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Abstract
In the last years, decision-focused learning, also
known as predict-and-optimize, has received in-
creasing attention. In this setting, the predictions
of a machine learning model are used as estimated
cost coefficients in the objective function of a
discrete combinatorial optimization problem for
decision making. Decision-focused learning pro-
poses to train the ML models, often neural net-
work models, by directly optimizing the quality
of decisions made by the optimization solvers.
Based on a recent work that proposed a noise
contrastive estimation loss over a subset of the
solution space, we observe that decision-focused
learning can more generally be seen as a learning-
to-rank problem, where the goal is to learn an
objective function that ranks the feasible points
correctly. This observation is independent of the
optimization method used and of the form of the
objective function. We develop pointwise, pair-
wise and listwise ranking loss functions, which
can be differentiated in closed form given a sub-
set of solutions. We empirically investigate the
quality of our generic methods compared to ex-
isting decision-focused learning approaches with
competitive results. Furthermore, controlling the
subset of solutions allows controlling the runtime
considerably, with limited effect on regret.

1. Introduction
Many real-world decision making problems rely on the
combination of machine learning (ML) and combinatorial
optimization (CO). In those applications, CO problems are
solved to arrive at a decision by maximizing or minimizing
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an objective function. However, often some parameters of
the optimization problem, such as costs, prices and prof-
its, are not known but can be estimated from other feature
attributes based on historical data.

A two-stage predict-then-optimize approach is widely used
by practitioners in both the industry and the public sector,
where first an ML model is trained to make point estimates
of the uncertain parameters and then the optimization prob-
lem is solved using the predictions. However, this treats
the parameter errors as independent and does not take the
interplay of the parameter errors and their effect on the
combinatorial optimisation problem into account.

Recently decision-focused learning (Wilder et al., 2019;
Pogancic et al., 2020) (also known as predict-and-
optimize (Elmachtoub & Grigas, 2021; Mandi et al., 2020))
has received increasing attention. In this setting, during
training, the ML model is trained with a loss function that
first solves the downstream CO problem to observe the joint
error. On the technical level, the challenge of integrating
combinatorial optimization into the training loop of ML
is the non-differentiability of combinatorial problems. To
address this, Mulamba et al. (2021) recently proposed an ap-
proach motivated by noise-contrastive estimation (Gutmann
& Hyvärinen, 2010), where they introduce a new family of
surrogate loss functions considering non-optimal feasible
solutions as negative examples. In their work, they propose
a surrogate loss function, which maximizes the divergence
between the objective values of the true optimal and the
negative examples.

We argue that decision-focused learning can be more gen-
erally viewed through the lens of learning to rank (LTR)
approach (Burges et al., 2005). In a LTR problem, for each
query there is a list of items and their feature variables given.
The training objective is to learn a ranking function, which
will rank the (top) items correctly for each query.

In the context of CO problems, a partial ordering of the feasi-
ble solutions is induced by the objective function. Learning
the orders of the feasible solution with respect to the objec-
tive function hence achieves the goal of decision-focused
learning. When compared to the LTR literature, there are
two important differences: 1) part of the structure of the ob-
jective function is already given, only some of its parameters
must be estimated; and 2) the set of ‘items’ are all feasible
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solutions, which are the same for all CO problem instances
(queries), but it is intractable to enumerate all. While back-
propagating, 1) needs not be an issue under the assumption
that just the objective function itself is differentiable, which
is the case for standard continuous functions including lin-
ear functions. With respect to 2), we can subsample the
feasible solutions as is done by Mulamba et al. (2021).

The main contributions of this work are the following: First,
we formulate the decision-focused learning as a ranking
problem. Secondly, we introduce and study several well-
known learning to rank loss functions. In particular, we
formulate pointwise, pairwise and listwise ranking loss func-
tions for decision-focused learning problems. Thirdly, we
show that the pairwise ranking loss is a generalization of the
loss functions proposed by Mulamba et al. (2021). Lastly,
we show that in case of a linear objective function, the
pointwise and pairwise-difference loss functions can be in-
terpreted as trading off the mean square error (MSE) and
regret of predictions.

2. Related Literature
Decision-focused learning. Decision-focused learning in-
volves optimization problems, where the optimization pa-
rameters are defined partially. One of the major develop-
ments in this topic is the differentiable optimization layer
(Amos & Kolter, 2017), which analytically computes the
gradients by differentiating the KKT optimality conditions
of a quadratic program. The gradient calculation of Amos
& Kolter (2017) does not translate to linear programming
(LP) problems due to singularities of the objective function
in this case. Wilder et al. (2019) address this by introducing
a small quadratic regularizer in the objective function while
Mandi & Guns (2020) introduce a log-barrier regularization
term and compute the gradients from the homogeneous self
dual embedding of the LP. Ferber et al. (2020) studies mixed
integer LPs and reduce it to LP by adding cutting plane to
the root LP node, applying the framework of Wilder et al.
(2019) afterwards. All these methods are specific to the
structure of the CO problem used.

Other approaches are independent of the CO problem and
solver used. The smart predict-and-optimize approach of
Elmachtoub & Grigas (2021) studies optimization problems
with linear objectives and where the cost vector has to be
predicted. They introduce a convex surrogate upper bound
of the loss and propose an easy to use subgradient. Pogancic
et al. (2020) also studies problems with linear objectives.
They compute the gradient by perturbing the predicted cost
vector. Niepert et al. (2021) extend this work by adding
noise-perturbations for perturbation-based implicit differen-
tiation. For an overview of decision-focused learning, we
refer the readers to Kotary et al. (2021).

All these approaches involve solving the optimization prob-
lem for every instance during training, which comes at a
very high computational cost. To address this problem, Mu-
lamba et al. (2021) propose contrastive loss functions with
respect to a pool of feasible solutions of the optimization
problem. It cleanly separates the solving (adding solutions
to the pool), from the loss function. This allows the loss
function to be differentiated directly. We build on this idea
but through the lens of learning to rank.

Learning to rank. Learning to rank problems have been
studied thoroughly over the years, especially within the
context of information retrieval. Readers can refer to Liu
(2011) for a detailed analysis. Most of the LTR approaches
assign real-valued scores to the items, then define surrogate
loss functions on the scores. In pointwise LTR models
(Li et al., 2007), the labels are the rank (or true score, if
known) of the items. These models fail to consider any inter
dependencies across the item rankings. Pairwise ranking
approaches (Burges et al., 2005) aim to learn the relative
ordering of pairs of items. Finally, listwise approaches (Cao
et al., 2007) define loss functions with respect to the scores
of the whole ranked lists. The LTR framework has been
applied to various contexts such as recommender systems
(Karatzoglou et al., 2013) and software debugging (Xuan &
Monperrus, 2014), among others.

Demirović et al. (2019) have used LTR in decision-focused
learning framework, but by considering the parameters of
a linear objective function as the items to rank, e.g. the
value of items of a knapsack problem, instead of the feasi-
ble solutions as we do. Kotary et al. (2021) propose a fair
LTR methodology, which impose fairness constraints using
constraints in the combinatorial optimization problem and
they use decision-focused learning to integrate the optimiza-
tion program with an ML model. In contrast, we use LTR
models and losses for decision-focused learning.

3. Problem Statement and Motivation
In this section, we introduce the decision-focused learning
setup. We consider a discrete combinatorial optimization
problem

v⋆(c) ∈ argmin
v∈V

f(v, c) (1)

where V ⊆ ZK is the set of feasible integer solutions,
typically specified implicitly through constraints, and f :
V × C → R is the real valued objective function, where
C ⊂ RK is the domain of the vector of parameters c. We
denote an optimal solution of (1) by v⋆(c). The value of c
is unknown but we have access to correlated features x and
a historic dataset D = {(xi, ci)}Ni=1. The goal is to predict
the apriori unknown coefficient vector ci in a supervised
machine learning setup. To do so, we train a model noted
by m(ω, xi) to make a prediction of vector ci, where ω are
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the model parameters. Let us denote the predicted value as
ĉi = m(ω, xi).

In a traditional supervised machine learning setup, we train
by minimizing the difference between c and ĉ. For instance,
in a regression problem, we minimize the multi-output mean
square error,

mse(c, ĉ) =

K∑
k=1

(ck − ĉk)
2 =

K∑
k=1

ϵ2k (2)

where ϵk = (ck − ĉk), over a set of N instances {(c, ĉ)}.

In contrast, in decision-focused learning ĉ is an intermediate
result. The final output is v⋆(ĉ), the solution of the discrete
combinatorial optimization problem. The final goal is to
minimize the impact of the solution v⋆(ĉ) in the downstream
optimization problem whenever the real cost vector c is
realized. In order to measure how good ĉ is, we compute
the regret of the combinatorial optimisation. The regret is
defined as the difference between the value of the optimal
objective value f(v⋆(c), c) and the value of the objective
function with ground truth c and predicted solution v⋆(ĉ).
Formally, we define regret, without any assumptions on the
structure of f , as

Regret(ĉ, c) = f(v⋆(ĉ), c)− f(v⋆(c), c). (3)

Ideally, we aim to learn parameters ω that determine ĉ =
m(ω, x) such that it minimizes the regret. To do so in
a neural network setup, the gradient of the regret has to
be backpropagated, which requires computing the exact
derivative of the regret (3). This task is problematic as V
is discrete and the regret function is non-continuous and
involves differentiating over the argmin in v⋆(ĉ).

As mentioned in section 2, several recent works have stud-
ied this problem. However, in all those cases, in order to
compute the gradient, the optimization problem (1) must be
solved repeatedly for each instance during training. Hence,
scalability is a major challenge in these approaches.

3.1. Contrastive Surrogate Loss

To improve the scalability of decision-focused learning Mu-
lamba et al. (2021) proposed an alternative class of loss
functions. They first define the following probability distri-
bution of v ∈ V being the optimal one.

p(v|c) =

{
exp(−f(v,c))∑

v′∈V exp(−f(v′,c)) if v ∈ V

0, if v /∈ V
(4)

It is easy to verify that, if v is one minimizer of Eq. 1,
then it will maximize Eq. 4. To define the loss functions
they consider to have access to S, a subset of V and treat

(S \ {v⋆(c)}) as negative examples. With this setup, they
define the following noise contrastive estimation (NCE) loss

LNCE(ĉ, c) =
1

|S|
∑
vs∈S

(
f
(
v⋆(c), ĉ

)
− f

(
vs, ĉ

))
. (5)

The novelty of this approach is that Eq. (5) is differentiable
and that the differentiation does not involve solving the
optimization problem in (1). Further, if the solutions in S
are optimal solutions of arbitrary cost vectors, this approach
is equivalent to training in a region of the convex-hull of V .

4. Rank Based Loss Functions
In this section we develop and motivate a family of surrogate
loss functions for decision-focused learning problems. We
remark that, for a given c, we can create a partial ordering
of all v ∈ V by ordering them with respect to the objective
value. Let us denote by p1, . . . , p|V | the indices of V so
that f(vp1 , c) ≤ f(vp2 , c) ≤ . . . ≤ f(vp|V | , c). The key
idea of our approach is to generate prediction ĉ so that
f(vp1 , ĉ) ≤ f(vp2 , ĉ) ≤ . . . ≤ f(vp|V | , ĉ). Notice that, if
the ranks of v ∈ V with respect to ĉ are identical to that
of c, the regret is zero. Furthermore, it is sufficient that
∀ps : f(vp1 , ĉ) ≤ f(vps , ĉ) for the regret to be zero. In
general, our surrogate task is to learn the ranking of each
v ∈ V with respect to c. This motivates us to use the LTR
framework to develop a new class of surrogate loss functions
for decision-focused learning problems.

Drawing a parallel to the LTR literature, we consider each
x a query, and the feasible solutions v ∈ V as the set of
items to be ordered. Our formulation differs from traditional
LTR framework because in LTR problems each item has
its own set of feature variables, whereas in our formulation
each v does not have feature variables. We hence only have
query-features (x itself) to predict c. In the LTR frame-
work, a ranking function is used to assign scores to each
item. In decision-focused learningsetup, we will consider
the objective function f(v, c) as the scoringh function.

To rank all v ∈ V is an intractable task for most combi-
natorial problems. To overcome this in practice, we will
consider a set of feasible solution S ⊂ V . The proposed
implementation is described in pseudocode form in Algo-
rithm 1. For each c, we compute a loss function L(ĉ, c)
considering the surrogate ranking task. The implementa-
tion details are described later. Next, we will introduce the
family of rank based loss functions.

4.1. Pointwise Ranking

In pointwise ranking loss formulation, the loss function is
defined for each item (feasible solution) independently. In
our pointwise rank loss formulation, we propose to regress
the predicted objective function value on the actual objec-
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Algorithm 1 Gradient-descent implementation of decision-
focused learning problems with Ranking Loss
Input: D≡ {(xi, ci)}ni=1

1: Initialize ω
2: Initialize S = {v⋆(ci)|(xi, ci) ∈ D}

Training
3: for each epochs do
4: for each (xi, ci) do
5: ĉi = m(ω, xi)
6: if random() < psolve then
7: v⋆(ĉi)←call solver to solve Eq. (1),
8: S ← S ∪ {v⋆(ĉi)}
9: end if

10: L+ = L(ĉi, ci;S)
11: end for
12: ω ← ω − α∂L

∂ω # backward pass
13: end for

tive function value. Thus, we propose the pointwise loss
function

LP (ĉ, c;S) =
1

|S|
∑
v∈S

(f(v, ĉ)− f(v, c))
2 (6)

that measures the errors in the evaluation of the predicted
cost function at each point in S.

Intuitive idea of the pointwise loss function. When the
objective function is linear i.e. f(v, c) = c⊺v, the pointwise
loss (6) becomes

Lp(ĉ, c;S) =
1

|S|
∑
v∈S

(c⊺v − ĉ⊺v)
2 (7)

The derivative of this loss is

∂Lp(ĉ, c;S)

∂ĉ
= − 2

|S|
∑
v∈S

(c⊺v − ĉ⊺v) v (8)

When considering a combinatorial problem where v is a bi-
nary vector, we can see from Eq. (8) that coordinates where
v has zeros, will not contribute to the gradient. Moreover,
the first component (c⊺v − ĉ⊺v) is the difference between
the actual and the predicted objective value on v. The gradi-
ent contribution of v is weighed by this difference.

Pointwise loss as a regularizer. For the special case of
a linear objective function f(v, c) =

∑K
j=1 cjvj , the point-

wise task loss can be rewritten as:

LP (ĉ, c;S) =

K∑
i=1

(ĉi − ci)
2γi +

∑
i̸=j

(ĉi − ci)(ĉj − cj)γij

=

K∑
i=1

ϵ2i γi +
∑
i ̸=j

ϵiϵjγij (9)

where γi =
1
|S|

∑
v∈S v2i and γij = 1

|S|
∑

v∈S vivj and ϵi
defined as in (2). In this case, it is a weighted version of
the mse function plus a term that measures the pairwise
relationship of errors of the coordinates.

Moreover, when V ⊆ {0, 1}K , the weight γi is the fre-
quency of how many times coordinate vi takes value 1 (since
v2i = vi). Coefficients γij measure the frequency where vi
and vj take value 1 at the same time. In particular, if S = V

Lp(ĉ, c;V ) =
1

2

(
mse(ĉ, c) +

K∑
i=1

K∑
j=1:j<i

ϵiϵj

)
Hence, the pointwise loss function can be seen as the mse
plus a regularizer which penalizes the crossed-errors be-
tween coordinates of the vector c.

4.2. Pairwise Ranking

Example. To demonstrate the shortcoming of the point-
wise loss and the motivation behind the pairwise loss for-
mulation, we construct a simple example. Let us con-
sider the feasible space is the 2 dimensional 0-1 space,
containing the four feasible points [0, 0], [0, 1], [1, 0], [1, 1].
Now, let c be [2,−5]. The objective values at these four
points are 0,−5, 2 and −3, hence v⋆(c) = [0, 1]. Now
let ĉ1 be [−1, 1] and ĉ2 be [5,−11]. For ĉ1 and ĉ2, the
objective values of these four points are 0, 1,−1, 0 and
0,−11, 5,−6 respectively. The square error of both ĉ1 and
ĉ2 is 45 = (32 + 62). The pointwise loss between c and ĉ1
is 54 = (0+ (−5− 1)2 + (2+ 1)2 + (−3− 0)2) and c and
ĉ2 is 54 = (0 + (−5 + 11)2 + (2− 5)2 + (−3 + 6)2). But
v⋆(ĉ1) = [1, 0] and v⋆(ĉ2) = [0, 1] = v⋆(c). Even though
the regret of ĉ2 is 0, its pointwise loss is the same as ĉ1,
whose regret is positive. With this motivation behind, we
will construct the pairwise ranking loss function.

Let (p, q) be an ordered pair in S with respect to c. We
define OPS

c as the set of all the ordered pairs such that
the first coordinate dominates the second one in the order
induced by c, or equivalently:

(p, q) ∈ OPS
c =⇒ f(vp, c) < f(vq, c) (10)

For an ordered pair (p, q), we expect the predicted ĉ would
also respect the ordering i.e. f(vp, ĉ) < f(vq, ĉ). In other
words, f(vp, ĉ) − f(vq, ĉ) is the quantity we aim to mini-
mize. In the standard pairwise margin ranking loss formula-
tion (Joachims, 2002), the loss is zero, if f(vp, ĉ) is smaller
than f(vq, ĉ) by at least a margin of ν > 0. With this notion
of margin, we introduce the following generic pairwise loss

LOPS

c

(ĉ, c) =

1

|OPS
c |

∑
(p,q)∈O.P.Sc

max (0, ν + f(vp, ĉ)− f(vq, ĉ)) (11)
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Ordered pairs generation. Eq. (11) is built upon
the concept of a pairwise ranking loss (Burges et al.,
2005). Note that, to implement this approach we
have to identify ordered pairs from the negative exam-
ples. Clearly generating all possible pairs comes with
a complexity of O(|S|2). To overcome this implemen-
tation challenge, we consider best-versus-rest scheme,
i.e. OPS

c = {(vp1 , vp2), (vp1 , vp3), . . . , (vp1 , vpS )}, where
vp1 = v⋆(c). With this best-versus-rest pair generation
scheme and γ being 0, Eq. (11) becomes

1

|S|
∑
vq∈S

max (0, (f(v⋆(c), ĉ)− f(vq, ĉ))) (12)

We point out that (12) takes the form of (5), without the relu
operator. This shows that the NCE approach of Mulamba
et al. (2021), although derived differently, can be seen as a
special case of our best-versus-rest pairwise approach.

Example continued. For computing the pairwise loss,
first, we have to generate the ordered pairs. The
ordering of the feasible points with respect to c is
[0, 1], [1, 1], [0, 0], [1, 0]. Following the best-vs-rest scheme,
the pairs are {([0, 1], [1, 1]), ([0, 1], [0, 0]), ([0, 1], [1, 0])}.
For ĉ1 the value of the pairwise loss is 1 + 1 + 2 = 4.
For ĉ2 the value of pairwise loss is 0 + 0 + 0 = 0, which is
reasonable as its regret is 0.

4.3. Regress on Pairwise Difference

Another way to generate a ranking of solutions in S is
to generate predicted cost vectors, that produce the same
difference in objective value. To do so, we propose a loss
function over the difference over pairs of solutions their cost
vectors ĉi and ci. This pairwise difference loss function
can be formulated as:

Lpd(ĉ, c;S) =
1

|S|
∑

(p,q)∈OPS

c

(
(f(vp, ĉ)− f(vq, ĉ))−

(f(vp, c)− f(vq, c))

)2

(13)

For the sake of clarity, we ommitted O.P.Sc from the defini-
tion of Lpd.

It is easy to check that in the case of a linear objective:

Lpd(ĉ, c;S) =

K∑
i=1

ϵ2i γi +
∑
i ̸=j

ϵiϵjγij (14)

where γi = 1
|S|

∑
(p,q)(v

p
i − vqi )

2, which is proportional
to how many times vpi and vqi are different, and γij =
1
|S|

∑
(p,q)(v

p
i − vqi )(v

p
j − vqj ). As in the pointwise loss,

the pairwise difference loss can be seen as a weighted mse
loss function with a regularizer term; this time involving the

difference between solutions rather then individual coeffi-
cients.

Example continued. As before, the set of pairs is
{([0, 1], [1, 1]), ([0, 1], [0, 0]), ([0, 1], [1, 0])}. The differ-
ence between these three sets of pairs for c are 2, 5, 7. The
corresponding differences for ĉ1 and ĉ2 are −1,−1,−2 and
5, 11, 16. So, the corresponding losses for ĉ1 and ĉ2 are
(2 + 1)2 + (5 + 1)2 + (7 + 2)2 = 94 and (2− 5)2 + (5−
11)2 + (7− 16)2 = 94.

4.4. Listwise Ranking

Instead of considering instance pairs, the listnet loss (Cao
et al., 2007) considers the entire ordered list. It is obvious
that, if the list contains only two instances, then there are
no differences between the two approaches. The listnet loss
computes the probabilities of each item being the top one
and then defines a cross entropy loss of these probabilities.
Instead of using Eq. (4) directly, we further introduce a
temperature parameter τ (Niepert et al., 2021) to define

pτ (v|c) =
exp

(
− f(v,c)

τ

)
∑

v′∈V exp
(

−f(v′,c)
τ

) ∀v ∈ V (15)

In this formulation, τ controls the smoothness of the dis-
tribution. As τ → 0, pτ (v|c) takes the form of a categori-
cal distribution with only v⋆(c) having positive probability
mass. As τ increases pτ (v|c) converges to a uniform distri-
bution in V .

In order to avoid the computation of the partition function
(denominator), we will approximate it as in the ranking
functions proposed above, namely to replace V by a subset
S ⊆ V .

Given a probability distribution, listnet loss is the cross en-
tropy loss between the predicted and the target distribution.
Following this idea, we define listwise loss as the cross
entropy loss between pτ (v|c) and pτ (v|ĉ) for all v ∈ S:

Ll
S(ĉ, c) = −

1

|S|
∑
v∈S

pτ (v|c) log pτ (v|ĉ) (16)

We remark that we could also consider the KL divergence
loss instead of cross entropy loss and define listwise loss as

1

|S|
∑
v∈S

pτ (v|c)
(
log pτ (v|c)− log pτ (v|ĉ)

)
Using this loss formulation, we obtained similar results to
Eq.(16) and do not further discuss it.

4.5. Implementation

So far we define pointwise (6) pairwise (11), pairwise-
difference (13) and listwise (16) ranking losses. As men-
tioned, the fundamentals of the LTR loss functions is to
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(a) Shortest path (Deg= 2) (b) Shortest path (Deg= 4) (c) Shortest path (Deg= 6) (d) Shortest path (Deg= 8)

(e) Energy-1 (f) Energy-2 (g) Matching-1 (h) Matching-2

Figure 1. Learning Curve. We show how the average regrets on validation dataset progress as the models learn.

learn the partial ordering of v ∈ S. To construct and expand
S, we use the strategy of Mulamba et al. (2021). The generic
structure of the proposed algorithm is shown in Algorithm 1,
which is a modified version of standard gradient descent
algorithms for decision-focused learning problems. They
proposed to initialise S with all true optimal solutions. In
Algorithm 1 S is initialized by caching all the optimal solu-
tions of the training instances in line 2. To expand S, they
defined a hyperparameter psolve, which is the probability
of calling a optimization oracle to solve an instance during
training. If an instance is solved, its solution is added to S.
This is demonstrated in line 8 in Algorithm 1. Obviously
with psolve = 100%, Eq. (1) is solved for every ĉi during
training.

The distinctive feature of this proposed approach is that the
loss function L(ĉi, ci) does not involve any argmin differ-
entiation. So we can use standard automatic differentiation
libraries and it can be run on GPU. Yet, it still considers the
task loss of the downstream optimization problem. The part
that can not be run on GPU is calling an optimization oracle
to expand S.

5. Experiments
We analyze our approaches on a series of experiments. We
consider three discrete combinatorial optimization problems.
First, we briefly describe the experimental setups.

Shortest Path Problems. We adopt this synthetic experi-
ment from Elmachtoub & Grigas (2021). It is a shortest path
problem in a 5×5 grid, with the objective of going from the
southwest corner of the grid to the northeast corner where
the edges can go either north or east. The feature vectors

are sampled from a multivariate Gaussian distribution. They
generate the cost vector as per the following model

cij =

(
1
√
p

(
Bxi

)
+ 3

)Deg

ϵji (17)

where cij is the j-th component of cost vector ci and B is
the latent data generation matrix. Deg specifies the extent of
model specification, the higher the value of Deg, the more
it deviates from a linear model and the more errors there
will be. We experiment with degree of 1, 2, 4, 6 and 8. ϵji
is a multiplicative noise that is sampled from U(0.5, 1.5).
For each degree, we have 1000, 250 and 10,000 training,
validation and test instances1. The underlying model is a
neural network without any hidden layer i.e. a regression
model.

Energy-cost Aware Scheduling. Next we consider the
problem of energy-cost aware scheduling, adapted from
CSPLib (Gent & Walsh, 1999), a library of constraint opti-
mization problems. In energy-cost aware scheduling (Simo-
nis et al., 1999), a given number of tasks, to be scheduled on
a certain number of machines without violating the resource
capacities of each machine. The goal of the optimization
problem is to find the scheduling which would minimize
the total energy consumption subject to the energy prices,
which would be realized in the future. The prediction task
is to predict the future energy prices using feature variables
such as calendar attributes; day-ahead estimates of weather
characteristics, forecasted energy-load, wind-energy produc-
tion and prices. We take the energy price data from Ifrim

1The dataset is generated as described in https://github.
com/paulgrigas/SmartPredictThenOptimize

https://github.com/paulgrigas/SmartPredictThenOptimize
https://github.com/paulgrigas/SmartPredictThenOptimize
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Table 1. Comparison of regret on three problem sets. We present average percentage regret of 10 runs.
Pointwise Pairwise Pairwise-diff Listwise NCE MAP SPO Blackbox Twostage

Shortest Path Problem

Deg-1 15.45% 16.37% 16.00% 15.56% 23.63% 19.68% 15.51% 18.62% 15.45%

Deg-2 10.07% 10.74% 11.60% 10.41% 30.84% 14.15% 10.06% 13.26% 10.07%

Deg-4 19.27% 8.06% 17.89% 7.71% 65.10% 9.44% 7.98% 9.39% 10.44%

Deg-6 72.18% 9.27% 32.63% 8.29% 129.42% 9.45% 16.19% 9.69% 15.96%

Deg-8 178.16% 12.75% 61.80% 12.38% 242.30% 13.68% 33.75% 14.14% 28.50%
Energy Scheduling Problem

Energy-1 2.51% 1.65% 1.63% 1.67% 1.69% 1.59% 1.56% 1.54% 1.91%

Energy-2 2.83% 2.08% 2.04% 1.96% 2.23% 2.01% 1.93% 1.93% 2.46%
Bipartite Matching Problem

Matching-1 90.17% 88.80% 88.23% 88.49% 89.39% 89.13% 88.70% 90.09% 90.12%

Matching-2 89.86% 87.24% 85.87% 86.40% 85.31% 84.80% 85.79% 90.31% 89.42%

et al. (2012). We study two instances named Energy-1 and
Energy-2. The first one involves scheduling 3 tasks on 10
machines, whereas the other instance has 3 tasks and 15
machines.

Diverse Bipartite Matching. We adopt this from Ferber
et al. (2020) and Mulamba et al. (2021). The topologies are
taken from the CORA citation network (Sen et al., 2008).
We have 27 disjoint topologies and each of them is consid-
ered as an instance. The prediction task is to predict which
edges are present. Each node has 1433 bag-of-words fea-
tures. The feature of and edge is formed by concatenating
features of the two corresponding nodes. The optimization
task is to find the maximum matching after prediction. In
the optimization task, diversity constraints ensures that there
are some edges between papers of the same field as well
as edges between papers of different fields. We study two
instantiations with different degrees of diversity constraints
(see Appendix for detail).

5.1. Experimental Results

Performance of surrogate loss functions. In this sec-
tion, we compare the quality of the rank based loss func-
tions. As described in section 4, we train the neural network
with respect to these loss functions2. As our objective is
to have lower regret, we consider the percentage regret
( f(v

⋆(ĉ),c)−f(v⋆(c),c)
f(v⋆(c),c) ) as the evaluation metric. One way

to know whether model training decreases the regret is to
monitor the regret on the validation dataset. Figure 1 val-
idates that by minimizing the surrogate losses, the neural
network models learn to lower the regret. In the shortest
path problem, overall, the listwise and pairwise loss func-

2The code is available at https://github.com/
JayMan91/ltr-predopt.

tions perform better than the other two. The difference is
more pronounced in higher degrees, where the linear model
makes larger error. In the scheduling and matching experi-
ments, the pairwise difference loss generalizes the best. The
lowest regret of listwise loss is similar to pairwise difference,
but its learning curve is less stable.

Next we compare the rank based loss functions with the
SPO+ loss (Elmachtoub & Grigas, 2021), Blackbox back-
propagation approach (Pogancic et al., 2020) and the NCE
and MAP approach of Mulamba et al. (2021). We also in-
clude a two-stage baseline approach which is trained purely
on MSE loss. We present average regret on test data of 10 in-
dependent trials in Table 1. We refer the readers to C to view
the distribution of the regrets. For the shortest path problem,
we again see the regret goes up with the degree parameter.
This is expected as the degree parameter controls the magni-
tude of the errors of the linear model. For degree 4, 6 and
8, the listwise loss function produces the lowest regret. For
lower two degrees, the pointwise and pairwise difference
loss function produces low regret, but their regret jumps up
at higher degrees. This is reasonable as their los functions in-
clude the absolute difference between the predicted and true
solutions. Listwise loss comes second among all in Energy-
2 and Matching-1. The pairwise difference loss has lowest
regret in Matching-1 and its regret is competitive with the
best loss function in these two problems. In all cases the
pointwise loss function performs poorly, even worse than
pure MSE (two-stage). The possible explanation is that its
added penalty term is not always aligned with regret as dis-
cussed in section 4.2. Overall, Table 1 and Figure 1 indicate
the performance of the parirwise difference loss is steady
when the underlying predictive model is consistent with the
data generation process, whereas the listwise loss is robust
and reliable across all problem instances.

https://github.com/JayMan91/ltr-predopt
https://github.com/JayMan91/ltr-predopt
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(a) Energy-1 (b) Energy-2

(c) Matching-1 (d) Matching-2

Figure 2. MSE vs Regret trade-off

Table 2. Impact of psolve on per epoch training time and regret in Energy scheduling instances
Pointwise Pairwise Pairwise-diff Listwise

psolve Regret Time (s) Regret Time (s) Regret Time (s) Regret Time (s)

Energy-1 100% 2.12% 110 1.64% 110 1.63% 110 1.72% 100
10% 2.51% 30 1.65% 30 1.61% 30 1.67% 25

Energy-2 100% 2.70% 130 2.05% 140 2.07% 140 1.99% 120
10% 2.83% 40 2.08% 45 2.04% 45 1.96% 40

MSE vs Regret tradeoff. The three problems we consider
happen all to be integer linear programming (ILP) problems.
As ILP problems are scale-invariant, the regret can be min-
imized even if the predictions are multiples of the actual
values. In Figure 2, we show both MSE and regret of the
predictions. In all cases we observe that the MSE loss of the
pointwise loss is very low, comparable to minimizing MSE.
But its regret is even higher than MSE, as seen before. The
pairwise difference loss function has marginally better MSE
than listwise and pairwise losses, showing little added gain
from its more MSE-related formulation.

Combined Regression and Ranking Experiment. The
previous experiment reveals that although the performances
of the ranking loss functions are comparable with the state

of the art in terms of regret, their MSE loss remains high. In
this experiment we will consider a convex combination of
MSE loss and listwise ranking loss, inspired by (Sculley,
2010) but formulated as a multi-task problem instead of
sampling between the two losses:

αLl
S(ĉ, c) + (1− α)mse(ĉ, c) (18)

The motivation behind this loss function is that we can
control α as a tuning parameter. Clearly, α = 0 results
in MSE loss whereas α = 1 results in listwise ranking
loss. Figure 3 displays the impact α on the two scheduling
instances. As hypothesised, we see MSE goes up and regret
goes down as we increase α. This experiment suggests it is
possible to choose a value of α so that we sacrifice regret
(problem-specific) to attain predictions with lower MSE
(close to the true values).
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(a) Energy-1 (b) Matching-1

Figure 3. Change of MSE and Regret with α as a tuning parameter. The green and blue bar present the MSE loss and percentage regret
respectively.

Impact of psolve. The motivation behind ours (and Mu-
lamba et al. (2021)) approach is reducing the number of
times of the optimization problem is solved during training.
In the next experiment, we show how psolve impacts the
model training time. Lower values of psolve would make
the training faster because of two reasons. Firstly, we have
to call the optimization oracle few number of times. Sec-
ondly, the smaller cardinality means ranking loss would be
computed on fewer datapoints.In Table 2 we report percent-
age regret and per epoch runtime of the four ranking loss
functions for psolve = 10% and 100% for the scheduling
instances. We choose this problem because this is most dif-
ficult optimization problem among the three. Table 2 shows
that in all cases, reducing psolve to 10% barely impacts re-
gret for all except pointwise (which already performs worse).
On the other hand, the efficiency gain in terms of runtime is
significant.

6. Conclusion
We extend the approach of Mulamba et al. (2021), which
introduces surrogate loss functions for decision-focused
learning problems by caching a subset of feasible solutions.
Motivated by their work, we frame the decision-focused
learning problem as a learning to rank problem, where we
train models to learn the partial ordering of the pool of feasi-
ble solutions. This generalizes their approach and inherits its
nice properties of separating the solving from the loss com-
putation. We also attempt to draw connections between the
two-stage MSE loss and regret minimizing ranking losses.
This stimulates a further cross fertilisation of the rich and
more mature field of learning to rank with the relatively
recent topic of decision-focused learning.
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A. Problem Specification
A.1. Shortest Path Problem

In this problem, we consider shortest path problem on 5 × 5 a grid. The goal is to go from the southwest corner to the
northeast corner, where we can go towards east or north. We model it as an LP problem.

min
x≥0

c⊤x

Ax = b

Where A is the incidence matrix. The decision variable x is binary vector whose entries would be 1 only if corresponding
edge is selected for traversal. b is 25 dimensional vector whose first entry is 1 and last entry is -1 and rest are 0. The
constraint must be satisfied to go from the southwest corner to the northeast corner. With respect to the (predicted) cost
vector c ∈ R|E|, the objective is to minimize the cost.

A.2. Energy-cost Aware Scheduling

In this problem J is the set of tasks to be scheduled on M number of machines maintaining resource requirement of R
resources. The tasks must be scheduled over T (= 48) set of equal length time periods. Each task j is specified by its duration
dj , earliest start time ej , latest end time lj , power usage pj .ujr is the resource usage of task j for resource r and cmr is the
capacity of machine m for resource r. Let xjmt be a binary variable which is 1 only if task j starts at time t on machine m.
If ct is the (predicted) energy price at timeslot t, the objective is to minimize the following formulation of total energy cost.
Then the problem can be formulated as the following MILP:

min
xjmt

∑
j∈J

∑
m∈M

∑
t∈T

xjmt

( ∑
t≤t′<t+dj

pjct′
)

subject to
∑
m∈M

∑
t∈T

xjmt = 1 ,∀j∈J

xjmt = 0 ∀j∈J∀m∈M∀t<ej

xjmt = 0 ∀j∈J∀m∈M∀t+dj>lj∑
j∈J

∑
t−dj<t′≤t

xjmt′ujr ≤ cmr,∀m∈M∀r∈R∀t∈T

The first constraint ensures each task is scheduled only once. The next constraints ensure the task scheduling abides by
earliest start time and latest end time constraints. The final constraint is to respect the resource requirement of the machines.

A.3. Diverse Bipartite Matching

We adapt this from Ferber et al. (2020). in this problem 100 nodes representing scientific publications are split into two sets
of 50 nodes N1 and N2. A (predicted) reward matrix c indicates the likelihood that a link between each pair of nodes from
N1 to N2 exists. Finally a indicator mi,j is 0 if article i and j share the same subject field, and 0 otherwise ∀i ∈ N1, j ∈ N2.
Let p ∈ [0, 1] be the rate of pair sharing their field in a solution and q ∈ [0, 1] the rate of unrelated pairs, the goal is to match
as much nodes in N1 with at most one node in N2 by selecting edges which maximizes the sum of rewards under similarity
and diversity constraints. Formally:

maxx
∑

i,j ci,jxi,j

subject to
∑

j xi,j ≤ 1 ∀i ∈ N1∑
i xi,j ≤ 1 ∀j ∈ N2∑
i.j mi,jxi,j ≥ p

∑
i,j xi,j∑

i.j(1−mi,j)xi,j ≥ q
∑

i,j xi,j

xi,j ∈ {0, 1} ∀i ∈ N1, j ∈ N2

In our experiments, we considered two variations of this problem with p = q = being 25% and 5%, respectively named
Matching-1 and Matching-2.
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B. Hyperparameter Configuration
To reproduce the result reported in this paper use the hyperparameter settings as described in Table 3.

Table 3. Details of hyperparameters for reproducing the result
Shortest Path Problem

Deg-1 Deg-2 Deg-4 Deg-6 Deg-8

Pointwise learning rate 0.8 0.8 0.8 0.8 0.8

Pairwise learning rate 0.1 0.1 0.1 0.1 0.1
margin 1.0 0.1 0.1 0.1 0.1

Listwise learning rate 0.1 0.1 0.1 0.1 0.1
temperature 1.0 0.1 0.05 0.05 0.05

Pairwise-difference learning rate 0.1 0.1 0.1 0.5 0.5

NCE learning rate 0.5 0.5 0.5 0.5 0.5

MAP learning rate 0.05 0.05 0.05 0.7 0.7

SPO learning rate 0.1 0.5 0.5 0.5 0.1

Blackbox learning rate 0.5 0.5 0.5 0.5 0.5
displace parameter 1. 1. 1. 1. 1.

Twostage learning rate 0.5 0.5 0.1 0.5 0.5

Energy Scheduling Bipartite Matching

Energy-1 Energy-2 Matching-1 Matching-2

Pointwise learning rate 0.9 0.5 0.01 0.01

Pairwise learning rate 0.1 0.1 0.001 0.01
margin 100 100 0.2 1.0

Listwise learning rate 0.1 0.1 0.005 0.01
temperature 1.0 1.0 0.01 1.0

Pairwise-difference learning rate 0.5 0.5 0.01 0.01

NCE learning rate 0.5 0.5 0.001 0.01

MAP learning rate 0.5 0.5 0.001 0.01

SPO learning rate 0.9 0.9 0.01 0.01

Blackbox learning rate 0.1 0.1 0.01 0.01
displace parameter 0.001 0.1 10−5 0.001

Twostage learning rate 0.7 0.7 0.01 0.01

C. Distribution of the regret of the predictions
In Table 1, we report only the average regret of all the instances over 10 independent trails. In Figure fig:boxplot, we show
the distributions of the regret across all the test instances with box-plots for the three problems.
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(a) Shortest path (Deg= 1) (b) Shortest path (Deg= 2) (c) Shortest path (Deg= 4)

(d) Shortest path (Deg= 6) (e) Shortest path (Deg= 8) (f) Energy-1

(g) Energy-2 (h) Matching-1 (i) Matching-2

Figure 4. Boxplot


