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Abstract
Recent papers have developed alternating least
squares (ALS) methods for CP and tensor ring
decomposition with a per-iteration cost which is
sublinear in the number of input tensor entries
for low-rank decomposition. However, the per-
iteration cost of these methods still has an ex-
ponential dependence on the number of tensor
modes when parameters are chosen to achieve
certain worst-case guarantees. In this paper, we
propose sampling-based ALS methods for the CP
and tensor ring decompositions whose cost does
not have this exponential dependence, thereby
significantly improving on the previous state-of-
the-art. We provide a detailed theoretical analysis
and also apply the methods in a feature extraction
experiment.

1. Introduction
Tensor decomposition has recently emerged as an important
tool in machine learning and data mining (Papalexakis et al.,
2016; Cichocki et al., 2016; 2017; Ji et al., 2019). Exam-
ples of applications include parameter reduction in neural
networks (Novikov et al., 2015; Garipov et al., 2016; Yang
et al., 2017; Yu et al., 2017; Ye et al., 2018), understanding
expressiveness of deep neural networks (Cohen et al., 2016;
Khrulkov et al., 2018), supervised learning (Stoudenmire &
Schwab, 2017; Novikov et al., 2016), filter learning (Hazan
et al., 2005; Rigamonti et al., 2013), image factor analysis
and recognition (Vasilescu & Terzopoulos, 2002; Liu et al.,
2019), multimodal feature fusion (Hou et al., 2019), natural
language processing (Lei et al., 2014), feature extraction
(Bengua et al., 2015), and tensor completion (Wang et al.,
2017). Due to their multidimensional nature, tensors are
inherently plagued by the curse of dimensionality. Indeed,
simply storing an N -way tensor with each dimension equal
to I requires IN numbers. Tensors are also fundamentally
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more difficult to decompose than matrices (Hillar & Lim,
2013). Many tensor decompositions correspond to difficult
non-convex optimization problems. A popular approach for
tackling these optimization problems is to use alternating
least squares (ALS). While ALS works well for smaller
tensors, the per-iteration cost for an N -way tensor of size
I × · · · × I is Ω(IN ) since each iteration requires solving a
number of least squares problems with the data tensor entries
as the dependent variables. To address this issue, several
recent works have developed sampling-based ALS meth-
ods for the CP decomposition (Cheng et al., 2016; Larsen
& Kolda, 2020) and tensor ring decomposition (Malik &
Becker, 2021). When the target rank is small enough, they
have a per-iteration cost which is sublinear in the number
of input tensor entries while still retaining approximation
guarantees for each least squares solve with high probability.
However, the cost of these methods still has an exponential
dependence on N : Ω(RN+1) for the CP decomposition and
Ω(R2N+2) for the tensor ring decomposition, where R is
the relevant notion of rank. Unlike matrix rank, both the
CP and tensor ring ranks of a tensor can exceed the mode
dimension I , in which case the previous methods would no
longer have sublinear per-iteration cost. This leads us to the
following question:

Can we construct ALS algorithms for tensor de-
composition with a per-iteration cost which does
not depend exponentially on N and which has
guarantees for each least squares solve?

In this paper, we show that this is indeed possible for both
the CP and tensor ring1 decompositions with high proba-
bility relative error guarantees. Like the previous works
mentioned above, we also use approximate leverage score
sampling. Unlike those previous works which use quite
coarse approximations to the leverage scores, we are able
to sample from a distribution which is much closer to the
exact one. We do this by using ideas for fast leverage score
estimation from Drineas et al. (2012) combined with the
recently developed recursive sketch by Ahle et al. (2020).
We also design sampling schemes for both the CP and tensor
ring decompositions which allow us to avoid computing the
whole sampling distribution which otherwise would cost

1Our results are also relevant for the popular tensor train de-
composition (Oseledets, 2010; 2011) since it is a special case of
the tensor ring decomposition.
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Ω(IN−1). We provide a detailed theoretical analysis and
run various experiments including one on feature extraction.

When theoretical guarantees are required our methods scale
much better with tensor order than the previous methods.
However, these benefits only occur when the tensor order
is sufficiently high. We therefore expect our methods to
provide benefits mainly when decomposing higher order
tensors.

2. Related Work
CP Decomposition Cheng et al. (2016) propose SPALS,
the first ALS algorithm for CP decomposition with a per-
iteration cost sublinear in the number of input tensor entries.
They use leverage scores sampling to speed up computation
of the matricized-tensor-times-Khatri–Rao product, a key
kernel which arises in the ALS algorithm for CP decom-
position. Larsen & Kolda (2020) propose CP-ARLS-LEV
which uses leverage score sampling to reduce the size of
the least squares problems in the ALS algorithm for CP
decomposition. In addition to several practical algorithmic
improvements, their relative error guarantees improve on
the weaker additive error guarantees provided by Cheng
et al. (2016). Other papers that develop randomized algo-
rithms for the CP decomposition include Wang et al. (2015),
Battaglino et al. (2018), Yang et al. (2018) and Aggour et al.
(2020). There are also works that use both conventional
and stochastic optimization approaches (Sorber et al., 2012;
2013; Kolda & Hong, 2020).

Tensor Ring Decomposition Yuan et al. (2019a) develop
a randomized method for the tensor ring decomposition
which first compresses the input tensor by applying Gaus-
sian sketches to each mode. The compressed tensor is
then decomposed using standard deterministic decompo-
sition algorithms. This decomposition is then combined
with the sketches to get a decomposition of the original ten-
sor. Ahmadi-Asl et al. (2020) develop several randomized
variants of the deterministic TR-SVD algorithm by replac-
ing the SVDs with their randomized counterpart. Malik &
Becker (2021) propose TR-ALS-Sampled which is an ALS
algorithm with a per-iteration cost sublinear in the number
of input tensor entries. It uses leverage score sampling to
reduce the size of the least squares problems in the stan-
dard ALS algorithm. Other works that develop randomized
methods for tensor ring decomposition include Espig et al.
(2012) and Khoo et al. (2019).

Other Works on Tensor Decomposition Papers that de-
velop randomized methods for other tensor decomposi-
tions include the works by Drineas & Mahoney (2007),
Tsourakakis (2010), da Costa et al. (2016), Malik & Becker
(2018), Sun et al. (2020), Minster et al. (2020) and Fahrbach

et al. (2021) for the Tucker decomposition; Biagioni et al.
(2015) and Malik & Becker (2020a) for the tensor interpola-
tive decomposition; Zhang et al. (2018) and Tarzanagh &
Michailidis (2018) for t-product-based decompositions; and
Huber et al. (2017) and Che & Wei (2019) for the tensor
train decomposition. Papers that use skeleton approxima-
tion and other sampling-based techniques include those by
Mahoney et al. (2008), Oseledets et al. (2008), Oseledets &
Tyrtyshnikov (2010), Caiafa & Cichocki (2010) and Fried-
land et al. (2011).

Sketching and Sampling A large body of research has
been generated over the last two decades focusing on sketch-
ing and sampling techniques in numerical linear algebra;
see, e.g., the review papers by Halko et al. (2011), Mahoney
(2011), Woodruff (2014) and Martinsson & Tropp (2020).
Of particular relevance to our work are those papers that
develop sketching and sampling techniques for efficient ap-
plication to matrices whose columns have Kronecker prod-
uct structure. These include sketches with particular row
structure (Biagioni et al., 2015; Sun et al., 2018; Rakhshan
& Rabusseau, 2020; 2021; Iwen et al., 2021), the Kronecker
fast Johnson–Lindenstrauss transform (Battaglino et al.,
2018; Jin et al., 2020; Malik & Becker, 2020b; Bamberger
et al., 2021), TensorSketch (Pagh, 2013; Pham & Pagh,
2013; Avron et al., 2014; Diao et al., 2018), sampling-based
sketches (Cheng et al., 2016; Diao et al., 2019; Larsen &
Kolda, 2020; Fahrbach et al., 2021), and recursive sketches
(Ahle et al., 2020).

3. Preliminaries
By tensor, we mean a multidimensional array containing real
numbers. We will refer to a tensor with N indices as an N -
way or mode-N tensor. We use bold Euler script letters (e.g.,
X) for tensors with three or more modes, bold uppercase
letters (e.g., X) for matrices, bold lowercase letters (e.g., x)
for vectors, and lowercase regular letters (e.g., x) for scalars.
We indicate specific entries of objects with parentheses. For
example, X(i, j, k) is the entry on position (i, j, k) in X, and
x(i) is the ith entry in x. A colon denotes all elements along
a certain mode. For example, X(:, k, :) is the kth lateral slice
of X, and X(i, :) is the ith row of X . We will sometimes
use superscripts in parentheses to denote a sequence of
objects (e.g., A(1), . . . ,A(N)). For a positive integer n,
we use the notation [n] def= {1, . . . , n}. We use ⊗ and ⊙ to
denote the Kronecker and Khatri–Rao products, respectively
(defined in Section A). By compact SVD, we mean an SVD
A = UΣV ⊤ where Σ ∈ Rrank(A)×rank(A) and U ,V
have rank(A) columns. The ith canonical basis vector is
denoted by ei. We denote the indicator of a random event
A by Ind{A}, which is 1 if A occurs and 0 otherwise. For
indices i1 ∈ [I1], . . . , iN ∈ [IN ], the notation i1 · · · iN

def=
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1 +
∑N

n=1(in − 1)
∏n−1

j=1 Ij will be useful when working
with unfolded tensors. See Section A for definitions of the
asymptotic notation we use.

Definition 1. The classical mode-n unfolding of X is the
matrix X(n) ∈ RIn×Πj ̸=nIj defined elementwise via

X(n)(in, i1 · · · in−1in+1 · · · iN ) def= X(i1, . . . , iN ). (1)

The mode-n unfolding of X is the matrix X[n] ∈
RIn×Πj ̸=nIj defined elementwise via

X[n](in, in+1 · · · iN i1 · · · in−1) def= X(i1, . . . , iN ). (2)

3.1. Tensor Decomposition

We first introduce the CP decomposition. Consider an N -
way tensor X ∈ RI1×···×IN . A rank-R CP decomposition
of X is of the form

X(i1, . . . , iN ) =
R∑

r=1

N∏
j=1

A(j)(ij , r), (3)

where each A(j) ∈ RIj×R is called a factor matrix. We
use CP(A(1), . . . ,A(N)) to denote the tensor in (3). The
problem of computing a rank-R CP decomposition of a data
tensor X can be formulated as

arg min
A(1),...,A(N)

∥ CP(A(1), . . . ,A(N)) − X∥F. (4)

Unfortunately, this problem is non-convex and difficult to
solve exactly. ALS is the “workhorse” algorithm for solving
this problem approximately (Kolda & Bader, 2009). With
ALS, we consider the objective in (4), but only solve with
respect to one of the factor matrices at a time while keeping
the others fixed:

arg min
A(n)

∥ CP(A(1), . . . ,A(N)) − X∥F. (5)

The problem in (5) can be rewritten as the linear least
squares problem

arg min
A(n)

∥A ̸=nA(n)⊤ − X⊤
(n)∥F, (6)

where A ̸=n ∈ R(Πj ̸=nIj)×R is defined as

A ̸=n def= A(N) ⊙· · ·⊙A(n+1) ⊙A(n−1) ⊙· · ·⊙A(1). (7)

By repeatedly updating each factor matrix one at a time
via (6), we get the standard CP-ALS algorithm outlined in
Algorithm 1. For further details on the CP decomposition,
see Kolda & Bader (2009).

Next, we introduce the tensor ring decomposition. For n ∈
[N ], let G(n) ∈ RRn−1×In×Rn be 3-way tensors with R0 =

Algorithm 1: CP-ALS

Input: X ∈ RI1×···×IN , rank R
Output: Factor matrices A(1), . . . ,A(N)

1 Initialize factor matrices A(2), . . . ,A(N)

2 while termination criteria not met do
3 for n = 1, . . . , N do
4 A(n) = arg minA ∥A ̸=nA⊤ − X⊤

(n)∥F

5 return A(1), . . . ,A(N)

RN . A rank-(R1, . . . , RN ) tensor ring decomposition of X
is of the form

X(i1, . . . , iN ) =
∑

r1,...,rN

N∏
n=1

G(n)(rn−1, in, rn), (8)

where each rn in the sum goes from 1 to Rn and r0 =
rN , and each G(n) is called a core tensor. We use
TR(G(1), . . . ,G(N)) to denote the tensor in (8). Finding
the best possible rank-(R1, . . . , RN ) tensor ring decompo-
sition of a tensor X is difficult. With an ALS approach
we can update a single core tensor at a time by solving the
following problem:

arg min
G(n)

∥ TR(G(1), . . . ,G(N)) − X∥F. (9)

To reformulate this problem into a linear least squares prob-
lem we will need the following definition.

Definition 2. By merging all cores except the nth, we get
a subchain tensor G ̸=n ∈ RRn×(Πj ̸=nIj)×Rn−1 defined ele-
mentwise via

G̸=n(rn, in+1 . . . iN i1 . . . in−1, rn−1)

def=
∑

r1,...,rn−2
rn+1,...,rN

N∏
j=1
j ̸=n

G(j)(rj−1, ij , rj). (10)

The problem in (9) can now be written as the linear least
squares problem

G(n) = arg min
G

∥G ̸=n
[2] G

⊤
(2) − X⊤

[n]∥F. (11)

By repeatedly updating each core tensor one at a time via
(11), we get the standard TR-ALS algorithm outlined in
Algorithm 2. For further details on the tensor ring decompo-
sition, see Zhao et al. (2016).

3.2. Recursive Sketching

Ahle et al. (2020) present two variants of their recursive
sketch. The first one, which we will use, combines CountS-
ketch and TensorSketch into a single sketch which can be
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Algorithm 2: TR-ALS

Input: X ∈ RI1×···×IN , ranks R1, . . . , RN

Output: Core tensors G(1), . . . ,G(N)

1 Initialize core tensors G(2), . . . ,G(N)

2 while termination criteria not met do
3 for n = 1, . . . , N do
4 G(n) = arg minG ∥G ̸=n

[2] G
⊤
(2) − X⊤

[n]∥F

5 return G(1), . . . ,G(N)

applied efficiently to Kronecker structured vectors. CountS-
ketch was first introduced by Charikar et al. (2004) and ex-
tended to the linear algebra setting by Clarkson & Woodruff
(2017). Recall that a function h : [I] → [J ] is said to be
k-wise independent if it is chosen from a family of func-
tions such that for any k distinct i1, . . . , ik ∈ [I] the val-
ues h(i1), . . . , h(ik) are independent random variables uni-
formly distributed in [J ] (Pagh, 2013).
Definition 3. Let h : [I] → [J ] and s : [I] → {−1, +1}
be 3- and 4-wise independent functions, respectively. The
CountSketch matrix C ∈ RJ×I is defined elementwise via
C(j, i) def= s(i) · Ind{h(i) = j}.

The TensorSketch was developed in a series of papers by
Pagh (2013), Pham & Pagh (2013), Avron et al. (2014) and
Diao et al. (2018).
Definition 4. Let h1, h2 : [I] → [J ] and s1, s2 : [I] →
{−1, +1} be 3- and 4-wise independent functions, respec-
tively. Define h : [I] × [I] → [J ] via

h(i1, i2) def= (h1(i1) + h2(i2) mod J) + 1. (12)

The degree-two TensorSketch matrix T ∈ RJ×I2
is defined

elementwise via

T (j, i1i2) def= s(i1)s(i2) · Ind{h(i1, i2) = j}. (13)

We are now ready to describe the recursive sketch of Ahle
et al. (2020). It is easiest to understand it if we consider
its application to Kronecker structured vectors. Consider
x = x1 ⊗ · · · ⊗ xN ∈ RI1···IN , where each xn ∈ RIn .2

Suppose first that N = 2q is a power of 2. The first step of
the recursive sketch is to apply an independent CountSketch
matrix Cn ∈ RJ×In to each xn:

y(0)
n

def= Cnxn ∈ RJ , n ∈ [N ]. (14)

The vectors y(0)
n are then combined pairwise using indepen-

dent degree-two TensorSketches T (1)
n ∈ RJ×J2

:

y(1)
n

def= T (1)
n (y(0)

2n−1 ⊗ y
(0)
2n ), n ∈ [N/2]. (15)

2Ahle et al. (2020) consider the case when each xn has the
same length. We consider a slightly more general definition here
since this allows us to work with tensors whose modes are of
different size.

This process is then repeated: At each step, pairs of length-J
vectors are combined using independent TensorSketches of
size J × J2. The mth step is

y(m)
n

def= T (m)
n (y(m−1)

2n−1 ⊗ y
(m−1)
2n ), n ∈ [N/2m]. (16)

When m = q, we are left with a single vector y(q)
1 ∈ RJ .

The mapping x 7→ y
(q)
1 , which we denote by ΨJ,(In)2q

n=1
,

is the recursive sketch. If N is not a power of 2, we
choose q

def= ⌈log2 N⌉ and define the recursive sketch as
ΨJ,(In)N

n=1
: x 7→ ΨJ,(Ĩn)2q

n=1
(x ⊗ e

⊗(2q−N)
1 ), where

e1 is the first canonical basis vector of length Imax
def=

maxn∈[N ] In, and each Ĩn
def= In for n ≤ N and Ĩn

def= Imax
if n > N . We refer to ΨJ,(In)N

n=1
as a (J, (In)N

n=1)-
recursive sketch. It is in fact linear, and when N = 2q

we can write ΨJ,(In)N
n=1

as a product of q + 1 matrices:

ΨJ,(In)N
n=1

= T (q)T (q−1) · · ·T (1)C, (17)

where C
def=

⊗N
n=1 Cn is a JN ×

∏
n In matrix and

T (m) def=
⊗2q−m

n=1 T
(m)
n is a J2q−m × J2q−m+1

matrix. Fig-
ure 1 illustrates the recursive sketch for N = 4.

Figure 1. Illustration of the recursive sketch applied to a vector
x1 ⊗ x2 ⊗ x3 ⊗ x4. This is an adaption of Figure 1 in Ahle et al.
(2020).
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The recursive sketch is a subspace embedding with high
probability.
Definition 5. A matrix Ψ ∈ RJ×I is called a γ-subspace
embedding for a matrix A ∈ RI×R if∣∣∥ΨAx∥2

2 − ∥Ax∥2
2
∣∣ ≤ γ∥Ax∥2

2 for all x ∈ RR. (18)

The recursive sketch has the remarkable feature that the
embedding dimension required for subspace embedding
guarantees does not depend exponentially on N . See The-
orem 1 in Ahle et al. (2020) or Theorem 17 for a precise
statement.

3.3. Leverage Score Sampling

Leverage score sampling is a popular technique for a variety
of problems in numerical linear algebra. For an in-depth
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discussion, see Mahoney (2011) and Woodruff (2014).
Definition 6. Let A ∈ RI×R and suppose U ∈ RI×rank(A)

contains the left singular vectors of A. The ith leverage
score of A is defined as ℓi(A) def= ∥U(i, :)∥2

2 for i ∈ [I].
Definition 7. Let q ∈ RI be a probability distribution
and let f : [J ] → [I] be a random map such that each
f(j) is independent and distributed according to q. Define
S ∈ RJ×I elementwise via

S(j, i) def= Ind{f(j) = i}/
√

Jq(f(j)). (19)

We call S a sampling matrix with parameters (J, q), or
S ∼ D(J, q) for short. Let A ∈ RI×R be nonzero and
suppose β ∈ (0, 1]. Define the distribution p ∈ RI via
p(i) def= ℓi(A)/ rank(A). We say that S ∼ D(J, q) is a
leverage score sampling matrix for (A, β) if q(i) ≥ βp(i)
for all i ∈ [I].

For a least squares problem minx ∥Ax − y∥2 where A ∈
RI×R has many more rows than columns, we can use sam-
pling to reduce the size of the problem to minx ∥SAx −
Sy∥2. We would ideally like to sample according to the
distribution p in Definition 7, but this requires computing
U in Definition 6 (e.g., via the SVD or QR decomposition)
which costs O(IR2). This is the same cost as solving the
full least squares problem and is therefore too expensive.
However, as shown by Drineas et al. (2012), the leverage
scores can be accurately estimated in less time. Theorem 8
is a variant of Lemma 9 by Drineas et al. (2012). They
consider the case when Ψ is a fast Johnson–Lindenstrauss
transform instead of a subspace embedding.
Theorem 8. Let A ∈ RI×R where I > R, γ ∈ (0, 1) and
suppose ΨA = U1Σ1V

⊤
1 is a compact SVD. Define

ℓ̃i(A) def= ∥e⊤
i AV1Σ

−1
1 ∥2

2. (20)

Suppose that Ψ is a γ-subspace embedding for A. Then

|ℓi(A) − ℓ̃i(A)| ≤ γ

1 − γ
ℓi(A) for all i ∈ [I]. (21)

A proof of Theorem 8 appears in Section B.1.

4. Efficient Sampling for Tensor
Decomposition

In this section we present our proposed sampling schemes
for the CP and tensor ring decompositions of a tensor X ∈
RI1×···×IN . We will refer to these methods as CP-ALS-
ES and TR-ALS-ES, respectively, where “ES” is short for
“Efficient Sampling.”

4.1. CP Decomposition

Each least squares solve on line 4 in Algorithm 1 involves
all entries in X. To reduce the size of this problem, we

sample rows according to an approximate leverage score
distribution computed as in Theorem 8 with Ψ chosen to be
a recursive sketch. Theorem 9 shows that such a sampling
approach yields relative error guarantees for the CP-ALS
least squares problem.

Theorem 9. Let A ̸=n be defined as in (7). Define the vec-
tor v def=

[
N, · · · n + 1, n − 1, · · · 1

]
and suppose

ε, δ ∈ (0, 1). Suppose the estimates ℓ̃i(A ̸=n) are com-
puted as in Theorem 8, with Ψ ∈ RJ1×Πj ̸=nIj chosen to
be a (J1, (Iv(j))N−1

j=1 )-recursive sketch. Moreover, suppose
S ∈ RJ2×Πj ̸=nIj is a sampling matrix with parameters
(J2, q) where q(i) ∝ ℓ̃i(A ̸=n). If

J1 ≳ NR2/δ, (22)

J2 ≳ R max
(

log(R/δ), 1/(εδ)
)
, (23)

then Ã
def= arg minA ∥SA̸=nA⊤ − SX⊤

(n)∥F satisfies the
following with probability at least 1 − δ:

∥A ̸=nÃ⊤ − X⊤
(n)∥F ≤ (1 + ε) min

A
∥A ̸=nA⊤ − X⊤

(n)∥F.

(24)

A proof of Theorem 9 is provided in Section B.2. It com-
bines well-known results for leverage score sampling with
an efficient leverage score estimation procedure. The esti-
mation procedure follows ideas by Drineas et al. (2012) but
uses the recursive sketch by Ahle et al. (2020) instead of
the fast Johnson–Lindenstrauss transform that Drineas et al.
use.

The dependence on R in (23) is optimal in the sense
that it cannot be improved when rows are sampled i.i.d.
(Dereziński & Warmuth, 2018). It is a significant im-
provement over the current state-of-the-art sampling-based
ALS method by Larsen & Kolda (2020) which requires
O(RN−1 max(log(R/δ), 1/(δε))) samples to achieve rela-
tive error guarantees. The method by Cheng et al. (2016)
requires O(RN log(In/δ)/ε2) samples and only achieves
weaker additive error guarantees.

In Sections 4.1.1 and 4.1.2 we discuss how to compute
the approximate solution Ã in Theorem 9 efficiently. In
Section 4.1.3 we compare the complexity of our method to
that of other CP decomposition methods.

4.1.1. STEP 1: COMPUTING ΨA ̸=n

The columns of A ̸=n are Kronecker products, so applying
the recursive sketch Ψ to A ̸=n efficiently is straightforward.
Let q

def= ⌈log2(N − 1)⌉. First, independent CountSketches
Cj with J1 rows and an appropriate number of columns are
applied:

Y
(0)

j
def=

{
CjA

(v(j)) if 1 ≤ j ≤ N − 1,

Cje111×R if N − 1 < j ≤ 2q,
(25)
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where v is defined as in Theorem 9 and 11×R is a length-R
row vector of ones. Then, independent TensorSketches are
applied recursively:

Y
(m)

j = T
(m)
j (Y (m−1)

2j−1 ⊙ Y
(m−1)

2j ), j ∈ [2q−m], (26)

for m = 1, . . . , q, where each T
(m)
j ∈ RJ1×J2

1 . The final

output is Y (q)
1 = ΨA ̸=n.

4.1.2. STEP 2: DRAWING SAMPLES EFFICIENTLY

Since a row index i ∈ [
∏

j ̸=n Ij ] of A ̸=n can be written
as i = i1 · · · in−1in+1 · · · iN where each ij ∈ [Ij ], we can
sample an index i ∈ [

∏
j ̸=n Ij ] by sampling subindices

ij ∈ [Ij ] for each j ̸= n. By sampling the subindices in
sequence one after another we avoid computing all entries
in q which otherwise would cost Ω(

∏
j ̸=n Ij). We use an

abbreviated notation to denote the probability of drawing
subsequences of indices. For example, P(i1) denotes the
probability that the first index is i1, and P((ij)j≤m,j ̸=n)
denotes the probability that the first m indices (excluding
the nth) are i1, . . . , in−1, in+1, . . . , im.

Lemma 10. Let ΨA ̸=n = U1Σ1V
⊤

1 be a compact SVD
and define Φ

def= V1Σ
−1
1 (V1Σ

−1
1 )⊤. The normalization

constant for the distribution q with q(i) ∝ ℓ̃i(A ̸=n) is

C
def=

∑
i

ℓ̃i(A ̸=n) =
∑
r,k

Φ(r, k) ·
∏
j ̸=n

(A(j)⊤A(j))(r, k).

(27)
The marginal probability of drawing (ij)j≤m,j ̸=n is

P((ij)j≤m,j ̸=n) = 1
C

∑
r,k

Φ(r, k)

·
( ∏

j≤m
j ̸=n

A(j)(ij , r)A(j)(ij , k)
)( ∏

j>m
j ̸=n

(
A(j)⊤A(j))(r, k)

)
.

(28)
In (27) and (28), the summations are over i ∈ [

∏
j ̸=n Ij ]

and r, k ∈ [R].

The proof of Lemma 10 is given in Section B.3. We now
describe the sampling procedure by first describing how to
sample the first index i1 (or i2, if n = 1), followed by all
subsequent indices.

Sampling First Index Suppose n ̸= 1. We compute the
probability of sampling i1 for all i1 ∈ [I1] via (28) and
sample an index i1 ∈ [I1] from that distribution. If n = 1,
we do this for the second index i2 instead.

Sampling Subsequent Indices After drawing i1 (or i2, if
n = 1), all subsequent indices can be drawn one at a time
conditionally on the previous indices. Suppose we have
drawn indices (ij)j<m,j ̸=n. The conditional distribution of

im (or im+1, if n = m) given the previously drawn indices
is then

P(im | (ij)j<m,j ̸=n) = P((ij)j≤m,j ̸=n)
P((ij)j<m,j ̸=n) . (29)

We compute the conditional probability in (29) for all im ∈
[Im] via (28) and draw a sample im from that distribution.

Once the J2 samples in [
∏

j ̸=n Ij ] have been drawn, the
matrix SA̸=n can be computed without forming A ̸=n. The
matrix SX⊤

(n) can be computed by extracting only J2 rows
from X⊤

(n).

4.1.3. COMPLEXITY ANALYSIS

If J1 and J2 are chosen as in (22) and (23), and if we as-
sume that Ij = I for all j ∈ [N ] and ignore log factors,
then the per-iteration complexity for our method CP-ALS-
ES is Õ(N2R3(R + NI/ε)/δ). In Table 1, we compare
this to the complexity of other ALS-based methods for CP
decomposition (see Section 2). Our method is the only one
that does not have an exponential per-iteration dependence
on N . See Section C for a detailed complexity analysis.

Table 1. Comparison of leading order computational cost for vari-
ous CP decomposition methods. We ignore log factors and assume
that Ij = I for all j ∈ [N ]. #iter is the number of ALS iterations.
SPALS has an additional upfront cost of nnz(X).

Method Complexity

CP-ALS #iter · N(N + I)IN−1R
SPALS #iter · N(N + I)RN+1/ε2

CP-ARLS-LEV #iter · N(R + I)RN /(δε)
CP-ALS-ES (our) #iter · N2R3(R + NI/ε)/δ

4.2. Tensor Ring Decomposition

The least squares problem for TR-ALS on line 4 in Algo-
rithm 2 also involves all entries in X. We use an approach
similar to that for the CP decomposition, which yields the
following approximation guarantees for the TR-ALS least
squares problem.
Theorem 11. Let G ̸=n

[2] be the mode-2 unfolding of the

subchain tensor G ̸=n (see Definitions 1 and 2). Define
the vector w def=

[
n − 1, · · · 1, N, · · · n + 1

]
and

suppose ε, δ ∈ (0, 1). Suppose the estimates ℓ̃i(G ̸=n
[2] ) are

computed as in Theorem 8, with Ψ ∈ RJ1×Πj ̸=nIj chosen to
be a (J1, (Iw(j))N−1

j=1 )-recursive sketch. Moreover, suppose
S ∈ RJ2×Πj ̸=nIj is a sampling matrix with parameters
(J2, q) where q(i) ∝ ℓ̃i(G ̸=n

[2] ). If

J1 ≳ N(Rn−1Rn)2/δ, (30)

J2 ≳ Rn−1Rn max
(

log(Rn−1Rn/δ), 1/(εδ)
)
, (31)
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then G̃
def= arg minG ∥SG̸=n

[2] G
⊤ − SX⊤

[n]∥F satisfies the
following with probability at least 1 − δ:

∥G ̸=n
[2] G̃

⊤ − X⊤
[n]∥F ≤ (1 + ε) min

G
∥G ̸=n

[2] G
⊤ − X⊤

[n]∥F.

(32)

A proof of Theorem 11 is provided in Section B.4. The
proof uses similar steps as the proof of Theorem 9. The
main difference is the structure and number of columns of
the least squares design matrix.

Since G ̸=n
[2] has Rn−1Rn columns, the sample com-

plexity in (31) has optimal rank dependence in the
sense discussed in Section 4.1. This is a significant
improvement over the current state-of-the-art sampling-
based ALS method by Malik & Becker (2021) which
requires O((

∏
j R2

j ) max(log(Rn−1Rn/δ)), 1/(εδ)) sam-
ples to achieve relative error guarantees.

In Sections 4.2.1 and 4.2.2 we discuss how to compute
the approximate solution G̃ in Theorem 11 efficiently. In
Section 4.2.3 we compare the complexity of our method to
that of other tensor ring methods.

4.2.1. STEP 1: COMPUTING ΨG ̸=n
[2]

Although G ̸=n
[2] has a more complicated structure than A ̸=n,

Ψ can still be applied efficiently to G ̸=n
[2] . We describe a

scheme for computing the column ΨG ̸=n
[2] (:, rn−1rn) be-

low, and give a more detailed motivation in Section B.5. Let
q

def= ⌈log2(N − 1)⌉. Define matrices H(j) for j ∈ [2q]
as follows: Let H(1) ∈ RIn−1×Rn−2 be a matrix with
columns H(1)(:, k) def= G

(n−1)
[2] (:, rn−1k) for k ∈ [Rn−2].

Let H(j) def= G
(w(j))
[2] ∈ RIw(j)×Rw(j)Rw(j)−1 for 2 ≤ j ≤

N − 2. Let H(N−1) ∈ RIn+1×Rn+1 be a matrix with
columns H(N−1)(:, k) def= G

(n+1)
[2] (:, krn) for k ∈ [Rn+1].

Let H(j) def= e1 ∈ Rmaxj ̸=n Ij be a column vector for
N ≤ j ≤ 2q . Next, define

Y
(0)

j
def= CjH

(j), j ∈ [2q], (33)

K
(0)
j

def=
{

Rw(j) if 2 ≤ j ≤ N − 1,

1 if j = 1 or N ≤ j ≤ 2q + 1.
(34)

The TensorSketch matrices are then applied recursively as
follows. For each m = 1, . . . , q, compute

Y
(m)

j (:, k1k3) =∑
k2∈[K(m−1)

2j
]

T
(m)
j

(
Y

(m−1)
2j−1 (:, k1k2) ⊗ Y

(m−1)
2j (:, k2k3)

)
(35)

for each k1 ∈ [K(m−1)
2j−1 ], k3 ∈ [K(m−1)

2j+1 ], j ∈ [2q−m]. For
each m = 1, . . . , q, also compute

K
(m)
j

def= K
(m−1)
2j−1 , j ∈ [2q−m + 1]. (36)

We prove the following in Section B.5.

Lemma 12. Y
(q)

1 satisfies Y (q)
1 = ΨG ̸=n

[2] (:, rn−1rn).

The entire matrix ΨG ̸=n
[2] can be computed by repeating the

steps above for each column rn−1rn ∈ [Rn−1Rn].

4.2.2. STEP 2: DRAWING SAMPLES EFFICIENTLY

The sampling approach for the tensor ring decomposition is
similar to the approach for the CP decomposition which we
described in Section 4.1.2.
Lemma 13. Let ΨG ̸=n

[2] = U1Σ1V
⊤

1 be a compact SVD

and define Φ
def= V1Σ

−1
1 (V1Σ

−1
1 )⊤. The normalization

constant for the distribution q with q(i) ∝ ℓ̃i(G ̸=n
[2] ) is

C
def=

∑
i

ℓ̃i(G ̸=n
[2] ) =

∑
r1,...,rN

k1,...,kN

Φ(rn−1rn, kn−1kn)

·
∏
j ̸=n

(
G

(j)⊤
[2] G

(j)
[2]

)
(rjrj−1, kjkj−1).

(37)

The marginal probability of drawing (ij)j≤m,j ̸=n is

P((ij)j≤m,j ̸=n) = 1
C

∑
r1,...,rN

k1,...,kN

Φ(rn−1rn, kn−1kn)

·
( ∏

j≤m
j ̸=n

G
(j)
[2] (ij , rjrj−1)G(j)

[2] (ij , kjkj−1)
)

·
( ∏

j>m
j ̸=n

(
G

(j)⊤
[2] G

(j)
[2]

)
(rjrj−1, kjkj−1)

)
.

(38)

In (37) and (38), the summations are over i ∈ [
∏

j ̸=n Ij ]
and rj , kj ∈ [Rj ] for each j ∈ [N ].

The proof of Lemma 13 is given in Section B.6. The sam-
pling procedure itself is the same as for the CP decomposi-
tion. The distribution (P(i1))I1

i1=1 is computed via (38) and
an index i1 is sampled; if n = 1, these computations are
done for i2 instead of i1. All subsequent indices are then
sampled conditionally on the previous indices. This is done
by computing the conditional distribution in (29) by using
(38). The expression in (38) can be computed efficiently
despite the exponential number of terms in the summation;
see Remark 20 for details.

Once the J2 samples in [
∏

j ̸=n Ij ] have been drawn, the
matrix SG̸=n

[2] can be computed without forming G ̸=n
[2] . We

describe this in detail in Remark 21. The matrix SX⊤
[2] can

be computed by extracting only J2 rows from X⊤
[2].

4.2.3. COMPLEXITY ANALYSIS

If J1 and J2 are chosen as in (30) and (31), and if we assume
that Rj = R and Ij = I for all j ∈ [N ] and ignore log
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factors, then the per-iteration complexity for our method
TR-ALS-ES is Õ(N3R9/δ +N3IR8/(εδ)). In Table 2, we
compare this to the complexity of several other methods
for tensor ring decomposition (see Section 2). rTR-ALS
refers to the method by Yuan et al. (2019a) with each I
compressed to K and with TR-ALS as the deterministic
algorithm. TR-SVD-Rand refers to Algorithm 7 in Ahmadi-
Asl et al. (2020). Our method is the only one that does
not have an explicit exponential dependence on N . See
Section C for a detailed complexity analysis.

Table 2. Comparison of leading order computational cost for var-
ious tensor ring decomposition methods. We ignore log factors
and assume that Rj = R and Ij = I for all j ∈ [N ]. #iter is the
number of ALS iterations.

Method Complexity

TR-ALS #iter · NIN R2

rTR-ALS NIN K + #iter · NKN R2

TR-SVD IN+1 + IN R3

TR-SVD-Rand IN R2

TR-ALS-Sampled #iter · NIR2N+2/(εδ)
TR-ALS-ES (our) #iter · N3R8(R + I/ε)/δ

5. Experiments
The experiments are run in Matlab R2021b on a laptop com-
puter with an Intel Core i7-1185G7 CPU and 32 GB of
RAM. Our code is available at https://github.com/
OsmanMalik/TD-ALS-ES. Additional experiment de-
tails are in Section D.

5.1. Sampling Distribution Comparison

We first compare the sampling distributions used by our
methods with those used by the previous state-of-the-art—
CP-ARLS-LEV by Larsen & Kolda (2020) for the CP de-
composition and TR-ALS-Sampled by Malik & Becker
(2021) for the tensor ring decomposition—when solving the
least squares problems in (5) and (9). We run standard CP-
ALS and TR-ALS on a real data tensor to get realistic factor
matrices and core tensors when defining the design matrices
A ̸=n and G ̸=n

[2] . We get the real data tensor X ∈ R16×···×16

by reshaping a 4096 × 4096 gray scale image of a tabby
cat into a 6-way tensor and then appropriately permuting
the modes, a process called visual data tensorization (Yuan
et al., 2019b). We then consider the least squares problems
corresponding to an update of the 6th factor matrix or core
tensor. As a performance measure, we compute the KL-
divergence of the approximate distribution q from the exact
leverage score sampling distribution p in Definition 7. Ta-
bles 3 and 4 report the results for different J1 and ranks. The
results show that our methods sample from a distribution
much closer to the exact leverage score distribution when J1

is as small as J1 = 1000. See Figures 2–5 for a graphical
comparison.

Table 3. KL-divergence (lower is better) of the approximated sam-
pling distribution from the exact one for a CP-ALS least squares
problem (5) with target rank R.

Method R = 10 R = 20
CP-ARLS-LEV 0.2342 0.1853
CP-ALS-ES (J1 = 1e+4) 0.0005 0.0006
CP-ALS-ES (J1 = 1e+3) 0.0151 0.0070
CP-ALS-ES (J1 = 1e+2) 0.1416 0.2173

Table 4. KL-divergence (lower is better) of the approximated sam-
pling distribution from the exact one for a TR-ALS least squares
problem (11) with target rank (R, . . . , R).

Method R = 3 R = 5
TR-ALS-Sampled 0.3087 0.1279
TR-ALS-ES (J1 = 1e+4) 0.0005 0.0007
TR-ALS-ES (J1 = 1e+3) 0.0076 0.0070
TR-ALS-ES (J1 = 1e+2) 0.1565 0.1831

5.2. Feature Extraction

Next, we run a benchmark feature extraction experiment
on the COIL-100 image dataset (Nene et al., 1996) with
a setup similar to that in Zhao et al. (2016) and Malik &
Becker (2021). The data consists of 7200 color images of
size 128×128 pixels, each belonging to one of 100 different
classes. The data is arranged into a 128 × 128 × 3 × 7200
tensor which is decomposed using either a rank-25 CP
decomposition or a rank-(5, 5, 5, 5) tensor ring decompo-
sition. The mode-4 factor matrix or core tensor is then
used as a feature matrix in a k-NN algorithm with k = 1
and 10-fold cross validation. For our CP-ALS-ES, we use
J1 = 10000 and J2 = 2000, and for our TR-ALS-ES we
use J1 = 10000 and J2 = 1000. For the CP decomposition,
we compare against CP-ALS in Tensor Toolbox (Bader &
Kolda, 2006; Bader et al., 2021); CPD-ALS, CPD-MINF
and CPD-NLS in Tensorlab (Vervliet et al., 2016); and our
own implementation of CP-ARLS-LEV. For the tensor ring
decomposition, we compare against the implementations
of TR-ALS and TR-ALS-Sampled provided by Malik &
Becker (2021). For CP-ARLS-LEV and TR-ALS-Sampled
we use 2000 and 1000 samples, respectively. All iterative
methods are run for 40 iterations.

Table 5 shows the average decomposition time, decomposi-
tion error, and classification accuracy for the various meth-
ods over 10 repetitions of the experiment3. For the CP de-
composition, the two randomized methods are faster than the

3TR-ALS was only run once due to how long it takes to run.

https://github.com/OsmanMalik/TD-ALS-ES
https://github.com/OsmanMalik/TD-ALS-ES
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competing methods. Our method takes about as long to run
as CP-ARLS-LEV. This does not contradict our earlier anal-
ysis, which was a worst-case analysis. Real-world datasets
are typically better behaved than the worst case, which is
why CP-ARLS-LEV requires no more samples than CP-
ALS-ES in this example. For the tensor ring decomposition,
the randomized methods are substantially faster than the
deterministic one. Our method is a bit slower here than
TR-ALS-Sampled. All methods achieve good classification
accuracy and similar decomposition errors.

Table 5. Run time, decomposition error and classification accuracy
when using tensor decomposition for feature extraction.

Method Time (s) Err. Acc. (%)

CP-ALS (Ten. Toolbox) 43.6 0.31 99.2
CPD-ALS (Tensorlab) 68.4 0.31 99.0
CPD-MINF (Tensorlab) 102.3 0.34 99.7
CPD-NLS (Tensorlab) 107.8 0.31 92.1
CP-ARLS-LEV 28.7 0.32 98.5
CP-ALS-ES (our) 27.9 0.32 98.3

TR-ALS 9813.7 0.31 99.3
TR-ALS-Sampled 9.9 0.33 98.5
TR-ALS-ES (our) 28.5 0.33 98.0

Remark 14. If k-NN was applied directly to the uncom-
pressed images its cost would scale linearly or worse with
the number of tensor entries. Due to the sublinear per-
iteration complexity of our proposed methods, the cost of
the entire decomposition is sublinear if the number of itera-
tions is chosen appropriately. While fixing the number of
iterations is not guaranteed to produce a good decomposi-
tion, we expect this to work well on typical datasets. Once
the decomposition is computed each image has a representa-
tion of much lower dimension which makes applying k-NN
cheaper. This leads to a reduction in the overall classifica-
tion cost. See Section D.4 for a discussion on handling new
images that were not part of the initial decomposition.

5.3. Demonstration of Improved Complexity

We construct a synthetic 10-way tensor that demonstrates
the improved sampling and computational complexity of our
proposed CP-ALS-ES over CP-ARLS-LEV. It is constructed
via (3) from factor matrices A(n) ∈ R6×4 for n ∈ [10] with
A(n)(1, 1) = 4, each A(n)(i, j) drawn i.i.d. from a Gaus-
sian distribution for 2 ≤ i, j ≤ 6, and all other entries zero.
Additionally, i.i.d. Gaussian noise with standard deviation
0.01 is added to all entries of the tensor. Both methods are
run for 20 iterations with a target rank of 4 and are initial-
ized using the randomized range finding approach proposed
by Larsen & Kolda (2020), Appendix F. CP-ARLS-LEV
requires J = 68 ≈ 1.7e+6 samples to get an accurate solu-
tion, taking 350 seconds. By contrast, our CP-ALS-ES only

requires a recursive sketch size of J1 = 1000 and J2 = 50
samples to get an accurate solution, taking only 4.8 sec-
onds. Our method improves the sampling complexity and
compute time by 4 and almost 2 orders of magnitude, respec-
tively. A similar example for the tensor ring decomposition
is provided in Section D.5.

6. Discussion and Conclusion
We have shown that it is possible to construct ALS algo-
rithms with guarantees for both the CP and tensor ring de-
compositions of an N -way tensor with a per-iteration cost
which does not depend exponentially on N . In the regime
of high-dimensional tensors (i.e., with many modes), this is
a substantial improvement over the previous state-of-the-art
which had a per-iteration cost of Ω(RN+1) and Ω(R2N+2)
for the CP and tensor ring decompositions, respectively,
where R is the relevant notion of rank.

We again want to emphasize that this paper considers worst-
case guarantees. As we saw in Section 5, real datasets typi-
cally behave better than the worst case. For such datasets,
CP-ARLS-LEV and TR-ALS-Sampled usually yield good
results even with fewer (i.e., not exponential in N ) number
of samples than what worst-case analysis might suggest. In
such cases, those methods can be faster than the methods
we propose in this paper. Nonetheless, we believe that our
methods are still useful for those cases when worst-case
performance is critical.

We also want to point out that, unlike their deterministic
counterparts, our methods cannot guarantee a monotonically
decreasing objective value. The other randomized methods
we compare with have the same deficiency.

The sampling formulas (28) and (38) are sums of products
where each feature matrix or core tensor (except the nth) ap-
pears twice. This can exacerbate issues with ill-conditioned
factor matrices or core tensors. A particular concern is that
catastrophic cancellation can occur, which will prevent accu-
rate computation of the probabilities. Addressing this issue
is an interesting direction for future research.

All the experiments in this paper involve dense tensors.
However, our methods can also be applied to sparse tensors
with only minor adjustments to the code. Thorough empiri-
cal evaluation of our methods on sparse tensors is therefore
another interesting direction for future research.
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A. Further Details on Notation
In this section we provide some further details on the notation used in this paper to help make the paper self contained. The
Kronecker product of two matrices A ∈ Rm×n and B ∈ Rk×ℓ is denoted by A ⊗ B ∈ Rmk×nℓ and is defined as

A ⊗ B
def=


A(1, 1)B A(1, 2)B · · · A(1, n)B
A(2, 1)B A(2, 2)B · · · A(2, n)B

...
...

...
A(m, 1)B A(m, 2)B · · · A(m, n)B

 . (39)

The Khatri–Rao product, sometimes called the columnwise Kronecker product, of two matrices A ∈ Rm×n and B ∈ Rk×n

is denoted by A ⊙ B ∈ Rmk×n and is defined as

A ⊙ B
def=

[
A(:, 1) ⊗ B(:, 1) A(:, 2) ⊗ B(:, 2) · · · A(:, n) ⊗ B(:, n)

]
. (40)

It is not obvious how to extend the standard asymptotic notation for single-variable functions to multi-variable functions
(Howell, 2008). Suppose f and g are positive functions over some parameters x1, . . . , xn. We say that a function
f(x1, . . . , xn) is O(g(x1, . . . , xn)) if there exists a constant C > 0 such that f(x1, . . . , xn) ≤ Cg(x1, . . . , xn) for all valid
values of the parameters x1, . . . , xn. The notation Õ means the same as O but with polylogarithmic factors ignored. We say
that a function f(x1, . . . , xn) is Ω(g(x1, . . . , xn)), or alternatively write f(x1, . . . , xn) ≳ g(x1, . . . , xn), if there exists a
constant C > 0 such that f(x1, . . . , xn) ≥ Cg(x1, . . . , xn) for all valid values of the parameters x1, . . . , xn.

B. Missing Proofs
B.1. Proof of Theorem 8

We first state and prove Lemma 15. It is similar to Lemma 5 in Drineas et al. (2012) and Lemma 4.1 in Drineas et al. (2006b)
which consider the case when Ψ is a fast Johnson–Lindenstrauss transform and a sampling matrix, respectively, instead of a
subspace embedding.

Lemma 15. Consider a matrix A ∈ RI×R where I > R. Let A = UΣV ⊤ be a compact SVD of A. Suppose Ψ is a
γ-subspace embedding for A with γ ∈ (0, 1), and let ΨU = QΛW⊤ be a compact SVD. Then, the following hold:

(i) rank(ΨA) = rank(ΨU) = rank(A),

(ii) ∥I − Λ−2∥2 ≤ γ/(1 − γ),

(iii) (ΨA)† = V Σ−1(ΨU)†.

Proof. The proof follows similar arguments as those used in the proof of Lemma 4.1 in Drineas et al. (2006b). Since Ψ is a
γ-subspace embedding for A, we have that

(1 − γ)∥UΣV ⊤x∥2
2 ≤ ∥ΨUΣV ⊤x∥2

2 ≤ (1 + γ)∥UΣV ⊤x∥2
2 for all x ∈ RR. (41)

Let r
def= rank(A). Since ΣV ⊤ ∈ Rr×R is full rank, and using unitary invariance of the spectral norm, it follows that

(1 − γ)∥y∥2
2 ≤ ∥ΨUy∥2

2 ≤ (1 + γ)∥y∥2
2 for all y ∈ Rr. (42)

Using Theorem 8.6.1 in Golub & Van Loan (2013), this in turn implies that

1 − γ ≤ σ2
i (ΨU) ≤ 1 + γ for all i ∈ [r]. (43)

Consequently, rank(ΨU) = r = rank(A). Moreover, since rank(ΨA) = rank(ΨUΣV ⊤) and ΣV ⊤ is full rank, it
follows that rank(ΨA) = rank(ΨU). This completes the proof of (i).

Next, note that

∥I − Λ−2∥2 = max
i∈[r]

∣∣∣1 − 1
σ2

i (ΨU)

∣∣∣ = max
i∈[r]

∣∣∣σ2
i (ΨU) − 1
σ2

i (ΨU)

∣∣∣ ≤ γ

1 − γ
, (44)
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where the inequality follows from the bound in (43). This completes the proof of (ii).

We may write
(ΨA)† = (QΛW⊤ΣV ⊤)† = V (ΛW⊤Σ)†Q⊤ (45)

where the second equality follows since Q and V have orthonormal columns. Since rank(ΨU) = rank(A) due to (i), the
matrix ΛW⊤ ∈ Rr×r is invertible, and therefore ΛW⊤Σ ∈ Rr×r is invertible, and hence

(ΛW⊤Σ)† = Σ−1WΛ−1. (46)

Consequently, combining (45) and (46) we have

(ΨA)† = V Σ−1WΛ−1Q⊤ = V Σ−1(ΨU)†. (47)

This completes the proof of (iii).

We are now ready to prove the statement in Theorem 8.

Proof of Theorem 8. Our proof is similar to the proof of Lemma 9 in Drineas et al. (2012). Let A = UΣV ⊤ be a compact
SVD, r

def= rank(A) and suppose i ∈ [I]. From Definition 6, we have

ℓi(A) = ∥U(i, :)∥2
2 = e⊤

i UU⊤ei. (48)

Moreover,

ℓ̃i(A) = ∥e⊤
i AV1Σ

−1
1 U⊤

1 ∥2
2 = ∥e⊤

i A(ΨA)†∥2
2 = ∥e⊤

i U(ΨU)†∥2
2 = e⊤

i U(ΨU)†(ΨU)†⊤U⊤ei, (49)

where the first equality follows from the definition of ℓ̃i(A) in (20) and the unitary invariance of the spectral norm, and the
third equality follows from Lemma 15 (iii). From (48) and (49), we have

|ℓi(A) − ℓ̃i(A)| = |e⊤
i U

(
I − (ΨU)†(ΨU)†⊤)

U⊤ei|
≤ ∥e⊤

i U∥2 · ∥(I − (ΨU)†(ΨU)†⊤)U⊤ei∥2

≤ ∥e⊤
i U∥2 · ∥I − (ΨU)†(ΨU)†⊤∥2 · ∥U⊤ei∥2

= ∥I − (ΨU)†(ΨU)†⊤∥2 · ℓi(A),

(50)

where the first inequality follows from Cauchy–Schwarz inequality, and the second inequality follows from the definition of
the matrix spectral norm. Let ΨU = QΛW⊤ be a compact SVD. It follows that

∥I − (ΨU)†(ΨU)†⊤∥2 = ∥I − WΛ−2W⊤∥2. (51)

From Lemma 15 (i), it follows that W is r × r, hence WW⊤ = I . Consequently, and using unitary invariance of the
spectral norm,

∥I − WΛ−2W⊤∥2 = ∥I − Λ−2∥2. (52)

Combining (50), (51) and (52), we get∣∣ℓi(A) − ℓ̃i(A)
∣∣ ≤ ∥I − Λ−2∥2 · ℓi(A) ≤ γ

1 − γ
ℓi(A), (53)

where the last inequality follows from Lemma 15 (ii). This completes the proof.

B.2. Proof of Theorem 9

We first state some results that we will need for this proof. Lemma 16 follows from Lemma 4.2.10 in Horn & Johnson
(1994).

Lemma 16. For matrices M1, . . . ,Mn and N1, . . . ,Nn of appropriate sizes,

(M1 ⊗ · · · ⊗ Mn) · (N1 ⊗ · · · ⊗ Nn) = (M1N1) ⊗ · · · ⊗ (MnNn). (54)
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Theorem 17 follows directly from Theorem 1 in Ahle et al. (2020) and its proof.4

Theorem 17. Let A ∈ RIN ×R. Let Ψ ∈ RJ×IN

be the (J, (I)N
j=1)-recursive sketch described in Section 3.2. If

J ≳ NR2/(γ2δ), then Ψ is a γ-subspace embedding for A with probability at least 1 − δ.

It is easy to generalize Theorem 17 to the setting when Ψ is a (J, (Ij)N
j=1)-recursive sketch where the Ij are not necessarily

all equal.

Corollary 18. Let A ∈ RΠN
j=1Ij×R. Let Ψ ∈ RJ×ΠN

j=1Ij be the (J, (Ij)N
j=1)-recursive sketch described in Section 3.2. If

J ≳ NR2/(γ2δ), then Ψ is a γ-subspace embedding for A with probability at least 1 − δ.

Proof. Let q
def= ⌈log2(N)⌉, Imax

def= maxj∈[N ] Ij , and Ĩj
def= Ij for j ≤ N and Ĩj

def= Imax for j > N . Let 11×R denote a
length-R row vector of all ones. From the definition of the recursive sketch in Section 3.2 and the factorization in (17), we
have

ΨA = ΨJ,(Ĩj)2q

j=1

(
A ⊙ (e⊗(2q−N)

1 11×R)
)

= T (q)T (q−1) · · ·T (1)
( 2q⊗

j=1
Cj

)(
A ⊙ (e⊗(2q−N)

1 11×R)
)

= T (q)T (q−1) · · ·T (1)
((( N⊗

j=1
Cj

)
A

)
⊙

(( 2q⊗
j=N+1

Cje1

)
11×R

))
,

(55)

where the last equality follows from Lemma 16. Define two index sets

I def= [I1] × · · · × [IN ] and Ic def= [Imax]N \ I. (56)

Let Â ∈ RIN
max×R be an augmented version of A defined as

Â(iN · · · i1, :) =
{
A(iN · · · i1, :) if (i1, . . . , iN ) ∈ I,

0 if (i1, . . . , iN ) ∈ Ic.
(57)

Let Ψ̂ ∈ RJ×IN
max be the (J, (Imax)N

j=1)-recursive sketch which uses independent CountSketches defined as

Ĉj ∈ RJ×Imax def=
[
Cj C̃j

]
, j ∈ [2q], (58)

where the matrices Cj are the same as in (55), and each C̃j is an independent CountSketch of size J × (Imax − Ij). Again
using the factorization in (17), we have

Ψ̂Â = ΨJ,(Imax)2q

j=1
(Â ⊙

(
e

⊗(2q−N)
1 11×R)

)
= T (q)T (q−1) · · ·T (1)

( 2q⊗
j=1

Ĉj

)(
Â ⊙ (e⊗(2q−N)

1 11×R)
)

= T (q)T (q−1) · · ·T (1)
((( N⊗

j=1
Ĉj

)
Â

)
⊙

(( 2q⊗
j=N+1

Ĉje1

)
11×R

))
,

(59)

where the last equality follows from Lemma 16. From the definition of matrix multiplication, we have

( N⊗
j=1

Ĉj

)
Â =

∑
(i1,...,iN )∈I∪Ic

( N⊗
j=1

Ĉj

)
(:, iN · · · i1)Â(iN · · · i1, :). (60)

4Since we are not considering regularized least squares problems, the statistical dimension sλ in Ahle et al. (2020) just becomes
equal to the number of columns of A, which is R in our case. The statement of Theorem 1 in Ahle et al. (2020) uses δ = 1/10, but the
statement for general δ is easy to infer from their proof of the theorem.



More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees

Due to (58), it follows that Ĉj(:, ij) = Cj(:, ij) when ij ∈ [Ij ], and consequently

( N⊗
j=1

Ĉj

)
(:, iN · · · i1) =

N⊗
j=1

Ĉj(:, ij) =
N⊗

j=1
Cj(:, ij) =

( N⊗
j=1

Cj

)
(:, iN · · · i1) for all (i1, . . . , iN ) ∈ I. (61)

Using (57) and (61), we can simplify (60) to

( N⊗
j=1

Ĉj

)
Â =

∑
(i1,...,iN )∈I

( N⊗
j=1

Cj

)
(:, iN · · · i1)A(iN · · · i1, :) =

( N⊗
j=1

Cj

)
A. (62)

Similarly, since the first column of each Ĉj and Cj are the same,

( 2q⊗
j=N+1

Ĉje1

)
11×R =

( 2q⊗
j=N+1

Cje1

)
11×R. (63)

Equations (55), (59), (62) and (63) together now imply that

ΨA = Ψ̂Â. (64)

Moreover, it follows immediately from (57) that

∥Ax∥2 = ∥Âx∥2 for all x ∈ RR. (65)

Theorem 17 implies that

P
(∣∣∥Ψ̂Âx∥2

2 − ∥Âx∥2
2
∣∣ ≤ γ∥Âx∥2

2 for all x ∈ RR
)

≥ 1 − δ. (66)

Due to (64) and (65), this implies that

P
(∣∣∥ΨAx∥2

2 − ∥Ax∥2
2
∣∣ ≤ γ∥Ax∥2

2 for all x ∈ RR
)

≥ 1 − δ, (67)

which is what we wanted to show.

Theorem 19 is a well-known result. Since slightly different variations of it have appeared in the literature (Drineas et al.,
2006b; 2008; 2011; Larsen & Kolda, 2020) we provide a proof sketch just to give the reader some idea of how to derive the
version we use.

Theorem 19. Let A ∈ RI×R be a matrix, and suppose S ∼ D(J, q) is a leverage score sampling matrix for (A, β) where
β ∈ (0, 1], and that ε, δ ∈ (0, 1). Moreover, define OPT def= minX ∥AX − Y ∥F and X̃

def= arg minX ∥SAX − SY ∥F. If

J >
4R

β
max

( 4
3(

√
2 − 1)2

ln
(4R

δ

)
,

1
εδ

)
, (68)

then the following holds with probability at least 1 − δ:

∥AX̃ − Y ∥F ≤ (1 + ε)OPT. (69)

Proof sketch. Let U ∈ RI×rank(A) contain the left singular vectors of A, and define Y ⊥ def= (I − UU⊤)Y . According to
a matrix version5 of Lemma 1 by Drineas et al. (2011), the statement in (69) holds if both

σ2
min(SU) ≥ 1√

2
(70)

and
∥U⊤S⊤SY ⊥∥2

F ≤ ε

2OPT2. (71)

5See Lemma S1 in Malik & Becker (2021).



More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees

To complete the proof, it is therefore sufficient to show that S satisfies both (70) and (71) with probability at least 1 − δ.
Using Lemma S2 in Malik & Becker (2021), which is the same as Theorem 2.11 in Woodruff (2014) but with a slightly
smaller constant, one can show that the condition (70) is satisfied with probability at least 1 − δ/2 if

J >
16

3(
√

2 − 1)2
R

β
ln

(4R

δ

)
. (72)

Next, using Lemma 8 in Drineas et al. (2006a), it follows that

E∥U⊤S⊤SY ⊥∥2
F ≤ 1

Jβ
R · OPT2. (73)

Markov’s inequality together with the assumption

J >
4R

βεδ
(74)

then implies that

P
(

∥U⊤S⊤SY ⊥∥2
F >

ε

2OPT2
)

≤ 2R

Jεβ
<

δ

2 . (75)

If (68) is satisfied, then both (72) and (74) are satisfied, and consequently (70) and (71) are both true with probability at
least 1 − δ.

We are now ready to prove the statement in Theorem 9.

Proof of Theorem 9. Let E1 denote the event that Ψ is a 1/3-subspace embedding for A ̸=n. Following the notation used in
Theorem 8, let ΨA ̸=n = U1Σ1V

⊤
1 be a compact SVD. Let E2 denote the event that (24) is true.

According to Corollary 18, we can guarantee that P(E1) ≥ 1 − δ/2 if we choose J1 as in (22). With γ = 1/3 in Theorem 8,
the estimates ℓ̃i(A ̸=n) satisfy

1
2ℓi(A ̸=n) ≤ ℓ̃i(A ̸=n) ≤ 3

2ℓi(A ̸=n). (76)

Consequently,
Πj ̸=nIj∑

i=1
ℓ̃i(A ̸=n) ≤ 3

2

Πj ̸=nIj∑
i=1

ℓi(A̸=n) = 3
2 rank(A ̸=n). (77)

Therefore, since q(i) ∝ ℓ̃i(A ̸=n), it follows by combining (76) and (77) that

q(i) = ℓ̃i(A ̸=n)∑Πj ̸=nIj

i=1 ℓ̃i(A ̸=n)
≥ 1

3
ℓi(A ̸=n)

rank(A ̸=n) . (78)

In view of Definition 7, Theorem 8 therefore implies that S ∼ D(J2, q) is a leverage score sampling matrix for (A ̸=n, 1/3)
if the event E1 is true. From Theorem 19, it then follows that P(E2 | E1) ≥ 1 − δ/2 if J2 is chosen as in (23). With the
choices of J1 and J2 above we now have

P(E2) ≥ P(E1, E2) = P(E1)P(E2 | E1) ≥ (1 − δ/2)2 ≥ 1 − δ (79)

which is what we wanted to show.

B.3. Proof of Lemma 10

Recall that Φ def= V1Σ
−1
1 (V1Σ

−1
1 )⊤, where ΨA ̸=n = U1Σ1V

⊤
1 is a compact SVD. From (20) we have

ℓ̃i(A ̸=n) = e⊤
i A ̸=nΦA ̸=n⊤ei = (A ̸=nΦA ̸=n⊤)(i, i) =

∑
r,k

Φ(r, k) ·
∏
j ̸=n

A(j)(ij , r)A(j)(ij , k), (80)
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where the last equality follows from the definition of A ̸=n in (7), and i = i1 · · · in−1in+1 · · · iN . Using (80), we can
compute the normalization constant C as

C
def=

∑
i

ℓ̃i(A ̸=n) =
∑
r,k

Φ(r, k) ·
∏
j ̸=n

∑
ij

A(j)(ij , r)A(j)(ij , k) =
∑
r,k

Φ(r, k) ·
∏
j ̸=n

(A(j)⊤A(j))(r, k), (81)

which proves (27).

To make notation a bit less cumbersome, we will use the abbreviated notation

∑
{ij}j>m,j ̸=n

to denote

{∑
im+1

· · ·
∑

in−1

∑
in+1

· · ·
∑

iN
if n > m,∑

im+1
· · ·

∑
iN

otherwise.
(82)

Similar abbreviated notation will also be used later on for other indices. We can again use (80) to compute the marginal
probabilities of drawing (ij)j≤m,j ̸=n as

P((ij)j≤m,j ̸=n) = 1
C

∑
{ij}j>m,j ̸=n

ℓ̃i(A ̸=n)

= 1
C

∑
{ij}j>m,j ̸=n

( ∑
r,k

Φ(r, k)
∏
j ̸=n

A(j)(ij , r)A(j)(ij , k)
)

= 1
C

∑
r,k

Φ(r, k)
( ∏

j≤m
j ̸=n

A(j)(ij , r)A(j)(ij , k)
)( ∏

j>m
j ̸=n

(
A(j)⊤A(j))(r, k)

)
,

(83)

which proves (28).

B.4. Proof of Theorem 11

The strategy of this proof is similar to that for the proof of Theorem 9 given in Section B.2. Let E1 denote the event that Ψ
is a 1/3-subspace embedding for G ̸=n

[2] . Following the notation used in Theorem 8, let ΨG ̸=n
[2] = U1Σ1V

⊤
1 be a compact

SVD. Let E2 denote the event that (32) is true.

The matrix G ̸=n
[2] is of size

∏
j ̸=n Ij ×Rn−1Rn. According to Corollary 18, we can therefore guarantee that P(E1) ≥ 1−δ/2

if we choose J1 as in (30). Following the same line of reasoning as in the proof of Theorem 9, we can show that the choice
γ = 1/3 in Theorem 8 combined with the fact q(i) ∝ ℓ̃i(G ̸=n

[2] ) implies that

q(i) =
ℓ̃i(G ̸=n

[2] )∑Πj ̸=nIj

i=1 ℓ̃i(G ̸=n
[2] )

≥ 1
3

ℓi(G ̸=n
[2] )

rank(G ̸=n
[2] )

. (84)

In view of Definition 7, Theorem 8 therefore implies that S ∼ D(J2, q) is a leverage score sampling matrix for (G ̸=n
[2] , 1/3)

if the event E1 is true. From Theorem 19, it then follows that P(E2 | E1) ≥ 1 − δ/2 if J2 is chosen as in (31). With the
choices of J1 and J2 above and the formula (79), we have that P(E2) ≥ 1 − δ, which is what we wanted to show.

B.5. Proof of Lemma 12

It follows directly from Definitions 1 and 2 that

G ̸=n
[2] (in+1 · · · iN i1 · · · in−1, rn−1rn) =

∑
{rj}j ̸=n−1,n

N−1∏
j=1

G
(w(j))
[2] (iw(j), rw(j)rw(j)−1), (85)

and therefore the columns of G ̸=n
[2] can be written as

G ̸=n
[2] (:, rn−1rn) =

∑
{rj}j ̸=n−1,n

N−1⊗
j=1

G
(w(j))
[2] (:, rw(j)rw(j)−1). (86)
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Let q
def= ⌈log2(N − 1)⌉. Using the definition of the recursive sketch in Section 3.2 and the factorization in (17), we have

ΨG ̸=n
[2] (:, rn−1rn) = T (q)T (q−1) · · ·T (1)C

∑
{rj}j ̸=n−1,n

(( N−1⊗
j=1

G
(w(j))
[2] (:, rw(j)rw(j)−1)

)
⊗ e

⊗(2q−(N−1))
1

)
. (87)

The notation in the equation above is quite cumbersome. In particular, the ordering of the matrices G(j)
[2] in the Kronecker

product is somewhat awkward. To alleviate the issue somewhat, we define H(j) for j ∈ [2q] as we did in Section 4.2.1:

• Let H(1) ∈ RIn−1×Rn−2 be a matrix with columns H(1)(:, k) def= G
(n−1)
[2] (:, rn−1k) for k ∈ [Rn−2].

• Let H(j) def= G
(w(j))
[2] ∈ RIw(j)×Rw(j)Rw(j)−1 for 2 ≤ j ≤ N − 2.

• Let H(N−1) ∈ RIn+1×Rn+1 be a matrix with columns H(N−1)(:, k) def= G
(n+1)
[2] (:, krn) for k ∈ [Rn+1].

• Let H(j) def= e1 ∈ Rmaxj ̸=n Ij be a column vector for N ≤ j ≤ 2q .

Moreover, we also define the numbers K
(0)
j for j ∈ [2q + 1] as in Section 4.2.1:

K
(0)
j

def=
{

Rw(j) if 2 ≤ j ≤ N − 1,

1 otherwise.
(88)

With this new notation, we can write (87) as

ΨG ̸=n
[2] (:, rn−1rn) = T (q)T (q−1) · · ·T (1)C

∑
{kj}2q+1

j=1

2q⊗
j=1

H(j)(:, kjkj+1), (89)

where each summation index kj goes over values kj ∈ [K(0)
j ]. Using Lemma 16, Equation (89) can be written as

ΨG ̸=n
[2] (:, rn−1rn) = T (q)T (q−1) · · ·T (1)

∑
{kj}2q+1

j=1

2q⊗
j=1

CjH
(j)(:, kjkj+1)

= T (q)T (q−1) · · ·T (1)
∑

{kj}2q+1
j=1

2q⊗
j=1

Y
(0)

j (:, kjkj+1),

(90)

where Y
(0)

j was defined in (33). Recalling that T (1) def=
⊗2q−1

j=1 T
(1)
j , we may further rewrite (90) as

ΨG ̸=n
[2] (:, rn−1rn) = T (q)T (q−1) · · ·T (2)

( 2q−1⊗
j=1

T
(1)
j

) ∑
{kj}2q+1

j=1

2q−1⊗
j=1

(Y (0)
2j−1(:, k2j−1k2j) ⊗ Y

(0)
2j (:, k2jk2j+1))

= T (q)T (q−1) · · ·T (2)
∑

{k2j−1}2q−1+1
j=1

2q−1⊗
j=1

∑
k2j

T
(1)
j (Y (0)

2j−1(:, k2j−1k2j) ⊗ Y
(0)

2j (:, k2jk2j+1))

= T (q)T (q−1) · · ·T (2)
∑

{k2j−1}2q−1+1
j=1

2q−1⊗
j=1

Y
(1)

j (:, k2j−1k2j+1),

(91)

where the second equality follows from Lemma 16, and each Y
(1)

j is defined as in (35). Defining K
(1)
j

def= K
(0)
2j−1 for

j ∈ [2q−1 + 1], we can further rewrite the equation above as

ΨG ̸=n
[2] (:, rn−1rn) = T (q)T (q−1) · · ·T (2)

∑
{kj}2q−1+1

j=1

2q−1⊗
j=1

Y
(1)

j (:, kjkj+1), (92)
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where each summation index kj now goes over the values kj ∈ [K(1)
j ]. In general, for m ∈ [q], we have

T (q)T (q−1) · · ·T (m)
∑

{kj}2q−m+1+1
j=1

2q−m+1⊗
j=1

Y
(m−1)

j (:, kjkj+1)

= T (q)T (q−1) · · ·T (m+1)
∑

{ℓj}2q−m+1
j=1

2q−m⊗
j=1

Y
(m)

j (:, ℓjℓj+1),

(93)

where the summation indices kj and ℓj take on values kj ∈ [K(m−1)
j ] and ℓj ∈ [K(m)

j ], respectively, where K
(m)
j

def= K
(m−1)
2j−1

for j ∈ [2q−m + 1], and where each Y
(m)

j is defined as in (35). Combining (92) and (93), it follows by induction that

ΨG ̸=n
[2] (:, rn−1rn) =

∑
k1∈[K(q)

1 ]

∑
k2∈[K(q)

2 ]

Y
(q)

1 (:, k1k2) = Y
(q)

1 , (94)

where the last equality follows since K
(q)
1 = K

(q)
2 = 1.

B.6. Proof of Lemma 13

Throughout the following computations the summation indices go over i = in+1 · · · iN i1 · · · in−1 ∈ [
∏

j ̸=n Ij ] with

ij ∈ [Ij ] and rj , kj ∈ [Rj ] for each j ∈ [N ]. Recall that Φ def= V1Σ
−1
1 (V1Σ

−1
1 )⊤, where ΨG ̸=n

[2] = U1Σ1V
⊤

1 is a compact
SVD. From (20) we have

ℓ̃i(G ̸=n
[2] ) = e⊤

i G ̸=n
[2] ΦG ̸=n⊤

[2] ei =
(
G ̸=n

[2] ΦG ̸=n⊤
[2]

)
(i, i)

=
∑

rn−1,rn

kn−1,kn

G ̸=n
[2] (i, rn−1rn)Φ(rn−1rn, kn−1kn)G ̸=n

[2] (i, kn−1kn). (95)

From Definitions 1 and 2 it follows that6

G ̸=n
[2] (i, rn−1rn) = G ̸=n

[2] (in+1 · · · iN i1 · · · in−1, rn−1rn) =
∑

{rj}j ̸=n−1,n

∏
j ̸=n

G
(j)
[2] (ij , rjrj−1). (96)

Using (95) and (96), we have

C
def=

∑
i

ℓ̃i(G ̸=n
[2] )

=
∑

i

∑
rn−1,rn

kn−1,kn

( ∑
{rj}j ̸=n−1,n

∏
j ̸=n

G
(j)
[2] (ij , rjrj−1)

)
Φ(rn−1rn, kn−1kn)

( ∑
{kj}j ̸=n−1,n

∏
j ̸=n

G
(j)
[2] (ij , kjkj−1)

)

=
∑

r1,...,rN

k1,...,kN

Φ(rn−1rn, kn−1kn)
∏
j ̸=n

( ∑
ij

G
(j)
[2] (ij , rjrj−1)G(j)

[2] (ij , kjkj−1)
)

=
∑

r1,...,rN

k1,...,kN

Φ(rn−1rn, kn−1kn)
∏
j ̸=n

(
G

(j)⊤
[2] G

(j)
[2]

)
(rjrj−1, kjkj−1),

(97)

which proves the expression in (37).

6The only difference between (85) and (96) is that the terms in the product are arranged in a different order.
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Moreover, using (95) and (96) we have that the marginal probability of drawing (ij)j≤m,j ̸=n is

P((ij)j≤m,j ̸=n) = 1
C

∑
{ij}j>m,j ̸=n

ℓ̃i(G ̸=n
[2] )

= 1
C

∑
{ij}j>m,j ̸=n

∑
rn−1,rn

kn−1,kn

Φ(rn−1rn, kn−1kn)
( ∑

{rj}j ̸=n−1,n

∏
j ̸=n

G
(j)
[2] (ij , rjrj−1)

)( ∑
{kj}j ̸=n−1,n

∏
j ̸=n

G
(j)
[2] (ij , kjkj−1)

)

= 1
C

∑
r1,...,rN

k1,...,kN

Φ(rn−1rn, kn−1kn)
( ∏

j≤m
j ̸=n

G
(j)
[2] (ij , rjrj−1)G(j)

[2] (ij , kjkj−1)
)( ∏

j>m
j ̸=n

(
G

(j)⊤
[2] G

(j)
[2]

)
(rjrj−1, kjkj−1)

)
,

(98)
which proves (38).

C. Detailed Complexity Analysis
C.1. CP-ALS-ES: Proposed Sampling Scheme for CP Decomposition

In this section we derive the computational complexity of the scheme proposed in Section 4.1.

Computing ΨA ̸=n First, we consider the costs of computing ΨA ̸=n as described in Section 4.1.1:

• Computing Y
(0)

j for all j ∈ [2q]: Each CjA
(v(j)) costs at most O(Iv(j)R) to compute, and each Cj(e111×R) costs

O(R) to compute. Since 2q ≤ 2N , the total cost for this step is therefore O(R
∑

j ̸=n Ij).

• Computing Y
(m)

j for all m ∈ [q] and all j ∈ [2q−m]: A single J1 × J2
1 TensorSketch costs O(RJ1 log J1) to apply to

a matrix of the form Y
(m−1)

2j−1 ⊙ Y
(m−1)

2j . Such a TensorSketch is applied a total of
∑q

m=1 2q−m = 2q − 1 = O(N)
times, so the total cost of this whole step is therefore O(NRJ1 log J1).

The cost for computing ΨA ̸=n is therefore

O

(
R

(
NJ1 log J1 +

∑
j ̸=n

Ij

))
. (99)

Drawing J2 Samples Second, we consider the cost of drawing J2 samples in [
∏

j ̸=n Ij ] from the distribution q as
described in Section 4.1.2:

• One-time costs: Computing the SVD of ΨA ̸=n costs O(J1R2). Computing Φ = V1Σ
−1
1 (V1Σ

−1
1 )⊤ costs O(R3).

Moreover, we can compute all products A(j)⊤A(j) for j ̸= n upfront for a cost of O(R2 ∑
j ̸=n Ij). The sum of these

one-time costs is O(R2(J1 + R +
∑

j ̸=n Ij)).

• Cost of sampling J2 indices: Since each A(j)⊤A(j) for j ̸= n has already been computed, the cost of computing
the probability P(im | (ij)j<m,j ̸=n) for a single set (ij)j≤m,j ̸=n via (28) and (29) is O(R2N). The total cost for
computing the whole distribution for im ∈ [Im], for all m ∈ [N ] \ {n}, is therefore O(R2N

∑
j ̸=n Ij). Since the main

cost of sampling an index i = i1 · · · in−1in+1 · · · iN is computing the distribution for each subindex, and we need to
sample a total of J2 samples, it follows that the total cost of drawing J2 samples is O(J2R2N

∑
j ̸=n Ij).

In total, when including both one-time and per-sample costs, we get a cost for drawing J2 samples from q of

O

(
R2

(
J1 + R + J2N

∑
j ̸=n

Ij

))
. (100)
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Sampled Least Squares Problem Finally, we consider the cost of constructing and solving the sampled least squares
problem once the J2 samples in [

∏
j ̸=n Ij ] have been drawn:

• Once the J2 samples in [
∏

j ̸=n Ij ] are drawn, it costs O(J2RN) to form SA̸=n, and O(J2In) to form SX⊤
(n). This

can be done implicitly without forming the matrices S, A ̸=n, and X⊤
(n).

• The cost of computing the solution Ã⊤ = (SA̸=n)†SX⊤
(n) using a standard method (e.g., via QR decomposition) is

O(J2R2 + J2RIn); see Section 5.3.3 in Golub & Van Loan (2013) for details.

In total, the costs of constructing and solving the least squares problem is therefore

O(J2R(N + R + In)). (101)

Total Per-Iteration Cost for CP-ALS-ES Recall that for each iteration of CP-ALS, we need to solve N − 1 least squares
problems. Consequently, adding the costs in (99), (100), (101) and multiplying by N − 1, we get a total cost per iteration of

O

(
RN2J1 log J1 + R2N

(
J1 + R + J2N

∑
j ̸=n

Ij

)
+ J2RNIn

)
. (102)

If the sketch rates J1 and J2 are chosen according to (22) and (23), this per-iteration cost becomes

O

(
R3N3

δ
log

(R2N

δ

)
+ R4N2

δ
+

(
R3N2

∑
j ̸=n

Ij + R2NIn

)
max

(
log

(R

δ

)
,

1
εδ

))
. (103)

C.2. TR-ALS-ES: Proposed Sampling Scheme for Tensor Ring Decomposition

In this section we derive the computational complexity of the scheme proposed in Section 4.2.

Computing ΨG ̸=n
[2] First, we consider the computation of ΨG ̸=n

[2] described in Section 4.2.1:

• Computing Y
(0)

j for all j ∈ [2q]: Recall that computing CjH
(j) costs nnz(H(j)). Consequently, the cost of computing

all Y (0)
j for N ≤ j ≤ 2q is just O(1). The total cost for this step is therefore O(

∑N
j=1 IjRj−1Rj).

• Computing Y
(m)

j for all m ∈ [q] and all j ∈ [2q−m]: Computing T
(m)
j (Y (m−1)

2j−1 (:, k1k2) ⊗Y
(m−1)

2j (:, k2k3)) requires
applying a J1 × J2

1 TensorSketch to the Kronecker product of two vectors, which costs O(J1 log J1). This needs to
be done for each k2 ∈ [K(m−1)

2j ] when computing the sum in (35). This sum, in turn, needs to be computed for all

k1 ∈ [K(m−1)
2j−1 ], k3 ∈ [K(m−1)

2j+1 ] and j ∈ [2q−m]. Doing this for each m ∈ [q] brings the total cost of this step to

O
( q∑

m=1

2q−m∑
j=1

K
(m−1)
2j−1∑
k1=1

K
(m−1)
2j∑
k2=1

K
(m−1)
2j+1∑
k3=1

J1 log J1

)
. (104)

As we will see further down, this expression simplifies considerably if all Ri are assumed to be equal.

Adding up the per-column costs above and multiplying them by the number of columns Rn−1Rn, we get that the cost for
computing ΨG ̸=n

[2] is

O

(
Rn−1Rn

( N∑
j=1

IjRj−1Rj +
q∑

m=1

2q−m∑
j=1

K
(m−1)
2j−1∑
k1=1

K
(m−1)
2j∑
k2=1

K
(m−1)
2j+1∑
k3=1

J1 log J1

))
. (105)
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Drawing J2 Samples Second, we consider the cost of drawing J2 samples in [
∏

j ̸=n Ij ] from the distribution q as
described in Section 4.2.2:

• One-time costs: Computing the SVD of ΨG ̸=n
[2] costs O(J1(Rn−1Rn)2). Computing Φ = V1Σ

−1
1 (V1Σ

−1
1 )⊤

costs O((Rn−1Rn)3). Moreover, we can compute all products G
(j)⊤
[2] G

(j)
[2] for j ̸= n upfront for a cost of

O(
∑

j ̸=n(Rj−1Rj)2Ij). The sum of these one-time costs is O(J1(Rn−1Rn)2 + (Rn−1Rn)3 +
∑

j ̸=n(Rj−1Rj)2Ij).

• Cost of sampling J2 indices: The main cost of drawing the samples is computing the sampling distributions. Even
though the number of terms in the sum of (38) is exponential in N , the joint probability distribution can be computed
efficiently. We discuss how to do this in Remark 20. The cost of doing this for one set of indices (ij)j≤m,j ̸=n is given
in (119). Repeating this for all ij ∈ [Ij ], which is required to get the distribution for the jth index, brings the cost to

O
(

IjR2
N

N−1∑
d=1

R2
dR2

d+1

)
. (106)

When this is repeated for all N indices, and a total of J2 times to get all samples, this brings the cost to

O

(
J2

( N∑
j=1

Ij

)
R2

N

N−1∑
d=1

R2
dR2

d+1

)
. (107)

Adding the one-time costs and the costs associated to computing the distributions, we get the following total cost for drawing
J2 samples:

O

(
J1(Rn−1Rn)2 + (Rn−1Rn)3 + J2

( N∑
j=1

Ij

)
R2

N

N−1∑
d=1

R2
dR2

d+1

)
. (108)

Sampled Least Squares Problem Finally, we consider the cost of constructing and solving the sampled least squares
problem once the J2 samples in [

∏
j ̸=n Ij ] have been drawn:

• Once J2 samples in [
∏

j ̸=n Ij ] are drawn, the sketched design matrix SG̸=n
[2] can be computed efficiently without

having to form the full matrix G ̸=n
[2] . We provide further details in Remark 21. With this approach, the cost of forming

SG̸=n
[2] is

O
(

J2Rn

∑
j∈[N ]\{n,n+1}

Rj−1Rj

)
. (109)

Forming SX⊤
[n] by sampling the appropriate rows costs O(J2In).

• The cost of computing the solution G̃⊤ = (SG̸=n
[2] )†SX⊤

[n] using a standard method (e.g., via QR decomposition) is
O(J2(Rn−1Rn)2 + J2Rn−1RnIn); see Section 5.3.3 in Golub & Van Loan (2013) for details.

In total, the cost of constructing and solving the least squares problem is therefore

O

(
J2

(
Rn

∑
j∈[N ]\{n,n+1}

Rj−1Rj + (Rn−1Rn)2 + Rn−1RnIn

))
. (110)

Total Per-Iteration Cost for TR-ALS-ES Recall that for each iteration of TR-ALS, we need to solve N − 1 least squares
problems. Consequently, adding the costs in (105), (108), (110) and multiplying by N − 1, we get the total per-iteration cost.
If we assume that Rj = R and Ij = I for all j ∈ [N ], the expression simplifies considerably and we get a total per-iteration
cost of

O(N2R5J1 log J1 + N3IR6J2). (111)

If the sketch rates J1 and J2 are chosen according to (30) and (31), this per-iteration cost becomes

O

(
N3R9

δ
log

(NR4

δ

)
+ N3IR8 · max

(
log

(R2

δ

)
,

1
εδ

))
. (112)
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Remark 20. At first sight, the joint probability computation in (38) looks expensive since the number of terms in the sum is
exponential in N . However, since not all summation indices rj and kj appear in every term, the summation can be done
more efficiently. In fact, the computation (38) can be viewed as the evaluation of a tensor ring, which can be done efficiently
by contracting core tensors pairwise. To see this, define core tensors C(j) for j ∈ [N ] as follows:

• For j ≤ m and j ̸= n, let C(j) ∈ RR2
j−1×Ij×R2

j be defined elementwise via

C(j)(rj−1kj−1, ij , rjkj) def= G
(j)
[2] (ij , rjrj−1)G(j)

[2] (ij , kjkj−1). (113)

• For m < j ≤ N and j ̸= n, let C(j) ∈ RR2
j−1×1×R2

j be defined elementwise via

C(j)(rj−1kj−1, 1, rjkj) def=
(
G

(j)⊤
[2] G

(j)
[2]

)
(rjrj−1, kjkj−1). (114)

• For j = n, let C(j) = C(n) ∈ RR2
n−1×1×R2

n be defined elementwise via

C(n)(rn−1kn−1, 1, rnkn) def= 1
C
Φ(rn−1rn, kn−1kn). (115)

We can now rewrite the expression in (38) as

P((ij)j≤m,j ̸=n) = TR(C(1), . . . ,C(N))ξ1,...,ξN
, (116)

where

ξj
def=

{
ij if j ≤ m, j ̸= n,

1 otherwise.
(117)

As discussed in Zhao et al. (2016), the value of an entry in a tensor ring can be computed via a sequence of matrix-matrix
products follows by taking the matrix trace:

TR(C(1), . . . ,C(N))ξ1,...,ξN
= trace

(
C(1)(:, ξ1, :) · C(2)(:, ξ2, :) · · ·C(N)(:, ξN , :)

)
, (118)

where each C(j)(:, ξj , :) is treated as a R2
j−1 × R2

j matrix. If the matrix product in (118) is done left to right, evaluating the
right hand side costs

O
(

R2
N

N−1∑
j=1

R2
j R2

j+1

)
. (119)

Remark 21. As described by Malik & Becker (2021), it is possible to construct the sketched design matrix SG̸=n
[2] efficiently

without first forming the full matrix G ̸=n
[2] . To see how, note that each row G ̸=n

[2] (i, :) is the vectorization of the tensor slice

G ̸=n(:, i, :) due to Definition 1. From Definition 2, the tensor slice G̸=n(:, i, :) is given by

G ̸=n(:, in+1 · · · iN i1 · · · in−1, :) = G(n+1)(:, in+1, :) · · ·G(N)(:, iN , :) · G(1)(:, i1, :) · · ·G(n−1)(:, in−1, :). (120)

Suppose v ∈ [
∏

j ̸=n Ij ]J2 contains the J2 sampled indices corresponding to the sketch S. Let G̃
̸=n ∈ RRn×J2×Rn−1 be a

tensor which we define as follows: For each j ∈ [J2], let i = in+1 · · · iN i1 · · · in−1
def= v(j) and define

G̃
̸=n(:, j, :) def= 1√

J2q(i)
G(n+1)(:, in+1, :) · · ·G(N)(:, iN , :) · G(1)(:, i1, :) · · ·G(n−1)(:, in−1, :). (121)

We now have SG̸=n
[2] = G̃ ̸=n

[2] . If the matrix product in (121) is computed from left to right, it costs

O(Rn

∑
j∈[N ]\{n,n+1} Rj−1Rj). Since this needs to be computed for each j ∈ [J2], the total cost for computing SG̸=n

[2]
via this scheme is

O
(

J2Rn

∑
j∈[N ]\{n,n+1}

Rj−1Rj

)
. (122)

We refer the reader to Malik & Becker (2021) for further details.
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C.3. Complexity Analysis of Competing Methods

In this section we provide a few notes on how we computed the computational complexity of the other methods we compare
with in Tables 1 and 2.

C.3.1. CP-ALS

The standard way to implement CP-ALS is given in Figure 3.3 in Kolda & Bader (2009). The leading order cost per least
squares solve for that algorithm is

O(NIR2 + R3 + NIN−1R + IN R). (123)

Since N such least squares problems need to be solved each iteration, the per-iteration cost is

O(N2IR2 + NR3 + N2IN−1R + NIN R). (124)

When N is large, this becomes O(N(N + I)IN−1R) which is what we report in Table 1.

C.3.2. SPALS

Cheng et al. (2016) only give the sampling complexity for the case when N = 3 in their paper. For arbitrary N , and
without any assumptions on the rank of the factor matrices or the Khatri–Rao product design matrix, their scheme requires
J ≳ RN log(In/δ)/ε2 samples when solving for the nth factor matrix in order to achieve the additive error guarantees in
Theorem 4.1 of their paper.7

SPALS requires a one-time upfront cost of nnz(X) in order to compute the second term in Equation (5) in Cheng et al.
(2016). In SPALS, the nth factor is updated via

A(n) = X(n)S
⊤S

( 1⊙
j=N
j ̸=n

A(j)
)( N

⊛
j=1
j ̸=n

A(j)⊤A(j)
)−1

, (125)

where S is a sampling matrix and ⊛ denotes elementwise (Hadamard) product. When this is computed in the appropriate
order, and if log factors are ignored and we assume that In = I for all n ∈ [N ], then the cost of computing A(n) is

Õ(NIR2 + (N + I)RN+1/ε2). (126)

Notice that the cost of computing the sampling distribution is dominated by the cost above. Since N factor matrices need to
be updated per iteration, the total per-iteration cost is

Õ(N2IR2 + N(N + I)RN+1/ε2). (127)

When N is large, this becomes Õ(N(N + I)RN+1/ε2), which is what we report in Table 1.

C.3.3. CP-ARLS-LEV

From Theorem 8 in Larsen & Kolda (2020), the sampling complexity for CP-ARLS-LEV required to achieve relative error
guarantees when solving for the nth factor matrix is J ≳ RN−1 max(log(R/δ), 1/(δε)). Solving the sampled least squares
problem, which has a design matrix of size J × R and In right hand sides via e.g. QR decomposition (see Section 5.3.3 in
Golub & Van Loan (2013)) will therefore cost O((R + In)RN max(log(R/δ), 1/(δε))). Each iteration requires solving N
such least squares problems. If we assume that In = I for all n ∈ [N ] and ignore log factors, the per-iteration cost becomes

Õ
(
N(R + I)RN /(δε)

)
, (128)

which is what we report in Table 1.

Consider the least squares problem in (6) with the design matrix A ̸=n defined in as in (7). When the leverage score sampling
distribution is estimated as in CP-ARLS-LEV, the exponential dependence on N in the sampling complexity cannot be
improved. The following example provides a concrete example when the exponential dependence is required.

7If the Khatri–Rao product design matrix is full rank, which happens if all factor matrices are full rank, then J ≳ RN−1 log(In/δ)/ε2

samples will suffice.
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Example 22. Without loss of generality, consider the case n = N in which case the least squares design matrix in (7) is

A ̸=N = A(N−1) ⊙ · · · ⊙ A(1). (129)

Suppose all A(j) for j ∈ [J − 1] are of size R × R and defined as

A(j) def=
[

1 0
0 Ω(j)

]
(130)

where each Ω(j) ∈ R(R−1)×(R−1) has i.i.d. standard Gaussian entries. We assume the matrices Ω(j) are all full-rank, which
is true almost surely. The first column and row of A ̸=N are e1 and e⊤

1 , respectively. For r ≥ 2 we have

A ̸=N (:, r) =
[

0
Ω(N−1)(:, r)

]
⊗ · · · ⊗

[
0

Ω(1)(:, r)

]
. (131)

Since all the matrices Ω(j) are full-rank it follows that their Kronecker product is full-rank (this follows from Theorem 4.2.15
in Horn & Johnson (1994)). Since the columns A ̸=N (:, r) for r ≥ 2 are equal to columns of Ω(N−1) ⊗ · · · ⊗ Ω(1) with
some added zeros, it follows that they are linearly independent, and therefore the submatrix Γ

def= (A ̸=N (i, j))i≥2,j≥2 is
full-rank. We may write

A ̸=N =
[

1 0
0 Γ

]
∈ RRN−1×R. (132)

If a sampling matrix S does not sample the first row of A ̸=N , then SA̸=N will be rank-deficient and relative error guarantees
therefore unachievable. Since all A(j) are square and full-rank, the sampling procedure used in CP-ARLS-LEV will sample
rows of A ̸=N uniformly. In order to sample the first row of A ̸=N with probability at least 0.5 with uniform sampling, we
clearly need to sample at least half of all rows of A ̸=N , i.e., we need J ≥ RN−1/2.

C.3.4. METHODS FOR TENSOR RING DECOMPOSITION

The complexities we report in Table 2 for other methods where taken directly from Table 1 in Malik & Becker (2021).

D. Additional Experiment Details
D.1. Details on Algorithm Implementations

Our implementation of CP-ARLS-LEV is based on Algorithm 3 in Larsen & Kolda (2020). We do not use any hybrid-
deterministic sampling, but we do combine repeated rows. Some key functionality required for our CP-ALS-ES is written in
C and incorporated into Matlab via the MEX interface. Our own TR-ALS-ES is implemented by appropriately modifying
the Matlab code for TR-ALS-Sampled by Malik & Becker (2021).

D.2. Datasets

The photo used for the sampling distribution comparison was taken by Sebastian Müller on Unsplash and is available at
https://unsplash.com/photos/l54ZALpH2_I. We converted this figure to gray scale by averaging the three
color channels. We also cropped the image slightly to make the width and height a power of 2. The tensorization is done
following the ideas for visual data tensorization discussed in Yuan et al. (2019b). Please see our code for precise details.

The COIL-100 dataset was created by Nene et al. (1996) and is available for download at https://www.cs.columbia.
edu/CAVE/software/softlib/coil-100.php.

D.3. Sampling Distribution Plots and Computational Time

We have included figures below that compare the sampling distributions used by our methods with those used by the
previous state-of-the-art methods in the least squares problem considered in the first experiment in Section 5. For a rank-10
CP decomposition of the tabby cat tensor, Figure 2 shows the exact leverage score distribution (p in Definition 7), the
sampling distribution used by CP-ARLS-LEV, and a realization (for J1 = 1000) of the distribution our CP-ALS-ES
uses. Figure 3 shows the same things as Figure 2, but for a rank-20 CP decomposition. For a rank-(3, . . . , 3) tensor ring
decomposition of the tabby cat tensor, Figure 4 shows the exact leverage score distribution, the sampling distribution used

https://unsplash.com/photos/l54ZALpH2_I
https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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by TR-ALS-Sampled, and a realization (for J1 = 1000) of the distribution our TR-ALS-ES uses. Figure 5 shows the same
things as Figure 4, but for a rank-(5, . . . , 5) tensor ring decomposition.

Notice that the sampling distribution that our methods use follow the exact leverage score sampling distribution closely. The
distributions used by CP-ARLS-LEV and TR-ALS-Sampled are less accurate. In particular, when R > I = 16 for the CP
decomposition (Figure 3) or when Rn−1Rn > I = 16 for the tensor ring decomposition (Figure 5), CP-ARLS-LEV and
TR-ALS-Sampled sample from a uniform distribution. This is not an anomaly, but rather a direct consequence from how
those methods estimate the leverage scores. Our proposed methods, by contrast, handle those cases well.
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Figure 2. Comparison of the exact leverage score distribution, the sampling distribution used by CP-ARLS-LEV, and a realization (for
J1 = 1000) of the distribution used by our CP-ALS-ES. The least squares problem corresponds to solving for the 6th factor matrix in a
rank-10 CP decomposition of the 6-way tabby cat tensor.
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Figure 3. Same as Figure 2, but for a rank-20 decomposition.

Tables 6 and 7 report the time it took to compute the distributions used in Tables 3 and 4, respectively. Note that the different
methods do not compute the full distributions the way we do in Tables 3–4 and Figures 2–5, so these numbers are not
representative of actual decomposition time and are only added here for completeness.

D.4. Feature Extraction Experiments

We provide some further details on the feature extraction experiments in Section 5.2 in this section. For a rank-25 CP
decomposition, the 4th factor matrix is of size 7200 × 25. We directly use this factor matrix as the feature matrix we feed to
the k-NN method in Matlab. For the rank-(5, . . . , 5) tensor ring decomposition, the 4th core tensor is of size 5 × 7200 × 5.
We turn this into a 7200 × 25 matrix via a classical mode-2 unfolding which we then use as the feature matrix in the k-NN
algorithm.
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Figure 4. Comparison of the exact leverage score distribution, the sampling distribution used by TR-ALS-Sampled, and a realization (for
J1 = 1000) of the distribution used by our TR-ALS-ES. The least squares problem corresponds to solving for the 6th core tensor in a
rank-(3, . . . , 3) tensor ring decomposition of the 6-way tabby cat tensor.
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Figure 5. Same as Figure 4, but for a rank-(5, . . . , 5) decomposition.

Table 6. Time in seconds it took to compute the distributions used in Table 3.

Method R = 10 R = 20
CP-ARLS-LEV 0.01 0.01
CP-ALS-ES (J1 = 1e+4) 0.06 0.12
CP-ALS-ES (J1 = 1e+3) 0.04 0.07
CP-ALS-ES (J1 = 1e+2) 0.03 0.07

Table 7. Time in seconds it took to compute the distributions used in Table 4.

Method R = 3 R = 5
TR-ALS-Sampled 0.01 0.01
TR-ALS-ES (J1 = 1e+4) 0.07 0.21
TR-ALS-ES (J1 = 1e+3) 0.03 0.10
TR-ALS-ES (J1 = 1e+2) 0.03 0.10
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In our feature extraction experiment we assume that both the labeled and unlabeled images are available when the tensor
decomposition is computed. This is a limitation since we might want to classify new unlabeled images that arrive after the
decomposition has been computed without having to recompute the decomposition. We now propose a potential approach to
circumventing this limitation. Adding a new image corresponds to adding new rows to X(4) and X[4]. The factor matrix
A(4) for the CP decomposition of this augmented tensor will have an additional row, while the number of rows will remain
the same in the other factor matrices. Similarly, the core tensor G(4) for the tensor ring decomposition will have an additional
lateral slice, while the number of lateral slices will remain the same for the other cores. For the CP decomposition, a feature
vector for the new image can therefore be computed via

a∗ = arg min
a

∥A ̸=4a⊤ − x⊤∥2, (133)

where a∗ ∈ R1×R is the new row in A(4) and x ∈ R1×49152 is the new row in X(4). For the tensor train decomposition, a
feature vector for the new image can similarly be computed via

g∗ = arg min
g

∥G ̸=4
[2] g

⊤ − x̂⊤∥2, (134)

where g∗ ∈ R1×R3R4 is a reshaped version of the new lateral slice in G(4) and x̂ ∈ R1×49152 is the new row in X[4]. The
sampling techniques in Section 4 can be used to compute approximate solutions to (133) and (134) efficiently. The feature
vectors a∗ and g∗ can now be used to classify the new image.

D.5. Demonstration of Improved Complexity for the Tensor Ring Decomposition

We construct a synthetic 10-way tensor that demonstrates the improved sampling and computational complexity of our
proposed TR-ALS-ES over TR-ALS-Sampled. It is constructed via (8) from core tensors G(n) ∈ R3×6×3 for n ∈ [10] with
G(n)(1, 1, 1) = 3 and all other entries zero. Additionally, i.i.d. Gaussian noise with standard deviation 0.01 is added to
all entries of the tensor. Both methods are run for 20 iterations with target ranks (3, 3, . . . , 3) and are initialized using a
variant of the randomized range finding approach proposed by Larsen & Kolda (2020), Appendix F, adapted to the tensor
ring decomposition. TR-ALS-Sampled fails even when as many as half (i.e., J = 69/2 ≈ 5.0e+6) of all rows are sampled,
taking 966 seconds. By contrast, our TR-ALS-ES only requires a recursive sketch size of J1 = 1e+4 and J2 = 1e+3
samples to get an accurate solution, taking 41 seconds. Our method improves the sampling complexity and compute time by
3 and 1 orders of magnitude, respectively.

D.6. Preliminary Results From Experiments on the Tensor Train Decomposition

In this section we provide some preliminary results from experiments on the tensor train (TT) decomposition. We do these
experiments by running the different tensor ring decomposition algorithms with R0 = RN = 1 which makes the resulting
decomposition a TT. We refer to the methods by the same names as the tensor ring decomposition methods, but with “TR”
replaced by “TT.”

Table 8. KL-divergence (lower is better) of the approximated sampling distribution from the exact one for a TT-ALS least squares problem
with target TT-ranks Rn = R for 1 ≤ n ≤ 5. The TT-ALS least squares problem is identical to the TR-ALS problem in (11) but with the
restriction R0 = RN = 1.

Method R = 3 R = 5
TT-ALS-Sampled 0.4843 0.2469
TT-ALS-ES (J1 = 1e+4) 0.0004 0.0007
TT-ALS-ES (J1 = 1e+3) 0.0087 0.0065
TT-ALS-ES (J1 = 1e+2) 0.0425 0.0845

First, we repeat the experiments in Section 5.1 for the TT decomposition. All settings are the same as for the tensor ring
decomposition except that R0 = R6 = 1. The results are shown in Table 8. The discrepancy between the approximate
leverage score sampling distribution that TT-ALS-Sampled samples from and the exact one is greater than it is for the tensor
ring decomposition (compare with Table 4). The discrepancy of TT-ALS-ES is similar to that of TR-ALS-ES for J1 = 1e+4
and J1 = 1e+3 and smaller for J1 = 1e+2. Since we are solving for the 6th core tensor out of 6, the theoretical bound on
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Table 9. Run time, decomposition error and classification accuracy when using the TT decomposition for feature extraction.

Method Time (s) Error Accuracy (%)

TT-ALS 9440.1 0.44 95.2
TT-ALS-Sampled 12.3 0.44 94.1
TT-ALS-ES (our) 31.4 0.44 94.2

J1 in (30) becomes J1 ≳ N(R5R6)2/δ = NR2/δ since R6 = 1. For the tensor ring decomposition with all Rn = R, the
same bound is J1 ≳ NR4/δ. A smaller discrepancy is therefore expected for TT-ALS-ES than for TR-ALS-ES.

Next, we repeat the feature extraction experiment in Section 5.2 for the TT decomposition. In addition to the restriction
R0 = R1 = 1 we also increase the number of samples from 1000 to 3000 for both TT-ALS-Sampled and TT-ALS-ES since
using fewer than 3000 samples yields poor results for both methods. We also add a small Tikhonov regularization term (with
regularization constant 10−2) in all least squares solves for both randomized methods in order to avoid numerical issues that
otherwise appear for both. The TT-ranks are Rn = 5 for 1 ≤ n ≤ 3. The results are reported in Table 9. The run time for
TT-ALS is slightly faster than that of TR-ALS which is expected since the TT has fewer parameters than the tensor ring
(compare with Table 5). The two randomized algorithms are a bit slower than they are for the tensor ring decomposition due
to the larger number of samples being drawn. The decomposition error is higher and the classification accuracy lower than
they are for the tensor ring decomposition. This is also expected since the TT decomposition has fewer parameters.


