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Abstract
Dynamic mechanism design has garnered signifi-
cant attention from both computer scientists and
economists in recent years. By allowing agents
to interact with the seller over multiple rounds,
where agents’ reward functions may change with
time and are state-dependent, the framework is
able to model a rich class of real-world problems.
In these works, the interaction between agents
and sellers is often assumed to follow a Markov
Decision Process (MDP). We focus on the setting
where the reward and transition functions of such
an MDP are not known a priori, and we are at-
tempting to recover the optimal mechanism using
an a priori collected data set. In the setting where
the function approximation is employed to handle
large state spaces, with only mild assumptions
on the expressiveness of the function class, we
are able to design a dynamic mechanism using
offline reinforcement learning algorithms. More-
over, learned mechanisms approximately have
three key desiderata: efficiency, individual ratio-
nality, and truthfulness. Our algorithm is based on
the pessimism principle and only requires a mild
assumption on the coverage of the offline data set.
To the best of our knowledge, our work provides
the first offline RL algorithm for dynamic mecha-
nism design without assuming uniform coverage.

1. Introduction
Mechanism design studies how best to allocate goods among
rational agents (Maskin, 2008; Myerson, 2008; Roughgar-
den, 2010). Dynamic mechanism design focuses on ana-
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lyzing optimal allocation rules in a changing environment,
where demands for goods, the amount of available goods,
and their valuations can vary over time (Bergemann &
Välimäki, 2019). Problems ranging from online commerce
and electric vehicle charging to pricing Wi-Fi access at Star-
bucks have been studied under the dynamic mechanism de-
sign framework (Gallien, 2006; Gerding et al., 2011; Fried-
man & Parkes, 2003). Existing approaches in the literature
require knowledge of the problem, such as the evaluation
of goods by agents (Bergemann & Välimäki, 2010; Pavan
et al., 2014), the transition dynamics of the system (Doepke
& Townsend, 2006), or the policy that maximizes social
welfare (Parkes & Singh, 2003; Parkes et al., 2004). Unfor-
tunately, such knowledge is often not available in practice.

A practical approach we take in this paper is to learn a dy-
namic mechanism from data using offline Reinforcement
Learning (RL). Vickrey-Clarke-Groves (VCG) mechanism
provides a blueprint for the design of practical mechanisms
in many problems and satisfies crucial mechanisms design
desiderata in an extremely general setting (Vickrey, 1961;
Clarke, 1971; Groves, 1979). In this paper, we approxi-
mate the desired VCG mechanism using a priori collected
data (Jin et al., 2021b; Xie et al., 2021; Zanette et al., 2021).
We assume that the mechanism designer does not know the
utility of the agents or the transition kernel of the states,
but has access to an offline data set that contains observed
state transitions and utilities (Lange et al., 2012). The goal
of the mechanism designer is to recover the ideal mecha-
nism purely from this data set, without requiring interaction
with the agents. We focus on an adaptation of the clas-
sic VCG mechanism to the dynamic setting (Parkes, 2007)
and assume that agents’ interactions with the seller follow
an episodic Markov Decision Process (MDP), where the
agents’ rewards are state-dependent and evolve over time
within each episode. To accommodate the rich class of
quasilinear utility functions considered in the economic lit-
erature (Bergemann & Välimäki, 2019), we use offline RL
with a general function approximation (Xie et al., 2021) to
approximate the dynamic VCG mechanism.

Related Works. Parkes & Singh (2003) and Parkes et al.
(2004) studied dynamic mechanism design from an MDP
perspective. The proposed mechanisms can implement so-
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cial welfare-maximizing policies in a truth-revealing Bayes-
Nash equilibrium both exactly and approximately. Bapna
& Weber (2005) studied the dynamic auction setting from a
multi-arm bandit perspective. Using the notion of marginal
contribution, Bergemann & Välimäki (2006) proposed a
dynamic mechanism that is efficient and truth-telling. Pavan
et al. (2009) analyzed the first-order conditions of efficient
dynamic mechanisms. Athey & Segal (2013) extended both
the VCG and AGV mechanisms (d’Aspremont & Gérard-
Varet, 1979) to the dynamic regime, obtaining an efficient
budget-balanced dynamic mechanism. Kakade et al. (2013)
proposed the virtual pivot mechanism that achieves incen-
tive compatibility under a separability condition. See Cav-
allo (2009), Bergemann & Pavan (2015), and Bergemann &
Välimäki (2019) for recent surveys on dynamic mechanism
design. Our paper builds on the mechanism in Parkes (2007)
and Bergemann & Välimäki (2010), but focuses on learning
a mechanism from data rather than designing a mechanism
in a known environment.

Only a few recent works have investigated the learning of
mechanisms. Kandasamy et al. (2020) provided an algo-
rithm that recovers the VCG mechanism in a stationary
multi-arm bandit setting. Cen & Shah (2021), Dai & Jordan
(2021), Jagadeesan et al. (2021), and Liu et al. (2021) stud-
ied the recovery of stable matching when the agents’ utilities
are given by bandit feedback. Balcan et al. (2008) shows
that incentive-compatible mechanism design problems can
be reduced to a structural risk minimization problem. In con-
trast, our work focuses on learning a dynamic mechanism
in an offline setting.

Our paper is also related to the literature on offline RL (Yu
et al., 2020; Kumar et al., 2020; Liu et al., 2020; Kidambi
et al., 2020; Jin et al., 2021b; Xie et al., 2021; Zanette et al.,
2021; Yin & Wang, 2021; Uehara & Sun, 2021). In the
context of linear MDPs, Jin et al. (2021b) provided a prov-
ably sample-efficient pessimistic value iteration algorithm,
while Zanette et al. (2021) used an actor-critic algorithm
to further improve the upper bound. Yin & Wang (2021)
proposed an instance-optimal method for tabular MDPs.
Uehara & Sun (2021) focused on model-based offline RL,
while Xie et al. (2021) introduced a pessimistic soft policy
iteration algorithm for offline RL with a general function
approximation. Compared to Xie et al. (2021), in addition
to the social welfare suboptimality, we also provide bounds
on both the agents’ and the seller’s suboptimalities. We
also show that our algorithm asymptotically satisfies key
mechanism design desiderata, including truthfulness and
individual rationality. Finally, we use optimistic and pes-
simistic estimates to learn the VCG prices, instead of the
purely pessimistic approach discussed in Xie et al. (2021).
This difference shows the difference between dynamic VCG
and standard MDP. Our work also features a simplified proof
of the main technical results in Xie et al. (2021).

Concurrent with our work, Lyu et al. (2022) studies the
learning of a dynamic VCG mechanism in the online RL
setting, where the mechanism is recovered through multi-
ple rounds of interaction with the environment. Our work
features several significant differences as we focus on gen-
eral function approximation, whereas Lyu et al. (2022) only
considers linear function approximation. We also focus on
the offline RL setting, where the mechanism designer is not
allowed to interact with the environment.

Our Contributions. We propose the first offline reinforce-
ment learning algorithm that can learn a dynamic mecha-
nism from any given data set. Additionally, our algorithm
does not make any assumption about data coverage and
only assumes that the underlying action-value functions are
approximately realizable and the function class is approxi-
mately complete (see Assumptions 2.3 and 2.4 for detailed
discussions), which makes the algorithm applicable to the
wide range of real-world mechanism design problems with
quasilinear, potentially non-convex utility functions (Carba-
jal & Ely, 2013; Bergemann & Välimäki, 2019).

Our work features a soft policy iteration algorithm that al-
lows for both optimistic and pessimistic estimates. When
the data set has sufficient coverage of the optimal policy,
the value function is realizable, and the function class is
complete, our algorithm sublinearly converges to a mech-
anism with suboptimality OpK´1{3q, matching the rates
obtained in Xie et al. (2021), where K denotes the number
of trajectories contained in the offline dataset. In addition
to suboptimality guarantees, we further show that our al-
gorithm is asymptotically individually rational and truthful
with the same OpK´1{3q guarantee.

On the technical side, our work features a simplified the-
oretical analysis of pessimistic soft policy iteration algo-
rithms (Xie et al., 2021), using an adaptation of the classic
tail bound discussed in Györfi et al. (2002). Moreover, un-
like (Xie et al., 2021), our simplified analysis is directly
applicable to continuous function classes via a covering-
based argument.

Notations. For any positive integer z P Zą0, let rzs “
t1, 2, . . . , zu. For any set A, let ∆pAq be the set of prob-
ability distributions supported on A. For two sequences
xn, yn, we say xn “ Opynq if there exist universal con-
stants n0, C ą 0 such that xn ă Cyn for all n ě n0. We
use rOp¨q to denote Op¨q ignoring log factors. Unless stated
otherwise, we use } ¨ } to denote the `2-norm

2. Background and Preliminaries
In this section, we define the dynamic mechanism and re-
lated notions. In addition, we discuss three key mechanism
design desiderata and their asymptotic versions. Finally, we
introduce the general function approximation regime and
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related assumptions.

Episodic MDP. Consider an episodic MDP given by M “
´

S,A, H,P, tri,hun,Hi“0,h“1

¯

, where S is the state space, A
is the seller’s action space, H is the length of each episode,
and P “ tPhuHh“1 is the transition kernel, where Phps1|s, aq
denotes the probability that the state s P S transitions to
the state s1 P S when the seller chooses the action a P A at
the h-th step.1 We assume that S,A are both finite but can
be arbitrarily large. Let ri,h : S ˆ A Ñ r0, 1s denote the
reward function of an agent i at step h and r0,h : S ˆAÑ
r´Rmax,´n`Rmaxs the seller’s reward function at step h,
which can be negative, as policies can be costly.

A stochastic policy π “ tπhuHh“1 maps the seller’s state S to
a distribution over the action space A at each step h, where
πhpa|sq denotes the probability that the seller chooses the
action a P A when they are in the state s P S . We use dπ to
denote the state-action visitation measure over tS ˆAuH
induced by the policy π and use Eπ as a shorthand notation
for the expectation taken over the visitation measure.

For any given reward function r and any policy π, the (state-
)value function V πh p¨; rq : S Ñ R is defined as V πh px; rq “

Eπr
řH
h1“h rh1psh1 , ah1q|sh “ xs at each step h P rHs

and the corresponding action-value function (Q-function)
Qπhp¨, ¨; rq : S ˆ A Ñ R is defined as Qπhpx, a; rq “

Eπr
řH
h1“h rh1psh1 , ah1q|sh “ x, ah “ as. For any func-

tion g : S ˆ A Ñ R, any policy π, and h P rHs, we use
the shorthand notation gps, πhq “ Ea„πhp¨|sqrgps, aqs. We
define the policy-specific Bellman evaluation operator at h
with respect to reward function r under policy π as

pTπh,rgqpx, aq “rhpx, aq
` EP rgpsh`1, πh`1q|sh “ x, ah “ as ,

(2.1)

where EP is taken over the randomness in the transition
kernel P.

We emphasize that while the problem setting we consider
features multiple reward functions and interaction between
multiple participants, our setting is not an instance of a
Markov game (Littman, 1994) as we allow only the seller
to take actions.

Dynamic Mechanism as an MDP. We assume that agents
and sellers interact in the following way. Without loss of
generality, assume that the seller starts at some fixed state
s0 P S when h “ 1. For each h P rHs, the seller observes
its state s and takes some action a P A. The agent receives
the reward ri,hps, aq and reports to the seller the received

1In mechanism design literature the reward function is often
called “value function.” We use the tem “reward function” through-
out the paper to avoid confusion with state- and action-value func-
tions.

reward as rri,hpsh, ahq P r0, 1s, which may be different from
the true reward. The seller receives a reward r0,hps, aq and
transitions to some state s1 „ Php¨|s, aq. At the end of
each episode, the seller charges each agent i a price pi P R,
i P rns.

We stress the difference between the reported reward, rri,h,
and the actual reward, ri,h. The reported reward is equal to
ri,h if an agent is truthful but may be given by an arbitrary
function rri,h : S ˆ A Ñ r0, 1s when the agent is not.
In other words, the agent i’s reported reward comes from
the actual reward function ri,h or some arbitrary reward
function rri,h. Our algorithm learns a mechanism via the
reported rewards and, under certain assumptions, we can
provide guarantees on the actual rewards.

For convenience, letR “
řn
i“0 ri be the sum of true reward

functions and R´i “
ř

i1‰i ri the sum of true reward func-
tions excluding agent i. Let rR, rR´i be defined similarly for
the reported reward functions. Let R “ tR´iu

n
i“1 Y tRu

be the set of all true reward functions that we will estimate
and rR be that for the reported reward functions. When all
agents are truthful, rR “ R. We also let

Q˚hp¨, ¨; rq “ max
πPΠ

Qπhp¨, ¨; rq, V
˚
h p¨; rq “ max

πPΠ
V πh p¨; rq,

π˚r “ arg max
πPΠ

V π1 ps0; rq, @r P RY rR.

As a shorthand notation, let π˚ “ π˚R, π˚´i “ π˚R´i , rπ
˚ “

π˚
rR
, and rπ˚´i “ π˚

rR´i
. Following Kandasamy et al. (2020),

we define the agents’ and seller’s utilities as follows. For
any i P rns, we define the agent i’s utility under policy π,
when charged price pi, as

Uπi ppiq “ Eπr
H
ÿ

h“1

ri,hpsh, ahqs ´ pi “ V π1 ps0; riq ´ pi.

The seller’s utility is similarly defined as

Uπ0 ptpiu
n
i“1q “ Eπr

H
ÿ

h“1

r0,hpsh, ahqs `
n
ÿ

i“1

pi

“ V π1 ps0; r0q `

n
ÿ

i“1

pi.

The social welfare for any policy π P Π is the sum of the
utilities,

řn
i“0 Eπruis “ V π1 ps0;Rq, similar to its definition

in Bergemann & Välimäki (2010).

2.1. A Dynamic VCG Mechanism

We now discuss a dynamic adaptation of the VCG mech-
anism and three key mechanism design desiderata it sat-
isfies (Nisan et al., 2007). We begin by introducing the
dynamic adaptation of the VCG mechanism.
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Definition 2.1 (Dynamic VCG Mechanism). When agents
interact according to the aforementioned MDP, assuming
the transition kernel P and the reported reward functions
trriu

n
i“0 are known, the VCG mechanism selects rπ˚, the

social welfare maximizing policy based on the reported
rewards, and charges the agent i price pi : S Ñ R, given by
pi “ V ˚1 ps0; rR´iq ´ V

rπ˚

1 ps0; rR´iq. More generally, when
the mechanism chooses to implement some arbitrary policy
π, the VCG price for the agent i is given by

pi “ V ˚1 ps0; rR´iq ´ V
π
1 ps0; rR´iq. (2.2)

Observe that when H “ 1, the dynamic adaptation we pro-
pose reduces to exactly the classic VCG mechanism (Nisan
et al., 2007).

We highlight the three common mechanism desiderata in the
mechanism design literature (Nisan et al., 2007; Bergemann
& Välimäki, 2010; Hartline, 2012).

1. Efficiency: A mechanism is efficient if it maximizes
social welfare when all agents report truthfully.

2. Individual rationality: A mechanism is individually
rational if it does not charge an agent more than their
reported reward, regardless of other agents’ behavior.
In other words, if an agent reports truthfully, they attain
non-negative utility.

3. Truthfulness: A mechanism is truthful or (dominant
strategy) incentive-compatible if, regardless of the
truthfulness of other agents’ reports, the agent’s utility
is maximized when they report their rewards truthfully.

In the MDP setting, the dynamic VCG mechanism simulta-
neously satisfies all three desiderata.
Proposition 2.2. With P and the reported rewards trriuni“0

known, choosing rπ˚ and charging pi for all i P rns accord-
ing to (2.2) ensures that the mechanism satisfies truthfulness,
individual rationality, and efficiency simultaneously.

Proof. See Appendix B for a detailed proof.

Performance Metrics. We use the following metrics to
evaluate the performance of our estimated mechanism. Let
the social welfare suboptimality of an arbitrary policy π be

SubOptpπ; s0q “ V ˚1 ps0;Rq ´ V π1 ps0;Rq. (2.3)

For any i P rns, let p˚i ps0q “ V ˚1 ps0;R´iq´V
π˚

1 ps0;R´iq
be the price charged to the agent i by VCG under truthful
reporting. We can similarly define the suboptimality with
respect to the agents’ and the seller’s expected utilities. For
any i P rns, the agent i’s suboptimality with respect to
policy π and price tpiuni“1 is defined as

SubOptipπ, tpiu
n
i“1; s0q “ Uπ

˚

i pp˚i q ´ U
π
i ppiq

“ V π
˚

1 ps0; riq ´ p
˚
i ps0q ´ V

π
1 ps0; riq ` pi,

(2.4)

and the seller’s suboptimality is

SubOpt0pπ, tpiu
n
i“1; s0q “ Uπ

˚

0 ptp˚i u
n
i“1q ´ U

π
0 ptpiu

n
i“1q

“ V π
˚

1 ps0; r0q `

n
ÿ

i“1

p˚i ´ V
π
1 ps0; r0q ´

n
ÿ

i“1

pi.

(2.5)

2.2. Offline Episodic RL with General Function
Approximation

We use offline RL in the general function approximation
setting to minimize the aforementioned suboptimalities. Let
D be a precollected data set that contains K trajectories,
that is, D “ tpxτh, a

τ
h, trr

τ
i,hu

n
i“1, x

τ
h`1qu

H,K
h,τ“1. Following

the setup in (Xie et al., 2021), we consider the i.i.d. data
collection regime, where for all h P rHs, pxτh, a

τ
h, x

τ
h`1q

K
τ“1

is drawn from a distribution µh supported on S ˆ A ˆ

S. The distribution µ over tS ˆ A ˆ SuH is induced by
a behavioral policy used for data collection. We do not
make any coverage assumption on µ, similar to the existing
literature on offline RL (Jin et al., 2021b; Uehara & Sun,
2021; Zanette et al., 2021).

Consider some general function class F “ F1ˆF2ˆ . . .ˆ
FH . For each h P rHs, we use some arbitrary yet bounded
function class Fh Ď S ˆAÑ r´pH ´ h` 1qRmax, pH ´
h` 1qRmaxs to approximate Qπhp¨, ¨; rq for arbitrary π and
r P rR. For completeness, we let FH`1 “ tf : fps, aq “
0@ps, aq P S ˆAu be the singleton set containing only the
degenerate function mapping all inputs to 0.

We make two common assumptions about the expressive-
ness of the function class F (Antos et al., 2008; Xie et al.,
2021).

Assumption 2.3 (Approximate Realizability). For any r P
rR and π P tS Ñ ∆pAquH , there exists some fπr P F such
that for all h P rHs,

sup
π1PtSÑ∆pAquH

Eπ1h
“

}fπh,rp¨, ¨; rq ´Q
π
hp¨, ¨; rq}

2
‰

ď εF .

Intuitively, Assumption 2.3 dictates that for all reported
reward functions r and all policies π, there exists a function
in F that can approximate Qπr sufficiently well.

Assumption 2.4 (Approximate Completeness). For any h P
rHs, r P rR, and π P tS Ñ ∆pAquH , we have

sup
fPFh`1

inf
f 1PFh

Eµhr}f 1 ´ Tπh,rf}2s ď εF,F .

Assumption 2.4 requires the function class F to be approxi-
mately closed for all reported reward functions and policies.
The assumption is prevalent in RL and can be omitted only
in rare circumstances (Xie & Jiang, 2021).
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A fundamental problem in offline RL is the distribution shift,
which occurs when the data generating distribution has only
a partial coverage of the policy of interest (Jin et al., 2021b;
Zanette et al., 2021). We address the issue with the help of
distribution shift coefficient (Xie et al., 2021).

Definition 2.5 (Distribution Shift Coefficient). Let Cπpνq
be the measure of distribution shift from an arbitrary distri-
bution over pS ˆAqH , denoted ν, to the data distribution µ,
when measured under the transition dynamics induced by a
policy π P tS Ñ ∆pAquH . In particular,

Cπpνq “ max
f1,f2PF

max
hPrHs

max
rP rR

Eνhr}f1
h ´ Tπh,rf2

h`1}
2s

Eµhr}f1
h ´ Tπh,rf2

h`1}
2s
.

The coefficient controls how well the Bellman estimation
error shifts from one distribution to another for any Bellman
transition operator T. For a detailed discussion on how the
coefficient generalizes previous measures of distribution
shift, please refer to Xie et al. (2021). As a shorthand
notation, when ν is the visitation measure induced by some
policy π1, we let Cπpπ1q “ Cπpdπ1q “ Cπpνq.

In offline learning, with a finite data set, we can only hope
to learn the desired mechanism up to certain statistical er-
ror. In particular, we state the approximate versions of the
desiderata for finite-sample analysis.

1. Asymptotic efficiency: If all agents report truthfully, a
mechanism is asymptotically efficient if SubOptpπ; s0q P

OpK´αq for some α P p0, 1q.
2. Asymptotic individual rationality: Let π, pi be the policy

and price chosen by the mechanism when the agent i
is truthful. A dynamic mechanism is asymptotically
individually rational if Uπi ppiq “ ´OpK´αq for some
α P p0, 1q, regardless of the truthfulness of other agents.

3. Asymptotic truthfulness: Let rπ, rpi be the policy and price
chosen by the mechanism when the agent i is untruthful,
and π, pi those chosen by the mechanism when the agent
i is truthful. We say a dynamic mechanism is asymptoti-
cally truthful if U rπ

i prpiq ´ U
π
i ppiq “ OpK´αq for some

α P p0, 1q regardless of the truthfulness of other agents.

As we will see in sequel, we propose a soft policy itera-
tion algorithm that simultaneously satisfies all three criteria
above with α “ 1{3 up to function approximation biases.

3. Offline RL for VCG
We develop an algorithm that learns the dynamic VCG mech-
anism via offline RL. We begin by sketching out a basic
outline of our algorithm. Recall the dynamic VCG mecha-
nism given in Definition 2.1. At a high level, an algorithm
that learns the dynamic VCG mechanism can be summa-
rized as the following procedure.

1. Learn some policy qπ such that the social welfare sub-
optimality SubOptpqπ; s0q is small.

2. For all i P rns, estimate the VCG price pi, de-
fined in (2.2), as ppi “ G

p1q
´i ps0q ´ G

p2q
´i ps0q, where

G
p1q
´i ps0q estimates V ˚1 ps0; rR´iq and G

p2q
´i ps0q esti-

mates V qπ
1 ps0; rR´iq.

Step 1 simply minimizes the social welfare suboptimality
using offline RL and has been extensively studied in prior
literature (Jin et al., 2021b; Zanette et al., 2021; Xie et al.,
2021; Uehara & Sun, 2021).

A greater challenge lies in implementing Step 2 and showing
that the price estimates, tppiuni“1, satisfy all three approxi-
mate mechanism design desiderata. The estimate Gp2q´i ps0q

can be constructed by performing a policy evaluation of
the learned policy, qπ. The construction of Gp1q´i ps0q is more
challenging, involving two separate steps: (1) learning a fic-
titious policy that approximately maximizes V π1 ps0; rR´iq
over π from offline data, and (2) performing a policy evalua-
tion of the learned fictitious policy to obtain the estimate of
the value function. Consequently, the policy evaluation and
policy improvement subroutines are necessary for learning
G
p1q
´i ps0q and implementing Step 2.

Our challenge is complicated by the fact that a combination
of optimism and pessimism is needed for price estimation,
whereas the typical offline RL literature only leverages pes-
simism (Jin et al., 2021b; Uehara & Sun, 2021; Xie et al.,
2021). For example, whenGp1q´i ps0q is a pessimistic estimate
of V ˚1 ps0; rR´iq, the price estimate ppi is a “lower bound,” at
least in the first term, of the actual price pi derived in (2.2).
A lower price estimate would be beneficial to the agent,
but would increase the seller’s suboptimality since, loosely
speaking, the seller is “paying for” the uncertainty in the
data set, and the reverse holds when Gp1q´i ps0q is an opti-
mistic estimate. The party burdened with the cost of uncer-
tainty may be different in different settings. When allocating
public goods, for instance, the cost of uncertainty should be
the seller’s burden to better benefit the public (Bergemann
& Välimäki, 2019), whereas a company wishing to maxi-
mize their profit would prefer having the agents “pay for”
uncertainty (Friedman & Parkes, 2003).

To allow for such flexibility, we introduce hyperparameters
ζ1, ζ2 P tPES, OPTu, where ζ1 determines whether Gp1q´i ps0q

is a PESsimistic or OPTimistic estimate and ζ2 does so for
G
p2q
´i ps0q. To highlight the trade-off between agents’ and

seller’s suboptimalities, we focus on the two extreme cases,
pζ1, ζ2q “ pPES, OPTq and pζ1, ζ2q “ pOPT, PESq, where
the former favors the agents and the latter the seller. De-
pending on the goal of the mechanism designer, differ-
ent choices of ζ1, ζ2 may be selected to favor agents or
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the seller (Maskin, 2008).

With the crucial challenges identified, we introduce the
specific algorithms that we use to implement Steps 1 and 2.

3.1. Policy Evaluation and Soft Policy Iteration

We use optimistic and pessimistic variants of soft policy
iteration, commonly used for policy improvement (Xie et al.,
2021; Cai et al., 2020; Zanette et al., 2021). At a high level,
each iteration of the soft policy iteration consists of two
steps: policy evaluation and policy improvement.

We begin by describing our policy evaluation algorithm. The
Bellman error can be written as fhps, aq ´ Tπh,rfh`1ps, aq
for any ps, aq P S ˆ A, h P rHs, and the estimate of the
action value function f P F for policy π and reward r.
We construct an empirical estimate of the Bellman error as
follows. For any h P rHs, f, f 1 P F and r P rR, we define
Lh,rpfh, f

1
h`1, π;Dq as

Lh,rpfh, f
1
h`1, π;Dq

“
1

K

K
ÿ

τ“1

pfhps
τ
h, a

τ
hq ´ rhps

τ
h, a

τ
hq

´ f 1h`1ps
τ
h`1, πh`1qq

2,

where we slightly abuse the notation and let rτh be the re-
ported rewards rrτi,h summed over i according to the cho-
sen reported reward function r P rR. Recall that rR “

t rR´iu
n
i“1 Y t

rRu is the set of reported reward functions
whose action-value functions need to be estimated. The
empirical estimate for Bellman error under policy π at step
h is then constructed as

Bh,rpf, π;Dq “Lh,rpfh, fh`1, π;Dq
´ min
gPFh

Lh,rpg, fh`1, π;Dq. (3.1)

The goal of the policy evaluation algorithm is to solve the
following regularized optimization problems:

pQπr “ arg min
fPF

´f1ps0, πq ` λ
H
ÿ

h“1

Bh,rpf, π;Dq,

qQπr “ arg min
fPF

f1ps0, πq ` λ
H
ÿ

h“1

Bh,rpf, π;Dq,

(3.2)

thereby obtaining optimistic and pessimistic estimates of
Qπp¨, ¨; rq for any policy π and reward function r. We
summarize the procedure in Algorithm 1.

Next, we introduce the policy improvement procedure. At
each step t P rT s, we use the mirror descent with the
Kullback-Leibler (KLq divergence to update the policies
for all ps, aq P S ˆA, h P rHs. By direct computation, the

Algorithm 1 Policy Evaluation

Require: Reported reward r P rR, regularization coeffi-
cient λ, dataset D “ tpxτh, ω

τ
h, trr

τ
i,hu

n
i qu

H,K
h,τ“1, policy

π.
1: For all h, τ , calculate rτh as the sum of rrτi,h over i ac-

cording to the reported reward function r.
2: Obtain the optimistic and pessimistic estimates of Qπr

using (3.2)
3: Return action-value function estimates pQπr ,

qQπr .

update rule can be written as

pπ
pt`1q
h,r pa|sq9 pπ

ptq
h,rpa|sq exp

´

η pQ
ptq
h,rps, aq

¯

, (3.3)

qπ
pt`1q
h,r pa|sq9 qπ

ptq
h,rpa|sq exp

´

η qQ
ptq
h,rps, aq

¯

, (3.4)

where pQh,r, qQh,r are the action-value function estimates
obtained from (3.2) (Bubeck, 2014; Cai et al., 2020; Xie
et al., 2021).

For any set of T policies tπptquTt“1, let UnifptπptquTt“1q be
the mixture policy formed by selecting one of tπptquTt“1

uniformly at random. The output of our policy improve-
ment algorithm is then given by Unifptpπ

ptq
r u

T
t“1q and

Unifptqπ
ptq
r u

T
t“1q, that is, the uniform mixture of optimistic

and pessimistic policy estimates. We summarize the soft
policy iteration algorithm in the form of pseudocode in Al-
gorithm 2.

Algorithm 2 Soft Policy Iteration for Episodic MDPs

Require: Reported reward r P rR, regularization coeffi-
cient λ, dataset D “ tpxτh, ωτh, trrτi,huni qu

H,K
h,τ“1, number

of iterations T , learning rate η.
1: Initialize optimistic and pessimistic polices, pπp1qr and

qπ
p1q
r , as the uniform policy.

2: for t “ 1, . . . , T do
3: Obtain the optimistic and pessimistic estimates of

Q
pπptqr
r and Qqπptqr

r by Algorithm 1.
4: Update policy estimates according to (3.3) and (3.4).
5: end for
6: Let pπout

r “ Unifptpπptqr uTt“1q, qπ
out
r “ Unifptqπptqr uTt“1q.

7: Execute Algorithm 1 to construct optimistic action-
value function pQout

r for pπout
r and pessimistic action-

value function qQout
r for qπout

r , respectively.
8: Return tpπout

r , pQout
r u and tqπout

r , qQout
r u.

We defer the pseudocode of our main algorithm to Ap-
pendix C in the form of Algorithm 3, as its construction
is apparent given the two key subroutines above.
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4. Main Results
We begin by formally defining the policy class induced by
the policy improvement algorithm, Algorithm 2. It is a
well-known result that policy iterates induced by mirror
descent-style updates in (3.3) and (3.4) are in the natural
policy class attained by soft policy iteration over F (Cai
et al., 2020; Agarwal et al., 2021; Xie et al., 2021; Zanette
et al., 2021), given by

ΠIt “

"

π1hp¨|sq9 exp

˜

η
T
ÿ

t“1

f thps, ¨q

¸

:

h P rHs, tf
ptq
h u

T
t“1 Ď Fh

*

.

Let ΠSPI denote the following set of policies

ΠSPI “ΠIt

Y

!

π : π “ UnifptπptquTt“1q, tπ
ptquTt“1 Ă ΠIt

)

.

(4.1)

Before stating the main result, we introduce an additional
notation. The statistical error Errstat denotes

Errstat
“ rO

´

HpHRmaxq
5{3K´1{3

¯

` rO
ˆ

H
´

pHRmaxq
1{3ε

1{3
F `

a

εF ` εF,F

¯

˙

,

while the optimization error Erropt denotes

Erropt
“ rO

´

H2Rmax

a

1{T
¯

.

To differentiate the policies learned under different truthful-
ness assumptions, let qπ “ qπout

R be the policy chosen by the
algorithm when all agents are truthful, let rπ “ qπout

ri` rR´i
be

the policy chosen when we only assume the agent i is truth-
ful, and let qπ

rR “ qπout
rR

be the policy chosen when no agent

is truthful. Let qπptq, rπptq, qπptq
rR

be the iterates of Algorithm 2
when learning these policies. Denote the prices charged by
tppiu

n
i“1, trpiu

n
i“1, and tppi, rRu

n
i“1, respectively.

We then summarize the performance of our learned mecha-
nism with asymptotic bounds in Theorem 4.1. Theorem D.1
presented in Appendix D provides a more detailed result.

Theorem 4.1 (Informal). With probability at least 1 ´ δ,
with suitable choices of λ, δ, under Assumptions 2.3 and 2.4,
the following claims hold simultaneously.
1. Algorithm 3 returns a mechanism that is asymptotically

efficient. More specifically, assuming all agents report
truthfully, we have

SubOptpqπ; s0q ď Erropt

`

˜

1

T

T
ÿ

t“1

b

C qπptqpπ˚q

¸

Errstat.

2. Assuming all agents report truthfully, when pζ1, ζ2q “
pPES, OPTq, we have

SubOptipqπ, tppiu
n
i“1; s0q ď Erropt

`

˜

1

T

T
ÿ

t“1

b

C qπptqpπ˚q

¸

Errstat.

When pζ1, ζ2q “ pOPT, PESq, we have

SubOptipqπ, tppiu
n
i“1; s0q ď Erropt

` Errstat

ˆ

˜

1

T

T
ÿ

t“1

b

C qπptqpπ˚q

`

b

C pπ´ippπ´iq `
b

C qπpqπq

¸

.

3. Assuming all agents report truthfully, when pζ1, ζ2q “
pPES, OPTq, we have

SubOpt0pqπ, tppiu
n
i“1; s0q ď nErropt

` Errstat

ˆ

˜

n
ÿ

i“1

b

C qπ´ipqπ´iq ` n
b

C qπpqπq

`

n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
qπ
ptq
R´i pπ˚´iq

¸

.

and, when pζ1, ζ2q “ pOPT, PESq, we have

SubOpt0pqπ, tppiu
n
i“1; s0q ď nErropt

` Errstat

ˆ

˜

n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
pπ
ptq
R´i ppπ

ptq
R´i
q

`

n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
pπ
ptq
R´i pπ˚´iq

¸

.

4. Algorithm 3 returns a mechanism that is asymptotically
individually rational. More specifically, even when other
agents are untruthful, when pζ1, ζ2q “ pPES, OPTq and
the agent i is truthful, their utility satisfies

U rπ
i prpiq ě ´Erropt

´ Errstat

ˆ

˜

1

T

T
ÿ

t“1

c

C
qπ
ptq

ĂR´i prπ˚´iq `

c

C
qπout
ĂR´i pqπout

rR´i
q

`
1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q

¸

.

and when pζ1, ζ2q “ pOPT, PESq and the agent i is truth-
ful, their utility satisfies

U rπ
i prpiq ě ´Erropt

´ Errstat

ˆ

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q `

c

C
pπ
ptq

ĂR´i prπ˚´iq

`
1

T

T
ÿ

t“1

c

C
pπ
ptq

ĂR´i ppπ
ptq
rR´i
q `

b

C rπprπq

¸

.
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5. Algorithm 3 returns a mechanism that is asymptotically
truthful. More specifically, even when all the other agents
are untruthful and irrespective of whether the agent i is
truthful or not, for all i P rns when ζ2 “ OPT the amount
of utility gained by untruthful reporting is upper bounded
as

U
qπ
ĂR

i pppi, rRq ´ U
rπ
i prpiq ď Erropt

` Errstat

ˆ

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q `

b

C qπ
ĂRpqπ

rRqq

¸

,

and when ζ2 “ PES, the amount of utility gained by
untruthful reporting is upper bounded as

U
qπ
ĂR

i pppi, rRq ´ U
rπ
i prpiq ď Erropt

` Errstat

ˆ

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q `

b

C rπprπqq

¸

.

Proof. See Appendix D for a detailed proof.

We make a few remarks about Theorem 4.1.

Dependence on the number of trajectories K. The only
term that depends on the number of trajectories K is the
statistical error Errstat and it decays at the rOpK´1{3q rate,
matching the sample complexity of the pessimistic soft pol-
icy iteration algorithm (Xie et al., 2021). When data set has
coverage of the optimal policy and no function approxima-
tion bias, our algorithm converges sublinearly to a mecha-
nism with suboptimality OpK1{3q. Furthermore, when data
set has sufficient coverage over all policies and the function
class satisfies Assumptions 2.3 and 2.4 exactly, our algo-
rithm is asymptotically individually rational and truthful at
the same OpK1{3q rate, a result that is not implied by the
existing literature on offline RL (Xie et al., 2021; Jin et al.,
2021b; Zanette et al., 2021).

Dependence on ζ1, ζ2. Observe that ζ1 and ζ2 affect the
bounds in Theorem 4.1 by changing the distribution shift co-
efficients involved for each suboptimality. The inclusion of
optimism in offline RL for mechanism design is crucial, as
the optimal individual suboptimality rate is attainable only
when ζ1 “ OPT. Different from the existing work on offline
RL which extensively uses pessimism, we demonstrate the
importance and necessity of optimism when offline RL is
used to help design dynamic mechanisms (Xie et al., 2021;
Jin et al., 2021a; Zanette et al., 2021).

Dependence on F ,ΠSPI. The statistical error term Errstat

is the only term that depends on F ,ΠSPI through the log
covering numbers of F and ΠSPI. The covering numbers
are formally defined in Appendix F and the theorem’s de-
pendence on the covering number is made explicit in the
non-asymptotic version, Theorem D.1. We emphasize that

our results are directly applicable to general, continuous
function classes via a covering-based argument, improving
over the results in Xie et al. (2021).

Comparison to related work. While deep RL algorithms
such as conservative Q-learning (Kumar et al., 2020), con-
servative offline model-based policy optimization (Yu et al.,
2021), and decision transformer (Chen et al., 2021) have
achieved empirical success on popular offline RL bench-
marks, such algorithms rarely have theoretical guarantees
without strong coverage assumptions. Within a mechanism
design context, such a lack of theoretical guarantees is par-
ticularly problematic, as we cannot ensure that the learned
mechanism is individually rational or truthful, potentially
leading to significant ethical issues when applied to real-
world problems. When compared to Xie et al. (2021), our
work features a streamlined, simplified theoretical analysis,
which we sketch below, that is directly applicable when both
|F | and |Π| are unbounded using a covering-based argument,
whereas the convergence bounds in Xie et al. (2021) grows

linearly in the term
b

log |F ||Π|{δ
K in the general function

approximation setting.

5. Proof Sketch
To prove the results in Theorem 4.1, we need to first ana-
lyze the concentration properties of the empirical Bellman
error estimate, Bh,rpf, π;Dq. As the function approxima-
tion class F and the policy class Π often contains infinite
elements, it is crucial that the tail bounds we obtain remain
finite even when both |F | and |Π| are infinite.

We begin by sketching out the concentration bounds
for Bh,rpf, π,Dq. Consider some arbitrary and fixed
h P rHs and r P rR. Let Z be the random vector
psh, ah, rhpsh, ahq, sh`1q, where psh, ah, sh`1q „ µh and
Zj its realization for any j P rKs drawn independently from
Dh. For any f, f 1 P F , and π P Π, we further define the
random variable

gπf,f 1pZq “ pfhpsh, ahq ´ rh ´ f
1
h`1psh`1, πh`1qq

2

´ pTπh,rf 1h`1psh, ahq ´ rh ´ f
1
h`1psh`1, πh`1qq

2,

(5.1)

and gπf,f 1pZjq its empirical counterpart evaluated on Z’s
realization, Zj . Recalling the definition of the Bellman
transition operator Tπh,r, we can show that

EZ„µhrgπf,f 1pZqs “ }fh ´ Tπh,rf 1h`1}
2
2,µh

.

The boundedness of functions in F and reward functions
r P rR ensure that

Varpgπf,f 1pZqq ď 16H2R2
max}fh ´ Tπh,rf 1h`1}

2
2,µh

.

With both the expectation and variance bounded, we can
derive a tail bound for the realizations gπf,f 1pZjq, thereby
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ensuring 1
K

řK
j“1 g

π
f,f 1pZjq is sufficiently close to }fh ´

Tπh,rf 1h`1}
2
2,µh

for a specific choice of f, f 1 P F and π P Π.

We then focus on the function gπf,f 1 itself. Let GF,Π “

tgπfh,f 1h`1
: f, f 1 P F , π P Πu. Examining the definition

of gπf,f 1pZq in (5.1), we can directly control the covering
number of GF,Π using covering numbers of F ,Π, more for-
mally introduced in Appendix C. Using a standard covering
argument, we obtain a tail bound for gπf,f 1pZq for all possi-
ble choices of f, f 1 P F and π P Π, even when both F and
Π are infinite, via the covering numbers of F and Π.

Finally, we notice that 1
K

řK
j“1 g

π
f,f 1pZjq is close to

Bh,rpf, π;Dq under Assumptions 2.3 and 2.4, linking the
concentration behavior of 1

K

řK
j“1 g

π
f,f 1pZjq to the empiri-

cal losses Bh,rpf, π;Dq we observe.

5.1. Seller Suboptimality

We now sketch the proof for bounding the seller’s opti-
mality to provide some intuition on how to prove Theo-
rem 4.1. Equation (D.4), given in the appendix, bounds
SubOpt0pqπ, tppiu

n
i“1; s0q as

SubOpt0pqπ, tppiu
n
i“1; s0q

ď

n
ÿ

i“1

ˆ

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q

˙

`

n
ÿ

i“1

´

G
p2q
´i ps0q ´ V

qπ
1 ps0, R´iq

¯

.

The second term corresponds to the error bound of Algo-
rithm 1. When ζ2 “ OPT, the term exactly corresponds
to the classic function evaluation error of the upper confi-
dence bound methods. As such, it can be bounded using a
combination of the distribution shift coefficient C qπpqπq and
the fact that pQqπ

R´i
minimizes (3.2). When ζ2 “ PES, we

bound the term using the fact that the output of our policy
evaluation algorithm is approximately pessimistic, similar
to Lemma C.6 of Xie et al. (2021).

Next, we focus on the first term G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq.
When ζ1 “ OPT, we use the following decomposition

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq

“ V
π˚
´i

1 ps0;R´iq ´
1

T

T
ÿ

t“1

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q

`
1

T

T
ÿ

t“1

ˆ

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ´ V
pπ
ptq
R´i

1 ps0;R´iq

˙

` V
pπ´i

1 ps0;R´iq ´ pQout
1,R´ips0, pπ1,´iq.

The first term can be bounded using the properties of mirror
descent (Bubeck, 2014). The latter two terms are function

evaluation errors, which we can bound in a similar way as
G
p2q
´i ps0q ´ V qπ

1 ps0, R´iq. The first term can be similarly
bounded when ζ1 “ PES, completing the proof sketch.

6. Discussion
Our work provides the first algorithm that can provably learn
the dynamic VCG mechanism with no prior knowledge,
where the learned mechanism is asymptotically efficient,
individually rational, and truthful. For future work, we aim
to study the performance of our algorithm when the training
set is corrupted with untruthful reports.
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A. Table of Notation
The following table summarizes the notation used in the paper.

Notation Meaning

ri,h{rri,h actual / reported reward function for agent i at step h P rHs

R´i,h{p rR´i,hq actual / reported sum of reward function across all participants sans agent i

Rh{p rRhq actual / reported sum of reward functions across all participants

R{ rR actual / reported reward functions of interest.

πh the policy taken by the seller at step h P rHs

Tπh,r policy specific Bellman transition operator

Cπpνq Distribution shift coefficient (see Definition 2.5)

Cπ1pπ2q Shorthand notation for Cπ1pdπ2
q

pπ
ptq
h,r{pqπ

ptq
h,rq

optimistic / pessimistic policy estimate at the t-th iteration of Algorithm 2 with input
r P rR

pQ
ptq
h,r{p

qQ
ptq
h,rq

optimistic / pessimistic action-value function estimate at the t-th iteration of

Algorithm 2 with input r P rR. Shorthand for pQ
pπ
ptq
h,r

h,r p
qQ
qπ
ptq
h,r

h,r q

pπout
h,r {pqπ

out
h,r q optimistic / pessimistic policy output of Algorithm 2 with input r P rR

pQout
h,r{p

qQout
h,r q

optimistic / pessimistic action-value function estimate output of Algorithm 2 with

input r P rR. Shorthand for pQ
pπout
h,r

h,r p
qQ
qπout
h,r

h,r q

B. Proof of Mechanism Design Desiderata (Proposition 2.2)
Those familiar with the literature on mechanism design may quickly realize that our price function is derived using the
Clarke pivot rule (Nisan et al., 2007). The result is directly derived from the properties of the VCG mechanism (Nisan et al.,
2007; Parkes, 2007; Hartline, 2012). We include a full proof for completeness.

With P and trriuni“0 given, the state-value functions V πh ps0, rq can be explicitly calculated for all h P rHs, r P rR. We can
then obtain exactly rπ˚ and directly calculate pi “ V ˚1 ps0, rR´iq ´ V

rπ˚

1 ps0, rR´iq. Thus, the proposed mechanism is feasible
when the rewards and transition kernel are known.

For convenience, let

πp1q “ π˚
ri` rR´i

“ arg max
πPΠ

V π1 ps0; ri ` rR´iq and πp2q “ π˚
rR
“ arg max

πPΠ
V π1 ps0; rRq,

denote the policies chosen by the mechanism when the agent i is truthful and untruthful, respectively, without assumptions
on the truthfulness of other agents.

We now show that the three desiderata are satisfied by the mechanism.

1. Efficiency. When the agents report triuni“1 truthfully, the chosen policy π˚ maximizes the social welfare and is efficient
by definition.

2. Individual rationality. The price charged from the agent i is

pi “ V ˚1 ps0; rR´iq ´ V
πp2q

1 ps0; rR´iq.

Our goal is to then show that V π
p2q

1 ps0; rriq ě pi. That is, the value function of the reported reward is no less than the



Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning

price charged. Observe that

V π
p2q

1 ps0; rriq ´ rpi “ V π
p2q

1 ps0; rRq ´ V ˚1 ps0; rR´iq.

Let πp2q´i “ arg maxπPΠ V
π
1 ps0; rR´iq. Then we know that

V π
p2q

1 ps0; rriq ´ rpi ě V
π
p2q
´i

1 ps0; rRq ´ V
π
p2q
´i

1 ps0; rR´iq “ V
π
p2q
´i

1 ps0; rriq ě 0.

3. Truthfulness: If rri “ ri, that is, the agent i reports truthfully, they attain the following utility

Uπ
p1q

i ppiq “ V π
p1q

1 ps0; riq ´ V
˚
1 ps0; rR´iq ` V

πp1q

1 ps0; rR´iq “ V π
p1q

1 ps0; ri ` rR´iq ´ V
˚
1 ps0; rR´iq.

When the agent reports some arbitrary rri, the agent receives the following utility instead

Uπ
p2q

i ppiq “ V π
p2q

1 ps0; riq ´ V
˚
1 ps0; rR´iq ` V

πp2q

1 ps0; rR´iq “ V π
p2q

1 ps0; ri ` rR´iq ´ V
˚
1 ps0; rR´iq.

Since πp1q maximizes V π1 ps0; ri` rR´iq, ui ě rui regardless of other agents’ reported reward trrjuj‰i and the mechanism
is truthful.

C. Pseudocode for Offline VCG Learn
Let N8pε,Fq be the ε-covering number of F with respect to the `8-norm, that is, the cardinality of the smallest set of
functions tf luNLl“1 such that for all f P F there exists some l P rLs such that

max
hPrHs

sup
sPS,aPA

|f lhps, aq ´ fhps, aq| ď ε.

We also let N8,1pε,Πq be the ε-covering number of Π with respect to the following norm:

`8,1pπ ´ π
1q “ sup

hPrHs,sPS

ÿ

aPA
|πhpa|sq ´ π

1
hpa|sq|.

With the covering numbers defined, we introduce the main algorithm and the parameter choices for the algorithm, which
depend on the covering numbers. For the main algorithm, we set

λ “

ˆ

Rmax

H2pεS ` 3εF q2

˙1{3

, η “

d

log |A|
2H2R2

maxT
, (C.1)

where

εS “
5136

K
H4R4

max log

ˆ

56nH ¨N8
ˆ

19H3R3
max

K
,F

˙

¨N8,1
ˆ

19H4R4
max

K
,ΠSPI

˙

M

δ

˙

.

The pseudocode for our main algorithm can then be summarized as Algorithm 3.

D. Proof of Theorem 4.1
We re-state Theorem 4.1 in a finite sample form.

Theorem D.1 (Theorem 4.1 restated). Suppose that λ, η are set according to (C.1) and Assumptions 2.3 and 2.4 hold. Then,
with probability at least 1´ δ, the following holds simultaneously.

1. Assuming all agents report truthfully, the suboptimality of the output policy qπ is bounded as

SubOptpqπ; s0q ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C qπptqpπ˚q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.
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Algorithm 3 Offline VCG Learn
Require: Hyperparameters ζ1, ζ2 P tOPT, PESu, regularization coefficient λ, number of iterations T , learning rate η.

1: Let qπout
rR

be the pessimistic policy output of Algorithm 2 with r “ rR, T , and λ, η set according to (C.1).
2: for Agent i “ 1, 2, . . . , n do
3: Call Algorithm 2 with r “ rR´i, T , and λ, η set according to (C.1).
4: If ζ1 “ OPT, let Gp1q´i ps0q “ pQout

1, rR´i
ps0, pπ

out
1, rR´i

q. Otherwise let Gp1q´i ps0q “ qQout
1, rR´i

ps0, qπ
out
1, rR´i

q.

5: Call Algorithm 1 with r “ rR´i, π “ qπout
rR

, and λ set according to (C.1).

6: If ζ2 “ OPT, let Gp2q´i ps0q “ pQ
qπout
ĂR

1, rR´i
ps0, qπ

out
1, rR
q.

Otherwise let Gp2q´i ps0q “ qQ
qπout
ĂR

1, rR´i
ps0, qπ

out
1, rR
q.

7: Set the estimated price ppi “ G
p1q
´i ps0q ´G

p2q
´i ps0q.

8: end for
9: Return policy qπout

rR
and estimated prices tppiuni“1.

2. Assuming all agents report truthfully, when pζ1, ζ2q “ pPES, OPTq, the agent i’s suboptimality, for all i P rns, satisfies

SubOptipqπ, tppiu
n
i“1; s0q ď 2H2Rmax

c

2 log |A|
T

` 3
?
εF ` 6pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C qπptqpπ˚q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

and when pζ1, ζ2q “ pOPT, PESq,the agent i’s suboptimality, for all i P rns, satisfies

SubOptipqπ, tppiu
n
i“1; s0q ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C qπptqpπ˚q `
b

C pπ´ippπ´iq `
b

C qπpqπq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

3. Assuming all agents report truthfully, when pζ1, ζ2q “ pPES, OPTq, the seller’s suboptimality satisfies

SubOpt0pqπ, tppiu
n
i“1; s0q ď 2nH2Rmax

c

2 log |A|
T

` n
?
εF ` 2npHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

n
ÿ

i“1

˜

b

C qπ´ipqπ´iq `
1

T

T
ÿ

t“1

c

C
qπ
ptq
R´i pπ˚´iq

¸

` n
b

C qπpqπq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

and when pζ1, ζ2q “ pOPT, PESq, the seller’s suboptimality satisfies

SubOpt0pqπ, tppiu
n
i“1; s0q ď 2nH2Rmax

c

2 log |A|
T

` 2n
?
εF ` 4npHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

n
ÿ

i“1

1

T

T
ÿ

t“1

˜c

C
pπ
ptq
R´i pπ˚´iq `

c

C
pπ
ptq
R´i ppπ

ptq
R´i
q

¸¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

4. (Asymptotic Individual Rationality) Even when other agents are untruthful, when pζ1, ζ2q “ pPES, OPTq and the agent i
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is truthful, their utility is lower bounded by

U rπ
i prpiq ě ´4H2Rmax

c

2 log |A|
T

´ 3
?
εF ´ 6pHRmaxq

1{3pεS ` 3εF q
1{3

´H

˜

1

T

T
ÿ

t“1

˜

b

C rπptqpπ˚
ri` rR´i

q `

c

C
qπ
ptq

ĂR´i prπ˚´iq

¸

`

c

C
qπout
ĂR´i pqπout

rR´i
q

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

and when pζ1, ζ2q “ pOPT, PESq, their utility is lower bounded by

U rπ
i prpiq ě ´4H2Rmax

c

2 log |A|
T

´ 2
?
εF ´ 4pHRmaxq

1{3pεS ` 3εF q
1{3

´H

˜

1

T

T
ÿ

t“1

˜

b

C rπptqpπ˚
ri` rR´i

q `

c

C
pπ
ptq

ĂR´i prπ˚´iq `

c

C
pπ
ptq

ĂR´i ppπ
ptq
rR´i
q

¸

`

b

C rπprπq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

5. (Asymptotic Truthfulness) Even when all the other agents are untruthful and irrespective of whether the agent i is
truthful or not, when ζ2 “ OPT, the amount of utility gained by untruthful reporting is upper bounded by

U
qπ
ĂR

i pppi, rRq ´ U
rπ
i prpiq ď 2H2Rmax

c

2 log |A|
T

` 2
?
εF ` 4pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q `

b

C qπ
ĂRpqπ

rRq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

and when ζ2 “ PES, the amount of utility gained by untruthful reporting is upper bounded by

U
qπ
ĂR

i pppi, rRq ´ U
rπ
i prpiq ď 2H2Rmax

c

2 log |A|
T

` 2
?
εF ` 4pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q `

b

C rπprπq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Proof of Theorem D.1. We will make use of the following concentration lemma.

Lemma D.2. For any fixed h P rHs, r P rR, and any policy class Π Ă tS Ñ ∆pAquH we have

Pr
´

Df, f 1 P F , π P Π :
ˇ

ˇEµh
“

}fh ´ Tπh,rf 1h`1}
2
‰

´ Lh,rpfh, f
1
h`1, π;Dq ` Lh,rpTπh,rf 1h`1, f

1
h`1, π;Dq

ˇ

ˇ

ě ε
`

α` β ` Eµh
“

}fh ´ Tπh,rf 1h`1}
2
‰˘

¯

ď 28

ˆ

N8
ˆ

εβ

140HRmax
,F

˙˙2

N8,1
ˆ

εβ

140H2R2
max

,Π

˙

exp

ˆ

´
ε2p1´ εqαK

214p1` εqH4R4
max

˙

.

for all α, β ą 0, 0 ă ε ď 1{2.

Proof. See Section F.1 for a detailed proof.
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Our proof hinges upon the occurrence of a “good event” under which the difference between the empirical Bellman error
estimator and the Bellman error can be bounded. We formalize the definition of the “good event” below.

Lemma D.3. For any policy class Π Ă tS Ñ ∆pAquH , let the “good event” GpΠq be defined as

GpΠq “
 

@h P rHs, r P rR, π P Π, f, f 1 P F :
ˇ

ˇEµhr}fh ´ Tπh,rf 1h`1}
2s ´ Lh,rpfh, f

1
h`1, π;Dq ` Lh,rpTπh,rf 1h`1, f

1
h`1, π;Dq

ˇ

ˇ

ď εS `
1

2
Eµhr}fh ´ Tπh,rf 1h`1}

2s
(

,

(D.1)

where

εS “
5136

K
H4R4

max log

ˆ

56nH ¨N8
ˆ

19H3R3
max

K
,F

˙

¨N8,1
ˆ

19H4R4
max

K
,Π

˙

M

δ

˙

. (D.2)

Then GpΠq occurs with probability at least 1´ δ.

Proof. See Section F.2 for a detailed proof.

On the event GpΠq, the best approximations of action-value functions, defined according to Assumption 2.3, have small
empirical Bellman error estimates.

Corollary D.4. Let Π be any policy class. Conditioned on the event GpΠq, let fπ,˚r P F be the best estimate of Qπr p¨, ¨; rq
as defined in Assumption 2.3, π P Π and r P rR. Then, for all h P rHs, we have

Bh,rpf
π,˚
r , π;Dq ď 2εS ` 6εF .

Proof. See Section F.2 for a detailed proof.

We can also show that any function with sufficiently small empirical Bellman error estimate must also have small Bellman
error conditioned on the good event.

Corollary D.5. Let ε0 ą 0 be arbitrary and fixed. For any policy class Π, conditioned on the event GpΠq, for all h P rHs,
reported reward r P rR, π P Π, f P F , if Bh,rpf, π;Dq ď ε0, then

Eµh
“

}fh ´ Tπh,rfh`1}
2
‰

ď 2ε0 ` 4εS ` 3εF,F .

Proof. See Section F.2 for a detailed proof.

We introduce the key properties of Algorithms 1 and 2 that we will use. The following lemma states that the outputs of
Algorithm 1 are approximately optimistic and pessimistic.

Lemma D.6. For any π “ tπhu
H
h“1 P ΠSPI, reported reward r P rR, and λ, conditioned on the event GpΠSPIq, the

following holds simultaneously for optimistic and pessimistic outputs of Algorithm 1:

1. qQπ1,rps0, π1q ` λ
řH
h“1Bh,rp

qQπr , π;Dq ď Qπ1 ps0, π1; rq `
?
εF ` 2λHεS ` 6λHεF ;

2. pQπ1,rps0, π1q ´ λ
řH
h“1Bh,rp

pQπr , π;Dq ě Qπ1 ps0, π1; rq ´
?
εF ´ 2λHεS ´ 6λHεF .

Proof. See Section E.1 for a detailed proof.

Additionally, the estimates given by Algorithm 1 are sufficiently good estimates of the ground truth action-value functions.

Lemma D.7. For any input π “ tπhuHh“1 P ΠSPI, reported reward r P rR, when λ “
´

Rmax

H2pεS`3εF q2

¯1{3

and the event

GpΠSPIq holds, the outputs of Algorithm 1 satisfy:

1. Qπ1 ps0, π1; rq ´ qQπ1,rps0, π1q ď H
a

Cπpπq
`

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F
˘

;
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2. pQπ1,rps0, π1q ´Q
π
1 ps0, π1; rq ď H

a

Cπpπq
`

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F
˘

.

Proof. See Section E.1 for a detailed proof.

Finally, we bound the difference between outputs of Algorithm 2 and the true values. More precisely, we characterize the
performance of the output policy with respect to any comparator policy, not necessarily in the induced policy class ΠSPI,
and bound the difference between the estimated value function and the true value function of the output policy.

Lemma D.8. For any comparator policy π (not necessarily in ΠSPI), any reported reward function r P rR, with η set to
b

log |A|
2H2R2

maxT
and λ set to

´

Rmax

H2pεS`3εF q2

¯1{3

in Algorithm 2, the following claims hold conditioned on the event GpΠSPIq:

1. Let qQ
ptq
1,r and qπ

ptq
r be the pessimistic value function estimate and policy estimate. Then

V π1 ps0; rq ´
1

T

T
ÿ

t“1

qQ
ptq
1,rps0, qπ

ptq
1,rq ď 2H2Rmax

c

2 log |A|
T

`H

˜

1

T

T
ÿ

t“1

b

C qπ
ptq
r pπq

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

2. Let pQ
ptq
1,r and pπ

ptq
r be the optimistic value function estimate and policy estimate. Then

V π1 ps0; rq ´
1

T

T
ÿ

t“1

pQ
ptq
1,rps0, pπ

ptq
1,rq ď 2H2Rmax

c

2 log |A|
T

`H

˜

1

T

T
ÿ

t“1

b

C pπ
ptq
r pπq

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Proof. See Section E.2 for a detailed proof.

We then proceed with the proof as follows. We start by bounding the suboptimality of the output policy, defined according to
equation (2.3). We then bound the regret of each individual agent and the seller. We follow up with showing that our output
asymptotically satisfies individual rationality. Finally, we prove that our output also asymptotically satisfies truthfulness.

We use the following notation to differentiate the policies and prices learned under different truthfulness assumptions. Let
qπ “ qπout

R be the policy chosen by the algorithm when all agents are truthful, let rπ “ qπout
ri` rR´i

be the policy chosen when we

only assume the agent i is truthful, and finally let qπ
rR “ qπout

rR
be the policy chosen when none of the agents are truthful. Let

the prices charged by the algorithm be tppiuni“1, trpiu
n
i“1, and tppi, rRu

n
i“1, respectively.

Social Welfare Suboptimality Assuming all agents are truthful, we have rri “ ri for all i. Let π˚ be the maximizer of
V π1 ps0;Rq over π and let qπptqR be the pessimistic policy iterate of Algorithm 2. We know that the social welfare suboptimality
of qπ is

SubOptpqπ; s0q “ V π
˚

1 ps0;Rq ´ V qπ
1 ps0;Rq “ V π

˚

1 ps0;Rq ´
1

T

T
ÿ

t“1

V
qπ
ptq
R

1 ps0;Rq

“
1

T

T
ÿ

t“1

´

V π
˚

1 ps0;Rq ´Qqπptq

1 ps0, qπ
ptq
1,R;Rq

¯

,

as we recall that qπ is the uniform mixture of policies tqπptqR utPrT s. By Lemma D.6, we have

SubOptpqπ; s0q ď
1

T

T
ÿ

t“1

´

V π
˚

1 ps0;Rq ´ qQ
ptq
1,Rps0, qπ

ptq
1,R;Rq

¯

`
?
εF ` 2λHεS ` 6λHεF , (D.3)
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where qQ
ptq
R is the pessimistic estimate of Qp¨, ¨;Rq at the t-th iteration of Algorithm 2. When λ “

´

Rmax

H2pεS`3εF q2

¯1{3

and

η “
b

log |A|
2H2R2

maxT
, we apply Lemma D.8 to obtain

SubOptpqπ; s0q ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C qπ
ptq
R pπ˚q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Individual Suboptimality Let π˚´i be the maximizer of V πps0;R´iq over π. By Algorithm 3, the price ppi is constructed
as

ppi “ G
p1q
´i ps0q ´G

p2q
´i ps0q,

where Gp1q´i ps0q is an estimate of V π
˚
´ips0;R´iq obtained using Algorithm 2 and Gp2q´i ps0q is an estimate of V qπps0;R´iq

for Algorithm 3’s output policy, qπ. This observation will be extensively used in the remainder of the proof.

Assuming all agents are truthful, we have rri “ ri for all i. Recalling the construction of ppi in Algorithm 3 line 3 and the
definition of tp˚i u

n
i“1 (see (2.2)), we have

SubOptipqπ, tppiu
n
i“1; s0q

“ V π
˚

1 ps0; riq ` V
π˚

1 ps0;R´iq ´ V
π˚
´i

1 ps0;R´iq ´ V
qπ

1 ps0; riq `G
p1q
´i ps0q ´G

p2q
´i ps0q

“ V π
˚

1 ps0;Rq ´ V
π˚
´i

1 ps0;R´iq ´ V
qπ

1 ps0; riq `G
p1q
´i ps0q ´G

p2q
´i ps0q

ď V π
˚

1 ps0;Rq ´ V qπ
1 ps0;Rq `

ˆ

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq

˙

`

´

V qπ
1 ps0;R´iq ´G

p2q
´i ps0q

¯

“ SubOptpqπ; s0q `

ˆ

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq

˙

`

´

V qπ
1 ps0;R´iq ´G

p2q
´i ps0q

¯

.

We have already bounded the first term and now focus on the two latter terms.

We begin by examining Gp1q´i ps0q ´ V
π˚
´i

1 ps0;R´iq.

• Suppose ζ1 “ OPT. Since π˚´i maximizes V
π˚
´i

1 ps0;R´iq over π, we have

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq ď G
p1q
´i ps0q ´ V

pπ´i
1 ps0;R´iq.

Recall that pQout
R´i

is the optimistic function estimate from the output of Algorithm 2, which is exactly the output of
Algorithm 1 called on the policy returned by Algorithm 2, pπ´i. By Lemma D.7, we know that

G
piq
´ips0q ´ V

pπ´i
1 ps0;R´iq

ď H
b

C pπ´ippπ´iq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• Suppose ζ1 “ PES. Since π˚´i maximizes V π1 ps0;R´iq over π, we have

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq ď G
p1q
´i ps0q ´ V

qπ´i
1 ps0;R´iq.

Recall that Gp1q´i ps0q “ qQout
1,R´i

ps0, qπ1,´iq. When λ “
´

Rmax

H2pεS`3εF q2

¯1{3

, by Lemma D.6 we have

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq ď
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3.
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We perform a similar analysis for V qπ
1 ps0;R´iq ´G

p2q
´i ps0q and when λ “

´

Rmax

H2pεS`3εF q2

¯1{3

.

• When ζ2 “ OPT, V qπ
1 ps0;R´iq ´G

p2q
´i ps0q ď

?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3 by Lemma D.6.

• When ζ2 “ PES, let qQqπ
R´i

be the pessimistic output of Algorithm 1 called on qπ. By Lemma D.7, we have

V qπ
1 ps0;R´iq ´G

p2q
´i ps0q ď H

b

C qπpqπq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Seller Suboptimality We now turn our attention to the sellers’ suboptimality. Assuming all agents are truthful, we have
rri “ ri for all i. Recalling the definition of tp˚i u

n
i“1 in (2.2), we have

SubOpt0pqπ, tppiu
n
i“1; s0q

“ V π
˚

1 ps0; r0q ´ V
qπ

1 ps0; r0q `

n
ÿ

i“1

ˆ

max
π1PΠ

V π
1

1 ps0;R´iq ´ V
π˚

1 ps0;R´iq

˙

´

n
ÿ

i“1

ppi

“

n
ÿ

i“1

max
π1PΠ

V π
1

1 ps0;R´iq ´ pn´ 1qV π
˚

1 ps0;Rq ´ V qπ
1 ps0; r0q ´

n
ÿ

i“1

G
p1q
´i ps0q `

n
ÿ

i“1

G
p2q
´i ps0q

“

n
ÿ

i“1

ˆ

max
π1PΠ

V π
1

1 ps0;R´iq ´G
p1q
´i ps0q

˙

´ pn´ 1qV π
˚

1 ps0;Rq ´ V qπ
1 ps0; r0q `

n
ÿ

i“1

G
p2q
´i ps0q

“

n
ÿ

i“1

ˆ

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q

˙

` pn´ 1qpV qπ
1 ps0;Rq ´ V π

˚

1 ps0;Rqq

`

n
ÿ

i“1

´

G
p2q
´i ps0q ´ V

qπ
1 ps0, R´iq

¯

ď

n
ÿ

i“1

ˆ

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q

˙

`

n
ÿ

i“1

´

G
p2q
´i ps0q ´ V

qπ
1 ps0, R´iq

¯

,

(D.4)

where the last inequality comes from the fact that π˚ is the social welfare-maximizing policy. The two terms can be
bounded similarly to bounding the agents’ suboptimality. We discuss the exact bounds for different choices of ζ1, ζ2 and

λ “
´

Rmax

H2pεS`3εF q2

¯1{3

, η “
b

log |A|
2H2R2

maxT
.

• When ζ1 “ OPT, by Algorithm 3 line 3, we know that for any i P rns,

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q “ V

π˚
´i

1 ps0;R´iq ´ pQout
1,R´ips0, pπ1,´iq.

By Lemma D.8, we know that

V
π˚
´i

1 ps0;R´iq ´
1

T

T
ÿ

t“1

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ď 2H2Rmax

c

2 log |A|
T

`H

˜

1

T

T
ÿ

t“1

c

C
pπ
ptq
R´i pπ˚´iq

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

By Lemma D.7 and recalling that pπ´i is the uniform mixture of tpπptqR´iutPrT s, we know that

1

T

T
ÿ

t“1

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ´ V
pπ´i

1 ps0;R´iq

“
1

T

T
ÿ

t“1

ˆ

pQ
ptq
1,R´i

ps0, pπ
ptq
1,R´i

q ´ V
pπ
ptq
R´i

1 ps0;R´iq

˙

ď H

˜

1

T

T
ÿ

t“1

c

C
pπ
ptq
R´i ppπ

ptq
R´i
q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.
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Lastly, by Lemma D.6, we also know that

V
pπ´i

1 ps0;R´iq ´ pQout
1,R´ips0, pπ1,´iq ď

?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3.

Summing the three parts tells us that, for all i P rns, we have

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q

“ V
π˚
´i

1 ps0;R´iq ´ pQout
1,R´ips0, pπ1,´iq

ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

˜c

C
pπ
ptq
R´i pπ˚´iq `

c

C
pπ
ptq
R´i ppπ

ptq
R´i
q

¸¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

(D.5)

and

n
ÿ

i“1

ˆ

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q

˙

ď 2nH2Rmax

c

2 log |A|
T

` n
?
εF ` 2npHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

n
ÿ

i“1

1

T

T
ÿ

t“1

˜c

C
pπ
ptq
R´i pπ˚´iq `

c

C
pπ
ptq
R´i ppπ

ptq
R´i
q

¸¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• When ζ1 “ PES, by Algorithm 3 we know that for any i P rns,

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q “ V

π˚
´i

1 ps0;R´iq ´ qQout
1,R´ips0, qπ1,´iq.

By Lemma D.8, we know that

V
π˚
´i

1 ps0;R´iq ´
1

T

T
ÿ

t“1

qQ
ptq
1,R´i

ps0, qπ
ptq
1,R´i

q ď 2H2Rmax

c

2 log |A|
T

`H

˜

1

T

T
ÿ

t“1

c

C
qπ
ptq
R´i pπ˚´iq

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

By Lemma D.6, we know that

1

T

T
ÿ

t“1

qQ
ptq
1,R´i

ps0, qπ
ptq
1,R´i

q ´ V
qπ´i

1 ps0;R´iq ď
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3.

By Lemma D.7, we further know that

V
qπ´i

1 ps0;R´iq ´ qQout
1,R´ips0, qπ1,´iq

ď H
b

C qπ´ipqπ´iq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.
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Summing the three parts together tells us that, for all i P rns and any C ě 1, we have

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q “ V

π˚
´i

1 ps0;R´iq ´ qQout
1,R´ips0, qπ1,´iq

ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

b

C qπ´ipqπ´iq `
1

T

T
ÿ

t“1

c

C
qπ
ptq
R´i pπ˚´iq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

(D.6)

and
n
ÿ

i“1

ˆ

V
π˚
´i

1 ps0;R´iq ´G
p1q
´i ps0q

˙

ď 2nH2Rmax

c

2 log |A|
T

` n
?
εF ` 2npHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

n
ÿ

i“1

b

C qπ´ipqπ´iq `
n
ÿ

i“1

1

T

T
ÿ

t“1

c

C
qπ
ptq
R´i pπ˚´iq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• When ζ2 “ OPT, for all i P rns, let qQqπ
R´i

be the pessimistic estimate of Qqπp¨, ¨;R´iq returned by Algorithm 1. By
Lemma D.7, we know

n
ÿ

i“1

´

G
p2q
´i ps0q ´ V

qπ
1 ps0, R´iq

¯

ď nH
b

C qπpqπq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• When ζ2 “ PES,
řn
i“1

´

G
p2q
´i ps0q ´ V

qπ
1 ps0, R´iq

¯

ď n
?
εF ` 2npHRmaxq

1{3pεS ` 3εF q
1{3 by Lemma D.6.

Plugging in the bound for SubOptpqπ; s0q completes the proof.

Individual Rationality We show that the utility of any agent i is bounded below. First, assume for convenience that all
other agents are truthful and report their true ri1,h for i1 P rnszi. Recall that for any price pi, the agents’ expected utility
under the chosen policy qπ can be written as

Ed
qπ
ruis “ V qπ

1 ps0; riq ´ pi.

According to Algorithm 3, we have

E
qπruis “ V qπ

1 ps0; riq ´G
p1q
´i ps0q `G

p2q
´i ps0q

“ V qπ
1 ps0; riq `G

p2q
´i ps0q ´ V

π˚
´ips0;R´iq ` V

π˚
´ips0;R´iq ´G

p1q
´i ps0q

“ pV π
˚

ps0;Rq ´ V π
˚
´ips0;R´iqq ` V

qπps0; riq `G
p2q
´i ps0q ´ V

π˚ps0;Rq

` V π
˚
´ips0;R´iq ´G

p1q
´i ps0q

ě V qπps0; riq `G
p2q
´i ps0q ´ V

π˚ps0;Rq ` V π
˚
´ips0;R´iq ´G

p1q
´i ps0q

“ G
p2q
´i ps0q ´ V

qπps0;R´iq ` V
qπps0;Rq ´ V π

˚

ps0;Rq ` V π
˚
´ips0;R´iq ´G

p1q
´i ps0q,

(D.7)

where the inequality comes from the fact that

pV π
˚

ps0;Rq ´ V π
˚
´ips0;R´iqq ě pV

π˚
´ips0;Rq ´ V π

˚
´ips0;R´iqq “ V π

˚
´ips0; riqq ě 0,
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as ri,h P r0, 1s for all i, h. We already know the lower bounds for V π
˚
´ips0;R´iq ´G

p1q
´i ps0q and Gp2q´i ps0q ´ V

qπps0;R´iq

, respectively, when bounding the individual suboptimalities for the agents. Also note that V qπps0;Rq ´ V π
˚

ps0;Rq “
´SubOptpqπ; s0q has been bounded when bounding social welfare suboptimality.

Similar to the previous sections, we now discuss the bounds for the different terms under difference choices of ζ1, ζ2.

• When ζ1 “ OPT, by equation (D.5) we know that

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq ě ´2H2Rmax

c

2 log |A|
T

´
?
εF ´ 2pHRmaxq

1{3pεS ` 3εF q
1{3

´H

˜

1

T

T
ÿ

t“1

˜c

C
pπ
ptq
R´i pπ˚´iq `

c

C
pπ
ptq
R´i ppπ

ptq
R´i
q

¸¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• When ζ1 “ PES, by equation (D.6) we know that

G
p1q
´i ps0q ´ V

π˚
´i

1 ps0;R´iq ě ´2H2Rmax

c

2 log |A|
T

´
?
εF ´ 2pHRmaxq

1{3pεS ` 3εF q
1{3

´H

˜

b

C qπ´ipqπ´iq `
1

T

T
ÿ

t“1

c

C
qπ
ptq
R´i pπ˚´iq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• When ζ2 “ OPT, by Lemma D.6, we know that

G
p2q
´i ps0q ´ V

qπps0;R´iq ě ´
?
εF ´ 2pHRmaxq

1{3pεS ` 3εF q
1{3.

• When ζ2 “ PES, by Lemma D.7

G
p2q
´i ps0q ´ V

qπ
1 ps0;R´iq ě ´H

b

C qπpqπq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

We now argue that our analysis holds even when the other agents are not truthful. Recall that rπ is the output policy selected
by Algorithm 3 when other agents report rri1 and the agent i reports truthfully. Observe that here the decomposition in
equation (D.7) can be written as

E
rπruis ě rG

p2q
´i ps0q ´ V

rπps0; rR´iq ` V
rπps0; ri ` rR´iq ´ V

π˚
ri`

ĂR´i ps0; ri ` rR´iq

` V rπ˚
´ips0; rR´iq ´ rG

p1q
´i ps0q,

where we recall that rR´i “
ř

i1‰i rri1 , and π˚
ri` rR´i

and rπ˚´i maximize V π1 ps0; ri ` rR´iq and V π1 ps0; rR´iq over π,

respectively. We also let rG
p1q
´i ,

rG
p2q
´i be the estimates used in Algorithm 3 line 3 when other agents are reporting untruthfully.

Similar to the previous sections, we bound different terms under difference choices of ζ1, ζ2.

• When ζ1 “ OPT, similar to equation (D.5), we have

rG
p1q
´i ps0q ´ V

rπ˚
´i

1 ps0; rR´iq ě ´2H2Rmax

c

2 log |A|
T

´
?
εF ´ 2pHRmaxq

1{3pεS ` 3εF q
1{3

´H

˜

1

T

T
ÿ

t“1

˜

c

C
pπ
ptq

ĂR´i prπ˚´iq `

c

C
pπ
ptq

ĂR´i ppπ
ptq
rR´i
q

¸¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.
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• When ζ1 “ PES, similar to equation (D.6), we have

rG
p1q
´i ps0q ´ V

rπ˚
´i

1 ps0; rR´iq ě ´2H2Rmax

c

2 log |A|
T

´
?
εF ´ 2pHRmaxq

1{3pεS ` 3εF q
1{3

´H

˜

c

C
qπout
ĂR´i pqπout

rR´i
q `

1

T

T
ÿ

t“1

c

C
qπ
ptq

ĂR´i prπ˚´iq

¸

ˆ

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

• When ζ2 “ OPT, by Lemma D.6, we know

rG
p2q
´i ps0q ´ V

rπps0; rR´iq ě ´
?
εF ´ 2pHRmaxq

1{3pεS ` 3εF q
1{3.

• When ζ2 “ PES, by Lemma D.7

rG
p2q
´i ps0q ´ V

rπ
1 ps0; rR´iq ě ´H

b

C rπprπq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

where rπ is the policy that the seller chooses when agent i reports truthfully and the other agents do not.

We finally focus on lower bounding V rπps0; ri ` rR´iq ´ V
π˚
ri`

ĂR´i ps0; ri ` rR´iq. Since rπ is the uniform mixture of
trπptqutPrT s, we have

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ V
rπ

1 ps0; ri ` rR´iq

“
1

T

T
ÿ

t“1

˜

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ V
rπptq

1 ps0; ri ` rR´iq

¸

ď
1

T

T
ÿ

t“1

˜

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ qQ
ptq

1,ri` rR´i
ps0, rπ

ptq
1 q

¸

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

by Lemma D.6. By Lemma D.8, we know that

1

T

T
ÿ

t“1

˜

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ qQ
ptq

1,ri` rR´i
ps0, rπ

ptq
1 q

¸

ď 2H2Rmax

c

2 log |A|
T

`H

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Therefore, we have

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ V
rπ

1 ps0; ri ` rR´iq

ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

(D.8)

Flipping the signs yields the final bound.

Truthfulness Similar to above and let rri1 be the potentially untruthful reward functions reported by other agents and let rri
be the untruthful reward function that the agent i may report. Furthermore, let rR´i “

ř

i1‰i rri1 and rR “
řn
i“1 rri.
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Let rπ be the policy chosen by the seller when the agent i is truthful and other agents are possibly non-truthful and qπ
rR the

policy chosen by Algorithm 3 when both the agent i and other agents are non-truthful. The agents’ expected utilities for the
two cases are

E
rπruis “ V rπ

1 ps0; riq ` rG
p2q
´i ps0q ´ rG

p1q
´i ps0q,

Ed
qπ
ĂR
ruis “ V

qπ
ĂR

1 ps0; riq ` rG
p2q,1
´i ps0q ´ rG

p1q,1
´i ps0q,

where rG
p2q
´i ps0q estimates V rπps0; rR´iq and rG

p2q,1
´i ps0q estimates V qπ

ĂRps0; rR´iq.

Observe that both rG
p1q
´i ps0q and rG

p1q,1
´i ps0q approximate V

rπ˚
´i

1 ps0; rR´iq using the same algorithm, Algorithm 2. As the

algorithm itself does not contain randomness and rG
p1q
´i ps0q and rG

p1q,1
´i ps0q are constructed using the same parameters, the

two terms must be equal. Then we have

E
qπ
ĂR
ruis ´ E

rπruis “ V
qπ
ĂR

1 ps0; riq ` rG
p2q,1
´i ps0q ´

´

V rπ
1 ps0; riq ` rG

p2q
´i ps0q

¯

“ V
qπ
ĂR

1 ps0; ri ` rR´iq ` rG
p2q,1
´i ps0q ´ V

qπ
ĂR

1 ps0; rR´iq ´
´

V rπ
1 ps0; ri ` rR´iq ` rG

p2q
´i ps0q ´ V

rπ
1 ps0; rR´iq

¯

“ V
qπ
ĂR

1 ps0; ri ` rR´iq ´ V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ` rG
p2q,1
´i ps0q ´ V

qπ
ĂR

1 ps0; rR´iq

` V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ V
rπ

1 ps0; ri ` rR´iq ` V
rπ

1 ps0; rR´iq ´ rG
p2q
´i ps0q,

where we recall that π˚
ri` rR´i

is the maximizer of V π1 ps0; ri ` rR´iq over π (the social welfare maximizing policy when
agent i reports truthfully). We then know that

V
qπ
ĂR

1 ps0; ri ` rR´iq ´ V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ď 0

and

E
qπ
ĂR
ruis ´ E

rπruis

ď

´

rG
p2q,1
´i ps0q ´ V

qπ
ĂR

1 ps0; rR´iq
¯

`

˜

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ V
rπ

1 ps0; ri ` rR´iq

¸

`

´

V rπ
1 ps0; rR´iq ´ rG

p2q
´i ps0q

¯

.

Let us focus on the middle term first. By (D.8), we have

V
π˚
ri`

ĂR´i

1 ps0; ri ` rR´iq ´ V
rπ

1 ps0; ri ` rR´iq

ď 2H2Rmax

c

2 log |A|
T

`
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3

`H

˜

1

T

T
ÿ

t“1

b

C rπptqpπ˚
ri` rR´i

q

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

We state the results conditioned on different values of ζ2 as the bound no longer depends on ζ1.

• When ζ2 “ OPT, by Lemma D.6, we have

V rπ
1 ps0; rR´iq ´ rG

p2q
´i ps0q ď

?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3,

and by Lemma D.7,

rG
p2q,1
´i ps0q ´ V

qπ
ĂR

1 ps0; rR´iq

ď H
b

C qπ
ĂRpqπ

rRq

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.
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• When ζ2 “ PES, by Lemma D.7,

V rπ
1 ps0; rR´iq ´ rG

p2q
´i ps0q ď H

b

C rπprπq
´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

and by Lemma D.6,

rG
p2q,1
´i ps0q ´ V

qπ
ĂR

1 ps0; rR´iq ď
?
εF ` 2pHRmaxq

1{3pεS ` 3εF q
1{3.

Combining the terms completes the proof.

E. Supporting Lemmas
In this section, we provide detailed proofs of supporting lemmas used in Section D.

E.1. Proofs for Algorithm 1

Previous work has shown that the estimate of the value function fπ is the exact value function of an induced MDP that
shares the same state space, action space, and transition kernel as M, only with slightly perturbed reward functions (Cai
et al., 2020; Uehara & Sun, 2021; Xie et al., 2021; Zanette et al., 2021). More precisely, let r be the input reward for
Algorithm 1, π the input policy, and fπ the output. Let Mfπ be the induced MDP. We formally state the result below.

Lemma E.1. For any input policy π (not necessarily in ΠSPI) and input reward function r, Algorithm 1 returns a function
fπ such that fπ is the Q-function of the policy π under the induced MDP Mfπ , given by

Mfπ “ pS,A, H,P, rfπ q, (E.1)

where rfπ,h “ rh ` f
π
h ´ Tπh,rfπh`1. In other words, fπp¨, ¨q “ Qπp¨, ¨; rfπ q.

Proof. See Section C.1 in Zanette et al. (2021) for a detailed proof.

We immediately have the following corollary.

Corollary E.2. Let fπ be any one of the two functions returned by Algorithm 1 for any input policy π (not necessarily in
ΠSPI) and any input reward function r. Then, for all h P rHs, we have

|fπh ps, aq ´Q
π
hps, a; rq| ď

H
ÿ

h1“h

EpSh1 ,Ah1 q„π|ps,aq
“
ˇ

ˇfπh ´ Tπh,rfπh`1

ˇ

ˇ

‰

.

Proof. By definition of the Q-function, we have

fπh ps, aq ´Q
π
hps, a; rq “ Qπhps, a; rfπ q ´Q

π
hps, a; rq

“

H
ÿ

h1“h

EpSh1 ,Ah1 q„π|ps,aqrrhpSh1 , Ah1q ´ rfπ,hpSh1 , Ah1qs.

Recalling the definition of rfπ in equation (E.1) and using Jensen’s inequality concludes the proof.

We proceed to show that Algorithm 1 is approximately optimistic/pessimistic and bounding the estimation error of its
outputs. We begin with the proof of Lemma D.6.

Proof of Lemma D.6. We start by upper bounding two auxiliary terms. Let fπ,˚r P F be the best approximation ofQπp¨, ¨; rq,
as defined in Assumption 2.3. By Jensen’s inequality, we have

|fπ,˚1,r ps0, π1q ´Q
π
1 ps0, π1; rq| ď Ea„π1p¨|s0qr|f

π,˚
1,r ps0, π1q ´Q

π
1 ps0, π1; rq|s ď

?
εF .

Additionally, using Lemma D.4 we know that, conditioned on the event GpΠSPIq, for all h P rHs we have
Bh,rpf

π,˚
r , π;Dq ď 2εS ` 6εF .
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We then consider qQπr . By (3.2), we know that

qQπ1,rps0, πq ` λ
H
ÿ

h“1

Bh,rp qQ
π
r , π;Dq ď fπ,˚1,r ps0, πq ` λ

H
ÿ

h“1

Bh,rpf
π,˚
r , π;Dq

ď Qπ1 ps0, π; rq ` |fπ,˚1,r ps0, π1q ´Q
π
1 ps0, π1; rq| ` 2λHεS ` 6λHεF

ď Qπ1 ps0, π1; rq `
?
εF ` 2λHεS ` 6λHεF .

Similarly for pQπr , by (3.2), we have

pQπ1,rps0, πq ´ λ
H
ÿ

h“1

Bh,rp pQ
π
r , π;Dq ě fπ,˚1,r ps0, πq ´ λ

H
ÿ

h“1

Bh,rpf
π,˚
r , π;Dq

ě Qπ1 ps0, π; rq ´ |fπ,˚1,r ps0, π1q ´Q
π
1 ps0, π1; rq| ´ 2λHεS ´ 6λHεF

ě Qπ1 ps0, π1; rq ´
?
εF ´ 2λHεS ´ 6λHεF ,

thus completing the proof.

We prove that the action-value functions returned by Algorithm 1 are sufficiently good estimates.

Proof of Lemma D.7. By Corollary E.2, we have

pQπ1,rps0, π1q ´Q
π
1 ps0, π1; rq ď

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ
”

pQπh,r ´ Tπh,r pQπh`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,

Qπ1 ps0, π1; rq ´ qQπ1,rps0, π1q ď

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ
”

qQπh,r ´ Tπh,r qQπh`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since the differences share similar forms, we can without loss of generality only consider pQπr . Recall the definition of
Cπpνq, given in Definition 2.5. We have

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ
”

qQπh,r ´ Tπh,r qQπh`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď

H
ÿ

h“1

Eπ
”
›

›

›

qQπh,r ´ Tπh,r qQπh`1,r

›

›

›

ı

ď
a

Cπpπq
H
ÿ

h“1

Eµh
”
›

›

›

qQπh,r ´ Tπh,r qQπh`1,r

›

›

›

ı

,

(E.2)

where the first inequality is by Cauchy-Schwarz, the second inequality by the definition of Cπpπq, which is the shorthand
notation for Cπpdπq. Similar to the proof of Lemma D.6, let fπ,˚r be the best approximation of Qπp¨, ¨; rq as defined in
Assumption 2.3. Then

λ
H
ÿ

h“1

Bh,rp qQ
π
r , π;Dq ď fπ,˚1,r ps0, π1q ´ qQπ1,rps0, π1q ` 2λHεS ` 6λHεF .

Since fπ,˚r , qQπ1,r P F , we have fπ,˚r , qQπ1,r P r´HRmax, HRmaxs and thus

H
ÿ

h“1

Bh,rp qQ
π
r , π;Dq ď 2HRmax

λ
` 2HεS ` 6HεF .

By Corollary D.5, conditioned on GpΠSPIq, we have

H
ÿ

h“1

Eµh
”

} qQπh,r ´ Tπh,r qQπh`1,r}
2
ı

ď 2
H
ÿ

h“1

Bh,rp qQ
π
r , π;Dq ` 4HεS ` 3HεF,F

ď
4HRmax

λ
` 8HεS ` 12HεF ` 3HεF,F .
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Plugging the bound back into (E.2) and applying Cauchy-Schwarz inequality gives us
ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ
”

qQπh,r ´ Tπh,r qQπh`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
H
a

Cπpπq

c

4HRmax

λ
` 8HεS ` 12HεF ` 3HεF,F

“ H
a

Cπpπq

c

4Rmax

λ
` 8εS ` 12εF ` 3εF,F .

Setting λ “
´

Rmax

H2pεS`3εF q2

¯1{3

and using
?
a` b ď

?
a`

?
b for a, b P Rě0 completes the proof.

E.2. Proofs for Algorithm 2

We now turn to analyzing the policies selected in Algorithm 2. In particular, we focus on the mirror descent-style updates
given in (3.3) and (3.4). We start by defining an abstract version of the procedure in Algorithm 2.

Definition E.3. Consider the following procedure. For any t P rT s:

1. Let f ptq P F be an arbitrary function in the function class.

2. Let πpt`1q
h pa|sq9π

ptq
h pa|sq exp

´

ηf
ptq
h ps, aq

¯

for all ps, aq P S ˆA, h P rHs.

Recall that EaPA rlog πhpa|sqs “
ř

aPA πhpa|sq log πhpa|sq for all π, h, and s. We continue with a standard analysis of the
regret of actor-critic algorithms.

Lemma E.4. For any π (not necessarily in ΠSPI), for all h P rHs and s P S, setting η “
b

log |A|
2H2R2

maxT
in the procedure

defined in E.3 ensures that

T
ÿ

t“1

xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď 2HRmax

a

2T log |A|.

Proof. By a direct application of Lemma C.3 of Xie et al. (2021), we know that even for policies not in ΠSPI (as we are
effectively performing mirror descent over the probability simplex with the KL penalty) we have

T
ÿ

t“1

xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď

T
ÿ

t“1

xπ
pt`1q
h ´ π

ptq
h p¨|sq, f

ptq
h ps, ¨qy ´

1

η
E
a„π

p1q
h

”

log π
p1q
h pa|sq

ı

,

where η is the stepsize. From the proof of Lemma C.4 in Xie et al. (2021), we further note that for any π P π, h P rHs,
s P S, and t P rT s we have

xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď }f

ptq
h ps, ¨q}8

b

2ηxπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy.

Recalling that all fh P Fh are bounded by HRmax, we know that xπhp¨|sq ´ π
ptq
h p¨|sq, f

ptq
h ps, ¨qy ď 2ηH2R2

max. Following
the proof in Section C.1 in Xie et al. (2021) completes our proof.

With the observations above, we proceed with proving Lemma D.8.

Proof of Lemma D.8. We analyze the pessimistic estimate and note that the analysis is similar for the other part. Let qπptqr be
the policy iterate of Algorithm 2 and qQ

ptq
r the corresponding value function estimate. We know that

V π1 ps0; rq ´
1

T

T
ÿ

t“1

qQ
ptq
1,rps0, qπ

ptq
1,rq “

1

T

T
ÿ

t“1

´

Qπ1 ps0, π1; rq ´ qQ
ptq
1,rps0, qπ

ptq
1,rq

¯

ď
1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ
”

x qQ
ptq
h,rpsh, ¨q, πhp¨|shq ´ qπ

ptq
h,rp¨|shqy

ı

`

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ
”

qQ
ptq
h,r ´ Tqπptqr

h,r
qQ
ptq
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,
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where the inequality is by a standard argument in episodic reinforcement learning (see, for example, Lemma A.1 in Jin et al.

(2021b) or Section B.1 in Cai et al. (2020)). By Lemma E.4, we know that when η “
b

log |A|
2H2R2

maxT
, we have

1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ
”

x qQ
ptq
h,rpsh, ¨q, πhp¨|shq ´ qπ

ptq
h,rp¨|shqy

ı

ď 2H2Rmax

c

2 log |A|
T

.

For all t P rT s, similar to the proof of Lemma D.7, when λ “
´

Rmax

H2pεS`3εF q2

¯1{3

, we have

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

h“1

Eπ
”

qQ
ptq
h,r ´ Tqπptqr

h,r
qQ
ptq
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď H

b

C qπ
ptq
r pπq

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Notice that the distribution shift coefficient is changed from Cπpπq to C qπptqr pπq, as the policy specific Bellman operator T is
now induced by policy qπ

ptq
r rather than π. Taking the average over t and applying the triangle inequality give us

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

H
ÿ

h“1

Eπ
”

qQ
ptq
h,r ´ Tqπptqr

h,r
qQ
ptq
h`1,r

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď H

˜

1

T

T
ÿ

t“1

b

C qπ
ptq
r pπq

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

.

Combining the bounds, we have

V π1 ps0; rq ´
1

T

T
ÿ

t“1

qQ
ptq
1,rps0, qπ

ptq
1,rq ď 2H2Rmax

c

2 log |A|
T

`H

˜

1

T

T
ÿ

t“1

b

C qπ
ptq
r pπq

¸

´

2pHRmaxq
1{3pεS ` 3εF q

1{3 `
a

8εS ` 12εF ` 3εF,F

¯

,

which completes the proof.

F. Concentration Analysis
In this section, we prove the concentration lemmas used in Section D.

F.1. Proof of Lemma D.2

Proof of Lemma D.2. We start by including a minor adaptation of a useful result from Györfi et al. (2002) for completeness.

Theorem F.1 (Adaptation of Theorem 11.6 from Györfi et al. (2002)). Let B ě 1 and let G be a class of functions
g : Rd Ñ r0, Bs. Let Z1, Z2, . . . , ZK be i.i.d. Rd-valued random variables. Assume α ą 0, 0 ă ε ă 1, and K ě 1. Then

Pr

˜

sup
gPG

1
K

řK
j“1 gpZjq ´ ErZjs

α` 1
K

řK
j“1 gpZjq ` ErZjs

ą ε

¸

ď 4N8
´αε

5
,G

¯

exp

ˆ

´
3ε2αK

40B

˙

.

Proof. By Theorem 11.6 from Györfi et al. (2002), we know that

Pr

˜

sup
gPG

1
K

řK
j“1 gpZjq ´ ErZjs

α` 1
K

řK
j“1 gpZjq ` ErZjs

ą ε

¸

ď 4E
”

N1

´αε

5
,G, tZjuKj“1

¯ı

exp

ˆ

´
3ε2αK

40B

˙

,

where N1

`

αε
5 ,G, tZju

K
j“1

˘

is the cardinality of the smallest set of functions tgluLl“1 such that for all g P G there exists
some l P rLs where

1

K

K
ÿ

j“1

ˇ

ˇgpZjq ´ g
lpZjq

ˇ

ˇ ď
αε

5
.
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See Section 11.4 from Györfi et al. (2002) for a detailed proof of the statement above. We then show that for any tZjuKj“1,
N1

`

αε
5 ,G, tZju

K
j“1

˘

ď N8
`

αε
5 ,G

˘

. Let trgluLl“1 be an αε
5 -covering of G with respect to the `8-norm. We then know that

for any g P G, there exists some l P rLs such that

1

K

K
ÿ

j“1

|gpZjq ´ rglpZjq| ď
1

K

K
ÿ

j“1

αε

5
“
αε

5
.

Therefore trgluLl“1 satisfies the requirement above, concluding our proof.

Let h P rHs, r P rR be arbitrary and fixed and we begin by showing one side of the inequality holds, namely

Pr
´

Df, f 1 P F , π P Π : Eµh
“

}fh ´ Tπh,rf 1h`1}
2
‰

´ Lh,rpfh, f
1
h`1, π;Dq`

Lh,rpTπh,rf 1h`1, f
1
h`1, π;Dq ě ε

`

α` β ` Eµh
“

}fh ´ Tπh,rf 1h`1}
2
‰˘

¯

ď 14

ˆ

N8
ˆ

εβ

140HRmax
,F

˙˙2

N8,1
ˆ

εβ

140H2R2
max

,Π

˙

exp

ˆ

´
ε2p1´ εqαK

214p1` εqH4R4
max

˙

.

for all α, β ą 0, 0 ă ε ď 1{2.

Recall from (5.1) that

gπf,f 1pZq “ pfhpsh, ahq ´ rh ´ f
1
h`1psh`1, πh`1qq

2 ´ pTπh,rf 1h`1psh, ahq ´ rh ´ f
1
h`1psh`1, πh`1qq

2.

We begin by showing some basic properties of the random variable gπf,f 1pZq. Recall that by definition of the Bellman
evaluation operator

Tπh,rf 1h`1psh, ahq “ EP
“

rh ` f
1
h`1psh`1, πh`1q|sh, ah

‰

. (F.1)

Since Tπh,rfh`1psh, ahq “ Eµh
“

rh ` f
1
h`1psh`1, πh`1q|sh, ah

‰

, by law of total probability

EZ„µhrgπf,f 1pZqs “ Esh,ah„µh
”

Esh`1„µh|sh,ahrpfhpsh, ahq ´ rh ´ f
1
h`1psh`1, πh`1qq

2´

pTπh,rf 1h`1psh, ahq ´ rh ´ f
1
h`1psh`1, πh`1qq

2|sh, ahs
ı

“ Eµh
”

Esh`1„µh|sh,ahrpfhpsh, ahq ` Tπh,rf 1h`1psh, ahq ´ 2prh ` f
1
h`1psh`1, πh`1qqqˆ

pfhpsh, ahq ´ Tπh,rf 1h`1psh, ahqq|sh, ahs
ı

“ Eµh
“

}fhpsh, ahq ´ Tπh,rf 1h`1psh, ahq}
2
‰

.

Additionally, recalling that rh P r´Rmax, Rmaxs, f 1h`1 P r´pH ´ hqRmax, pH ´ hqRmaxs, well as fh P r´pH ´ h `
1qRmax, pH ´ h` 1qRmaxs, we know gπf,f 1pZq P r´16H2R2

max, 16H2R2
maxs. Lastly, notice that

Varpgπf,f 1pZqq ď Erpgπf,f 1pZqq2s

“ E
”

Erpfhpsh, ahq ` Tπh,rf 1h`1psh, ahq ´ 2prh ` f
1
h`1psh`1, πh`1qqq

2ˆ

pfhpsh, ahq ´ Tπh,rf 1h`1psh, ahqq
2|sh, ahs

ı

ď Er16H2R2
maxpfhpsh, ahq ´ Tπh,rf 1h`1psh, ahqq

2s “ 16H2R2
maxErgπf,f 1pZqs,

(F.2)

where for the last inequality we noticed that fhpsh, ahq ` Tπh,rf 1h`1psh, ahq ´ 2prh ` f
1
h`1psh`1, πh`1qq is bounded by

r´4HRmax, 4HRmaxs.

Our ensuing proof largely follows the structure of Section 11.5 of Györfi et al. (2002) and we reproduce the proof below
for completeness. Let α, β ą 0 and 0 ă ε ď 1

2 be arbitrary and fixed constants. We now proceed with the proof.
Symmetrization by Ghost Sample. Consider some pfn, f 1n, πnq P F ˆ F ˆΠ depending on tZjuKj“1 such that

Ergπnfn,f 1npZq|tZju
K
j“1s ´

1

K

K
ÿ

j“1

gπnfn,f 1n
pZjq ě εpα` β ` Ergπnfn,f 1npZq|tZju

K
τ“1sq,
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if such pfn, f 1n, πnq exists. If not, choose some arbitrary pfn, f 1n, πnq. As a shorthand notation, let gn “ gπnfn,f 1n
. Finally,

introduce ghost samples tZ 1ju
K
j“1 „ µh, drawn i.i.d. from the same distribution as tZjuKj“1. Recalling that the variance of

gn is bounded by 16ErgnpZqs, by Chebyshev’s inequality we have

Pr

ˆ

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZ
1
jq ě

ε

2
pα` βq `

ε

2
ErgnpZq|tZjuKj“1s|tZju

K
j“1

˙

ď
VarpgnpZq|tZju

K
j“1q

Kp ε2 pα` βq `
ε
2ErgnpZq|tZju

K
j“1sq

2

ď
16H2R2

maxErgnpZq|tZjuKj“1s

Kp ε2 pα` βq `
ε
2ErgnpZq|tZju

K
j“1sq

2

ď
16H2R2

max

ε2pα` βqK
,

where the last inequality comes from the fact that s0
pa`s0q2

ď 1
4a for all s0 ě 0 and a ą 0. Thus, for all K ě

128H2R2
max

ε2pα`βq ,

Pr

ˆ

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZ
1
jq ě

ε

2
pα` βq `

ε

2
ErgnpZq|tZjuKj“1s|tZju

K
j“1

˙

ď
7

8
.

We then know that

Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1iq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq `

ε

2
Ergπfh,f 1h`1

pZqs

˙

ě Pr

ˆ

1

K

K
ÿ

j“1

gnpZ
1
iq ´

1

K

K
ÿ

j“1

gnpZjq ě
ε

2
pα` βq `

ε

2
ErgnpZq|tZjuKj“1s

˙

ě Pr

ˆ

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZjq ě εpα` βq ` εErgnpZq|tZjuKj“1s

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZ
1
iq ě εpα` βq ` εErgnpZq|tZjuKj“1s

˙

“ E

˜

1

"

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZjq ě εpα` βq ` εErgnpZq|tZjuKj“1s

*

Pr

ˆ

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZ
1
iq ě εpα` βq ` εErgnpZq|tZjuKj“1s

˙

¸

ě
7

8
Pr

ˆ

ErgnpZq|tZjuKj“1s ´
1

K

K
ÿ

j“1

gnpZjq ě εpα` βq ` εErgnpZq|tZjuKj“1s

˙

“
7

8
Pr

ˆ

Df, f 1 P F , π P Π : Ergπfh,f 1h`1
pZqs ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě εpα` βq ` εErgπfh,f 1h`1

pZqs

˙

.



Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline Reinforcement Learning

In other words, for K ě
128H2R2

max

ε2pα`βq ,

Pr

ˆ

Df, f 1 P F , π P Π : Ergπfh,f 1h`1
pZqs ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě εpα` βq ` εErgπfh,f 1h`1

pZqs

˙

ď
8

7
Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1jq

´
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq `

ε

2
Ergπfh,f 1h`1

pZqs

˙

. (F.3)

Replacement of Expectation by Empirical Mean of Ghost Sample We begin by noticing

Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1iq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq `

ε

2
Ergπfh,f 1h`1

pZqs

˙

ď Pr

ˆ

Df, f 1 P F , π P Π :

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1iq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq `

ε

2
Ergπfh,f 1h`1

pZqs,

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZ 1iq ´ Erpgπfh,f 1h`1

q2pZqs ď

ε
´

α` β `
1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZjq ` Erpgπfh,f 1h`1

q2pZqs
¯

,

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZ 1iq ´ Erpgπfh,f 1h`1

q2pZqs ď

ε
´

α` β `
1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZ 1iq ` Erpgπfh,f 1h`1

q2pZqs
¯

˙

` 2 Pr

¨

˝Df, f 1 P F , π P Π :

1
K

řK
j“1pg

π
fh,f 1h`1

q2pZjq ´ Erpgπfh,f 1h`1
q2pZqs

´

α` β ` 1
K

řK
j“1pg

π
fh,f 1h`1

q2pZjq ` Erpgπfh,f 1h`1
q2pZqs

¯

˛

‚.

(F.4)

Citing Theorem F.1, we may bound the second probability term on the right hand side as

Pr

¨

˝Df, f 1 P F , π P Π :

1
K

řK
j“1pg

π
fh,f 1h`1

q2pZjq ´ Erpgπfh,f 1h`1
q2pZqs

´

α` β ` 1
K

řK
j“1pg

π
fh,f 1h`1

q2pZjq ` Erpgπfh,f 1h`1
q2pZqs

¯

˛

‚

ď 4N8
ˆ

pα` βqε

5
, tgπfh,f 1h`1

: f, f 1 P F , π P Πu

˙

exp

ˆ

´
3ε2pα` βqK

40p16H2R2
maxq

˙

.

For the first probability term, notice that the second event in the conjunction implies

p1` εqErpgπfh,f 1h`1
q2pZqs ě p1´ εq

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZjq ´ εpα` βq,

which is equivalent to

1

32H2R2
max

Erpgπfh,f 1h`1
q2pZqs ě

1´ ε

32H2R2
maxp1` εq

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZjq ´ ε

pα` βq

32H2R2
maxp1` εq

.
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A similar bound may be obtained for the term involving Z 1i. Noticing that by equation (F.2), we have Ergπfh,f 1h`1
pZqs ě

1
16H2R2

max
Erpgπfh,f 1h`1

q2pZqs, and we know the first probability term in (F.4) can be bounded by

Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1iq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq`

ε

2

´ 1´ ε

32H2R2
maxp1` εq

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZjq ´

εpα` βq

32H2R2
max

`

1´ ε

32H2R2
maxp1` εq

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pZjq ´

εpα` βq

32H2R2
max

¯

˙

“ Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1iq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq´

ε2pα` βq

32H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

˜

1

K

K
ÿ

j“1

ppgπfh,f 1h`1
q2pZ 1jq ` pg

π
fh,f 1h`1

q2pZjqq

¸

˙

.

Additional Randomization by Random Signs Let tUjuKj“1 be i.i.d. Rademacher random variables drawn independently
from tZjuKj“1 and tZ 1ju

K
j“1. Because tZjuKj“1 and tZ 1ju

K
j“1 are i.i.d., we know that

Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1jq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq´

ε2pα` βq

32H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

˜

1

K

K
ÿ

j“1

ppgπfh,f 1h`1
q2pZ 1iq ` pg

π
fh,f 1h`1

q2pZjqq

¸

˙

“ Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

Uj
`

gπfh,f 1h`1
pZ 1jq ´ g

π
fh,f 1h`1

pZjq
˘

ě
ε

2
pα` βq´

ε2pα` βq

32H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

˜

1

K

K
ÿ

j“1

ppgπfh,f 1h`1
q2pZ 1iq ` pg

π
fh,f 1h`1

q2pZjqq

¸

˙

ď 2 Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

ˇ

ˇ

ˇ
Ujg

π
fh,f 1h`1

pZjq
ˇ

ˇ

ˇ
ě
ε

4
pα` βq´

ε2pα` βq

64H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

1

K

K
ÿ

j“1

ppgπfh,f 1h`1
q2pZjqq

˙

.

(F.5)

Conditioning and Covering. We then condition the probability on tZjuKj“1. Fix some z1, . . . , zK and we consider instead

Pr

#

Df, f 1 P F , π P Π :

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujg
π
fh,f 1h`1

pzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ě

εpα` βq

4
´

ε2pα` βq

64H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pzjq

+

.

Let δ ą 0 and let Gδ be an `8 δ-cover of GF,Π “ tg
π
fh,f 1h`1

: f, f 1 P F, π P Πu. Fix some pf, f 1, πq P F ˆ F ˆ Π and
there exists some g P Gδ such that supz |gpzq ´ g

π
fh,f 1h`1

pzq| ă δ. We then know that

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujg
π
fh,f 1h`1

pzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

K

K
ÿ

j“1

ˇ

ˇ

ˇ
gπfh,f 1h`1

pzjq ´ gpzjq
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

` δ
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and

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pzjq “

1

K

K
ÿ

j“1

g2pzjq `
1

K

K
ÿ

j“1

ppgπfh,f 1h`1
q2pzjq ´ g

2pzjqq

“
1

K

K
ÿ

j“1

g2pzjq `
1

K

K
ÿ

j“1

pgπfh,f 1h`1
pzjq ´ gpzjqqpg

π
fh,f 1h`1

pzjq ` gpzjqq

ě
1

K

K
ÿ

j“1

g2pzjq ´ 8H2R2
max

1

K

K
ÿ

j“1

|gπfh,f 1h`1
pzjq ´ gpzjq|

ě
1

K

K
ÿ

j“1

g2pzjq ´ 8H2R2
maxδ.

Set δ “ βε
enumerate5 . Notice that as HRmax ě 1, 0 ă ε ď 1

2 , we have

εβ

4
´

ε2β

64H2R2
maxp1` εq

´ δ ´ δ
εp1´ εq

8p1` εq
“
εβ

2
´

ε2β

64H2R2
maxp1` εq

´
ε2p1´ εqβ

40p1` εq
ě 0.

Therefore we have

Pr

#

Df, f 1 P F , π P Π :

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujg
π
fh,f 1h`1

pzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ě

εpα` βq

4
´

ε2pα` βq

64H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

1

K

K
ÿ

j“1

pgπfh,f 1h`1
q2pzjq

+

ď |Gεβ{5| max
gPGεβ{5

Pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
εα

4
´

ε2α

64H2R2
maxp1` εq

`

εp1´ εq

64H2R2
maxp1` εq

1

K

K
ÿ

j“1

g2pzjq

+

. (F.6)

We then apply Bernstein’s inequality to bound

Pr

#ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
εα

4
´

ε2α

64H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

1

K

K
ÿ

j“1

g2pzjq

+

for any g P Gεβ{5. We begin by relating the variance of Ujgpzjq with 1
K

řk
j“1 g

2pzjq. Notice that as Uj is i.i.d. Rademacher,

1

K

K
ÿ

j“1

VarpUjgpzjqq “
1

K

k
ÿ

j“1

g2pzjqVarpUiq “
1

K

k
ÿ

j“1

g2pzjq.

Perform a simple change of variable and let Vj “ gpzjqUj . As gpzjq P r´4H2R2
max, 4H

2R2
maxs for all zj , we

know |Vj | ď 4H2R2
max. For convenience, further let A1 “ εα

4 ´ ε2α
64H2R2

maxp1`εq
, A2 “

εp1´εq
64H2R2

maxp1`εq
, and
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σ2 “ 1
K

řK
j“1 VarpUjgpzjqq “

1
K

řk
j“1 g

2pzjq. We then have for any g P Gεβ{5

Pr

#
ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

Ujgpzjq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
εα

4
´

ε2α

64H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

1

K

K
ÿ

j“1

g2pzjq

+

“ Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

K

k
ÿ

j“1

Vj

ˇ

ˇ

ˇ

ˇ

ˇ

ě A1 `A2σ
2

¸

ď 2 exp

˜

´
KpA1 `A2σ

2q2

2σ2 ` 2pA1 `A2σ2q 8H2R2

3

¸

“ 2 exp

¨

˚

˝

´
3KA2

16H2R2
max

´

A1

A2
` σ2

¯2

A1

A2
`

´

1` 3
8H2R2

maxA2

¯

σ2

˛

‹

‚

ď 2 exp

ˆ

´
ε2p1´ εqαK

140H2R2
maxp1` εq

˙

,

where the last inequality follows a series of manipulations discussed in greater detail in page 218 of Györfi et al. (2002) that
we omit here for brevity. Plugging the result back into equations (F.5) and (F.6) gives us

Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1jq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq´

ε2pα` βq

32H2R2
maxp1` εq

`
εp1´ εq

64H2R2
maxp1` εq

˜

1

K

K
ÿ

j“1

ppgπfh,f 1h`1
q2pZ 1iq ` pg

π
fh,f 1h`1

q2pZjqq

¸

˙

ď 2N8
ˆ

εβ

5
, tgπfh,f 1h`1

: f, f 1 P F, π P Πu

˙

exp

ˆ

´
ε2p1´ εqαK

140H2R2
maxp1` εq

˙

.

Recalling equations (F.4) and (F.5), we have

Pr

ˆ

Df, f 1 P F , π P Π :
1

K

K
ÿ

j“1

gπfh,f 1h`1
pZ 1iq ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě

ε

2
pα` βq `

ε

2
Ergπfh,f 1h`1

pZqs

˙

ď 4N8
ˆ

εβ

5
, tgπfh,f 1h`1

: f, f 1 P F, π P Πu

˙

exp

ˆ

´
ε2p1´ εqαK

140H2R2
maxp1` εq

˙

` 8N8
ˆ

pα` βqε

5
, tgπfh,f 1h`1

: f, f 1 P F , π P Πu

˙

exp

ˆ

´
3ε2pα` βqK

640H2R2
max

˙

.

Plugging the result back into equation (F.3) and we finally know for K ě
128H2R2

max

ε2pα`βq ,

Pr

ˆ

Df, f 1 P F , π P Π : Ergπfh,f 1h`1
pZqs ´

1

K

K
ÿ

j“1

gπfh,f 1h`1
pZjq ě εpα` βq ` εErgπfh,f 1h`1

pZqs

˙

ď
32

7
N8

ˆ

εβ

5
, tgπfh,f 1h`1

: f, f 1 P F, π P Πu

˙

exp

ˆ

´
ε2p1´ εqαK

140H2R2
maxp1` εq

˙

`
64

7
N8

ˆ

pα` βqε

5
, tgπfh,f 1h`1

: f, f 1 P F , π P Πu

˙

exp

ˆ

´
3ε2pα` βqK

640H2R2
max

˙

ď 14N8
ˆ

εβ

5
, tgπfh,f 1h`1

: f, f 1 P F, π P Πu

˙

exp

ˆ

´
ε2p1´ εqαK

214p1` εqH4R4
max

˙

.

When K ă
128H2R2

max

ε2pα`βq , exp
´

´
ε2p1´εqαK

214p1`εqH4R4
max

¯

ě exp
`

´ 128
214

˘

ě 1
14 and the claim trivially holds.
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Bounding the Covering Number. Our final task is bounding N8
´

εβ
5 , tg

π
fh,f 1h`1

: f, f 1 P F, π P Πu
¯

using the covering

numbers of Π and F . Let F0 be a εβ
140HRmax

-covering of F with respect to `8 and Π0 a εβ
140H2R2

max
-covering of Π with

respect to } ¨ }8,1. We then know that for any f, f 1 P F , π P Π, there exits some f :, f ; P F0, π
: P Π0 such that

sup
ps,aqPSˆA

|fhps, aq ´ f
:

hps, aq| ď
εβ

140HRmax
,

sup
ps,aqPSˆA

|f 1h`1ps, aq ´ f
;

h`1ps, aq| ď
εβ

140HRmax
,

sup
sPS

ż

aPA
|πh`1pa|sq ´ π

:

h`1pa|sq| ď
εβ

140H2R2
max

.

Consider any arbitrary z “ ps, a, r, s1q „ µh. We know that

ˇ

ˇ

ˇ

ˇ

g
πh`1

fh,f 1h`1
pzq ´ g

π:h`1

f:h,f
;

h`1

pzq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pfhps, aq ´ r ´ f
1
h`1ps

1, πh`1qq
2 ´ pTπh`1

h,r f 1h`1ps, aq ´ r ´ f
1
h`1ps

1, πh`1qq
2´

pf :hps, aq ´ r ´ f
;

h`1ps
1, π:h`1qq

2 ` pT
π:h`1

h,r f ;h`1ps, aq ´ r ´ f
;

h`1ps
1, π:h`1qq

2

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

pfhps, aq ´ r ´ f
1
h`1ps

1, πh`1qq
2 ´ pf :hps, aq ´ r ´ f

;

h`1ps
1, π:h`1qq

2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

pTπh`1

h,r f 1h`1ps, aq ´ r ´ f
1
h`1ps

1, πh`1qq
2 ´ pT

π:h`1

h,r f ;h`1ps, aq ´ r ´ f
;

h`1ps
1, π:h`1qq

2

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fhps, aq ` f
:

hps, aq ´ 2r ´ f 1h`1ps
1, πh`1q ´ f

;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

fhps, aq ´ f
:

hps, aq ` f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Tπh`1

h,r f 1h`1ps, aq ` T
π:h`1

h,r f ;h`1ps, aq ´ 2r ´ f 1h`1ps
1, πh`1q ´ f

;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

Tπh`1

h,r f 1h`1ps, aq ´ T
π:h`1

h,r f ;h`1ps, aq ` f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

ď 4HRmax

ˇ

ˇ

ˇ

ˇ

fhps, aq ´ f
:

hps, aq ` f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

` 4HRmax

ˇ

ˇ

ˇ

ˇ

Tπh`1

h,r f 1h`1ps, aq ´ T
π:h`1

h,r f ;h`1ps, aq ` f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

, (F.7)
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where for the last inequality we used the boundedness of functions in Fh and Fh`1. We then notice that

ˇ

ˇ

ˇ

ˇ

fhps, aq ´ f
:

hps, aq ` f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q

ˇ

ˇ

ˇ

ˇ

ď |fhps, aq ´ f
:

hps, aq| ` |f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q|

ď
εβ

140HRmax
` |f 1h`1ps

1, πh`1q ´ f
1
h`1ps

1, π:h`1q| ` |f
1
h`1ps

1, π:h`1q ´ f
;

h`1ps
1, π:h`1q|

ď
εβ

140HRmax
` }πh`1 ´ π

:

h`1}1}f
1
h`1}8 ` |f

1
h`1ps

1, π:h`1q ´ f
;

h`1ps
1, π:h`1q|

ď
εβ

140HRmax
`

εβ

140H2R2
max

HRmax ` |f
1
h`1ps

1, π:h`1q ´ f
;

h`1ps
1, π:h`1q|

ď
εβ

140HRmax
`

εβ

140HRmax
` Ea1„π:h`1p¨|s

1q
r|f 1h`1ps

1, a1q ´ f ;h`1ps
1, a1q|s

ď
3εβ

140HRmax
,

where the third inequality uses Holder’s inequality, the fourth definition of Π0 and boundedness of Fh, the fifth Jensen’s
inequality, and the last inequality the definition of F0. Additionally we have

|Tπh`1

h,r f 1h`1ps, aq ´ T
π:h`1

h,r f ;h`1ps, aq ` f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q|

ď |Tπh`1

h,r f 1h`1ps, aq ´ T
π:h`1

h,r f ;h`1ps, aq| ` |f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q|

ď |Tπh`1

h,r f 1h`1ps, aq ´ T
π:h`1

h,r f ;h`1ps, aq| `
2εβ

140HRmax

ď Es2„Php¨|s,aq|f
1
h`1ps

1, πh`1q ´ f
;

h`1ps
1, π:h`1q| `

2εβ

140HRmax

ď
4εβ

140HRmax
,

where the second inequality uses the same reasoning as above to bound |f 1h`1ps
1, πh`1q´f

;

h`1ps
1, π:h`1q|, the third Jensen’s

inequality, and the last inequality reuses the bound for |f 1h`1ps
1, πh`1q ´ f

;

h`1ps
1, π:h`1q| over arbitrary s1. Plugging these

back into equation (F.7) shows

ˇ

ˇ

ˇ

ˇ

g
πh`1

fh,f 1h`1
pzq ´ g

π:h`1

f:h,f
;

h`1

pzq

ˇ

ˇ

ˇ

ˇ

ď
7εβ

140HRmax
ˆ 4HRmax “

εβ

5
.

Thus

N8
ˆ

εβ

5
, tgπfh,f 1h`1

: f, f 1 P F, π P Πu

˙

ď

ˆ

N8
ˆ

εβ

140HRmax
,F

˙˙2

N8,1
ˆ

εβ

140H2R2
max

,Π

˙

,

showing one side of the inequality holds.

To show the other side holds, simply replace gπf,f 1pZq defined in equation 5.1 with its negative and repeat the analysis above.
We then complete the proof by taking a union bound over both halves.

F.2. Proofs of “Good Event”

With the help of the previous theorem, we are able to show that GΠSPI occurs with high probability.

Proof of Lemma D.3. Taking a union bound over all h P rHs and reported reward r P rR recalling that | rR| ď n` 1 ď 2n,
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by Lemma D.2, we have

Pr
´

Dh P rHs, r P rR, f, f 1 P F , π P Π :
ˇ

ˇEµh
“

}fh ´ Tπh,rf 1h`1}
2
‰

´ Lh,rpfh, f
1
h`1, π;Dq ` Lh,rpTπh,rf 1h`1, f

1
h`1, π;Dq

ˇ

ˇ

ě ε
`

α` β ` Eµh
“

}fh ´ Tπh,rf 1h`1}
2
‰˘

¯

ď 56nH

ˆ

N8
ˆ

εβ

140HRmax
,F

˙˙2

N8,1
ˆ

εβ

140H2R2
max

,Π

˙

exp

ˆ

´
ε2p1´ εqαK

214p1` εqH4R4
max

˙

.

Letting α “ β and ε “ 1
2 , setting the right hand side to δ, and solving for α gives us

α ď
1

K
max

#

5136H4R4
max, 5136H4R4

max log
56nHN8

`

HRmax

K ,F
˘

N8,1
`

1
K ,Π

˘

δ

+

.

As log 56 ě 1, n,H ě 1, and 0 ă δ ă 1, the second term always dominates the first and we can simplify the inequality as

α ď
5136H4R4

max

K
log

56nHN8
´

19H3R3
max

K ,F
¯

N8,1
´

19H4R4
max

K ,Π
¯

δ
,

completing the proof.

Proof of Corollary D.4. For convenience, let pgπh,r “ arg mingPFh Lh,rpg, f
π,˚
h`1,r, π;Dq. We then know that

Bh,rpf
π,˚
h,r , π;Dq “ Lh,rpf

π,˚
h,r , f

π,˚
h`1,r, π;Dq ´ Lh,rppgπh,r, f

π,˚
h`1,r, π;Dq

“ Lh,rpf
π,˚
h,r , f

π,˚
h`1,r, π;Dq ´ Lh,rpTπ,˚h,r f

π,˚
h`1,r, f

π,˚
h`1,r, π;Dq

´

´

Lh,rppg
π
h,r, f

π,˚
h`1,r, π;Dq ´ Lh,rpTπ,˚h,r f

π,˚
h`1,r, f

π,˚
h`1,r, π;Dq

¯

.

By Lemma D.3, conditionally on the event GpΠq we have the following simultaneously:

Lh,rpf
π,˚
h,r , f

π,˚
h`1,r, π;Dq ´ Lh,rpTπ,˚h,r f

π,˚
h`1,r, f

π,˚
h`1,r, π;Dq ď εS `

3

2
Eµh

”

}fπ,˚h,r ´ Tπ,˚h,r f
π,˚
h`1,r}

2
ı

,

´Lh,rppg
π
h,r, f

π,˚
h`1,r, π;Dq ` Lh,rpTπ,˚h,r f

π,˚
h`1,r, f

π,˚
h`1,r, π;Dq ď εS,

where the second inequality uses the fact that } ¨ }2 is non-negative. Finally, noticing that

Eµh
”

}fπ,˚h,r ´ Tπ,˚h,r f
π,˚
h`1,r}

2
ı

ď 2Eµh
”

}fπ,˚h,r ´Q
π
hp¨, ¨; rq}

2
ı

` 2Eµh
”

}Tπ,˚h,r f
π,˚
h`1,r ´ Tπ,˚h,rQ

π
hp¨, ¨; rq}

2
ı

ď 2εF ` 2Eµ1h`1

”

}fπ,˚h`1,r ´Q
π
h`1p¨, ¨; rq}

2
ı

ď 4εF ,

where µ1h`1 shares the marginal distribution over S with µh`1 but the conditional distribution over A given s P S is given
by πh`1p¨|sq. The final inequality comes from the fact that µ1h`1 is an admissible distribution under Assumption 2.3.

Proof of Corollary D.5. Let pgπh,r “ arg mingPFh Eµhr}g ´ Tπh,rfπh`1,r}
2s. Recalling the definition of Bh,r, we have

Bh,rpf
π
h,r, π;Dq “ Lh,rpf

π
h,r, f

π
h`1,r, π;Dq ´ min

gPFh
Lh,rpg, f

π
h`1,r, π;Dq

ě Lh,rpf
π
h,r, f

π
h`1,r, π;Dq ´ Lh,rppgπh,r, fπh`1,r, π;Dq

“ Lh,rpf
π
h,r, f

π
h`1,r, π;Dq ´ Lh,rpTπh,rfπh`1,r, f

π
h`1,r, π;Dq

´
`

Lh,rppg
π
h,r, f

π
h`1,r, π;Dq ´ Lh,rpTπh,rfπh`1,r, f

π
h`1,r, π;Dq

˘

.
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By Lemma D.3, conditionally on the event GpΠq we have the following:

Lh,rpf
π
h,r, f

π
h`1,r, π;Dq ´ Lh,rpTπh,rfπh`1,r, f

π
h`1,r, π;Dq ě ´εS `

1

2
Eµh

“

}fπh,r ´ Tπh,rfπh`1,r}
2
‰

,

´Lh,rppg
π
h,r, f

π
h`1,r, π;Dq ` Lh,rpTπh,rfπh`1,r, f

π
h`1,r, π;Dq ě ´εS ´

3

2
Eµh

“

}pgπh,r ´ Tπh,rfπh`1,r}
2
‰

.

Recalling that Bh,rpf, π;Dq ď ε0, we have

EµH
“

}fπh,r ´ Tπh,rfπh`1,r}
2
‰

ď 4εS ` 3Eµh
“

}pgπh,r ´ Tπh,rhπh`1,r}
2
‰

` 2ε0.

We conclude our proof by reminding ourselves of Assumption 2.4.


