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Abstract

Dynamic mechanism design has garnered signifi-
cant attention from both computer scientists and
economists in recent years. By allowing agents
to interact with the seller over multiple rounds,
where agents’ reward functions may change with
time and are state-dependent, the framework is
able to model a rich class of real-world problems.
In these works, the interaction between agents
and sellers is often assumed to follow a Markov
Decision Process (MDP). We focus on the setting
where the reward and transition functions of such
an MDP are not known a priori, and we are at-
tempting to recover the optimal mechanism using
an a priori collected data set. In the setting where
the function approximation is employed to handle
large state spaces, with only mild assumptions
on the expressiveness of the function class, we
are able to design a dynamic mechanism using
offline reinforcement learning algorithms. More-
over, learned mechanisms approximately have
three key desiderata: efficiency, individual ratio-
nality, and truthfulness. Our algorithm is based on
the pessimism principle and only requires a mild
assumption on the coverage of the offline data set.
To the best of our knowledge, our work provides
the first offline RL algorithm for dynamic mecha-
nism design without assuming uniform coverage.

1. Introduction

Mechanism design studies how best to allocate goods among
rational agents (Maskin, 2008; Myerson, 2008; Roughgar-
den, 2010). Dynamic mechanism design focuses on ana-
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lyzing optimal allocation rules in a changing environment,
where demands for goods, the amount of available goods,
and their valuations can vary over time (Bergemann &
Viliméki, 2019). Problems ranging from online commerce
and electric vehicle charging to pricing Wi-Fi access at Star-
bucks have been studied under the dynamic mechanism de-
sign framework (Gallien, 2006; Gerding et al., 2011; Fried-
man & Parkes, 2003). Existing approaches in the literature
require knowledge of the problem, such as the evaluation
of goods by agents (Bergemann & Vilimaki, 2010; Pavan
et al., 2014), the transition dynamics of the system (Doepke
& Townsend, 2006), or the policy that maximizes social
welfare (Parkes & Singh, 2003; Parkes et al., 2004). Unfor-
tunately, such knowledge is often not available in practice.

A practical approach we take in this paper is to learn a dy-
namic mechanism from data using offline Reinforcement
Learning (RL). Vickrey-Clarke-Groves (VCG) mechanism
provides a blueprint for the design of practical mechanisms
in many problems and satisfies crucial mechanisms design
desiderata in an extremely general setting (Vickrey, 1961;
Clarke, 1971; Groves, 1979). In this paper, we approxi-
mate the desired VCG mechanism using a priori collected
data (Jin et al., 2021b; Xie et al., 2021; Zanette et al., 2021).
We assume that the mechanism designer does not know the
utility of the agents or the transition kernel of the states,
but has access to an offline data set that contains observed
state transitions and utilities (Lange et al., 2012). The goal
of the mechanism designer is to recover the ideal mecha-
nism purely from this data set, without requiring interaction
with the agents. We focus on an adaptation of the clas-
sic VCG mechanism to the dynamic setting (Parkes, 2007)
and assume that agents’ interactions with the seller follow
an episodic Markov Decision Process (MDP), where the
agents’ rewards are state-dependent and evolve over time
within each episode. To accommodate the rich class of
quasilinear utility functions considered in the economic lit-
erature (Bergemann & Vilimiki, 2019), we use offline RL
with a general function approximation (Xie et al., 2021) to
approximate the dynamic VCG mechanism.

Related Works. Parkes & Singh (2003) and Parkes et al.
(2004) studied dynamic mechanism design from an MDP
perspective. The proposed mechanisms can implement so-
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cial welfare-maximizing policies in a truth-revealing Bayes-
Nash equilibrium both exactly and approximately. Bapna
& Weber (2005) studied the dynamic auction setting from a
multi-arm bandit perspective. Using the notion of marginal
contribution, Bergemann & Vilimiki (2006) proposed a
dynamic mechanism that is efficient and truth-telling. Pavan
et al. (2009) analyzed the first-order conditions of efficient
dynamic mechanisms. Athey & Segal (2013) extended both
the VCG and AGV mechanisms (d’ Aspremont & Gérard-
Varet, 1979) to the dynamic regime, obtaining an efficient
budget-balanced dynamic mechanism. Kakade et al. (2013)
proposed the virtual pivot mechanism that achieves incen-
tive compatibility under a separability condition. See Cav-
allo (2009), Bergemann & Pavan (2015), and Bergemann &
Vilimiki (2019) for recent surveys on dynamic mechanism
design. Our paper builds on the mechanism in Parkes (2007)
and Bergemann & Vilimiki (2010), but focuses on learning
a mechanism from data rather than designing a mechanism
in a known environment.

Only a few recent works have investigated the learning of
mechanisms. Kandasamy et al. (2020) provided an algo-
rithm that recovers the VCG mechanism in a stationary
multi-arm bandit setting. Cen & Shah (2021), Dai & Jordan
(2021), Jagadeesan et al. (2021), and Liu et al. (2021) stud-
ied the recovery of stable matching when the agents’ utilities
are given by bandit feedback. Balcan et al. (2008) shows
that incentive-compatible mechanism design problems can
be reduced to a structural risk minimization problem. In con-
trast, our work focuses on learning a dynamic mechanism
in an offline setting.

Our paper is also related to the literature on offline RL (Yu
et al., 2020; Kumar et al., 2020; Liu et al., 2020; Kidambi
et al., 2020; Jin et al., 2021b; Xie et al., 2021; Zanette et al.,
2021; Yin & Wang, 2021; Uehara & Sun, 2021). In the
context of linear MDPs, Jin et al. (2021b) provided a prov-
ably sample-efficient pessimistic value iteration algorithm,
while Zanette et al. (2021) used an actor-critic algorithm
to further improve the upper bound. Yin & Wang (2021)
proposed an instance-optimal method for tabular MDPs.
Uehara & Sun (2021) focused on model-based offline RL,
while Xie et al. (2021) introduced a pessimistic soft policy
iteration algorithm for offline RL with a general function
approximation. Compared to Xie et al. (2021), in addition
to the social welfare suboptimality, we also provide bounds
on both the agents’ and the seller’s suboptimalities. We
also show that our algorithm asymptotically satisfies key
mechanism design desiderata, including truthfulness and
individual rationality. Finally, we use optimistic and pes-
simistic estimates to learn the VCG prices, instead of the
purely pessimistic approach discussed in Xie et al. (2021).
This difference shows the difference between dynamic VCG
and standard MDP. Our work also features a simplified proof
of the main technical results in Xie et al. (2021).

Concurrent with our work, Lyu et al. (2022) studies the
learning of a dynamic VCG mechanism in the online RL
setting, where the mechanism is recovered through multi-
ple rounds of interaction with the environment. Our work
features several significant differences as we focus on gen-
eral function approximation, whereas Lyu et al. (2022) only
considers linear function approximation. We also focus on
the offline RL setting, where the mechanism designer is not
allowed to interact with the environment.

Our Contributions. We propose the first offline reinforce-
ment learning algorithm that can learn a dynamic mecha-
nism from any given data set. Additionally, our algorithm
does not make any assumption about data coverage and
only assumes that the underlying action-value functions are
approximately realizable and the function class is approxi-
mately complete (see Assumptions 2.3 and 2.4 for detailed
discussions), which makes the algorithm applicable to the
wide range of real-world mechanism design problems with
quasilinear, potentially non-convex utility functions (Carba-
jal & Ely, 2013; Bergemann & Viliméki, 2019).

Our work features a soft policy iteration algorithm that al-
lows for both optimistic and pessimistic estimates. When
the data set has sufficient coverage of the optimal policy,
the value function is realizable, and the function class is
complete, our algorithm sublinearly converges to a mech-
anism with suboptimality O(K ~'/3), matching the rates
obtained in Xie et al. (2021), where K denotes the number
of trajectories contained in the offline dataset. In addition
to suboptimality guarantees, we further show that our al-
gorithm is asymptotically individually rational and truthful
with the same O(K ~'/3) guarantee.

On the technical side, our work features a simplified the-
oretical analysis of pessimistic soft policy iteration algo-
rithms (Xie et al., 2021), using an adaptation of the classic
tail bound discussed in Gyorfi et al. (2002). Moreover, un-
like (Xie et al., 2021), our simplified analysis is directly
applicable to continuous function classes via a covering-
based argument.

Notations. For any positive integer z € Z~, let [z] =
{1,2,...,z}. For any set A, let A(A) be the set of prob-
ability distributions supported on A. For two sequences
Ty Yns We say x, = O(y,,) if there exist universal con-
stants ng, C' > 0 such that z,, < Cy,, foralln > ng. We
use O(+) to denote O(-) ignoring log factors. Unless stated
otherwise, we use || - || to denote the ¢2-norm

2. Background and Preliminaries

In this section, we define the dynamic mechanism and re-
lated notions. In addition, we discuss three key mechanism
design desiderata and their asymptotic versions. Finally, we
introduce the general function approximation regime and
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related assumptions.

Episodic MDP. Consider an episodic MDP given by M =
(8, A, H,P, {ri’h}?;(ihﬂ)’ where S is the state space, A
is the seller’s action space, H is the length of each episode,
and P = {P,}/__ is the transition kernel, where Py, (s'|s, a)
denotes the probability that the state s € S transitions to
the state s’ € S when the seller chooses the action a € A at
the h-th step.! We assume that S, A are both finite but can
be arbitrarily large. Let r; 5, : S x A — [0, 1] denote the
reward function of an agent ¢ at step hand rpp : S x A —
[— Rmax, —1 + Rmax] the seller’s reward function at step h,
which can be negative, as policies can be costly.

A stochastic policy 7 = {mp, }1L_, maps the seller’s state S to
a distribution over the action space 4 at each step h, where
7 (als) denotes the probability that the seller chooses the
action a € A when they are in the state s € S. We use d to
denote the state-action visitation measure over {S x A}7
induced by the policy 7 and use E; as a shorthand notation
for the expectation taken over the visitation measure.

For any given reward function r and any policy 7, the (state-
Jvalue function V;7 (+;r) : S — Ris defined as VT (z;7) =
B[S0, rhe(sh,an)|sn = ] at each step h € [H]
and the corresponding action-value function (Q-function)
Qr(,5r) + S x A — Ris defined as Qf(x,a;7r) =
E, [Zgzh Th(Spryap)|sp = x,ap = a]. For any func-
tion g : S x A — R, any policy 7, and h € [H], we use
the shorthand notation g(s, ) = Eqr, (.s)[9(5, a)]. We
define the policy-specific Bellman evaluation operator at i
with respect to reward function r under policy 7 as

(Th,»9)(x, @) =ra(z,a)

+ Ep [g(Sh+1, The1)|Sh = x,ap = al,
2.1)

where Ep is taken over the randomness in the transition
kernel IP.

We emphasize that while the problem setting we consider
features multiple reward functions and interaction between
multiple participants, our setting is not an instance of a
Markov game (Littman, 1994) as we allow only the seller
to take actions.

Dynamic Mechanism as an MDP. We assume that agents
and sellers interact in the following way. Without loss of
generality, assume that the seller starts at some fixed state
s € S when h = 1. For each h € [H], the seller observes
its state s and takes some action a € A. The agent receives
the reward 7; 1, (s, a) and reports to the seller the received

'"Tn mechanism design literature the reward function is often
called “value function.” We use the tem “reward function” through-
out the paper to avoid confusion with state- and action-value func-
tions.

reward as 7; j, (Sp, ap) € [0, 1], which may be different from
the true reward. The seller receives a reward r¢ (s, a) and
transitions to some state s’ ~ Pp(+|s,a). At the end of
each episode, the seller charges each agent ¢ a price p; € R,
i€ [n].

We stress the difference between the reported reward, 7; p,,
and the actual reward, r; 5. The reported reward is equal to
r; n, if an agent is truthful but may be given by an arbitrary
function 75, : S x A — [0,1] when the agent is not.
In other words, the agent ¢’s reported reward comes from
the actual reward function 7; 5, or some arbitrary reward
function 7 5. Our algorithm learns a mechanism via the
reported rewards and, under certain assumptions, we can
provide guarantees on the actual rewards.

For convenience, let R = Z;L:O r; be the sum of true reward
functions and R_; = Zi’;& , T; the sum of true reward func-

tions excluding agent . Let R, ﬁ_i be defined similarly for
the reported reward functions. Let R = {R_;}_; u {R}
be the set of all true reward functions that we will estimate
and R be that for the reported reward functions. When all
agents are truthful, R = R. We also let

Q:('V;r) = maXQZ<'7';T)7 Vh*('5r) = maXVhﬂ(';T)a
mell mell

*

T

= argmax V" (so; 1), Vr e R U R.

mell

As a shorthand notation, let 7% = 7, 7%, = 7, 7% =

w;‘%, and T, = WE . Following Kandasamy et al. (2020),
we define the agents’ and seller’s utilities as follows. For
any i € [n], we define the agent ¢’s utility under policy ,
when charged price p;, as

H
U7 (0i) = Bxl D] 7imn(snsan)] = pi = Vi (s0:73) — pi.
h=1

The seller’s utility is similarly defined as
H n
US ({piti=1) = Bx[ D] ron(sn, an)] + ) pi
h=1 i=1

n
= V"(s0;70) + Zpi-

i=1

The social welfare for any policy 7 € 11 is the sum of the
utilities, 3" o Ex[u;] = V" (s0; R), similar to its definition
in Bergemann & Vilimiki (2010).

2.1. A Dynamic VCG Mechanism

We now discuss a dynamic adaptation of the VCG mech-
anism and three key mechanism design desiderata it sat-
isfies (Nisan et al., 2007). We begin by introducing the
dynamic adaptation of the VCG mechanism.
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Definition 2.1 (Dynamic VCG Mechanism). When agents
interact according to the aforementioned MDP, assuming
the transition kernel P and the reported reward functions
{7}, are known, the VCG mechanism selects 7*, the
social welfare maximizing policy based on the reported
rewards, and charges the agent ¢ price p; : S — R, given by
pi = V¥ (so0; R_;) — Vi (s0; R_;). More generally, when
the mechanism chooses to implement some arbitrary policy
x, the VCG price for the agent ¢ is given by

pi = Vit(s0;s Bei) = Vi (s0: Rey). (22)
Observe that when H = 1, the dynamic adaptation we pro-

pose reduces to exactly the classic VCG mechanism (Nisan
et al., 2007).

We highlight the three common mechanism desiderata in the
mechanism design literature (Nisan et al., 2007; Bergemann
& Vilimiki, 2010; Hartline, 2012).

1. Efficiency: A mechanism is efficient if it maximizes
social welfare when all agents report truthfully.

2. Individual rationality: A mechanism is individually
rational if it does not charge an agent more than their
reported reward, regardless of other agents’ behavior.
In other words, if an agent reports truthfully, they attain
non-negative utility.

3. Truthfulness: A mechanism is truthful or (dominant
strategy) incentive-compatible if, regardless of the
truthfulness of other agents’ reports, the agent’s utility
is maximized when they report their rewards truthfully.

In the MDP setting, the dynamic VCG mechanism simulta-
neously satisfies all three desiderata.

Proposition 2.2. With P and the reported rewards {7;}7_,
known, choosing 7* and charging p; for all ¢ € [n] accord-
ing to (2.2) ensures that the mechanism satisfies truthfulness,
individual rationality, and efficiency simultaneously.

Proof. See Appendix B for a detailed proof. O

Performance Metrics. We use the following metrics to
evaluate the performance of our estimated mechanism. Let
the social welfare suboptimality of an arbitrary policy 7 be

SubOpt(; so) = Vi*(s0; R) — Vi (s0; R). (2.3)
Forany i € [n], let pf(so) = V;*(s0; R_i) = Vi (s0; R—:)
be the price charged to the agent ¢ by VCG under truthful
reporting. We can similarly define the suboptimality with
respect to the agents’ and the seller’s expected utilities. For
any ¢ € [n], the agent ¢’s suboptimality with respect to
policy 7 and price {p;}?_; is defined as

SubOpt; (7, {ps )13 50) = U™ (p}) — UF (ps)

Lk . _ 2.4)
=V (s0;73) — ;i (s0) — V" (s0573) + pi,

and the seller’s suboptimality is
n 71'* n T n
SubOpty (7, {pi}iz1;s0) = Ug ({pi}is1) — Ug ({piti1)

= Vi (s0370) + D pF — Vi (s0170) —

i=1 %

Pi-

-

1

(2.5)

2.2. Offline Episodic RL with General Function
Approximation

We use offline RL in the general function approximation
setting to minimize the aforementioned suboptimalities. Let
D be a precollected data set that contains K trajectories,
thatis, D = {(z7,, af,, {77 ,}i=1, ‘r;—z-ﬁ-l)}hH,;—lil' Following
the setup in (Xie et al., 2021), we consider the i.i.d. data
collection regime, where for all h € [H], (z}, a},, ] 1),
is drawn from a distribution pj, supported on S x A x
S. The distribution p over {S x A x S} is induced by
a behavioral policy used for data collection. We do not
make any coverage assumption on p, similar to the existing
literature on offline RL (Jin et al., 2021b; Uehara & Sun,
2021; Zanette et al., 2021).

Consider some general function class F = F; X Fg X ... X
Fr. For each h € [H], we use some arbitrary yet bounded
function class 7, € S x A — [—(H — h+ 1) Ryax, (H —
h + 1) Rinax] to approximate Q7 (-, -; ) for arbitrary 7 and
r € R. For completeness, we let Fr11 = {f : f(s,a) =
0V(s,a) € S x A} be the singleton set containing only the

degenerate function mapping all inputs to 0.

We make two common assumptions about the expressive-
ness of the function class F (Antos et al., 2008; Xie et al.,
2021).

Assumption 2.3 (Approximate Realizability). For any r €
R and 7 € {S — A(A)}, there exists some f7 € F such
that for all h € [H],

sup B [[f70 (i) = QR )P < e
m'e{S—>A(A)}H

Intuitively, Assumption 2.3 dictates that for all reported
reward functions r and all policies 7, there exists a function
in F that can approximate ()7 sufficiently well.

Assumption 2.4 (Approximate Completeness). Forany h €
[H],r € R,and 7 € {S — A(A)}, we have

sup inf Ky, [|f' — T . fI°] < er.7.
feFnir I'€Fn ’

Assumption 2.4 requires the function class F to be approxi-
mately closed for all reported reward functions and policies.
The assumption is prevalent in RL and can be omitted only
in rare circumstances (Xie & Jiang, 2021).
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A fundamental problem in offline RL is the distribution shift,
which occurs when the data generating distribution has only
a partial coverage of the policy of interest (Jin et al., 2021b;
Zanette et al., 2021). We address the issue with the help of
distribution shift coefficient (Xie et al., 2021).

Definition 2.5 (Distribution Shift Coefficient). Let C™(v)
be the measure of distribution shift from an arbitrary distri-
bution over (S x A)H, denoted v, to the data distribution 1,
when measured under the transition dynamics induced by a
policy 7 € {S — A(A)}¥. In particular,

max max max B, (143 ~ TZ,rff%HHQ]
sroper el rer B[y = TF 13 ]

C™(v) =

The coefficient controls how well the Bellman estimation
error shifts from one distribution to another for any Bellman
transition operator T. For a detailed discussion on how the
coefficient generalizes previous measures of distribution
shift, please refer to Xie et al. (2021). As a shorthand
notation, when v is the visitation measure induced by some
policy 7/, we let C™(7') = C™(dn) = C™(v).

In offline learning, with a finite data set, we can only hope
to learn the desired mechanism up to certain statistical er-
ror. In particular, we state the approximate versions of the
desiderata for finite-sample analysis.

1. Asymptotic efficiency: If all agents report truthfully, a
mechanism is asymptotically efficient if SubOpt(7; s¢) €
O(K~) for some a € (0, 1).

2. Asymptotic individual rationality: Let m, p; be the policy
and price chosen by the mechanism when the agent ¢
is truthful. A dynamic mechanism is asymptotically
individually rational if U (p;) = —O(K %) for some
a € (0,1), regardless of the truthfulness of other agents.

3. Asymptotic truthfulness: Let T, p; be the policy and price
chosen by the mechanism when the agent 7 is untruthful,
and 7, p; those chosen by the mechanism when the agent
1 is truthful. We say a dynamic mechanism is asymptoti-
cally truthful if U7 (p;) — U7 (p;) = O(K~) for some
a € (0, 1) regardless of the truthfulness of other agents.

As we will see in sequel, we propose a soft policy itera-
tion algorithm that simultaneously satisfies all three criteria
above with o = 1/3 up to function approximation biases.

3. Offline RL for VCG

We develop an algorithm that learns the dynamic VCG mech-
anism via offline RL. We begin by sketching out a basic
outline of our algorithm. Recall the dynamic VCG mecha-
nism given in Definition 2.1. At a high level, an algorithm
that learns the dynamic VCG mechanism can be summa-
rized as the following procedure.

1. Learn some policy 7 such that the social welfare sub-
optimality SubOpt(7; s¢) is small.

2. For all i € [n], estimate the VCG price p;, de-
fined in (2.2), as p; = G(l)(so) - G(_Qi)(so), where

-1

G(fi)(so) estimates V;*(so; R_;) and G(fi)(so) esti-
mates V/ (so; R_;).

Step 1 simply minimizes the social welfare suboptimality
using offline RL and has been extensively studied in prior
literature (Jin et al., 2021b; Zanette et al., 2021; Xie et al.,
2021; Uehara & Sun, 2021).

A greater challenge lies in implementing Step 2 and showing
that the price estimates, {p;}?_,, satisfy all three approxi-

mate mechanism design desiderata. The estimate G (_23 (s0)
can be constructed by performing a policy evaluation of
the learned policy, 7. The construction of ng) (so) is more
challenging, involving two separate steps: (1) learning a fic-
titious policy that approximately maximizes Vi (so; R_;)
over 7 from offline data, and (2) performing a policy evalua-
tion of the learned fictitious policy to obtain the estimate of
the value function. Consequently, the policy evaluation and
policy improvement subroutines are necessary for learning
G (_11) (so) and implementing Step 2.

Our challenge is complicated by the fact that a combination
of optimism and pessimism is needed for price estimation,
whereas the typical offline RL literature only leverages pes-
simism (Jin et al., 2021b; Uehara & Sun, 2021; Xie et al.,

2021). For example, when G 92 (s0) is a pessimistic estimate

~

of Vi*(so; R_;), the price estimate p; is a “lower bound,” at
least in the first term, of the actual price p; derived in (2.2).
A lower price estimate would be beneficial to the agent,
but would increase the seller’s suboptimality since, loosely
speaking, the seller is “paying for” the uncertainty in the
data set, and the reverse holds when G(_lz) (so) is an opti-
mistic estimate. The party burdened with the cost of uncer-
tainty may be different in different settings. When allocating
public goods, for instance, the cost of uncertainty should be
the seller’s burden to better benefit the public (Bergemann
& Vilimiki, 2019), whereas a company wishing to maxi-
mize their profit would prefer having the agents “pay for”
uncertainty (Friedman & Parkes, 2003).

To allow for such flexibility, we introduce hyperparameters
(1, (o € {PES, OPT}, where (; determines whether G(_1L) (so)
is a PESsimistic or OPTimistic estimate and (> does so for
G(i) (so). To highlight the trade-off between agents’ and
seller’s suboptimalities, we focus on the two extreme cases,
((1,¢2) = (PES,0PT) and ((1,(2) = (OPT,PES), where
the former favors the agents and the latter the seller. De-
pending on the goal of the mechanism designer, differ-
ent choices of (j, (2 may be selected to favor agents or
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the seller (Maskin, 2008).

With the crucial challenges identified, we introduce the
specific algorithms that we use to implement Steps 1 and 2.

3.1. Policy Evaluation and Soft Policy Iteration

We use optimistic and pessimistic variants of soft policy
iteration, commonly used for policy improvement (Xie et al.,
2021; Cai et al., 2020; Zanette et al., 2021). At a high level,
each iteration of the soft policy iteration consists of two
steps: policy evaluation and policy improvement.

‘We begin by describing our policy evaluation algorithm. The
Bellman error can be written as fx(s,a) — T} . fh+1(s,a)
for any (s,a) € S x A, h € [H], and the estimate of the
action value function f € F for policy 7 and reward r.
We construct an empirical estimate of the Bellman error as
follows. For any h € [H], f, f' € F and r € R, we define

Lh,r(fha f;b+1,7T;D) as
Lh,r(fiu fi/z-&-l’ U D)

Z fn(sh. ap)
T:l

- fh+1(8;—7,+17 7Th+1))23

h(S;;, a;)

where we slightly abuse the notation and let 7} be the re-
ported rewards 77, summed over ¢ according to the cho-

sen reported reward function r € R. Recall that R =
{R_;}_, u {R} is the set of reported reward functions
whose action-value functions need to be estimated. The
empirical estimate for Bellman error under policy 7 at step
h is then constructed as

:Lhﬂ”(fh) fh+17 5 D)
— min Ly (g, fat1, 75 D).
gE}—h,

Bh,,7'(f77T;D) (3 1)

The goal of the policy evaluation algorithm is to solve the
following regularized optimization problems:

H
QF = argmin —fy(s0, ) + A Y. By, (f, m D),
fer _
© h=1 (3.2)

H
@y = argmin fi(so,T) + A 2 By (f, m D),
fer h=1

thereby obtaining optimistic and pessimistic estimates of
Q™ (-,-;r) for any policy 7 and reward function r. We
summarize the procedure in Algorithm 1.

Next, we introduce the policy improvement procedure. At
each step t € [T], we use the mirror descent with the
Kullback-Leibler (KL) divergence to update the policies
forall (s,a) € § x A, h € [H]. By direct computation, the

Algorithm 1 Policy Evaluation

Require: Reported reward r € R, regularization coeffi-

cient A, dataset D = {(z],wj, {th}?)}fi’fil, policy
.

1: For all h, 7, calculate r] as the sum of FZ ,, Over i ac-
cording to the reported reward function 7.

2: Obtain the optimistic and pessimistic estimates of 7
using (3.2) R

3: Return action-value function estimates Q)7 , é;’

update rule can be written as

A(t+1)

T, (als)ocm, (3.3)
(

als)exp (n@f)(s.0)) . B

where @h,r’ @hﬂ" are the action-value function estimates
obtained from (3.2) (Bubeck, 2014; Cai et al., 2020; Xie
etal., 2021).

For any set of T policies {7()}7_,, let Unif({x(")}T_,) be
the mixture policy formed by selecting one of {7V},
uniformly at random. The output of our policy improve-
ment algorithm is then given by Unif ({7?@ }E ) and
Unif ({#"}7_, ), that is, the uniform mixture of optimistic
and pessimistic policy estimates. We summarize the soft
policy iteration algorithm in the form of pseudocode in Al-
gorithm 2.

Algorithm 2 Soft Policy Iteration for Episodic MDPs

Require: Reported reward r € R, regularization coeffi-
cient \, dataset D = {(z],wy, {ﬁh}?)}fﬁl, number
of iterations 7', learning rate 7).

1: Initialize optimistic and pessimistic polices, 7r( ) and

(. ) , as the uniform policy.

2: fort— 1,...,7T do

3:  Obtain the optimistic and pessimistic estimates of
Q:y) and Q:S‘t) by Algorithm 1.

4:  Update policy estimates according to (3.3) and (3.4).

5: end for

6: Let 799 = Unif({#{"}Z_,), #°u¢ = Unif({#\"}Z_,).

7: Execute Algorithm 1 to constnlct optimistic action-

value function Qout for 72U and pessimistic action-
value function QO‘” for 7rout , respectively.
8: Return {79*, Q°*} and {Vout Qonty.

We defer the pseudocode of our main algorithm to Ap-
pendix C in the form of Algorithm 3, as its construction
is apparent given the two key subroutines above.
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4. Main Results

We begin by formally defining the policy class induced by
the policy improvement algorithm, Algorithm 2. It is a
well-known result that policy iterates induced by mirror
descent-style updates in (3.3) and (3.4) are in the natural
policy class attained by soft policy iteration over F (Cai
et al., 2020; Agarwal et al., 2021; Xie et al., 2021; Zanette
et al., 2021), given by

T
Iy, = {WZ(-S)OC exp <77 D fi(s, -)) :

he [, (0L, < fh}.

Let IIgpr denote the following set of policies
[spr =1y
U {7r = Unif({z®}L ), {z®}L | < Hlt}.
4.1

Before stating the main result, we introduce an additional
notation. The statistical error Err®*®* denotes

Err*t®t — O (H(HRmaX)S/SK*I/B)

+ (5<H ((HRmaX)l/S#S TR ef,f)),

opt

while the optimization error Err°"" denotes

Err? = & (HQRmaxm) .

To differentiate the policies learned under different truthful-
ness assumptions, let ¥ = 79" be the policy chosen by the
algorithm when all agents are truthful, let 7 = %:“_t 'y be

the policy chosen when we only assume the agent ¢ is truth-
ful, and let 7 = %Oé“t be the policy chosen when no agent

is truthful. Let 7 %® %Y be the iterates of Algorithm 2
when learning these policies. Denote the prices charged by

{PiYio1 {Pi}i_y1, and {p; 5}, respectively.

We then summarize the performance of our learned mecha-
nism with asymptotic bounds in Theorem 4.1. Theorem D.1
presented in Appendix D provides a more detailed result.

Theorem 4.1 (Informal). With probability at least 1 — 6,

with suitable choices of A, 0, under Assumptions 2.3 and 2.4,

the following claims hold simultaneously.

1. Algorithm 3 returns a mechanism that is asymptotically
efficient. More specifically, assuming all agents report
truthfully, we have

SubOpt(7; s9) < Err®*

+<;Z

t=1

cF® (7r*)> Errstat,

2. Assuming all agents report truthfully, when ((1,(3) =
(PES, OPT), we have

SubOpt, (7, {Pi }7—1; s0) < Err°Pt

1 4 (1) stat
+ (T;VC (71'*)) Err®®.

When (C1, G2

) = (OPT, PES), we have
SubOpt; (7, {Ps}"_1; s0) < Err®* 4 Err®**

3. Assuming all agents report truthfully, when ({1, () =
(PES, OPT), we have

SubOpt (7, {Pi }7—1; 0) < nErr®P + Err®*at

and, when ((1,(2) = (OPT, PES), we have
SubOpt (7, {Pi}7—1; 80) < nErr®P + Err®*

Wfl)>

4. Algorithm 3 returns a mechanism that is asymptotically
individually rational. More specifically, even when other
agents are untruthful, when ({1, (2) = (PES, OPT) and
the agent 1 is truthful, their utility satisfies

UF(p;) = —Err°P" — Err™ta*
1 & O
|7 2L NCTE)
t=1

1 T
F(t)
*T; C (W;“ﬁﬁi)).

and when ((1,(2) = (OPT, PES) and the agent i is truth-
ful, their utility satisfies

UF(p;) = —Err°P* — Err®tat

|z
0 (%
X (TZMC’ (ﬁri+ﬁ,i)+
=1
1 -

& A
+TZ C




Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning

5. Algorithm 3 returns a mechanism that is asymptotically
truthful. More specifically, even when all the other agents
are untruthful and irrespective of whether the agent i is
truthful or not, for all i € [n] when (3 = OPT the amount
of utility gained by untruthful reporting is upper bounded
as

U " (p, B~ UF(p;) < Err®* + Err™t™*

3

x (;é JOFI@ 1/0?%@))) ,

and when (5 = PES, the amount of utility gained by
untruthful reporting is upper bounded as
7

U (D, ) — UZ(p;) < Err®"  Err®t*

1 G .
x (T; CW()(WHJrﬁ_i)""”C (7r))>

Proof. See Appendix D for a detailed proof. O

‘We make a few remarks about Theorem 4.1.

Dependence on the number of trajectories K. The only
term that depends on the number of trajectories K is the
statistical error Err®*" and it decays at the O(K ~/3) rate,
matching the sample complexity of the pessimistic soft pol-
icy iteration algorithm (Xie et al., 2021). When data set has
coverage of the optimal policy and no function approxima-
tion bias, our algorithm converges sublinearly to a mecha-
nism with suboptimality O(K'/?). Furthermore, when data
set has sufficient coverage over all policies and the function
class satisfies Assumptions 2.3 and 2.4 exactly, our algo-
rithm is asymptotically individually rational and truthful at
the same O(K /%) rate, a result that is not implied by the
existing literature on offline RL (Xie et al., 2021; Jin et al.,
2021b; Zanette et al., 2021).

Dependence on (;, (5. Observe that (; and (, affect the
bounds in Theorem 4.1 by changing the distribution shift co-
efficients involved for each suboptimality. The inclusion of
optimism in offline RL for mechanism design is crucial, as
the optimal individual suboptimality rate is attainable only
when (; = OPT. Different from the existing work on offline
RL which extensively uses pessimism, we demonstrate the
importance and necessity of optimism when offline RL is
used to help design dynamic mechanisms (Xie et al., 2021;
Jin et al., 2021a; Zanette et al., 2021).

Dependence on F, IIspr. The statistical error term Err®™

is the only term that depends on F, IlIgpy through the log
covering numbers of F and lIgp;. The covering numbers
are formally defined in Appendix F and the theorem’s de-
pendence on the covering number is made explicit in the
non-asymptotic version, Theorem D.1. We emphasize that

our results are directly applicable to general, continuous
function classes via a covering-based argument, improving
over the results in Xie et al. (2021).

Comparison to related work. While deep RL algorithms
such as conservative @Q-learning (Kumar et al., 2020), con-
servative offline model-based policy optimization (Yu et al.,
2021), and decision transformer (Chen et al., 2021) have
achieved empirical success on popular offline RL bench-
marks, such algorithms rarely have theoretical guarantees
without strong coverage assumptions. Within a mechanism
design context, such a lack of theoretical guarantees is par-
ticularly problematic, as we cannot ensure that the learned
mechanism is individually rational or truthful, potentially
leading to significant ethical issues when applied to real-
world problems. When compared to Xie et al. (2021), our
work features a streamlined, simplified theoretical analysis,
which we sketch below, that is directly applicable when both
| 7| and |II| are unbounded using a covering-based argument,
whereas the convergence bounds in Xie et al. (2021) grows

linearly in the term 4/ w in the general function

approximation setting.

5. Proof Sketch

To prove the results in Theorem 4.1, we need to first ana-
lyze the concentration properties of the empirical Bellman
error estimate, By, ,.(f, m; D). As the function approxima-
tion class F and the policy class II often contains infinite
elements, it is crucial that the tail bounds we obtain remain
finite even when both |F| and |II] are infinite.

We begin by sketching out the concentration bounds
for By, ,(f,m,D). Consider some arbitrary and fixed
h € [H] and r € R. Let Z be the random vector
(Shyan,Th(Sh,an), Sh+1), where (sp, ap, Sp+1) ~ wp, and
Z; its realization for any j € [ K] drawn independently from
Dy. Forany f, f' € F, and 7 € I, we further define the
random variable

97.5/(Z) = (fu(snran) = n = fror (sh1, 1))

— (T o fhea (snyan) = = fhaq (Sne1, The))?,
(5.1)

and g7 ;/(Z;) its empirical counterpart evaluated on Z’s
realization, Z;. Recalling the definition of the Bellman
transition operator T7 ,, we can show that

Ez~un [g}r,f'(Z)] =|fn— Z,rfi/wrl

The boundedness of functions in F and reward functions
r € R ensure that

Va‘r(g}r,f’(z)) < 16H2Rr2r1ax“fh - Z,T‘f}lb‘f‘l

With both the expectation and variance bounded, we can
derive a tail bound for the realizations g7 (Z;), thereby

|g;uh'

2
|2,Mh'
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ensuring ZJ 197 p(Z;) is sufficiently close to | f, —
’]I‘Z’T,thHQ’M for a specific choice of f, f/ € F and 7 € II.

We then focus on the function g7 f itself. Let Grp =
{95, 5

fr : f,f € F,m € II}. Examining the definition
of gF ;/(Z) in (5.1), we can directly control the covering
number of Gz 11 using covering numbers of F, I1, more for-
mally introduced in Appendix C. Using a standard covering
argument, we obtain a tail bound for g7 (,(Z) for all possi-
ble choices of f, f’ € F and 7 € II, even when both F and
II are infinite, via the covering numbers of F and II.

Finally, we notice that - Z]Iil 97 (Z;) is close to
By, »(f,m; D) under Assumptions 2.3 and 2.4, linking the
concentration behavior of & 2511 g7 +(Z;) to the empiri-
cal losses By, ,-(f, m; D) we observe.

5.1. Seller Suboptimality

We now sketch the proof for bounding the seller’s opti-
mality to provide some intuition on how to prove Theo-
rem 4.1. Equation (D.4), given in the appendix, bounds
SubOpty (7, {Pi}izy1; s0) as

SubOpty (7, {Pi}i1; s0)

< z (vf*%sO;R_n -6
NCE

— Vi (s0, R— ))

The second term corresponds to the error bound of Algo-
rithm 1. When (» = OPT, the term exactly corresponds
to the classic function evaluation error of the upper confi-
dence bound methods. As such, it can be bounded using a
combination of the distribution shift coefficient C* (%) and
the fact that Q &_, minimizes (3.2). When (» = PES, we
bound the term using the fact that the output of our policy
evaluation algorithm is approximately pessimistic, similar
to Lemma C.6 of Xie et al. (2021).

7\'* .
Next, we focus on the first term G(fi)(so) — V] ~"(s0; R—s)-
When (; = OPT, we use the following decomposition

*

G (s0) = Vi (s0: R—y)

*

T
¥, 1 A ~
=V, 7(s0; R_y) — T Z Qﬁf)R_,.,(SO,ﬂ%_v)

T Z (QPR_@ S0,

+ Vf—”(so;R—i) — ?uj% (50, T1,—4)-

The first term can be bounded using the properties of mirror
descent (Bubeck, 2014). The latter two terms are function

evaluation errors, which we can bound in a similar way as
G(_Ql) (s0) — Vi (s0, R_;). The first term can be similarly
bounded when (; = PES, completing the proof sketch.

6. Discussion

Our work provides the first algorithm that can provably learn
the dynamic VCG mechanism with no prior knowledge,
where the learned mechanism is asymptotically efficient,
individually rational, and truthful. For future work, we aim
to study the performance of our algorithm when the training
set is corrupted with untruthful reports.
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A. Table of Notation

The following table summarizes the notation used in the paper.

Notation Meaning
Tih/Tih actual / reported reward function for agent ¢ at step h € [H |
R_in/ (E_Zh) actual / reported sum of reward function across all participants sans agent ¢
Ry/ (éh) actual / reported sum of reward functions across all participants
R/ R actual / reported reward functions of interest.
Th the policy taken by the seller at step h € [H |
T3 . policy specific Bellman transition operator
C™(v) Distribution shift coefficient (see Definition 2.5)

C™ (m3) Shorthand notation for C™ (d., )
O optimistic / pessimistic policy estimate at the ¢-th iteration of Algorithm 2 with input
ﬂ—h,r/(/frh,r) re ﬁ
A « optimistic / pessimistic action-value function estimate at the ¢-th iteration of
QN0 mm e

NOIIO)
h,r h,r . cq - ~ AThr  XThr
Algorithm 2 with input r € R. Shorthand for Q,,";" (Q,,;")

TN/ (FEont) optimistic / pessimistic policy output of Algorithm 2 with input r € R
~ ~ optimistic / pessimistic action-value function estimate output of Algorithm 2 with
Qout ( out) p p p g

/(@R . 5 AR s

input r € R. Shorthand for Q" (Q,";")

B. Proof of Mechanism Design Desiderata (Proposition 2.2)

Those familiar with the literature on mechanism design may quickly realize that our price function is derived using the
Clarke pivot rule (Nisan et al., 2007). The result is directly derived from the properties of the VCG mechanism (Nisan et al.,
2007; Parkes, 2007; Hartline, 2012). We include a full proof for completeness.

With P and {7;}]" , given, the state-value functions V;7 (s, r) can be explicitly calculated for all h € [H],7 € R. We can
then obtain exactly 7* and directly calculate p; = V;*(sg, R—;) — Vfr* (so, R—;). Thus, the proposed mechanism is feasible
when the rewards and transition kernel are known.

For convenience, let

) = g* — argmax V{" (so;r; + R_;) and 7® = 7% = argmax Vi (so; R),

rit R mell mell

denote the policies chosen by the mechanism when the agent i is truthful and untruthful, respectively, without assumptions
on the truthfulness of other agents.

We now show that the three desiderata are satisfied by the mechanism.
1. Efficiency. When the agents report {r;}_; truthfully, the chosen policy 7* maximizes the social welfare and is efficient
by definition.

2. Individual rationality. The price charged from the agent 7 is

(2)

pi = Vi¥(s0s Rey) = V™ (s05 R—y).

Our goal is to then show that V1”(2) (s0;7i) = p;. That is, the value function of the reported reward is no less than the



Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning

price charged. Observe that

(2) ~

T ~ 7(2) ~ ~
VIT (s0;7) = pi = Vi (s03 R) — Vi*(s0; R—).

Let 7r(_22 — argmax, . V{7 (so; R_;). Then we know that
e oy~ 3 ~ 3 ~ e
VI (s057) = Di = Vi (s0; R) = Vi (s0: Bei) = Vi (s037) = 0.

3. Truthfulness: If 7; = 7, that is, the agent i reports truthfully, they attain the following utility

(1)

U (i) = Vi (s0315) — Vi (s03 Boi) + VI (s Rei) = VI (sosmi + R_i) — ViF(s0; B_y).

When the agent reports some arbitrary 7;, the agent receives the following utility instead
e e ~ e ~ 22 ~ ~
Ui (pz) = V1 (80;7’2') —Vl*(SO;Rfi) +V1 (So;R,i) = Vi (80;7”7;+R7i) —Vl*(SO;R,i).
Since () maximizes V™ (s0; 74 +1§,i), u; > 1, regardless of other agents’ reported reward {7’; } ;»; and the mechanism
is truthful.
C. Pseudocode for Offline VCG Learn

Let Ny (€, F) be the e-covering number of F with respect to the £o,-norm, that is, the cardinality of the smallest set of
functions {f'};% such that for all f € F there exists some [ € [L] such that

l
max su s,a) — fn(s,a)| < e
he[H]ses,iAUh( ya) = fn(s,a)| <

We also let N, 1 (€, IT) be the e-covering number of IT with respect to the following norm:
lopa(m—7) bup Z | (a|s) — 7, (als)].
SES acA

With the covering numbers defined, we introduce the main algorithm and the parameter choices for the algorithm, which
depend on the covering numbers. For the main algorithm, we set

1/3
)\ = k , M (C.1D)
H?(es + 3ex)? 2H2R12nax
where 3153 44
5136 19H°R, 19H*R
€ = “—H'R}  log <56nH-NOC (Kmax ]—") N < max Hsp[) / 5>

The pseudocode for our main algorithm can then be summarized as Algorithm 3.

D. Proof of Theorem 4.1

We re-state Theorem 4.1 in a finite sample form.

Theorem D.1 (Theorem 4.1 restated). Suppose that \,n are set according to (C.1) and Assumptions 2.3 and 2.4 hold. Then,
with probability at least 1 — §, the following holds simultaneously.

1. Assuming all agents report truthfully, the suboptimality of the output policy 7 is bounded as

2log | A|
T

T
1 .
+H (T t:zl \/ CFY (77*)) (2(HRmaX)1/3(es +3ex)Y3 + \/Bes + 12ex + 3ex f)

SubOpt(7; s0) < 2H? Rax + A J€F + 2(HRmaX)1/3(es + 36]:)1/3
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Algorithm 3 Offline VCG Learn
Require: Hyperparameters (1, (2 € {OPT, PES}, regularization coefficient A, number of iterations T, learning rate 1.
1: Let 72 be the pessimistic policy output of Algorithm 2 with 7 = R, T,and \, 7 set according to (C.1).
2: for Agenti =1,2,...,ndo
3:  Call Algorithm 2 with r = R_i, T, and \, n set according to (C.1).
4:  If ¢y = OPT, let G(fi)(so) = @0“3 v(so 7ou ). Otherwise let G(ji)(so) = é‘l)“t (so Fout )
5

1,R_; 1,R_
Call Algorithm 1 with r = R_jm= woﬁut and A set according to (C.1).

A~ pout

. — (2) >out
6: If {5 = OPT, let Gfi (80) Q }}z (80, LM E)
Otherwise let G(fi)(so) = Cj % (so, Vi"};)
7:  Set the estimated price p; = G( 2(80) G(j-)(so).
8: end for
9: Return policy 7

79" and estimated prices {p;}7_;.

2. Assuming all agents report truthfully, when ((1,(2) = (PES, OPT), the agent i’s suboptimality, for all i € [n], satisfies

2log | A|
T

( Z A/ CTO (%) ) ( (HRunax) Y3 (es + 3ex)'/? + \/8€s + 12ex + 3er ]—')

and when (1, (2) = (OPT, PES),the agent i’s suboptimality, for all i € [n], satisfies

SubOpt; (7, {Pi 715 50) < 2H? Rinax + 3y/er + 6(HRuax) "> (€5 + 3e7)"/3

2log | A
T

H (;‘F i VOO (%) 4+ JCF-(7_0) + \/C%(%)>

X (Q(HRmaX)l/S(es + 36]:)1/3 + \/863 + 12ex + 36]:7]:) .

SubOpt, (7, {pi}i1: 50) < 2H” Rinax + Ver + 2(HRpax) 3 (€5 + 3ex) /3

3. Assuming all agents report truthfully, when ({1, (2) = (PES, OPT), the seller’s suboptimality satisfies

21
SubOpt (7, {Pi }7—1; S0) < 2nH?Rumaxh | M + naJer + 2n(HRmax)1/3(es + 36]:)1/3

X (Q(HRmax)l/ (Gs + 36]: 1/3 + \/865 + 12e 5 + 3er ]:)

and when ((1,(2) = (OPT,PES), the seller’s suboptimality satisfies

21
SubOpt (7, {Di }iq; So) < 2nH? R pax %V” + 2n/er + 4n(HRmax)1/3(eS + 36]:)1/3

o (Z : 2 N ) + \/O’?g)i(ﬂ?i)))

x (z(HRmax)l/?’(es +3e7)/3 + \/Bes + 12e7 + 3e;f) .

4. (Asymptotic Individual Rationality) Even when other agents are untruthful, when ({1, (2) = (PES, OPT) and the agent i
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is truthful, their utility is lower bounded by

~ 21
Uﬂ-(ﬁz) = _4H2Rmax O§1|A|

K2

3ver — 6(H Ruax) 3 (es + 3ex)1/?

x (2(HRmaX)1/3(es +3e7)3 + /Bes + 1267 + 3ef,f) :
and when (1, (2) = (OPT, PES), their utility is lower bounded by

21
%'A' — 2/ex — 4(H Rupa) 3 (65 + 3e5) 3

X (Q(HRmax)l/3(GS + 36]: 1/3 + \/865 + 12e 5 + 3er ]:)

U%(ﬁl) = *4H2Rmax

2

5. (Asymptotic Truthfulness) Even when all the other agents are untruthful and irrespective of whether the agent 1 is
truthful or not, when (o = OPT, the amount of utility gained by untruthful reporting is upper bounded by

2log | A

T +2«/€;+4(HRmax)1/3(es +3e].-)1/3

X (Q(HRmax)l/S(Es + 36]: 1/3 + \/865 + 126 + 3er _7:)
and when (5 = PES, the amount of utility gained by untruthful reporting is upper bounded by

P - 2log | A
UTR (5, 5) — UF (5) < 2H2 Ry 75' |

U (
T
B

X (2(HRmaX)1/ (es + 36]:)1/3 + \/863 + 12e7 + 36]—1]:) )

+2y/ex + 4(HRunax) > (e + 3ex)"/?

Proof of Theorem D.1. We will make use of the following concentration lemma.

Lemma D.2. For any fixed h € [H], r € R, and any policy class I < {S — A(A)} we have
Pr(af,f' e Forell:
|Euh [Hfh - 7}1z',rf}/z+1‘|2] - Lhﬂ‘(fhv f}/L+177T;D) + Lh,T< ;zr,rf}/hLl’ ff/L+1>7r;D)|
€ (a+B+Ey, [1fn—Th Sral?])
2 2
el ef ‘(1 —e)aK
<2 2 P q f .
8 <N°° (140HRmax f)) Moot <14OH2R2 )eXp< 214(1 + ¢)HAR2

max max

SJoralla,8>0,0<e<1/2

Proof. See Section F.1 for a detailed proof. O
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Our proof hinges upon the occurrence of a “good event” under which the difference between the empirical Bellman error
estimator and the Bellman error can be bounded. We formalize the definition of the “good event” below.

Lemma D.3. For any policy class 11 = {S — A(A)}, let the “good event” G(I1) be defined as
={Vhe [H,reR,mell, f,f € F:
B [0 = TF o s 7] = Lo (frs Frrs 75 D) + Lo (Th 1 fri1s frgr, @ D) (D.1)
1 T
< e+ SEullfn - Thofhal?1),

where

5136 19H3R? 19H*R?
€s = H4anax log (56nH “No <Kmax f) N ( max H) / 5) (D.2)

Then G(IT) occurs with probability at least 1 — J.
Proof. See Section F.2 for a detailed proof. O

On the event G(II), the best approximations of action-value functions, defined according to Assumption 2.3, have small
empirical Bellman error estimates.

Corollary D.4. Let II be any policy class. Conditioned on the event G(I1), let fT* € F be the best estimate of Q7 (-, ;1)
as defined in Assumption 2.3, m € Il and v € R. Then, for all h € [H], we have

Bhyr(f;n*?ﬂ—;p) < 2€S + 66]:.
Proof. See Section F.2 for a detailed proof. .

We can also show that any function with sufficiently small empirical Bellman error estimate must also have small Bellman
error conditioned on the good event.

Corollary D.5. Let €9 > 0 be arbitrary and fixed. For any policy class 11, conditioned on the event G(M), forall h € [H],
reported rewardr € R, w e 11, f € F, if By, »(f, ;D) < €, then

Ep, [I1fn — Z,rfh+1||2] < 2¢g + 4es + 3er .
Proof. See Section F.2 for a detailed proof. O

We introduce the key properties of Algorithms 1 and 2 that we will use. The following lemma states that the outputs of
Algorithm 1 are approximately optimistic and pessimistic.

Lemma D.6. For any m = {7Th}hH=1 € llgp1, reported reward r € ﬁ, and )\, conditioned on the event G(llspr), the
following holds simultaneously for optimistic and pessimistic outputs of Algorithm 1:

1. é’ir(so,wl) + )\Zthl Bhyr(é?,ﬂ; D) < QT (s0,m1;7) + +/€F + 2A\Heg + 6AHer;
2. @f)r(so, ) — /\ZhH=1 Bh,r(@’;,ﬂ; D) = QT (s0,m1;7) — /€F — 2 AHes — 6AHer.

Proof. See Section E.1 for a detailed proof. O
Additionally, the estimates given by Algorithm 1 are sufficiently good estimates of the ground truth action-value functions.

- 1/3
Lemma D.7. For any input m = {wh}le € Ilgp1, reported reward r € R, when \ = (%) and the event
G(lgpr) holds, the outputs of Algorithm 1 satisfy:

1. QT (so,m1;T) — @T’T(so,m) < Hy/C™(m) (2(H Rmax) 2 (es + 3ex)/? + \/8es + 1267 + 3ex 5):
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2. @;r(so,m) = QT (s0,m1;7) < Hy/C™(m) (2(H Rinax)?(es + 3€7)"/3 + \/Bes + 12e7 + 3ex 7).
Proof. See Section E.1 for a detailed proof. O

Finally, we bound the difference between outputs of Algorithm 2 and the true values. More precisely, we characterize the
performance of the output policy with respect to any comparator policy, not necessarily in the induced policy class Ilgpy,
and bound the difference between the estimated value function and the true value function of the output policy.

Lemma D.8. For any comparator policy m (not necessarily in llgp1), any reported reward function r € R, with 7 set to

1/3
A/ % and \ set to (%) in Algorithm 2, the following claims hold conditioned on the event G(Ilgpr):

es+3er

1. Let Qgt)r an ,( ) be the pessimistic value function estimate and policy estimate. Then

2log | A|

1 ~ -
VI (s0i7) = 75 2 Q0 (0. 710) < 2H? R\ | =

1 < e
+H (T AR )) (2(HRmax)1/3(eS +3ex) Y + \/Bes + 12e7 + 36;;) .

2. Let Qgtl and %ﬁt) be the optimistic value function estimate and policy estimate. Then

2log | A

1 ~
‘/177<80; T) - Z Qgt)r (807 71-?2) 2H2Rmax T

)

T
1 .
v H (T 3 Cﬂﬁ)(w)> (Q(HRmax)1/3(es +3ex) '3 + \fBes + 12¢x + 36;,;) .
t=1

Proof. See Section E.2 for a detailed proof. O

We then proceed with the proof as follows. We start by bounding the suboptimality of the output policy, defined according to
equation (2.3). We then bound the regret of each individual agent and the seller. We follow up with showing that our output
asymptotically satisfies individual rationality. Finally, we prove that our output also asymptotically satisfies truthfulness.

We use the following notation to differentiate the policies and prices learned under different truthfulness assumptions. Let

7 = 79" be the policy chosen by the algorithm when all agents are truthful, let 7 = 7Vr°“fr » be the policy chosen when we

—1i

only assume the agent 4 is truthful, and finally let 7 3 = 7\?%‘“ be the policy chosen when none of the agents are truthful. Let
the prices charged by the algorithm be {p; }; |, {P:}i—, and {p, j}i=,, respectively.

Social Welfare Suboptimality Assuming all agents are truthful, we have 7; = r; for all 7. Let 7* be the maximizer of

V" (s0; R) over 7 and let 7 ( ) be the pessimistic policy iterate of Algorithm 2. We know that the social welfare suboptimality
of 7 is

T
SubOpt(; s0) = Vi™ (s03 R) — Vi (s03 R) = Vi7" (s0; R 2 (s0: R

i ( (s0; R) = QT (s0, 71" R?R))

as we recall that 7 is the uniform mixture of policies {7\?%) }te[r)- By Lemma D.6, we have

T
SubOPt (7 s0) < 7 Z ( (s0: R) — Vg‘fg(so,ﬂf}{;m) 4 Jer + 2\Hes + 6AHe, (D.3)
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Q 1/3
where QE:? is the pessimistic estimate of Q(-, -; R) at the ¢-th iteration of Algorithm 2. When X = (%) and
n= \/Mhiii% , we apply Lemma D.8 to obtain

21
Subopt(%, 50) < 2H2R1nax O?.,‘f” + \/a + Q(HRmax)l/s(es + 36].‘)1/3

T
1 o , ,
+H (T Mo (7r*)> (2(HRmaX)1/‘5(es +3e7) 3 + /Bes + 125 + 35;;) .
t=1

Individual Suboptimality Let 7*, be the maximizer of V™ (so; R_;) over 7. By Algorithm 3, the price p; is constructed
as

i = GY(s0) — G (s0),

—1

where G(_12 (s0) is an estimate of v (so; R—;) obtained using Algorithm 2 and G(_21) (s0) is an estimate of V7 (sg; R_;)
for Algorithm 3’s output policy, 77. This observation will be extensively used in the remainder of the proof.

Assuming all agents are truthful, we have 7; = r; for all 4. Recalling the construction of p; in Algorithm 3 line 3 and the
definition of {p}? ; (see (2.2)), we have

SubOpt, (7, {Pi }i=1; 50)
T o e Flo (1) (2)
= V1 (80,7"7;) + V1 (So, Rfl) — Vl (So7 Rfl) — Vl (80, 7’2') + G_,Lv (80) e G—i (80)
= Vi (s0; R) = Vi (503 Ri) — Vi (s0370) + G (s0) — G (s0)

—1

<V o0 ) =V o )+ (G o) = (s -0 ) + (Vs ) = 6o
= SubOpt(F; so) + <G<_13(so> — Vs R_») + (VW (0 Bi) = G2(s0))

We have already bounded the first term and now focus on the two latter terms.

We begin by examining G(fz) (so) — Vlﬂf"' (so; R_;).

*
. .. .
* Suppose ¢; = OPT. Since 7*; maximizes V; ~*(so; R—;) over m, we have

(1) w*; (1) R
G2 (s0) = V) ""(s0; R—i) < GLj(s0) — Vi (805 R—s).

—1

Recall that @Oufi is the optimistic function estimate from the output of Algorithm 2, which is exactly the output of
Algorithm 1 called on the policy returned by Algorithm 2, 7_;. By Lemma D.7, we know that

G (s0) = Vi " (s0; Rs)

< HyJCF—i(7_;) (2(HRmax)1/3(es +3e7)3 + \/Bes + 1265 + 3ef,f) .
* Suppose ¢; = PES. Since 7*; maximizes V| (so; R—;) over m, we have
(1) % (1) ¥
G (so) = Vi "(so; R—i) < GZi(s0) = Vi " (s0; R—i).
(1) Aout g R 1/3
Recall that G2} (so) = Q7% _, (S0, 71,—i). When \ = (W) , by Lemma D.6 we have

71’*,
G (s0) = V" (s0: R_y) < vJer + 2(HRimax) /3 (es + 3ex) V3.
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1/3
Roax ) /

We perform a similar analysis for V7 (so; R_;) — G(_QB (so) and when \ = (W

» When (5 = OPT, V[ (so; R_;) — s )(30) < /€7 + 2(HRpmax) /> (es + 3¢x)'/? by Lemma D.6.

¢ When (5 = PES, let Q &_, be the pessimistic output of Algorithm 1 called on 7. By Lemma D.7, we have

Vfr(So; R_i) - G(_QZ)(SO) <H C’VT(%) (2(HRn1ax)1/3(€S + 36_7: 1/3 + \/863 + 12e5 + 3ex _7:)

Seller Suboptimality We now turn our attention to the sellers’ suboptimality. Assuming all agents are truthful, we have
7; = r; for all 7. Recalling the definition of {p}}?  in (2.2), we have

SubOpty (7, {Pi}i1; s0)

= Vi (s0;70) — Vi (503 70) + 2 (ﬂn?ﬂ( V7 (s0: Rg) — Vi (s0; R ) 2 Di

i=1

I

@
Il
—

max Vi (so; R_i) — (n — 1)V1’T>k (s0; R) — V¥ (so;70) — Z G(_12 (so) + Z G(_QB (s

m'ell ‘
i=1

Il
INgE

ale so;R_;) — G(_lg(so)> — (n— DVF (so; R) — Vi (s0;70) + Z G (s0)

s < “~ (D.4)
- j ( “(s0; R_;) — G (So)> + (n—1)(V{¥ (s0: R) — Vi" (s0: R))
# 35 (6260) — V0. 7))

i=1

n

;(Vl “(s03 R—;) — G > i( ~ Vi (s0.R0))

where the last inequality comes from the fact that 7* is the social welfare-maximizing policy. The two terms can be
bounded similarly to bounding the agents’ suboptimality. We discuss the exact bounds for different choices of (3, (2 and

1/3
_ Rmax _ log | Al
A= <H2(63+36F)2) = 2Hg%%§wa‘
* When ¢; = OPT, by Algorithm 3 line 3, we know that for any i € [n],
W* (1) ‘"Ti Aout
Vi T (s0; Rei) — GZi(s0) = Vi "' (s0; Rei) — Q7'k_, (S0, T1,—i).

By Lemma D.8, we know that

T
¥ 1 ~ R
W (s0i Rei) = 0, Q% (50,71 ) < 2H? R

T
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Lastly, by Lemma D.6, we also know that
Vi (s0; Rei) — Q% (50, 71,-1) < ver + 2(H Runax) (€5 + 3e5) .

Summing the three parts tells us that, for all i € [n], we have

vy

VI (503 Rei) — dk)

=V _i(So;R—z‘) — Q%% (s0,71,-4)

21
< 2H2Rmax\/m + r + 2(HRmax) (ES + 36-7:)1/3 (D.5)

(Ve )

X (Q(HRmax) 3(es + 3ex) /3 + \/Bes + 1265 + 3ef,;)

and

——— t nJeF + 2n(HRmax)1/3(es + 36]:)1/3

e (545 (Ve o)

X (Q(HRmaX)l/B(es + 36]:)1/3 + \/863 + 12ex + 36]:7_7:) .

* When (; = PES, by Algorithm 3 we know that for any i € [n],
m*, (1) ¥, Sout ~
Vi T(s0s R-i) — Gi(s0) = Vi (s0; R-i) — QT'r_, (S0, 71,—i)-
By Lemma D.8, we know that

2log | A|

Vl - T

T
1« ~ - 5 f
7 2 Ol o A ) = VT (o0 Red) < Ve 2(H ) (s o+ 8e5)

By Lemma D.7, we further know that

V" (so; Rei) — 'i)u}% L (50,71,-4)

<H \/0”7() ( (H Runax) " (€5 + 3ex) "/ + \/8es + 12e5 + 3ef,f) :
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Summing the three parts together tells us that, for all ¢ € [n] and any C' > 1, we have

%, (1) ™, Aout ~
Vi 7 (s0s R—i) — GZi(s0) = Vi ~"(s0; R—i) — QT'k_, (S0, F1,—i)

21
°§,'“4| + VeF + 2(H Runax) Y2 (€5 + 3e) 12

(D.6)
— 1 & =)
+H <4/C’”i(7r_i) + 7 ;:1 C Ri(w*i)>

x (Z(HRmax)1/3(es +3ex)/3 + \/Bes + 12¢7 + 36]:7]:)

and

3 (Vo ) — 600

21
< 2nH?Rpax\| —=— og|.A +m/e;+2n(HRmax)1/3(es+3e}-)1/3
+H< t U7 Z\/C - )
i=1 i=

« (2(HRmax)1/ (s + 3ex) /3 4+ \/Bes + 1265 + 3ef,;) .

\M:

* When (; = OPT, for all i € [n], let Q7 %_ be the pessimistic estimate of Q7 (-, -; R_;) returned by Algorithm 1. By
Lemma D.7, we know

35 (6220 = Vi o0, )

CF (%) (2(HRmaX)1/3(es +3e7)3 + /Bes + 1267 + 3ef,f) :

* When ¢, = PES, 37", (G?,?(so) — Vi (s0, R,i)) < nyfer + 2n(H Rinax) Y3 (es + 3¢7)Y/3 by Lemma D.6.
Plugging in the bound for SubOpt(7; sg) completes the proof.

Individual Rationality We show that the utility of any agent ¢ is bounded below. First, assume for convenience that all
other agents are truthful and report their true ;7 j, for ¢’ € [n]\i. Recall that for any price p;, the agents’ expected utility
under the chosen policy 7 can be written as

Ea, [u:] = Vi (s0;7:) — ps.
According to Algorithm 3, we have
Exlui] = Vi (s0;m:) — G (s0) + G (s0)
= Vi (s0;70) + G2 (s0) = V7 (503 Roi) + V7 s0: Roi) = GV (s0)
— (V™ (50 R) = V™1 (50; R4)) + V¥ (s0575) + G (50) = V™" (s03 R)
+ V™ (505 R_) — G (s0)
>V (s0175) + G (s0) = V™ (s0; R) + Vi (s03 Ry) — G (s0)
= G (s0) = VF(s0; R_i) + V(503 R) — V™ (s0; R) + Vi (s0; R_i) — G (s0),

(D.7)

where the inequality comes from the fact that

*

(V™ (s0; R) = V™ (s0; B_y)) = (Vi (s0; R) — Vi (503 B_y)) = Vi (s0:75)) = 0,
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as r; p, € [0,1] for all 4, h. We already know the lower bounds for Vi (so; R—;) — Gg) (so) and G(fi)(so) —V7(s0; R_y)

, respectively, when bounding the individual suboptimalities for the agents. Also note that V7 (sg.g) — y* (so; R) =
—SubOpt(7; s¢) has been bounded when bounding social welfare suboptimality.

Similar to the previous sections, we now discuss the bounds for the different terms under difference choices of (y, (o.
e When (; = OPT, by equation (D.5) we know that

i 21
G (s0) — V" (503 Rei) = —2H? Rinax og 2log 4] — \/€F — 2(H Runax) 3 (es + 3e5) /3

u (; 5 <\/C%;;>i(ﬁi) . % > G0 ))>

t=1

X (2(HRmax)1/3(€s + 36]: 1/3’ + \/865 + 12e 5 + 3eFr ]:)

¢ When (; = PES, by equation (D.6) we know that

¥, 21
G (s0) — V" (503 Ri) = —2H? Rinax Og 2log | 4] — \er — 2(HRuax) /3 (es + 3ex) /3
o CF—i (7 IS C%? (o
— () + T t; i(m*))

x (2(HRmax)1/3(es +3ex) 3 + \/Bes + 12¢7 + Ber f)
e When (> = OPT, by Lemma D.6, we know that
G (s0) = V7 (50; Reg) = —v/er — 2(H Runax) Y (es + 3ex) >,

e When (» = PES, by Lemma D.7

G® (s0) — Vi (s0; R_i) > —HA/CF (%) (Q(HRW)”?’(eS +3ex) /% + \/fBes + 12¢7 + 3er f)

We now argue that our analysis holds even when the other agents are not truthful. Recall that 7 is the output policy selected

by Algorithm 3 when other agents report 7 and the agent ¢ reports truthfully. Observe that here the decomposition in
equation (D.7) can be written as

*

Ex[ui] > G® (so) — (so, L)+ VE(sosri + Rog) — Vit i (sosm; + R_y)
F* ~(
+ V501 Reg) = G (s0),
where we recall that B_; = DiziTir, and Wj,+§ ~and 7*; maximize V{"(so;7; + R_;) and Vi (so; R_;) over

respectively. We also let CNJ(_lz) , G (_22 be the estimates used in Algorithm 3 line 3 when other agents are reporting untruthfully.

Similar to the previous sections, we bound different terms under difference choices of (1, (5.

e When (; = OPT, similar to equation (D.5), we have

~ ;r*v ~
G (s0) = Vi7" (505 i) = —2H Runas\| e = Ver — 2(H o) /% 65 + 3¢5) "

1 & %g)_
(50

x (2(HRmaX)1/3(es +3ex)/3 4 \/Bes + 12e7 + Sef,f) .
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e When (; = PES, similar to equation (D.6), we have

210g 2log |A[

v(t)
C R_ ~*

x (Q(HRmaX)l/ (s + 36]:)1/3 +/8es + 12e7 + 36;,;) .

~ F%¥ ~
G (s0) = Vi (505 R) = —2H? R = Ver = 2(H Ruax)' P (es + 3er)?

e When (» = OPT, by Lemma D.6, we know

~

G(_Qi)(so) — V7 (s0; R_i) = —/eF — 2(H Rinax) '/ (es + 3e5) /2.

* When (» = PES, by Lemma D.7

G (s0) = Vi (s0; R_s) = —H\/CF (%) (2(HRmax)1/3(eg +3e7) 3 + /Bes + 1265 + 36;,;) :
where 7 is the policy that the seller chooses when agent ¢ reports truthfully and the other agents do not.
*

We finally focus on lower bounding V7 (sq;r; + é_l) — ViR (so;mi + ﬁ_l) Since 7 is the uniform mixture of
{F O} (7). we have

71'* ~ ~ ~ ~
v, T (80; ri + R_g) — Vi (so;mi + R_y)
T - N o N
=7 Z ( " +R’l (so;m + R—i) — Vi* "(so;7i + RZ)>
} -
r; R_7 ~
<7 Z (Vl i (s03mi + Ry) — QgthrR (so,7r§t))> + Ve + 2(HRuax) 3 (es + 3e5) 3

by Lemma D.6. By Lemma D.8, we know that

¥

L ritf > X (t) ~(t) 2 2log | A
T ; V1 (SO;Ti + R—z) Ql 7‘L+R L(SO,Wl ) < 2H Rmax - 7

T

1 & .
+H (T ;1 CF >(7rji+§i)> (2(HRmaX)1/3(es +3ex) Y3 4+ \/Bes + 12e5 + 36;7]:) .

Therefore, we have

s

V, " (s + Reg) — Vi (sosri + By)
21
< 2H? Rax %'A‘ + Ver + 2(H Runax) (s + 3ex) (D.8)

T
( Z C*O (x r1+R, )) (2(HRnlax)1/3(€S + 36}.)1/3 + \/858 + 12e7 + 36]:,]:) .

Flipping the signs yields the final bound.

Truthfulness Similar to above and let 7, be the potentially untruthful reward functions reported by other agents and let 7;

be the untruthful reward function that the agent i may report. Furthermore, let R_; = Dlirzi Ter and R= S T
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Let 7 be the policy chosen by the seller when the agent i is truthful and other agents are possibly non-truthful and 7 3 the
policy chosen by Algorithm 3 when both the agent ¢ and other agents are non-truthful. The agents’ expected utilities for the
two cases are

Ex[us] = Vi (s0575) + G2 (s0) — G (s0),

= ~

7
Ea, _[ui] = V{"*(s0:75) + GM (s0) = G (s0),
where G ) (50) estimates V7 (so; B_;) and CNT'(EB (so) estimates V77 (sq; R_;).

~ ~ 7* ~
Observe that both G(l)(so) and G(l)’/(so) approximate V; ~" (so; R_l) using the same algorithm, Algorithm 2. As the

algorithm itself does not contain randomness and G G /(s0) and G G (so) are constructed using the same parameters, the
two terms must be equal. Then we have

= ViR (s0i 7+ i)+ GC) (s0) = V7 (05 Bi) = (VF (03

VT R 1 B ) AR B ~(2),0 VT R(e.. D

=V, B(so;ri + R—y) — V) (so;ri + R_i) + GZ)"(s0) — V; B(s0; R—i)
*

VT (s0rm 4+ Bog) — Vi (sosms + Ry) + Vi (s0; Bei) — G2 (s9),

B[] — Ex[us] = ™ (s0:m) + G (s0) = (Vi (s0:m) + G (s0))
R ; +

B+ G (s0) = Vi (s0: B-)

where we recall that 7r P is the maximizer of V" (so;r; + E,Z) over 7 (the social welfare maximizing policy when
agent ¢ reports truthfully) We then know that

= ¥

Vlﬂ—ﬁ"(So; r; + éfz) — V1 rit R (80; ri + Rfl) <0
and
By [ui] — Exlu;]
7'(* ~ ~
< (CN;(_QB’/(SO) - Vfﬁ(so;é,i)) + (vl R (0 + Reg) — Vi (50375 +Ri)>
(VI (0 o) -

Let us focus on the middle term first. By (D.8), we have

7'l'>x< ~ ~ ~ ~
Vl it (80; r; + R_i) — Vfr(S(); r; + R_i)
2log | A
< 2H?Ryax % + Ver + 2(H Ruax) Y3 (es + 3ex) /3
1 T
H (T ;1 cF (”fﬁﬁzi)) (Q(HRmax)1/3(es +3ex)3 + /8es + 12ex + 36;,;) .

We state the results conditioned on different values of (5 as the bound no longer depends on (; .
e When (> = OPT, by Lemma D.6, we have

Vl (s0; R R i) — G( )(so) < A Jer + Q(HRmax)l/B(ﬁS n 36;)1/3,
and by Lemma D.7,

G(j—)’/(so) — V{ R (s0; R_y)

<H C"Vrﬁ'(ﬁ/'é) (2(HRmax>l/3(€S + 36]:)1/3 + \/865 + 12ex + 36];]:) .
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e When (»; = PES, by Lemma D.7,

D ~(2)

Vi (s0; R—s) — G®)(s0) < HyJCF (%) (2(HRmax)1/3(€s +3ex) P + /Bes + 1265 + 36f,f) ;

K2

and by Lemma D.6,

~

G(—QB’I(SO) - Vfﬁ(sos 13»4) < Ver+ 2(HRmax)1/3(es + 36?)1/3.

Combining the terms completes the proof. O

E. Supporting Lemmas

In this section, we provide detailed proofs of supporting lemmas used in Section D.

E.1. Proofs for Algorithm 1

Previous work has shown that the estimate of the value function f™ is the exact value function of an induced MDP that
shares the same state space, action space, and transition kernel as M, only with slightly perturbed reward functions (Cai
et al., 2020; Uehara & Sun, 2021; Xie et al., 2021; Zanette et al., 2021). More precisely, let r be the input reward for
Algorithm 1, 7 the input policy, and f™ the output. Let M ¢« be the induced MDP. We formally state the result below.

Lemma E.1. For any input policy m (not necessarily in llgpr) and input reward function r, Algorithm 1 returns a function
f7 such that f™ is the Q-function of the policy  under the induced MDP M =, given by

My = (8, A, H,P,7¢x), (E.1)
where ryx p =, + il — T} fil 1. Inother words, f7(-,-) = Q™ (-, 7).
Proof. See Section C.1 in Zanette et al. (2021) for a detailed proof. O

We immediately have the following corollary.

Corollary E.2. Let f™ be any one of the two functions returned by Algorithm 1 for any input policy 7 (not necessarily in
IIspr) and any input reward function r. Then, for all h € [H|, we have

H
|f}7lf(5’a) - QZ(S,Q;T” < Z E(Sh/,Ah/)~7r\(s,a) [‘f;{ - Z,rfl7Lr+l|:| .
h'=h

Proof. By definition of the Q-function, we have

fi(s;a) = Qh(s,a;m) = Qi(s,a;7p=) — Qf (s, 057)

H
= > Es, ) ~rl(s.0) [P0 (S Awr) = 7px 1w (Shes A)].
h'=h
Recalling the definition of r s~ in equation (E.1) and using Jensen’s inequality concludes the proof. O

We proceed to show that Algorithm 1 is approximately optimistic/pessimistic and bounding the estimation error of its
outputs. We begin with the proof of Lemma D.6.

Proof of Lemma D.6. We start by upper bounding two auxiliary terms. Let f7* € F be the best approximation of Q™ (-, -; '),
as defined in Assumption 2.3. By Jensen’s inequality, we have

|fﬂ}*(3077ﬁ) — QT (s0,m157)] < Ea~m(-\so)[|f{r}*(80ﬂﬁ) — Q7 (s, m;7)|] < er.

Additionally, using Lemma D.4 we know that, conditioned on the event G(Ilgpr), for all h € [H]| we have
By (fF*, ;D) < 2es + beg.
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We then consider Qv)f By (3.2), we know that

H H
Q7 (s0,7) + A Y] Brr(QF, mD) < f77%(s0,m) + A Y Buy(f7*,m: D)
h=1 h=1

< QT (so,m;7) + [f17 (50, 1) — QT (s, m1;7)| + 2AHes + 6AHer
< QT (s0,m1;7) + \/er + 2A\Hes + 6AHez.

Similarly for @ZI, by (3.2), we have

H H
Q7 (s0,7) = A Y Brr(QF, mD) = 7% (s0,m) = A Y Buy(f7*,m: D)
h=1 h=1

= Q7 (so,m;71) — \f{i;,*(so,m) — Q7 (s0,m;7)| — 2 \Hes — 6AHer
> QT (s0,m1;7) — v/€r —2X\Hes — 6AHegr,
thus completing the proof. O

We prove that the action-value functions returned by Algorithm 1 are sufficiently good estimates.

Proof of Lemma D.7. By Corollary E.2, we have

M=
=
B
Q
>

Q7 (s0,m) = QF (50, m37) < n Qs |

)

=

[

M=

Q‘f(s()vﬂ-l; 7') - QT,T(SO,’/Tl) <

Ex [QF, = Th, G|

=
Il
—

Since the differences share similar forms, we can without loss of generality only consider @f Recall the definition of
CT(v), given in Definition 2.5. We have
H
e |
h=1

< V) 3B |07, - TG,
h=1

H
> Ee | Gh s~ T, Q|
h=1

Lo

(E.2)

I

where the first inequality is by Cauchy-Schwarz, the second inequality by the definition of C™ (), which is the shorthand
notation for C™(d;). Similar to the proof of Lemma D.6, let f™* be the best approximation of Q™ (-, -;7) as defined in
Assumption 2.3. Then

H
A Bu o (QF, mD) < f1 (50, m1) — QF . (s0,m1) + 2AHes + 6AHe.
h=1

Since f]*, éir € F, we have f*, Qv)ir € [—H Rmax, H Rmax] and thus

HR

H

hs 2 max
Y. Bur(QF,mD) < =" +2Hes + 6Her.
h=1

By Corollary D.5, conditioned on G(IIgpy), we have

H H
S By [I07, ~ 17,0, 2] <2 3 Bun(QF,mD) + dHes + 3Her »
h=1 h=1

AH Rug

< N +8Hes + 12Her + 3Her r.
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Plugging the bound back into (E.2) and applying Cauchy-Schwarz inequality gives us

4HRmx
\/>\/C7’7\/ = +8Hes + 12Her + 3Her r

s [Qg,'r — *h, 7Qh+1 r]

4Rmax
= H\/C”(ﬂ‘)\/)\ + 8eg + 12¢x + 3ex £

1/3
Setting A\ = <%) and using va + b < y/a + Vb fora,be Rx o completes the proof. O

E.2. Proofs for Algorithm 2

We now turn to analyzing the policies selected in Algorithm 2. In particular, we focus on the mirror descent-style updates
given in (3.3) and (3.4). We start by defining an abstract version of the procedure in Algorithm 2.

Definition E.3. Consider the following procedure. For any ¢ € [T']:

1. Let fY) € F be an arbitrary function in the function class.

2. Let 7Y (als) oc " (als) exp (nf,(f)(s,a)) forall (s,a) € S x A, h e [H].

Recall that Eqe 4 [log 7, (als)] = > ,c 4 ™n(a|s) log 7y (als) for all 7, h, and s. We continue with a standard analysis of the
regret of actor-critic algorithms.

Lemma E.4. For any 7 (not necessarily in lgpy), for all h € [H] and s € S, setting 1) = 4/ QHIS%% in the procedure
defined in E.3 ensures that

T

S ncls) = mi Cls), 17 (s,)) < 2H Rinax/2T log | Al.

t=1

Proof. By a direct application of Lemma C.3 of Xie et al. (2021), we know that even for policies not in IIgp; (as we are
effectively performing mirror descent over the probability simplex with the KL penalty) we have

T T
Do mnlCls) = m (1), 75,0y < Do =P (1s), £ (s, - %E o [losm @als)]

where 7 is the stepsize. From the proof of Lemma C.4 in Xie et al. (2021), we further note that for any 7w € 7, h € [H]|,
s€ S, andt € [T] we have

(1) = 710 (1), £2(5, 9 < LD (5 ) oo 20¢n 1) — 72 (Ls), £P (s, ).

Recalling that all f;, € F}, are bounded by H Ry, we know that (7, (-|s) — 77,(;) (-s), f}(f) (s,+)) < 2nH?R2 .. Following
the proof in Section C.1 in Xie et al. (2021) completes our proof. O

With the observations above, we proceed with proving Lemma D.8.

Proof of Lemma D.8. We analyze the pesmmlstlc estimate and note that the analysis is similar for the other part. Let 7r7(~t) be
the policy iterate of Algorithm 2 and Qr the corresponding value function estimate. We know that

Vi (s0;7) — é ) (s0,7()) =

IIM%

(QT(SO, ) — v§f1(807 %itl))

T H <0
ZZ -|@n - e,

t=1

T

i

t=1

b

I, Mm ] M’ﬂ

Ex [<G1) (), maCln) = 50 Clsw)) ] +

’ﬂ\
’ﬂ\
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where the inequality is by a standard argument in episodic reinforcement learning (see, for example, Lemma A.1 in Jin et al.
(2021b) or Section B.1 in Cai et al. (2020)). By Lemma E.4, we know that when n = 4 / MIC;%%‘T, we have

S g0 ¢ < (1) 2 2log | A|
2 E o [€B50 (sns ), mnClisn) = F0 Clsn)y | < 2H Rt =

’ﬂ \

1/3
For all ¢ € [T'], similar to the proof of Lemma D.7, when \ = (%) , we have

< HA/ O (1) (2(H R) V(e + 365)/* + /Bes + 1267 + Ber. 7).

H

v(t (f) v
Z ETF [Qh Th r Qthl r]
h=1

Notice that the distribution shift coefficient is changed from C™ () to cr (), as the policy specific Bellman operator T is

now induced by policy 7vr,('t) rather than 7. Taking the average over ¢ and applying the triangle inequality give us

H

22 Q8 T A
< ZW)( (H Rpnax) Y (es + 3¢r) 1/3+\/8€S+126]:+36]:]:)

Combining the bounds, we have

(D) (50,7 2 2log |A|
VI (soir TZQ < 2H? Runae\| = —
1 x
+ H <T Z A/ O’v”(‘)(Tr)) (2(HRmax)1/d(€s + 36]: 1/3 + \/865 + 12¢x + 3ex _7:)
which completes the proof. O

F. Concentration Analysis

In this section, we prove the concentration lemmas used in Section D.

F.1. Proof of Lemma D.2
Proof of Lemma D.2. We start by including a minor adaptation of a useful result from Gyorfi et al. (2002) for completeness.

Theorem F.1 (Adaptation of Theorem 11.6 from Gyorfi et al. (2002)). Let B > 1 and let G be a class of functions
g:RY—[0,B]. Let Zy, Zs,. .., Zx be i.i.d. R%valued random variables. Assume o > 0,0 < ¢ < 1,and K > 1. Then

LK 7y _R[Z §
pr (g B M) <o (.0) o ()
9eg a0 + sz':l g(ZJ) +E[ZJ] > 0

Proof. By Theorem 11.6 from Gyorfi et al. (2002), we know that

1 K
LYK (7)) —E[Z; 320k
N E 1B [N (504215 ) | exp (— = ) ,
geg o + 74 Zj:l g(Z]) + ]E[ZJ:I ) 40B
where N1 (%,G,{Z;}}L,) is the cardinality of the smallest set of functions {g'}/_, such that for all g € G there exists

some [ € [L] where
S IEARPICAE
7 g\2j) — 9 \4j)| < -
K & 5
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See Section 11.4 from Gyorfi et al. (2002) for a detailed proof of the statement above. We then show that for any {Z; JE j=1s

M ( =, G,1Z; }]= ) < Ny ( , ) Let {g'}}, be an Ge-covering of G with respect to the £o,-norm. We then know that
for any g € G, there exists some [ € [L] such that
1 & 5 e
K Z l9(Z;) — Z N
i=1 i=1
Therefore {g'}% | satisfies the requirement above, concluding our proof. O

Let h € [H],r € R be arbitrary and fixed and we begin by showing one side of the inequality holds, namely
Pr(3f, € Fom e T By, (U — T s P] = i (s o D)+
Lh,T(Tz,rfllz+17 ff/H-l’ Ur D) = E(OL + ﬁ + Elth [‘fh h rfh+1|| ]))

2 2
s B (1-e€aK
<14 —— P q .
( * (1401tmmax 7 )) Noo, (140H2R$nax )eXp ( 214(1 +6)H4R;ax)

forall o, 3 > 0,0 < e < 1/2.
Recall from (5.1) that

95.7(Z) = (fu(snran) =1 = fryr (sha1s ha1))® = (Th o fria sy an) = — fria (Sha1, Then))?.

We begin by showing some basic properties of the random variable g% f,(Z ). Recall that by definition of the Bellman
evaluation operator
Th + fhi1(Snyan) = Bp [rn + frq (shi1, Thia)Isn, an) - (F.1)

Since Tz7rfh+1(8h, ap) = E,, [rh + fhi1(She1s The1)|sn, ah], by law of total probability
EZ"‘Mh [g}r,f’(z)] = Esh;ah’”ﬂh [E8h+1~#h|5h»ah [(fh(Sh, ah) —Th — filz+1(sh+17 7Th+1))2_
(TF - frs1 (hsan) = n = i1 (snar, i)’ sn, ah]]
=E,, []Eshﬂwh\sh,ah [(fr(snyan) +Th o fri1(8nsan) = 2(rn + frp1(Sht1, Then))) %
(Fn (s @n) = T S (s an) s an]|

=By, [/ (snyan) = Th . fri1(snyan)|?] -

Additionally, recalling that 74 € [~ Rmax, Rmax)s f5,11 € [-(H — h)Rumax, (H — h)Riax], well as f, € [—(H — h +
1) Rinax; (H — h + 1) Riax], we know g7 ;,(Z) € [-16H?R2 ., 16H? R, . ]. Lastly, notice that

Var(gF ;/(2)) < E[(¢7.5(2))]
= E[E[(fh(smah) + 7 fr1(shyan) = 2(rn + fhyr (she1, 1)) X
(fi(ns@n) = T Fhs (n: 00)) % n an] |
< E[16H2R3nax(fh(sh7 ah) - g,rfllwrl(sh? ah)) ] = 16H2R12nax [g}r,f/(Z)]ﬂ

where for the last inequality we noticed that f},(sp, ap) + ']I‘me}’bﬂ(sh, an) = 2(rh + fh11(8ht1, Thy1)) is bounded by
[_4HRmaxa 4HRmax]-

(F2)

Our ensuing proof largely follows the structure of Section 11.5 of Gyorfi et al. (2002) and we reproduce the proof below
for completeness. Let o, 8 > 0 and 0 < € < 1 be arbitrary and fixed constants. We now proceed with the proof.
Symmetrization by Ghost Sample. Consider some (fn, fl,m) € F x F x II depending on {Z; } * , such that

Elg}; 1, (2){Z;}51] ngn 1(Zj) = ela + B +Elgfr 1 (2){Z;}721)),
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if such (fn, f},m,) exists. If not, choose some arbitrary (fy, f,, 7). As a shorthand notation, let g, = g}rs s - Finally,

introduce ghost samples {Z} } le ~ W, drawn i.i.d. from the same distribution as {Z;} jK=1. Recalling that the variance of
gn is bounded by 16E[g,,(Z)], by Chebyshev’s inequality we have

m

Pr(Elon(2)112,}1C e L) > e )+ Bl (7 [EAERIEALN

_ Var(ga (Z2){Z;}150)
= K(5(a+B) + $Blga(2)Z V)2
_ R Bl (DI Z ]

= K(5(a+B) + $Bloa( 272

16H2anax
e(a+ BK
where the last inequality comes from the fact that (afigo)? < ﬁ for all s) = 0 and a > 0. Thus, for all K > %,
K € 7
Pr(Elon (D)2} T L0752 a8+ GEm AL ) <5

‘We then know that

1 & 1 & €
Pr<3f,f/€.7:,7T€H:K Zg}rh;f;/L+1(Z'L{) K ngh,fh“(z> §(a+ﬁ) [gfh,fh“(z)]>
K . K € =
> 1 L2~ g Boni2) > 50+ 9+ 5Elon(2 JEAR)
2 =
>Pr(E[ (2215 2 (o + B) + Elgn(2)[{2,}5,]
B K
Elgu(2)(Z,}1,] 2 (o + B) + Elgn(Z >|{Zj}5-<_1])
L
=E<H{E[ (21235 2 (o + ) + cE[gn(Z >{Zj}§<1]}
B K
pr@:[g”( 2,35 Z (o + B) + cE[ga(Z >|{Zj}§-<1]))
7 K _
> §Pr(Blan (21 ~ e L 0n(5) > o+ 9+ Elan(A1 )

7

K
= 8Pr<3f,f’e}'77reﬂ:]E[g?h7f;l+1 g f’“fhﬂ f (a—&—ﬁ)—keE[gfh)fh“(Z)]).
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In other words, for K > %,
K
Pr (ﬂf, ffeF,mell: E[Q}T;L,f,;H Z 9, th > ela+8)+ eE[g}Th,f;,H(Z)])

K
8
<7Pr(5|f7f/€]:,7761_[ ; fhfh+1

1 x € €t x
X Zlgfh,f,gﬂwj) > (at8)+ 55, 5, (2)]). 6

Replacement of Expectation by Empirical Mean of Ghost Sample We begin by noticing

K K
1 x 1 ” € €
Pr <Hf, fleFimell: - § 1gf,“f}g+l(Z£) % E lgfh,f;,H(Zj Fla+B) + [gf,l,th(Z)])
J= J=

gPr(Hf,f’e]—',weH:

K
€ €t
Z gfh,fthl Z;) Z fh,fthl 5(04 + ) + iE[Qf,“f;lH(Z)],

| =
Mw ‘

2
gf,“chr1 z) E[(gfh,th) (2)] <

<.
Il
—

| K , , (F4)
e(a+ B8+ 2 D (ghs, () +ElG, 5, )H2)):
j=1
1
K

D=

(95,7, )2 (Z) —El(gF, s )} (2)] <

<.
Il
_

(arB+ i (65, 5, )*(Z) + E[(g],. fw>2<2>]))

Il 1<gfh 5 PZ0) ~ El(g], e (2]
(a+ 8+ %2515, 5y )2(Z) + B, 5, )2(2)])

Citing Theorem F.1, we may bound the second probability term on the right hand side as
K T T
LS G P20 B, (D)
K T T
(a+ 8+ % X155, 50 )2(Z) +EI(F, 5, )2(2)])

+ 8 . / N
< 4N, ((0‘5)6,{9fh,f;1+1:f,f G]:,TI'EH})eXp< 40;1(60212}{@2)))

max

+2Pr |3f, fe Forell:

Pr|3f,f e F,mell:

For the first probability term, notice that the second event in the conjunction implies

K
(1 +OE[(gF, ;. ) (D) = (1 —¢) Z Iy, ) (Z5) = ela+ B),
]:1

which is equivalent to

B S (7 R 07 SRS LLI U 31 S P} QP L)
32H2R2, "I 32H2R2,__(1+¢) K (0Fui )5 ~ g (1+e)

max j=1 max
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A similar bound may be obtained for the term involving Z;. Noticing that by equation (F.2), we have E[g}, ., (Z)] >
Wh41

wime—El( 95, . )2(Z)], and we know the first probability term in (F.4) can be bounded by

max

(a+B)+

w\m

K K
1
!/ . ™
Pr(ﬂf,f E\F,WEH.?ngh,f;L+l ’L E fhfh+1

€ 1—¢ X e(a+p)
(32H2R2 (1+e€) Z 95, fh+1 (Z;) = 32H2R2

max J=1 max

K
1—¢ 1 . 9 e(la+ B)
32H?2R2, (1+¢) K Z(gfh’féu) (%)) = 53m7Re )

max( P max
7j=1

K
1 & 1
:Pr(ﬂf’f’e]:,ﬂ'eﬂ:Kngmf’gH(Zi E
=1

*(a l—e S 2( 7t ™ 2
e e Ry e (K 3 )+ 0 D) )

(a+B)—

HMN

l\D\m

gfh,le(Z ) =

max max

Additional Randomization by Random Signs Let {U; } 1 be i.i.d. Rademacher random variables drawn independently
from {Z;}/< | and {Z}}! . Because {Z;} | and {Z}}/", are i.i.d., we know that

K K
1 - 1 x €
Pr(ﬂﬁf’e]‘—,ﬂ'EHI ?Zlgfh’f}lzﬁ»l(z-;)_ﬁZ:lgfh’f}/u»l(z‘]) > 5(@"‘/3)_
J= J=

*(a l—e IS 2( 7 ™ 2
32H2}(%2 +(61)+ 9" 64H2;%2 ()1 +e) (K Z((g}rh»f;’#l) (Z) + GFsp.) (Zj)))>

max max =1

- €
—PI‘(Hﬂf’Ef,’/TEH Z U gfh fh+1(Z;)_gfh7f)/1+1(ZJ)) i(a"_ﬁ)
j 1

(a+pB) e(1—e¢) ] X (E5)
o+ — € ﬂ . Tr ,
e ’ Z . 7
32H2R?ndx(1+€) + 64H2R12ndx( +€) (K j;((gfh’fFHA) ( l)+(gfh"jh+1) ( J))))
4 €
<2Pr(§|f7f'e}—,7r€1_[ Z‘ ggf,“chrl )‘/Z(oﬂrﬂ)
e(a+p) e(l—¢) K
64H2R12nax(1 + 6) - 64H2Rr2nax ; gfh fh+1 -7)) :

Conditioning and Covering. We then condition the probability on {Z; } " ,. Fix some z1, ..., zx and we consider instead

=

K
1 T
Pr{EIf, ffeFmell: )7d 2 Ujgf]“f},lﬂ(zj)

max max

e(a+B) (a+ ) N e(l—e) ig )
4 64H2R2,_ (1+¢€)  G64H2RZ, (1+¢) = e fhﬂ :

Let § > 0 and let G5 be an /., §-cover of Gr 11 = {g;I} g f' € F,m e II}. Fix some (f, f',7) € F x F x Il and
o p41
there exists some g € G such that sup, |g(2) — g7, 1 ()] < 4. We then know that
o

K

1
? Z U]gfh fh+1
j=1

ZUJg (25)

K
2 ‘gfh fhs (%) (Zj)‘ <

1 K
K Z Ujg(zj) +0
j=1
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and
K | K | K
2 ™ 2 2
Y G () = % D8+ D))~ 62(5)
]:1 =1 Jj=1
1 & 1 &
K 2 9 (25) + K Z(gfh f12(Z) = 995, g, (25) + 9(25))
j=1 j=1
18 1 &
> e 230" ~SH e D110, 5 )
iz -
| K
> = 2, 9°(%) — SHRL,,.0.
j=1
Set § = enumﬂm Notice that as H Riax > 1,0 < € < 3, we have
B €2 _6_66(1—6) _ B €2 _62(1—6)ﬁ>
4 64H2R2, (1 +¢) 8(1+e€) 2  64H2RZ, (1+¢) 40(1+e€)

Therefore we have

K

Z jgfllafh+1 )

]

Pr{flf,f'e]:,weﬂ >

(o + B) (a+p) e(1—e) <
4 G4H2R2 (1+e)+64H2R2 (1+e¢ K nghvfw )}

max max j=1

K
1 [e" o
|geﬁ/5‘ r%?;(/d PI‘{ ? ; UJg(ZJ) = Z 64H2R?nax(
e(l—e) i
F.6
G4H2RZ, (1 + ¢ ]; () (£6)

We then apply Bernstein’s inequality to bound

K
1
P
r{Kz

— > Ujg(z)
=1

ea N e(l—e¢) i (2
 64H?R2, (1+¢) GAH?R2, (1+¢) K + 2

max max j=1

for any g € G.3/5. We begin by relating the variance of U;g(z;) with % 25:1 g%(z;). Notice that as Uj is i.i.d. Rademacher,

K 1 k
2 ar(Ujg(z;)) ?ZgQ z;) Var(U, Z (25)-

j=1 j:l
Perform a simple change of variable and let V; = g(z;)U;. As g(z;) € [— 4H2RIQMX,4H2R2 ] for all z;, we
e(l—e

max
_ 2 2 ; — e fa = =g
know |Vj| < 4H®R;,. . For convenience, further let A; = 64H23121]1X(1+6),A2 = amrz_ (g and
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o? =+ Zjil Var(Ujg(zj)) = & 25:1 9*(z;). We then have for any g € G.4/5
| K

s

) > eQ a N e(l—¢) i
= Z
K TR (1+ ) GAHPRL (1+0 K & 2

max max
k

> Ay + Aso )

Al + AQO’ )
2(A; + Apo?) S

K -
2
A
3K Ay (4 +0?)
2
C16H2RE,, ALy (1 + s AQ) o2

21-eaK )
140H2R12nax(1 +¢€)

= 2exp

<2 exp

where the last inequality follows a series of manipulations discussed in greater detail in page 218 of Gydrfi et al. (2002) that
we omit here for brevity. Plugging the result back into equations (F.5) and (F.6) gives us

K K
1 " 1 x €

Pr(ﬂf,f’ efmell: — Zlg.fh,f;l+1(Z;) K Z Ittp . (Z5) = 5(04 +8)—

J= j=1

e*(a + f) e(1—¢) - 2
32H2R? (1+e)+64H2R2 (1+e< ; i) (20 + (5F g, ) %))))

(1 —e)aK
140H?RZ, (1 +¢) )~

< 2N, (656, {97, f.fleF e H}) exp (

’
fh+1

Recalling equations (F.4) and (F.5), we have

K K
1 € €
/ . e . s
Pr <3f> frermell: - Zlgfh,f,g“ i) Z Ity (Zi) 2 5@+ B) + QE[gfh’f;ﬁl(Z)])
jz j=1
eﬂ . . " (1 — E)OZK
< ANo ( gy, S efime H}> P ( 1402 RZ (1 + €)
(o + Be 3P (a+ BK
+ 8N ( Ay, S f e Fome oo | —Gmmpe — |-
Pl . . . 128 H?R2
ugging the result back into equation (F.3) and we finally know for K > =y,

K
Pr <3f, fre Fomell: Elg}, 4 Z f,“fh+1 ) =ela+ )+ EE[Q}Th,f,’lﬂ(Z)])

fh+1
2. (B, . . (1 — ok
< TN (5’ 9f gy, [ eFime H}> oxp ( 140H2R2,, (1 + €)
64 (@+B)e o L. 3o+ K
+7N°C <57{gfh1f},z+1 ff GF’WEH} P M
66 T . / 62(1 — E)OCK
< 14N, (5’ gy, F T eFme H}> P ( 214(1 + e)H' R}, )

128 H2R? 21 K . ..
When K < “Z(ath) s eXP ( W) = exp (—%) = T14 and the claim trivially holds.

max
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Bounding the Covering Number. Our final task is bounding N, (%, { g3, o fifeF e H}) using the covering
vt

numbers of IT and F. Let Fy be a

3¢
T40H Ronax
respect to | - | o.1. We then know that for any f, f’ € F, 7 € I, there exits some fT, f* € Fy, nt € Iy such that

-covering of F with respect to ¢, and IIy a W

max

t B
sup  |fn(s,a) = fr(s,a)| € —m—
(s,a)eSx.A " 14OHRmaX
/ _ i <L
e, (M50 = TG0l < yiapp
i «__ B
2 o)~ s <

Consider any arbitrary z = (s,a,r,s)

;
Tht1

-9 (2)
Trilhst

Th+1
gfh"f’/t‘Fl (Z)
= (fh(sa a) -r

(fa(s.a)

N

(fh(37 Cl) -r

+ (Tt fhya(s,a) —

A

X | frn(s,a) —
+ 7rh“fhﬂ(s a) +

x TR0 frga(s,a) —

< 4HRmax fh(S,a)

Wh+1

+ 4HRpax|T

- f}lz+1(5I77Th+1))2 - (Tﬁhﬂfhﬂ(s a)
T
— 1= [ (8 T )+ (TR fE L (s,a) —

- f}/1+1<3/777h+1))2 -
fu(s,a) + fl(s,a) = 2r — fr o1 (s Thgn) —

f}t(&a) + ff/L+1(5,77rh+1) -

- f};(s,a) + ff/z+1(5/a77h+1) -

fh+1 (s,a) —

~ wp. We know that

— froa (8 1))’ =
- f,fH(s'mZH»?]

—Tr—= f}fH(S/’ 77;;+1))2

(fi(s,a)

Tr‘r
— fraa (8 ) = (TR fE L (s,0) —r = £, (8 7))

f}{+1(5/a WIL+1)

flf+1(5/77r;rb+l)

+T "“th(S a) = 2r — fh o1 (s mhen) — fE, (s )

T
Trl
Tyt oy (s,a) + fryn (8 Then) = Fhy (8 mh)

f}f+1(5/7 ﬂ-IL-‘rl)

p
Ty i (5,0) + frya (8 Thet) = Fhan (8],

-covering of 1I with

(F7)
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where for the last inequality we used the boundedness of functions in Fj, and F},1. We then notice that

fn(s,a) — f;[(S, a) + f},erl(S/? The1) — f}iL+1(8/77r:l+l)

< fuls,a) = fl(s, )| + | fhia (8 mnen) = fEo (sl 0)

< ﬁ + | fhaa (8" Thgr) — f;'LH(s’,ﬂLH)\ + |f’/1+1(5/77;2+1) . fiil+1(5'77fz+1)|
< ﬁ Fmner =7 il Friilloo + [ Fnin (8wl o) = £ (s )
= 1401‘?Rmax " 1401;6Rr2nax HRunax + | i1 (8 mhi1) = fiha (8w )
= 1401?1%1113,( N 1401§€zmx + Byt o (85 0) = fi (87 a)l]
3¢l

< ——,
140H Ronax

where the third inequality uses Holder’s inequality, the fourth definition of ITy and boundedness of F},, the fifth Jensen’s
inequality, and the last inequality the definition of Fy. Additionally we have

T
T
|TZ,}LT+1fI/1+1(S’ a) - Th,h;rlf}f+1(sva) + f}/L+1(S/7Trh+1) - f}f+1(5/77r;r1+1)|

i
s
< |T2f;ﬂ+1fl/1+1(s7a) - T}Lfl;lf}{.t,_l(sv (L)| + |fl;+1(8/77rh+1) - f}{.t,_l(sla 772;4_1)‘

T TW;H i 2¢f3
< | h,r fh+1(57a) ~ Yhr fh+1(8’a)| + m
2¢8
< Es”~IP’h('|s,a)|fllz+1(s/77Th+1) o f}f+1(8/, WjH‘l)' + 140H Rynaxe
max

4ef
S
140H Rpjax

where the second inequality uses the same reasoning as above to bound | f, , ; (8", T 41) — f,f (8 7r;rl +1)], the third Jensen’s

inequality, and the last inequality reuses the bound for |f;  ,(s', mp11) — f}f (8 7TIL +1)| over arbitrary s’. Plugging these
back into equation (F.7) shows

) ™, 7ef
g}rilx}?L+1(Z) —9 i (Z) S

B
< ———— X4HRpox = —.
2 140H Rypax 5

Thus

By s ’ s
Noo (5’{gfh,,f,’l+1 h EFﬂTGH}) < (Noo (MOHRmaX’]:>) N1 (140H2R2aﬂ)a

max

showing one side of the inequality holds.

To show the other side holds, simply replace g7 (Z) defined in equation 5.1 with its negative and repeat the analysis above.
We then complete the proof by taking a union bound over both halves. O

F.2. Proofs of “Good Event”

With the help of the previous theorem, we are able to show that GIIgp; occurs with high probability.

Proof of Lemma D.3. Taking a union bound over all i € [H] and reported reward r € R recalling that |[R| < n + 1 < 2n,
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by Lemma D.2, we have
Pr(ahe [H],reR,f,f e Forell:
|Euh, [Hfh - Z fi/erIHQ] - Lh,T(fh7f;L+1’7T;D) + Lh,T( ;zr,rfl/z+1’ ffll+177r;D)|
€ (a+ B+ By, [Lfn— Th fhal?])
2

ef 136] (1 —e)ak
<56nH (N, [ —LZ Y n .
56n <NOC (140HRmaX a )> Noca <140H2R?nax >6Xp( 214(1 + €)HARL

Letting . = S and € = % setting the right hand side to ¢, and solving for « gives us

{ 56nHN (Hhmes | F) Nog 1 (11<7H)}

1
a<m 5136 H*RL . 5136H*R? . log 5

1,and 0 < § < 1, the second term always dominates the first and we can simplify the inequality as

3R3 4pa
g 0 (2 ) s (g )
1)

o < %
O

Asloght > 1,n, H >

b

completing the proof.
Proof of Corollary D.4. For convenience, let g7 . = argmin .z L (g, f;:jr*l,'r’ m; D). We then know that

Bhﬂ‘( ;,7j7W;D) Lh T(fhr’ h+1 r’Tr D) L (./g\;zrr? h+1 r’ﬂ- D)
D)

_Lhr(fhr7 h+1r77TD) (T;Lrjfh-&-lr’ch—lr’
- (Lhﬂ'(gh,ra h+1 o T3 D) Lh,T(TZ;kfh+1 Tafh+1 o T3 )) .

By Lemma D.3, conditionally on the event G(IT) we have the following simultaneously:

2],

s s 3 T 7T
Lue(f s faih,om D) — L, (Th:jfh+1r’fh+1r7 D) < €S+§]Euh [Hfhf =Ty fahn

) ¥ . *
_Lh,r(gh,raf;+17r77rap) + Lh,r(Terh+1 r7fh+1 T ) €s,
where the second inequality uses the fact that || - | is non-negative. Finally, noticing that

2| < 2By, |IF77 = QRC, 52 + 2B, 1T F0 e — TREQRC, 51|

B |07 = TR A
<2er + 2B, |17, — QT -;r>||2]

< 46.7:5

where 117, ., shares the marginal distribution over S with 115,41 but the conditional distribution over A given s € S is given
by 741(+|s). The final inequality comes from the fact that z1j, , , is an admissible distribution under Assumption 2.3.  [J

Proof of Corollary D.5. Let gy, = argmin,c z, B, [|g — Tx . f7,; .[?]. Recalling the definition of By, ., we have

Ly r(f};raf}TLr-H,mﬂ;D) min Lhr(g fh+1 rs 75 D)

Bh,r(f;[,rvﬂ-;,D) = geF,
v

= Lhﬂ‘(f;;r? f}TLrJrl,ra U D) - Lh,r(ggnw f}‘;rJrl,ra T D)

= Lh,r(f;zr,rv f;‘:+1,’l“77r; D) - Lh,r( ;zr,rf;;Jrl,r? f;‘:+1,’l“77r; D)

- (Lh,r(./g\;{,ra fl"[LrJrl,r?W;D) - Lh,T(TZ,TfiTLrJrl,ra fl"[LrJrl,r?W;D)) .
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By Lemma D.3, conditionally on the event G(IT) we have the following:

1
LhyT’(f}TLr,r? fl?Lr—&-l,r?’]r;D) - Lh,T(TZ,rf;:-J—l,r? fl?Lr—&-l,r?’]r;D) = —€s + iE”h [Hf;zr,r - Z,rff?—&-l,r”Q] )

?].

~ 3 ~
_Lhm(g;;,r?f;zrqtl,r’ﬂ;p) + Lhﬂ“( Z,Tf}?+1,T7f};r+l,T’7T;D) = —€s — iEﬂh [HngLr,r - Z,rfiTLrJrl,r

Recalling that By, -(f, m; D) < €y, we have

EMH [Hf;zr,r - T;Lr7rf}71r+17r|

We conclude our proof by reminding ourselves of Assumption 2.4.

2] < des + 3Ell«h [H./g\;zr,r - Tz,rh2+l,r‘|2] + 2¢0.



