metropolis-Hastings (MH) sampler by drawing Tm from p(Tm|−), the full conditional distribution of Tm with µm
integrated out. Specifically, we propose a new sMDT T ?m by a growing or a pruning move as detailed in Section 3. In a
growing move, letting η be the node we split, the MH acceptance probability is given by

min

{
1,

α(1 + dη)−β [1− α(2 + dη)−β ]2

1− α(1 + dη)−β
· Ns
Nm
· L(rm|T ?m,−)

L(rm|Tm,−)

}
, (S1)

where Ns is the number of terminal nodes in Tm, Nm is the number of non-terminal nodes with two terminal children in
Tm, and L(rm|Tm,−) is the likelihood with µm marginalized out. Thanks to the conjugate prior on µm, L(rm|Tm,−) can
be explicitly evaluated by

L(rm|Tm,−) ∝ |Pm|−1/2 exp

(
−1

2
rTmP−1m rm

)
,

where Pm = σ2In + σ2
µZmZT

m and Zm is an n × `m binary matrix whose (i, j)th element is 1 if and only if the ith
observation is assigned to the jth terminal node of Tm. In practice, utilizing the fact that Zm has reduced rank `m, we use
Sherman-Woodbury-Morrison formula to simplify the computation of |Pm| and P−1m . The MH acceptance probability of a
pruning move is analogous to (S1).

The second step to sample from p(Tm,µm|−) is to draw µm from p(µm|Tm,−), which admits a closed form

[µm|Tm,−] ∼ N`m

(
Q−1m bm,Q

−1
m

)
,
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with Qm = ZT
mZm/σ

2 + I`m/σ
2
µ and bm = ZT

mrm/σ
2.

Finally, the full conditional of σ2 is an inverse gamma distribution of the form

[σ2|−] ∼ IG

(
n+ ν

2
,

1

2

[
νλs + ‖Y −

M∑
m=1

gm‖2
])

,

where ‖·‖ is the Euclidean norm.

C. Supplementary Simulation Details
C.1. Details on Simulation Setup

We consider a manifold structured feature space M (which is a U-shape domain in Section 4.1 and a bitten torus in
Section 4.2) and generate random locations s in M. Below, we discuss the generation of unstructured features x. In
many applications, there is oftentimes spatial dependence among locations within an unstructured feature. To simulate
spatially correlated features, we first find a homomorphism u = h(s) fromM to a rectangular region in Rd, with d = 2 in
both examples in Section 4. Then we simulate p independent realizations {ζ1}, . . . , {ζp} from a Gaussian process using
Euclidean distance on u = (u1, u2). We further use the transformation xj = Φ(ζj) to generate unstructured features within
[0, 1], where Φ is the cumulative distribution function of standard Gaussian distribution.

For the U-shape example in Section 4.1, motivated by Ramsay (2002), we construct a true function as fU (s,x) =
b0 + b1(u1x1 + u22) for some constants b0 and b1, which only depends on the structured features s = (sh, sv) and one of
the unstructured features. We allow b0 and b1 to take different values in different subregions ofM to create discontinuities.
Specifically, we divideM into three subsets separated by a circle:

M1 = {(sh, sv) ∈M : s2h + s2v > 0.92 and sh < sv},
M2 = {(sh, sv) ∈M : s2h + s2v > 0.92 and sh > sv},
M3 = {(sh, sv) ∈M : s2h + s2v ≤ 0.92}.

We set b0 = −4 and b1 = 1 inM1, b0 = 4 and b1 = 1 inM2, and b0 = 0 and b1 = −0.5 inM3.

For the bitten torus example in Section 4.2, we modify the true function in Niu et al. (2019) to involve the unstructured
feature x1. Specifically, the true function is given by

fT (s,x) =

{
x1φ+ 0.3 sin(θ), if φ ∈ [−π/6, 2π/3] ∪ [7π/6, 5π/3],

−x1φ− 0.3 sin(θ), if φ ∈ (2π/3, 7π/6).

The spatial graph G∗ on reference knots we use for this example is a 5-NN graph under geodesic distances.

We implement BAMDT in R using the packages igraph (Csardi & Nepusz, 2006) for graph operations and fdaPDE (Lila
et al., 2016) to construct CDT graphs on two-dimensional constrained domains. All the competing methods are implemented
in R, using the packages BART (Sparapani et al., 2021) for BART, GpGp (Guinness, 2018; 2021) for GP-iso and GP-aniso,
and mgcv (Wood, 2017) for GAM-additive and GAM-TP. We use the default settings for BART except for the number of
weak learners. The implementation of BAST-s and BAST-KNN follows Luo et al. (2021a). In both GAM-additive and
GAM-TP, we choose regular grids as knots, and set the dimension of the SFS basis for s as 40. We use the default dimension
of the thin-plate basis for x in GAM-additive and set it as 5 in GAM-TP.

C.2. Supplementary Results for U-shape Example

We first consider three additional simulation settings in the U-shape example in Section 4.1. Specifically, in the first two
settings, we simulate n = 500 training responses and ntest = 200 test responses with noise level σ = 0.5 (reducing SNR
to 19.7dB) and unstructured features x of dimension p ∈ {2, 10}. Table S1(a, b) summarizes prediction performance for
these two settings, and BAMDT outperforms all its competitors in terms of all metrics. In the third setting, we use σ = 0.1
and p = 2 but increase the sample size to n = 2000 and ntest = 500. The prediction results for this setting are shown in
Table S1(c). BAMDT achieves better performance in terms of MAPE and mean CRPS, while the two GP regression models
have the lowest MSPE, possibly because the MSPE of BAMDT is dominated by some large errors.
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Table S1. Average prediction performance metrics over 50 replicate data sets in various simulation settings. Standard deviations are in
parentheses.

(a) U-shape example with n = 500, p = 2, and σ = 0.5

BAMDT BART GP-iso GP-aniso BAST-s BAST-KNN GAM-additive GAM-TP
MSPE 0.685 1.679 0.949 0.916 1.202 2.461 1.276 0.771

(0.081) (0.244) (0.067) (0.064) (0.090) (0.093) (0.072) (0.066)
MAPE 0.567 0.829 0.723 0.713 0.737 0.864 0.851 0.623

(0.026) (0.048) (0.031) (0.031) (0.031) (0.027) (0.029) (0.028)
Mean CRPS 0.438 0.656 0.528 0.520 0.547 0.623 — —

(0.023) (0.042) (0.019) (0.018) (0.023) (0.021)

(b) U-shape example with n = 500, p = 10, and σ = 0.5
MSPE 0.756 1.580 1.008 0.979 1.203 1.509 1.454 —

(0.131) (0.211) (0.070) (0.070) (0.094) (0.077) (0.087)
MAPE 0.584 0.878 0.754 0.747 0.735 0.838 0.884 —

(0.034) (0.057) (0.031) (0.031) (0.031) (0.026) (0.029)
Mean CRPS 0.453 0.686 0.544 0.539 0.545 0.585 — —

(0.032) (0.050) (0.019) (0.019) (0.023) (0.019)

(c) U-shape example with n = 2000, p = 2, and σ = 0.1
MSPE 0.472 0.742 0.343 0.347 0.370 0.440 0.734 0.353

(0.112) (0.186) (0.007) (0.006) (0.009) (0.007) (0.008) (0.018)
MAPE 0.242 0.332 0.392 0.393 0.397 0.304 0.589 0.274

(0.023) (0.034) (0.005) (0.005) (0.007) (0.004) (0.004) (0.005)
Mean CRPS 0.208 0.282 0.301 0.302 0.312 0.239 — —

(0.022) (0.031) (0.003) (0.003) (0.007) (0.004)

Next, we compare the predictive surfaces and predictive uncertainties using the same simulated data as in Section 4.1
under the setting of n = 500, p = 2 and σ = 0.1. Figure S1 shows the predictive surfaces from the competing methods
that are not included in Section 4.1 due to space limitations. Similar to the predictive surface from GP-iso in Figure 3(d),
the ones from GP-aniso, BAST-s and GAM-add are relatively too smooth. Due to the use of the 10-NN graph based on
the Euclidean distance of the joint features (x, s) that include many irrelevant features, the prediction from BAST-KNN
does not fully respect the domain boundary constraints. The predictive surface from GAM-TP is close to the one from
BAMDT, but GAM-TP overpredicts in some regions inside the red circle. The predictive uncertainties at different spatial
locations are shown in Figure S2. As expected, the posterior predictive standard deviation (SD) from BAMDT is higher
around the discontinuity surfaces, reflecting the uncertainty due to the unknown discontinuities. The uncertainty measures
from BART and GP regressions, however, fail to capture this. In the predictive SD for BART, one can observe some
artificial axis-parallel high uncertainty regions probably resulting from univariate splits on s. The uncertainty of GP-iso and
GP-aniso at unobserved locations is generally higher than the one for BAMDT, possibly due to misspecification of the model,
especially in the mean function. BAST-s and BAST-KNN also exhibit high uncertainty around the true discontinuities, but
in other regions, their uncertainty is still larger than BAMDT, possibly due to the poor graph construction that does not use
the true feature x1 or include many irrelevant features in x. Note that GAM-additive and GAM-TP do not provide natural
uncertainty measures.

We also compare BAMDT with M = 50 weak learners to BART with M = 50, 100, 200, 400 weak learners under the
setting of n = 500, p = 2 and σ = 0.1, and their prediction performance is shown in Table S2. BAMDT with M = 50
weak learners outperforms BART with more weak learners, suggesting that, compared with the sole use of univariate splits,
the multivariate splits can help BAMDT capture complex true functions on constrained domains in a more efficient way.

To examine the sensitivity of BAMDT’s prediction performance to the hyperparameters, we focus on a data set under the
setting of n = 500, p = 2, and σ = 0.1, and consider different values of the number of weak learners M , the number
of reference knots t, and the prior probability for performing a multivariate split pm. Prediction metrics are shown in
Table S3. We also include the value of widely applicable Bayesian information criterion (WBIC; Watanabe, 2013) for
each hyperparameter combination. The models with the lowest and the second lowest WBIC values have the overall best
prediction performance. When the prediction performance is a concern, we recommend using standard hyperparameter
selection methods such as WBIC and cross-validation to fine tune the model.

As a final remark, the average computation time in Section 4.1 with n = 500, p = 2 and σ = 0.1 is 65 minutes using a pure
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Figure S1. Predictive surfaces f̂(s,x) of (b) BAMDT, (c) GP-aniso, (d) BAST-s, (e) BAST-KNN, (f) GAM-additive, and (g) GAM-TP
using one data set with n = 500, p = 2 and σ = 0.1. The true function f(s,x) is also included for reference in (a). Red circles indicate
discontinuity surfaces in the true function projected toM.
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Figure S2. Posterior predictive standard deviation surfaces of (a) BAMDT, (b) BART, (c) GP-iso, (d) GP-aniso, (e) BAST-s and (f)
BAST-KNN in the setting of n = 500, p = 2 and σ = 0.1. Standard deviation larger than 3 is marked by gray. Blue circles indicate
discontinuity surfaces in the true function projected toM.

R implementation, while fitting BART and BAST-s in C++ takes 50 seconds and 6 minutes respectively. We are currently
investigating a more efficient implementation of BAMDT in C++.

D. Supplementary Real Data Analysis
In this appendix, we provide more analysis of the Sacramento housing price data.

We first examine the maps of predicted price for the representative house from BAST-KNN and GAM-additive shown in
Figure S4(a, b). Compared with the prediction from BAMDT, BAST-KNN underpredicts the housing price in the middle
Sacramento region, possibly because the K-NN graph is not an efficient way to incorporate unstructured information.
GAM-additive, on the other hand, predicts much higher housing price near (121.42◦W, 38.55◦N), possibly due to the lack
of interaction between s and x in the model. As shown in Figure S4(c), the prediction from BAST-KNN has high uncertainty,
which is similar to the finding in the U-shape domain example.

Next, we turn to feature importance in BAMDT. 44.92% of the splits are attributed to the structured feature s, suggesting
that a large part of the variation in Sacramento housing prices can be explained by the spatial component of the model. The
square footage feature is the second important feature in BAMDT, followed by the number of bathrooms and bedrooms. A
similar feature importance pattern is found using BART.

In Section 4.3, we have examined the marginal effect of the spatial location s. Below, we focus on the marginal effect of
square footage. We choose five representative locations in Downtown Sacramento (green), North Natomas (cyan), North
Sacramento (red), Valley Hi / North Laguna (blue), and Elk Grove (pink), as shown in Figure S5(a). Figure S5(b) shows
the predicted price of houses with three bedrooms, two bathrooms, and various square footages. As expected, there is
a positive nonlinear relationship between price and square footage at each selected location, and there is a noticeable
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Table S2. Average prediction performance metrics over 50 replicate data sets of BAMDT and BART with various numbers of weak
learners, under the setting of n = 500, p = 2 and σ = 0.1. Standard deviations are in parentheses.

BAMDT (M = 50) BART (M = 50) BART (M = 100) BART (M = 200) BART (M = 400)
MSPE 0.374 1.405 1.234 1.162 1.126

(0.106) (0.249) (0.217) (0.161) (0.069)
MAPE 0.281 0.612 0.590 0.586 0.627

(0.025) (0.056) (0.051) (0.029) (0.024)
Mean CRPS 0.219 0.508 0.475 0.458 0.481

(0.023) (0.052) (0.046) (0.026) (0.018)

Table S3. Prediction performance and WBIC of BAMDT under different settings of hyperparameters.
M t pm MSPE MAPE Mean CRPS WBIC
50 100 0.75 0.318 0.268 0.214 364.676

100 100 0.75 0.258 0.232 0.178 296.928
50 200 0.75 0.475 0.292 0.232 301.478

100 200 0.75 0.442 0.288 0.222 311.126
50 100 0.50 0.222 0.236 0.175 295.329

100 100 0.50 0.305 0.239 0.183 331.875
50 200 0.50 0.395 0.300 0.244 325.121

100 200 0.50 0.409 0.270 0.210 331.168
50 100 0.25 0.482 0.305 0.239 343.953

100 100 0.25 0.327 0.261 0.199 342.134
50 200 0.25 0.457 0.304 0.235 308.955

100 200 0.25 0.361 0.259 0.196 350.442

change in the relationship near 1600 square feet. The marginal effect of square footage also depends on the locations:
Downtown Sacramento has the highest price per square feet, while North Sacramento has the lowest. 95% predictive
credible intervals of these two locations are also shown. The credible intervals are wider for larger houses, probably because
of the log-transformation of price in the model.

(a) (b) (c) (d) (e)

Figure S3. Predictive surfaces f̂(s,x) of (b) BAMDT, (c) GP-aniso, (d) BAST-s and (e) BAST-KNN using one data set with p = 2 and
σ = 0.1. The true function f(s,x) is also included for reference in (a). All plots are viewed along the positive direction of the z-axis.
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Figure S4. (a, b) Predicted price for a representative house from BAST-KNN and GAM-additive. (c) Posterior predictive standard
deviation of log-price from BAST-KNN.
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Figure S5. (a) Map of five representative locations. (b) Predicted price versus square footage of the houses. Colored ribbons represent
95% predictive credible intervals of two representative locations.


