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Abstract
We revisit the classical problem of deriving con-
vergence rates for the maximum likelihood es-
timator (MLE) in finite mixture models. The
Wasserstein distance has become a standard loss
function for the analysis of parameter estimation
in these models, due in part to its ability to cir-
cumvent label switching and to accurately charac-
terize the behaviour of fitted mixture components
with vanishing weights. However, the Wasserstein
distance is only able to capture the worst-case
convergence rate among the remaining fitted mix-
ture components. We demonstrate that when the
log-likelihood function is penalized to discourage
vanishing mixing weights, stronger loss functions
can be derived to resolve this shortcoming of the
Wasserstein distance. These new loss functions ac-
curately capture the heterogeneity in convergence
rates of fitted mixture components, and we use
them to sharpen existing pointwise and uniform
convergence rates in various classes of mixture
models. In particular, these results imply that a
subset of the components of the penalized MLE
typically converge significantly faster than could
have been anticipated from past work. We further
show that some of these conclusions extend to
the traditional MLE. Our theoretical findings are
supported by a simulation study to illustrate these
improved convergence rates.

1. Introduction
Finite mixture models form a celebrated tool for modelling
heterogeneous data, and are used pervasively in the life
and physical sciences (Bechtel et al., 1993; Kuusela et al.,
2012; McLachlan & Peel, 2004). The primary goal in many
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such applications is to perform statistical inference for the
mixture parameters. This raises the classical question of
characterizing the optimal convergence rates for parameter
estimation in finite mixture models. Though this topic has
been the subject of considerable investigation in past liter-
ature, the aim of our work is to show how these existing
results may be refined through a careful choice of the loss
function used in their analyses.

Mixture distributions do not enjoy the standard regularity
conditions that are typically presumed in parametric models,
such as non-degeneracy of the Fisher information. As a
result, optimal rates of estimation in mixtures are strictly
slower than the usual parametric rate of convergence. This
observation dates back at least to the seminal work of Chen
(1995), who analyzed univariate mixtures satisfying a reg-
ularity condition known as strong identifiability, which we
formally define in Section 2 below. A long line of recent
work has further analyzed convergence rates in mixtures of
general dimension, under varying degrees of strong identifi-
ability. In particular, Nguyen (2013) proposed the Wasser-
stein distance as a natural tool for metrizing convergence
of parameters in finite mixtures, via their mixing measure.
The Wasserstein metric was then used to analyze conver-
gence rates for the maximum likelihood estimator (MLE)
and related procedures, under various classes of finite mix-
ture models (Ho & Nguyen, 2016a;b; Heinrich & Kahn,
2018; Ho & Nguyen, 2019). Moment-based estimators
were also studied by Wu & Yang (2020); Doss et al. (2020),
and Bayesian estimators by Ohn & Lin (2020); Guha et al.
(2021), to name a few.

A broad conclusion of these works is that slow convergence
rates are pervasive to parameter estimation in finite mix-
ture models. This observation contrasts the fact that the
minimax rate of estimating the density of a finite mixture
model is typically the standard parametric rate of conver-
gence (Genovese & Wasserman, 2000; Ghosal & van der
Vaart, 2001; Doss et al., 2020; Ashtiani et al., 2020). For
example, Heinrich & Kahn (2018) show that the minimax
rate for parameter estimation in a strongly identifiable mix-
ture degrades exponentially as the number of components
increases, when no separation conditions are placed on these
components. This result suggests that the estimation of mix-
ture parameters can be prohibitive, even when the number
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of components is moderate. On the other hand, practitioners
have long been employing mixture models successfully, sug-
gesting a discrepancy between practice and the worst-case
rates suggested by the theory.

The goal of this paper is to revisit existing convergence
rates for parameter estimation in finite mixture models, and
to show that they may be refined by using stronger loss
functions than the Wasserstein distance. We will argue that
the Wasserstein distance is only able to capture the worst-
case convergence rate among the estimated components
of a mixture, and that in many cases, the vast majority of
estimated component parameters may achieve considerably
faster convergence rates than anticipated from prior work.
Before describing these phenomena in further detail, we
begin by formally introducing finite mixture models and
related notions.

1.1. Problem Setting

Finite Mixture Models. Let F = {f(x|θ) : x ∈ X , θ ∈
Θ} be a known parametric family of density functions with
respect to a dominating σ-finite measure ν. Here, we assume
X ⊆ RN for some N ≥ 1, and Θ is a parameter space
which will either be a subset of the Euclidean space Rd,
d ≥ 1, or of the set Rd × Sd++, where Sd++ denotes the
cone of d× d positive definite matrices. In either case, we
shall always tacitly assume that Θ is a compact set with
nonempty interior. Let X1, X2, . . . , Xn be an i.i.d. sample
from a finite mixture model with k0 ≥ 1 components, whose
density with respect to ν is written as

pG0
(x) :=

∫
f(x|θ)dG0(θ) =

k0∑

j=1

p0
jf(x|θ0

j ), x ∈ X .

Here G0 =
∑k0

j=1 p
0
jδθ0

j
denotes an unknown mixing mea-

sure, where the p0
j ≥ 0 are called mixing proportions (or

weights), satisfying
∑k0

j=1 p
0
j = 1, and the θ0

j ∈ Θ are
called atoms, for j = 1, . . . , k0. When the mixing propor-
tions are strictly positive and the atoms are distinct, we say
G0 has true order k0. More generally, any finitely-supported
probability measure on Θ is called a mixing measure, and its
support size is called its order. The set of mixing measures
of order at most k ≥ 1 is denoted Ok(Θ), and we write
Ek(Θ) = Ok(Θ) \ Ok−1(Θ).

When dealing with parameter estimation in a finite mixture
model, it is convenient to treat the mixing measureG0 as the
target of estimation, even if the main quantities of interest
are the mixing proportions or atoms of G0. Indeed, while
the density pG is typically identifiable with respect to its
mixing measureG, it is never identifiable with respect to the
individual parameters of G, due to the possibility of label-
switching. Throughout our work, we will consider both
pointwise rates of estimating the mixing measure, that is,

estimation rates which depend on the fixed mixing measure
G0, and uniform estimation rates, which hold uniformly
over all mixing measures under consideration. We will
always emphasize the latter setting by allowing G0 ≡ Gn0
to potentially depend on the sample size n.

Maximum Likelihood Estimation. Perhaps the most
widely-used estimator of G0 is the maximum likelihood
estimator (MLE). We focus our analysis on estimators based
on the MLE throughout this work, in part because they allow
for a general theory of parameter estimation to be derived
under minimal conditions on the family F . Given an integer
k ≥ 1, the MLE of G0 with order at most k is given by

Gn =

kn∑

i=1

pni δθni
= argmax
G∈Ok(Θ)

`n(G),

where `n(G) =

n∑

i=1

log pG(Xi).

(1)

Here, k̄n ≤ k denotes the fitted order of Gn. We have
defined the MLE with the general order k to reflect the fact
that true order k0 of G0 may be unknown. Notice that Gn
is generally inconsistent if k < k0, thus we shall always
assume k ≥ k0. Our convergence rates will depend on the
level of misspecification k − k0.

In certain parts of our development, it will be technically
convenient to ensure that the fitted mixing proportions ofGn
do not vanish. While this can be achieved by constraining
the maximum in equation (1), we will prefer to achieve this
using a penalty on the likelihood function. Specifically, we
follow Chen & Kalbfleisch (1996) and define the penalized
MLE of order at most k by

Ĝn =

k̂n∑

i=1

p̂ni δθ̂ni
= argmax
G∈Ok(Θ)

`n(G) + ξnρ(G),

where k̂n ≤ k is the order of Ĝn, ξn ≥ 0 is a tuning
parameter, and ρ satisfies ρ(G)→ −∞ as the smallest mix-
ing weight of G vanishes. For concreteness, we will use
the penalty ρ(G) =

∑k′

j=1 log p′j , where k′ ≤ k denotes the

order of G =
∑k′

j=1 p
′
jδθ′j . As discussed in Appendix C.1,

with this choice of penalty, Ĝn may be numerically approx-
imated using a simple modification of the EM algorithm.

In order to evaluate the risk of the estimators Ĝn and Gn,
we will require loss functions defined over Ok(Θ). The
most widely-used loss function appearing in past work is
the Wasserstein distance, which we define next.

Wasserstein Distances. Let k, k′ ≥ 1, and set G =∑k
i=1 piδθi ∈ Ok(Θ) and G′ =

∑k′

j=1 p
′
jδθ′j ∈ Ok′(Θ).

Denote by Π(G,G′) the set of joint probability mass func-
tions q = (qij : i ∈ [k], j ∈ [k′]) admitting marginal distri-
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butions equal to those of G and G′, that is,
∑k
i=1 qij = p′j

and
∑k′

j=1 qij = pi, for all i ∈ [k] and j ∈ [k′]. The
Wasserstein distance of order r ≥ 1 is defined by

Wr(G,G
′) =


 inf

q∈Π(G,G′)

k∑

i=1

k′∑

j=1

qijD
r(θi, θ

′
j)




1
r

,

where D is a metric on Θ. When Θ ⊆ Rd, we shall always
assume that D = ‖ · ‖ is induced by the Euclidean norm.

The use of Wasserstein distances in general dimension orig-
inated from the work of Nguyen (2013), and was partly
motivated by its implication for the convergence of atoms,
as we now recall. LetGn ∈ Ok(Θ) be a sequence of mixing
measures, and G0 ∈ Ek0

(Θ). Then, if Wr(Gn, G0) ≤ αn
for some αn ↓ 0, there exists a subsequence of Gn such that
every atom θ0

j of G0 is the limit point of at least one atom
θni of Gn. Furthermore, the convergence rate of this fitted
atom is D(θni , θ

0
j ) . αn. When k > k0, there may also be

atoms θn` of Gn which do not converge to any atoms of G0.
It can be seen that their corresponding mixing proportions
pn` must then vanish at the rate αrn. If we instead assume
that the mixing proportions of Gn are bounded from below
by a positive constant c0 > 0, it must in fact hold that every
atom of Gn converges to an atom of G0 at rate αn.

We note in particular that the Wasserstein distance can only
induce the same convergence rate αn for those atoms of
Gn which approach the atoms of G0. In contrast, a key
observation of our work is that maximum likelihood-based
estimators have atoms which converge at distinct rates; such
heterogeneous behaviour cannot be captured by the Wasser-
stein distance, and is the main subject of this paper.

1.2. Contributions

Our goal is to provide sharper rates of convergence for
parameter estimation in finite mixture models of various
types. Our main technical contribution is the development of
loss functions over the space of mixing measures, which are
stronger than the Wasserstein distance, and which correctly
characterize the heterogeneous convergence rates of the
various mixture parameters in maximum likelihood-based
estimators. To illustrate the refinements furnished by our
theory, we consider the following example.
Example 1 (Pointwise Convergence Rates for Strongly
Identifiable Mixtures). Suppose F is the location family
of Gaussian densities with known variance. Furthermore,
assume k = k0 + 1. The works of Chen (1995); Ho &
Nguyen (2016a) show there exists a constant C(G0) > 0
such that

EW2(Gn, G0) ≤ C(G0)(log n/n)1/4.

In particular, it follows that for every atom θ0
j of G0, there

is at least one atom of Gn which converges to θ0
j at the

pointwise rate (log n/n)1/4. Equivalently, there exists an
injection un : [k0]→ [k] such that

max
1≤j≤k0

E‖θnun(j) − θ0
j‖ ≤ C(G0) (log n/n)

1
4 . (2)

In contrast, it will follow from our Theorem 4 below that
there exists an injection vn : [k0]→ [k] and a permutation
σn : [k0]→ [k0] such that

max
1≤j≤k0−1

E‖θnvn(j) − θ0
σn(j)‖ ≤ C(G0)

(
log n

n

) 1
2

,

E‖θnvn(k0) − θ0
σn(k0)‖ ≤ C(G0)

(
log n

n

) 1
4

.

This result shows that, ignoring polylogarithmic factors,
all but two of the atoms of the overfitted MLE Gn achieve
the parametric convergence rate. In contrast, equation (2)
merely shows that these atoms converge at the slower rate
(log n/n)1/4.

We will show that similar asymptotics hold for a broad
family of strongly identifiable mixture models, and for gen-
eral k ≥ k0, in Section 3.1, We further consider uniform
convergence rates for such families in Section 4, as well
as pointwise convergence rates for location-scale Gaussian
mixture models (Section 3.2), which form an important ex-
ample of weakly identifiable finite mixtures. We obtain
these results by identifying distinct loss functions tailored
to each of these three settings, which accurately capture the
behaviour of individual fitted mixture parameters.

Our results highlight the underappreciated fact that the
Wasserstein distance merely quantifies the worst-case con-
vergence rate among the fitted parameters of a finite mixture;
its use in past work may thus have painted an overly pes-
simistic picture of parameter estimation in these models.
Though our primary emphasis is on such theoretical aspects,
we will also discuss that certain loss functions developed in
this work enjoy an improved computational complexity as
compared to the Wasserstein distance, and may therefore be
of practical significance in their own right.

Notation. Given probability densities p, q dominated by ν,
their squared Hellinger and Total Variation distances are
denoted by h2(p, q) = 1

2

∫
(
√
p − √q)2dν and V (p, q) =

1
2

∫
|p−q|dν. Ok,c0(Θ) denotes the set of mixing measures

inOk(Θ) with mixing weights bounded below by a constant
c0 > 0, and Ek,c0(Θ) = Ok,c0(Θ) \ Ok−1(Θ). For any
n ≥ 1, we denote [n] = {1, 2, . . . , n}. For any a, b ∈
R, a ∨ b = max{a, b} and a ∧ b = min{a, b}. Given
(an)n≥1, (bn)n≥1 ⊆ R+, we write an . bn if there exists a
universal constant C > 0, possibly depending on problem
parameters to be understood from context, such that an ≤
Cbn for all n ≥ 1. We also write an � bn when an . bn .
an. Cα(Θ) denotes the Hölder space of regularity α > 0
over Θ, with associated norm ‖ · ‖Cα(Θ) (Folland, 1995).
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2. Preliminaries
2.1. Strong Identifiability

We begin by recalling the strong identifiability condition for
the parametric family F .

Definition 1 (Strong Identifiability). Let r ≥ 0 be an integer.
We say F is r-strongly identifiable if f(x|·) ∈ Cr(Θ) for ν-
almost every x ∈ X , and if for any k ≥ 1, and θ1, . . . , θk ∈
Θ, the following implication holds for all α(i)

η ∈ R,

esssup
x∈X

∣∣∣∣∣
r∑

`=0

∑

|η|=`

k∑

i=1

α(i)
η

∂|η|f

∂θη
(x|θi)

∣∣∣∣∣ = 0

=⇒ max
|η|≤r

max
1≤i≤k

|α(i)
η | = 0.

The notion of strong identifiability originates from the work
of Chen (1995), and is stated here in a more general form
due to Heinrich & Kahn (2018); Ho & Nguyen (2016a).
We refer to these references, as well as that of Holzmann
et al. (2004), for sufficient conditions under which the strong
identifiability condition holds. For example, this condition
is known to be satisfied for any finite r ≥ 1 by the location
Gaussian parametric family with known scale parameter,
the Poisson family, and other common exponential families.
Location-scale Gaussian densities form perhaps the most
widely-used parametric family which fails to satisfy the
r-strong identifiability condition for r ≥ 2 Ho & Nguyen
(2016b), and we will treat this special case separately.

We will typically couple the strong identifiability condition
with the following assumption on the modulus of continuity
of the derivatives of f(x|·), up to order r ≥ 1.

A(r) There exist Λ, δ > 0 such that

esssup
x∈X

‖f(x|·)‖Cr+δ(Θ) ≤ Λ.

Strong identifiability generalizes the condition of regular
identifiability of the family Pk(Θ) = {pG : G ∈ Ok(Θ)},
and is a useful notion for deriving inequalities between
Wasserstein-type distances over Ok(Θ) and statistical dis-
tances over Pk(Θ). Such bounds are at the heart of our
proofs, and will allow us to derive parameter estimation
rates from known convergence rates for maximum likeli-
hood density estimation, to which we turn our attention next.

2.2. Convergence Rates for Maximum Likelihood
Density Estimators

In order to state a rate of convergence for the density estima-
tors pĜn and pGn , for instance under the Hellinger distance,
we require a condition on the complexity of the class

P1/2
k (Θ, ε) =

{
p̄

1/2
G : G ∈ Ok(Θ), h(p̄G, pG0

) ≤ ε
}
,

where ε > 0, and for any G ∈ Ok(Θ), we write pG =

(pG + pG0)/2. The definition of P1/2
k (Θ, ε) originates

from van de Geer (2000), who place conditions on the
convex combinations p̄G, rather than pG, as this choice
is guaranteed to place a non-negligible amount of probabil-
ity mass over the support of pG0

. The complexity of this
class is measured through the bracketing entropy integral

JB(ε,P1/2
k (Θ, ε), ν)=

∫ ε

0

√
HB(u,P1/2

k (Θ, u), ν)du ∨ε,

where HB(ε,P, ν) denotes the ε-bracketing entropy of a
set P ⊆ L2(ν) with respect to the L2(ν) metric (van de
Geer, 2000). We shall assume that this quantity satisfies the
following condition.

B(k) Given a universal constant J > 0, there exists a
constant L > 0, possibly depending on d and k,
such that for all n ≥ 1 and all ε > L(log n/n)1/2,

JB(ε,P1/2
k (Θ, ε), ν) ≤ J√nε2.

We are now ready to state the following convergence rates.

Theorem 2. Given k ≥ 1, assume condition B(k) holds.

(i) There exists a constant C > 0 depending only on
d, k,F such that for all n ≥ 1,

sup
G0∈Ok(Θ)

EG0
h(pGn , pG0) ≤ C

√
log n

n
.

(ii) Furthermore, given c0, c1 > 0, if 0 ≤ ξn ≤ c1 log n,
then there exists a constant C ′ > 0 depending on
d, k, c0, c1,F such that for all n ≥ 1,

sup
G0∈Ok,c0 (Θ)

EG0h(pĜn , pG0) ≤ C ′ log n√
n

.

Theorem 2(i) is a direct consequence of generic results for
maximum likelihood density estimation (for instance, Theo-
rem 7.4 of van de Geer (2000)). Its application to finite mix-
ture models has previously been discussed by Ho & Nguyen
(2016a), who also argue that condition B(k) is satisfied by
a broad collection of parametric families F , including the
multivariate location-scale Gaussian and Student-t families.
A version of Theorem 2(ii) is implicit in the work of Manole
& Khalili (2021), though with a stronger condition on the
tuning parameter ξn. We provide a self-contained proof of
this result in Appendix A for completeness.

These results may also be used to show that the penalized
MLE has nonvanishing mixing proportions.

Proposition 3. Let k ≥ 1, c0 ∈ (0, 1), and assume con-
dition B(k) holds. Assume further that ξn ≥ log n. Then,
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there exists a constant c > 1 depending on c0, d, k,F such
that for all n ≥ 1,

sup
G0∈Ok,c0 (Θ)

PG0

(
min

1≤j≤k̂n
p̂nj ≥

1

c

)
≤ c

n
.

In view of Proposition 3 and Theorem 2, we shall always
tacitly assume that the tuning parameter ξn is equal to log n.

3. Pointwise Convergence Rates of the MLE
We first derive pointwise convergence rates for estimating a
fixed mixing measure G0 ∈ Ek0(Θ).

3.1. Strongly Identifiable Case

Assume the family F is twice strongly identifiable, with a
compact parameter space Θ ⊆ Rd admitting nonempty inte-
rior. We begin by defining a loss function onOk(Θ) tailored
to this setting. Given a mixing measure G =

∑k′

i=1 piδθi
of order k′ ≤ k, we partition its atoms into the following
Voronoi cells, generated by the support of G0,

Aj ≡ Aj(G) = {i ∈ [k′] : ‖θi−θ0
j‖ ≤ ‖θi−θ0

`‖ ∀` 6= j},

for all j ∈ [k0]. We may then define the loss function

D(G,G0) :=
∑

j:|Aj |>1

∑

i∈Aj

pi‖θi − θ0
j‖2

+
∑

j:|Aj |=1

∑

i∈Aj

pi‖θi − θ0
j‖+

k0∑

j=1

∣∣∣∣∣∣
∑

i∈Aj

pi − p0
j

∣∣∣∣∣∣
. (3)

Clearly, D(G,G0)=0 if and only if G=G0. Under this loss
function, we obtain the following bound on the risk of Gn.

Theorem 4. Let k ≥ k0. Assume that the parametric family
F is 2-strongly identifiable, and satisfies conditions A(2)
and B(k). Then, there exists a constant C(G0) > 0, depend-
ing on G0, d, k,F , such that

E
[
D(Gn, G0)

]
≤ C(G0)

√
log n

n
.

The proof of Theorem 4 appears in Appendix A.3, where
the main difficulty is to prove the following lower bound of
the Hellinger distance in terms of D,

D(G,G0) ≤ C(G0)h(pG, pG0
), (4)

for any G ∈ Ok(Θ). Using Theorem 2(i), the above bound
directly leads to the stated convergence rate of Gn.

A few comments regarding Theorem 4 are in order. First,
let Anj = Aj(Gn) for all j ∈ [k0]. The convergence rate√

log n/n ofD(Gn, G0) implies that for any index j ∈ [k0]

such that |Anj | = 1, ‖θni − θ0
j‖ and |pni − p0

i | vanish at the
near-parametric rate

√
log n/n for i ∈ Anj . Therefore,

among the true components which are only approximated
by a single fitted component, the parameters of this fitted
component converge as fast as if the order k ≥ k0 were
not overspecifed. In particular, in the exact-fitted setting
k = k0, we find that all fitted components and mixing
proportions converge at the parametric rate, up to a poly-
logarithmic factor, which recovers Theorem 3.1 of Ho &
Nguyen (2016a). Furthermore, when k > k0, for any index
j ∈ [k0] such that |Anj | ≥ 2,

∑
i∈Anj

pni ‖θni − θ0
j‖2 and

|∑i∈Anj
pni − p0

j | decay at the rate
√

log n/n. In particular,
it follows that for every such j, there exists i ∈ Anj such that
θni converges to θ0

j at the rate (log n/n)1/4, which is now
markedly slower than the parametric rate. In contrast, the
past works of Chen (1995); Nguyen (2013); Ho & Nguyen
(2016a) show that EW 2

2 (Gn, G0) .
√

log n/n, which im-
plies a convergence rate no better than (log n/n)1/4 for all
atoms of the MLE, rather than just those lying in a set Anj
with cardinality greater than one. These existing results
painted a pessimistic picture of maximum likelihood estima-
tion in overspecified mixtures—for example, they suggest
that overspecifying the order k0 merely by k = k0 + 1 leads
to poor convergence rates for each of the k fitted atoms,
whereas our work shows that at least k0 − 1 fitted atoms
enjoy considerably faster convergence rates.

Second, we can demonstrate that D &W 2
2 , and

sup
G6=G0

G∈Ok(Θ)

D(G,G0)/W 2
2 (G,G0) =∞.

See Lemma 14 in Appendix B for a formal statement. This
shows thatD is a stronger loss function than the Wasserstein
distance. In particular, we deduce that that Theorem 4 also
implies the aforementioned convergence rate of Gn under
the Wasserstein distance.

Finally, the complexity of computing D(G,G0) is of the
order of O(k × k0). In contrast, computing W2(G,G0)
is equivalent to solving a linear programming problem,
which has complexity no better thanO(k3) (Pele & Werman,
2009). Therefore, the loss function D is computationally
more efficient than the Wasserstein metric. This observation
is significant because the Wasserstein distance has previ-
ously been used as a methodological tool for model selection
in finite mixtures (Guha et al., 2021). In these applications,
the loss function D provides an alternative to W 2

2 which is
both statistically and computationally more efficient.

3.2. Weakly Identifiable Case: Location-Scale
Gaussian Mixtures

In this section, we study the convergence rate of the MLE
when the model is not strongly identifiable in the second
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(a) (b)

Figure 1. (a) Illustration of the Voronoi cells generated by the atoms of the true mixing measure G0 (red points), and of the convergence
rates of the fitted atoms of the (possibly penalized) MLE (blue points), under the pointwise setting. The cardinality of each Voronoi cell is
the number of atoms of the MLE in these cells. The atoms and mixing weights of the MLE in the Voronoi cells with cardinality one have
n−1/2 convergence rates, where we ignore polylogarithmic factors. When the model is 2-strongly identifiable, the atoms of the MLE
in the Voronoi cells with cardinality greater than one converge at the slow rate n−1/4, while their mixing weights have n−1/2 rates of
convergence. Under location-scale Gaussian mixtures, the location and scale mixing components of the Voronoi cells with l ≥ 2 elements
respectively have convergence rates n−1/2r̄(l) and n−1/r̄(l) while their mixing weights have n−1/2 rates of convergence. (b) Illustration
of the Voronoi cells generated by the limiting mixing measure G∗ under the uniform setting of Section 4. The red, blue, and green points
respectively denote the atoms of the limiting measure G∗, the penalized MLE Ĝn, and the varying true mixing measure Gn

0 . The atoms in
each Voronoi cell with l ≥ 2 atoms of Ĝn or Gn

0 converge at the rate n−1/2(l−1).

order. Location-scale Gaussian mixtures are a popular ex-
ample of such models, as a result of the following equation:

∂2f

∂µ∂µ>
(x|µ,Σ) = 2

∂f

∂Σ
(x|µ,Σ), (5)

for all x ∈ Rd and θ = (µ,Σ) ∈ Θ, where F = {f(·|θ) :
θ ∈ Θ} denotes the family of location-scale Gaussian densi-
ties, with compact parameter space Θ ⊆ Rd×Sd−1. The ab-
sence of second order identifiability in location-scale Gaus-
sian mixtures leads to several challenges in studying the
convergence rates of the MLE. To simplify our proofs, we
will assume that all mixing measures have weights which
are lower bounded by some small constant c0 > 0. As a
result, we only state a convergence rate for the penalized
MLE Ĝn, which indeed lies in the classOk,c0(Θ) with high
probability, by Proposition 3. We would like to remark that
constraints on the mixing weights are also assumed in past
work on convergence rates for over-specified location-scale
Gaussian mixtures (Ho & Nguyen, 2016b), and are not a
byproduct of our choice of loss function.

Proposition 2.2 in Ho & Nguyen (2016b), together with
Theorem 2 and Proposition 3, may be used to establish the
following bound, for some constant C(G0) > 0,

E
[
Wr(k−k0+1)(Ĝn, G0)

]
≤ C(G0)(log n/

√
n)

1
r(k−k0+1) ,

where for any k′ ≥ 2, r(k′) is defined as the smallest integer
r such that the system of polynomial equations

k′∑

j=1

∑

n1,n2

c2ja
n1
j b

n2
j

n1!n2!
= 0, for each α = 1, . . . , r (6)

does not have any nontrivial solution for the unknown vari-
ables (aj , bj , cj)

k′

j=1 ⊆ R. The range of (n1, n2) in the
second sum consist of all natural pairs satisfying the equa-
tion n1 + 2n2 = α. A solution to the above system is
considered nontrivial if all variables cj are non-zero, while
at least one of the aj is non-zero. For example, it was shown
by Ho & Nguyen (2016a) that r̄(2) = 4 and r̄(3) = 6.

The convergence rate (log n/
√
n)1/r(k−k0+1) of Ĝn indi-

cates that the location and scale parameters of the penal-
ized MLE converge to their population counterparts at this
same slow rate. As before, this result does not precisely
reflect the behavior of individual parameters in location-
scale Gaussian mixtures, leading us to consider a stronger
loss function than the Wasserstein distance. Given G =∑k′

i=1 piδ(µi,Σi) ∈ Ek′(Θ) for k′ ≤ k, define the Voronoi
cellsAj = Aj(G) = {i ∈ [k′] : ‖µi−µ0

j‖+ ‖Σi−Σ0
j‖ ≤

‖µi − µ0
`‖+ ‖Σi − Σ0

`‖ ∀` 6= j}, for j ∈ [k0], and set

D(G,G0) :=
∑

j:|Aj |=1

∑

i∈Aj

pi
(
‖µi − µ0

j‖+ ‖Σi − Σ0
j‖
)

+
∑

j:|Aj |>1

∑

i∈Aj

pi

(
‖µi − µ0

j‖r̄(|Aj |) + ‖Σi − Σ0
j‖

r̄(|Aj |)
2

)

+

k0∑

j=1

∣∣∣∣∣∣
∑

i∈Aj

pi − p0
j

∣∣∣∣∣∣
.

It can be shown that D &W r(k−k0+1)
r(k−k0+1) and

sup
G6=G0

G∈Ok(Θ)

D(G,G0)/W
r(k−k0+1)
r(k−k0+1) (G,G0) =∞.
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The proof is similar to that of Lemma 14 in Appendix B;
therefore, it is omitted. We deduce that D is a stronger
loss function than W r(k−k0+1)

r(k−k0+1) . We bound the risk of the
penalized MLE under D as follows.

Theorem 5. Let F denote the location-scale Gaussian den-
sity family with parameter space taking the form Θ =
[−a, a]d × Ω, where a > 0 and Ω is a compact subset
of Sd−1 whose eigenvalues lie in a closed interval con-
tained in (0,∞). Then, there exists a constant C(G0) > 0,
depending only on G0, k, d,Θ, such that

E
[
D(Ĝn, G0)

]
≤ C(G0)

log n√
n
.

The proof of Theorem 5 appears in Appendix A.4. Recall

that Ĝn =
∑k̂n
i=1 p̂

n
i δ(µ̂ni ,Σ̂ni ), and write Anj = Aj(Ĝn) for

all j ∈ [k0]. Theorem 5 implies the following.

(i) Given j ∈ [k0] such that |Anj | ≥ 2, we have, with
probability tending to one,

‖µ̂ni − µ0
j‖ . (log n/

√
n)1/r̄(|Anj |),

‖Σ̂ni − Σ0
j‖ . (log n/

√
n)2/r̄(|Anj |), i ∈ Anj .

In particular, the location parameters of Ĝn converge
quadratically slower than the scale parameters.

(ii) On the other hand, for any index j ∈ [k0] such that
|Anj | = 1 and for any i ∈ Anj , we have with probability
tending to one,

‖µ̂ni − µ0
j‖ ∨ ‖Σ̂ni − Σ0

j‖ . log n/
√
n. (7)

Hence, both location and scale parameters of Ĝn achieve
the standard parametric rate up to a logarithmic factor. We
refer to Figure 1(a) for an illustration of these convergence
rates.

(iii) Notice that |Anj | ≤ k̂n − k0 + 1 for all j ∈ [k0]. When
equality is achieved for some j, there must be a single
Voronoi cell with k̂n−k0 +1 elements, while the remaining
cells each have exactly one component. In this case, there
are k0−1 components of the penalized MLE which achieve
the fast pointwise rate (7).

(iv) When k = k0 + 1, there exists a unique index j such
that Anj has at most two components, while the remaining
Voronoi cells have exactly one component. Since r(2) = 4,
this demonstrates that the two components having indices
in Aj have means converging at the slow rate n−1/8, and
covariances converging at the rate n−1/4, up to polylogarith-
mic factors. These particular rates were already anticipated
by the work of Chen & Chen (2003) when k0 = 1. When
k0 > 1, our work shows that the remaining k0 − 1 atoms of
the penalized MLE converge at the fast rate (7).

(v) When k = k0 + 2, there are two possible cases: either
(a) there exists a unique index j′ such that Anj′ has at most
three components while the remaining sets have exactly one
component, or (b) there exist indices j′1 and j′2 such thatAnj′1
and Anj′2 have at most two components while the remaining
sets have exactly one component. Under case (a), since
r(3) = 6, the means with indices inAnj′ converge at the rate
(log n/n)1/12 while the remaining atoms of Ĝn converge at
the parametric rate. Under case (b), the means with indices
in Anj′1 ∪ A

n
j′2

converge at the (log n/n)1/8 rate while the

remaining atoms converge at the rate (log n/n)1/2.

Finally, similarly to the loss function D in equation (3), we
note that D(G,G0) can be computed in O(k × k0) time for
any given G ∈ Ok(Θ), and thus enjoys a computational
advantage over the Wasserstein metric.

4. Uniform Convergence Rates of the MLE
Thus far, we have derived pointwise convergence rates
for the MLE or penalized MLE, which depend on the
fixed mixing measure G0. We next consider uniform
rates of convergence, in which we allow the true mixing
measure G0 ≡ Gn0 ∈ Ek0(Θ) to vary with the sample
size n, while converging to some limiting mixing measure
G∗ =

∑k∗
i=1 p

∗
i δθ∗i ∈ Ek∗(Θ), of order k∗ ≤ k0 ≤ k. To

simplify our proofs, we will assume throughout this section
that Θ ⊆ R.

It is known that the optimal pointwise rate of estimation in
a strongly identifiable mixture differs from the optimal uni-
form rate. Indeed, when F is (k + k0)-strongly identifiable
it can be inferred from Theorem 6.3 in (Heinrich & Kahn,
2018) that,

E
[
Wr(Gn, G

n
0 )
]
.

(
log n

n

)1/2r

, (8)

where we fix r = k+k0−2k∗+1 throughout the remainder
of this section. Furthermore, the above rate is minimax
optimal up to a polylogarithmic factor, but is markedly
slower than its pointwise analogue discussed in Section 3.1.
It implies that the atoms of Gn with nonvanishing weights
tend to those of Gn0 at this same slow rate. In contrast, we
will show that the uniform convergence rates of individual
components of the MLE can be sharpened. Similarly to the
previous subsection, however, our results will rely on the
additional condition that the mixing proportions of Gn0 , G∗
are uniformly bounded below by a small constant c0 > 0.
While this condition was not needed in the work of Heinrich
& Kahn (2018), we require it for our proof technique. As
a result, we focus on deriving convergence rates for the
penalized MLE Ĝn.

Given k′ ∈ [k], let G =
∑k′

i=1 piδθi ∈ Ek′(Θ) and G′ =
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∑k0

i=1 p
′
iδθ′i ∈ Ek0

(Θ). We again partition the supports of
these measures into Voronoi cells, which are now generated
by the atoms of the measure G∗ rather than Gn0 :

Aj(G) =
{
i ∈ [k′] : |θi − θ∗j | ≤ |θi − θ∗` | ∀` 6= j

}
,

for all j ∈ [k∗]. With this notation in place, we define the
following loss function over Ok(Θ),

W̃ (G,G′) := inf
q∈Π(G,G′)

{

k∗∑

l=1

∑

(i,j)∈Al(G)×Al(G′)

qij |θi − θ′j ||Al(G)|+|Al(G′)|−1

+
∑

(i,j)6∈∪k∗l=1Al(G)×Al(G′)

qij

}
. (9)

W̃ may be viewed as a generalized optimal transport cost,
whose ground cost depends on the measures G,G′ via the
exponent |Al(G)|+ |Al(G′)|− 1. In the special case where
k∗ = 1, this exponent is given by k+ k0− 1, and W̃ is then
equal to W r

r . On the other hand, when k∗ > 1, it can be
seen similarly as in previous subsections that,

W̃ &W r
r , and sup

G 6=G′

W̃ (G,G′)

W r
r (G,G′)

=∞. (10)

Therefore, the loss function W̃ is stronger than the Wasser-
stein distances used by Heinrich & Kahn (2018). The main
result of this section is the following convergence rate un-
der W̃ .

Theorem 6. Let k ≥ k0 ≥ k∗ and c0 > 0. Assume that
G∗ ∈ Ek∗,c0(Θ) and Gn0 ∈ Ek0,c0(Θ) for all n ≥ 1. Fur-
thermore, assume that F is (k + k0)-strongly identifiable,
and satisfies conditions A(k + k0) and B(k). Then, there
exist constants C, ε > 0, depending only on F , k, c0, such
that for all n ≥ 1 satisfying W̃ (Gn0 , G∗) ≤ ε, we have

E
[
W̃ (Ĝn, G

n
0 )
]
≤ C log n√

n
.

In view of equation (10) and the existing minimax lower
bound of Heinrich & Kahn (2018) under the Wasserstein dis-
tance, it can immediately be deduced that the convergence
rate in Theorem 6 is minimax optimal, up to a logarithmic
factor.

The proof of Theorem 6 appears in Appendix A.5. Our main
technical contribution is Lemma 11 therein, which provides
an upper bound on W̃ (G,G0) in terms of the Kolmogorov-
Smirnov distance between the distributions of pG and pG0

.
Similarly to Heinrich & Kahn (2018), we derive our upper
bound by placing the atoms of G and G0 into an ultrametric

tree, and using it to construct a nearly optimal coupling
q in the definition of W̃ . These derivations are facilitated
by the assumption Θ ⊆ R, but we expect that similar con-
clusions also hold for strongly identifiable families with
multidimensional parameter spaces.

Theorem 6 may be interpreted similarly as in previous sec-
tions, thus we only provide an example. In the sequel, we
ignore polylogarithmic factors. For all l ∈ [k∗], notice that

|Al(Ĝn)| ≤ k− k∗+ 1, |Al(Gn0 )| ≤ k0− k∗+ 1. (11)

When these inequalities are both achieved by the same index
l̄ ∈ [k∗], we find that for every i ∈ Al̄(Ĝn), there exists
j ∈ Al̄(Gn0 ) such that, up to taking subsequences, the rate
of Heinrich & Kahn (2018) is achieved:

|θ̂ni − θ0
j | . n−

1
2r .

However, the remaining k∗−1 atoms of the penalized MLE
converge uniformly at the parametric rate n−1/2, which
could not have been deduced from equation (8). Further-
more, we emphasize that this setting—in which all redun-
dant atoms of Ĝn and Gn0 are concentrated near a single
atom of G∗—is the only case where a subset of the atoms
of Ĝn achieve the worst-case rate predicted by Heinrich &
Kahn (2018). Indeed, when the inequalities (11) are strict,
rates faster than n−1/2r are achieved by all atoms of Ĝn.

5. Discussion
The aim of our work has been to sharpen known conver-
gence rates of the MLE for estimating individual parameters
of a finite mixture model. Our key observation was that
the Wasserstein distance, despite being an elegant tool for
metrizing the space of mixing measures, is not well-suited
to capturing the heterogeneous convergence behaviour of
individual mixture parameters. We instead proposed new
loss functions which achieve this goal. Our theoretical re-
sults are supported by a simulation study, which is deferred
to Appendix C.

Our analysis has focused on maximum likelihood-based
estimators, whose computation involves the nonconvex opti-
mization problem (1). Despite significant recent advances
in the theoretical understanding of the EM algorithm for ap-
proximating the MLE in finite mixtures (Balakrishnan et al.,
2017; Dwivedi et al., 2020b; Kwon et al., 2019; Dwivedi
et al., 2020a), we make no claims that such approximations
obey the asymptotics described in this paper, leaving open
a potential gap between theory and practice. The method
of moments provides a practical alternative to the MLE,
which is minimax optimal for certain classes of finite mix-
ture models under the Wasserstein distance (Wu & Yang,
2020; Doss et al., 2020). We leave open the question of
characterizing the risk of moment-based estimators under
the loss functions proposed in our work.
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In Section 4, we obtained uniform convergence rates for
strongly identifiable mixtures with mixing proportions
bounded away from zero. We leave open the question of
determining whether this constraint can be removed.

Finally, we derived both pointwise and uniform conver-
gence rates for strongly identifiable mixtures, however we
restricted our analysis of location-scale Gaussian mixtures
to the pointwise case. Obtaining uniform convergence rates
for such models remains an important open problem, which
has not been studied beyond the special case of two com-
ponent models (Hardt & Price, 2015; Manole & Ho, 2020).
While this setting is beyond the scope of our work, we
expect that considerations about the heterogeneity of param-
eter estimation, similar to those studied in this paper, would
arise in such models as well.
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Supplement to “Refined Convergence Rates for Maximum Likelihood Estimation under Finite
Mixture Models”

In this supplementary material, we provide all proofs of results stated in the main text (Appendix A). We also state and
prove certain results which were deferred from the main text (Appendix B), and provide a simulation study to illustrate the
various convergence rates that were derived in this paper (Appendix C).

A. Proofs
A.1. Proof of Theorem 2

Theorem 2(i) is an immediate consequence of Theorem 7.4 of van de Geer (2000), which provides a generic exponential
inequality for the Hellinger loss of nonparametric maximum likelihood density estimators, under mere conditions on
the bracketing integral JB(ε,P1/2

k (Θ, ε), ν). The application of this result to finite mixture models has previously been
discussed by Ho & Nguyen (2016a;b).

Theorem 2(ii) also follows by the same proof technique as Theorem 7.4 of van de Geer (2000), with modifications to account
for the presence of the penalty in the definition of Ĝn. An analogue of this result was previously proven by Manole &
Khalili (2021), though with different conditions on the tuning parameter ξn. For completeness, we provide a self-contained
proof of Theorem 2(ii), under the conditions on ξn required for our development.

As in van de Geer (2000), we shall reduce the problem to controlling the increments of the empirical process

νn(G) =
√
n

∫

{pG0
>0}

1

2
log

p̄G
pG0

d(Pn − PG0
),

where we recall that p̄G = (pG + pG0
)/2, and we denote by PG =

∫
pGdν the distribution induced by pG, for any

G ∈ Ok(Θ). Furthermore, Pn = (1/n)
∑n
i=1 δXi denotes the empirical measure. Our main technical tool will be the

following special case of Theorem 5.11 (van de Geer (2000); see also Lemma 7.2–7.3 therein).

Theorem 7 (Theorem 5.11 (van de Geer, 2000)). Let R > 0 and k ≥ 1. Given G ⊆ Ok(Θ), let G0 ∈ G. Furthermore,
given a universal constant C > 0, let a,C1 > 0 be chosen such that

a ≤ C1

√
nR2 ∧ 8

√
nR, (12)

and,

a ≥
√
C2(C1 + 1)

(∫ R

0

√
HB

(
u√
2
,
{
pG : G ∈ G, h(p̄G, p0) ≤ R

}
, ν

)
du ∨R

)
, (13)

Then,

P





sup
G∈G

h(p̄G,pG0
)≤R

|νn(G)| ≥ a




≤ C exp

(
− a2

C2(C1 + 1)R2

)
.

We are now in a position to prove the claim.

Proof of Theorem 2(ii). Let G0 ∈ Ok,c0(Θ). By a straightforward modification of Lemma 4.1 of van de Geer (2000), we
have

h2
(
p̄Ĝn , pG0

)
≤ 1√

n
νn(Ĝn) +

ξnρ(G0)

4n
. (14)

Let u > γn = L log n/
√
n, where L is the constant in assumption B(k). In view of equation (14), and the fact that

h2(pG, pG0) ≤ 4h(p̄G, pG0) for all G ∈ Ok(Θ) (cf. Lemma 4.2 of van de Geer (2000)), we have

P
{
h(pĜn , pG0

) > u
}
≤ P

{
h(p̄Ĝn , pG0

) > u/4
}

≤ P





sup
G∈Ok,c0 (Θ)

h(p̄G,p0)>u/4

n−
1
2 νn(G) +

ξnρ(G0)

4n
− h2(p̄G, pG0

) ≥ 0




.
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Let S = min{s : 2s+1u/4 > 1}. Then,

P

{
sup

G∈Ok,c0 (Θ)

h(p̄G,pG0
)>u/4

n−
1
2 νn(G) +

ξnρ(G0)

4n
− h2(p̄G, p0) ≥ 0

}

≤
S∑

s=0

P





sup
G∈Ok,c0 (Θ)

h(p̄G,pG0
)≤(2s+1)u/4

νn(G) ≥ √n22s
(u

4

)2

− ξnρ(G0)

4
√
n




.

We have thus reduced the problem to that of bounding the supremum of the empirical process νn, for which we shall invoke
Theorem 7. Let R = 2s+1u, C1 = 15, and

a =
√
n22s

(u
4

)2

− ξnρ(G0)

4
√
n

.

It can be directly verified that condition (12) holds for all s = 0, . . . ,S . To further show that condition (13) holds, note that

∫ 2s+1u

0

√
HB

(
t√
2
,P1/2

k

(
Θ, 2s+1

t

4

)
, ν

)
dt ∨ 2s+1u

≤
√

2

∫ 2s+
1
2 u

0

√
HB

(
t,P1/2

k

(
Θ, 2s+

1
2 t
)
, ν
)
dt ∨ 2s+1u

≤ 2JB
(

2s+1u,P1/2
k (Θ, 2s+1u), ν

)
≤ 2J

√
n22s+1u2,

where we invoked condition B(k). Now, notice that ρ(G0) is bounded above by a universal constant L0 > 0 depending
only on k, c0, irrespective of the choice of G0 ∈ Ok,c0(Θ). Furthermore, we have

√
nγ2

n � (log n)2/
√
n, and ξn/

√
n �

log n/
√
n, thus for all u > γn, the second term in the definition of a is of lower order than the first. Deduce that there exists

a constant N > 0, depending only on L0, c1, k such that for all n ≥ N ,

a ≥ 1

2

√
n22s(u/4)2 =

√
n22s−5u2 ≥

√
C0 ·

(
2J
√
n22s+1u2

)
,

for a sufficiently small choice of the universal constant J > 0. We may therefore invoke Theorem 7, to deduce that for all
n ≥ N ,

P
{
h(pĜn , pG0) > u

}
≤
S∑

s=0

P





sup
Ok,c0 (Θ)

h(p̄G,pG0
)≤(2s+1)u/4

νn(G) ≥ √n22s−5u2





≤ C
∞∑

s=0

exp

{
− 1

16C222s+2γ2
n

[√
n22s−5u2

]2
}

≤ C
∞∑

s=0

exp

{
n22s−16u2

C2

}

≤ c exp(−nu2/c),

for a large enough constant c > 0. It follows that, for all n ≥ N ,

Eh(pĜn , pG0) =

∫ ∞

0

P(h(pĜn , pG0) ≥ u)du ≤ γn + c

∫ ∞

γn

exp

{
−nu

2

c

}
du ≤ c′γn,

for another universal constant c′ > 0. Since the Hellinger distance is bounded above by 1, it is clear that the above display
holds for all n ≥ 1, up to modifying the constant c′ in terms of N . Furthermore, the above calculation is clearly uniform in
the G0 under consideration, so the claim follows.
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A.2. Proof of Proposition 3

We shall require a bound on the log-likelihood ratio statistic based on the MLE Gn. Such a bound is implicit in the proof
of Theorem 7.4 of van de Geer (2000). Specifically, the following can be deduced from their Corollary 7.5.

Proposition 8 (Corollary 7.5 van de Geer (2000)). Assume that condition B(k) holds. Then, given k ≥ 1, there exists a
constant C > 0 depending on k, d and F , such that for all u ≥ L(log n/n)1/2,

sup
G0∈Ok(Θ)

PG0

(∫
log

pGn
pG0

dPn ≥ u2

)
≤ C exp

(
−nu

2

C2

)
.

Let G0 ∈ Ok,c0(Θ). After possibly replacing C by C ∨ L, apply Proposition 8 with u = C
√

log n/n to deduce that

`n(Gn)− `n(G0) ≤ C2 log n,

with probability at least 1−C/n. Now, by definition of the penalized MLE Ĝn and of the non-penalized MLE Gn, we have

0 ≤
[
`n(Ĝn)− `n(G0)

]
+ ξn

[
ρ(Ĝn)− ρ(G0)

]
≤
[
`n(Gn)− `n(G0)

]
+ ξn

[
ρ(Ĝn)− ρ(G0)

]

≤ C2 log n+ ξn

[
ρ(Ĝn)− ρ(G0)

]
,

with probability at least 1− C/n. Therefore, since ξn ≥ log n, we obtain

ρ(Ĝn) ≥ −C2 + ρ(G0) ≥ −C2 + k0 log c0 = −C1,

where C1 = C2 + k0 log(1/c0) > 0. By definition of ρ, it must follow that

p̂ni ≥ exp(−C1), i = 1, . . . , k̂n,

with probability at least 1− C/n. The claim follows with c = exp(C1) ∨ C.

A.3. Proof of Theorem 4

The claim will follow from the following result, relating the discrepancy D(G,G0) to the Total Variation distance between
the corresponding densities pG and pG0

.

Lemma 9. Assume the same conditions as Theorem 4. Then, there exists a constant c > 0 depending on G0, d, k,F , such
that for any G ∈ Ok(Θ),

V (pG, pG0) ≥ cD(G,G0). (15)

Recall that we have assumed condition B(k). Therefore, by combining Lemma 9 with Theorem 2(i) and the well-known
inequality V ≤ h, we deduce that

ED(Gn, G0) . EV (pGn , pG0
) ≤ Eh(pGn , pG0

) .

√
log n

n
,

as claimed. It thus remains to prove Lemma 9.

Proof of Lemma 9. Our proof proceeds using a similar argument as that of Ho & Nguyen (2016a), though with key
differences to account for our choice of loss function. We will prove that

lim
δ→0

inf
G∈Ok(Θ)
D(G,G0)≤δ

V (pG, pG0
)

D(G,G0)
> 0. (16)

This implies a local version of the claim, namely that there exist constants δ0, C > 0 such that for all G ∈ Ok(Θ) satisfying
D(G,G0) ≤ δ,

D(G,G0) ≤ CV (pG, pG0). (17)
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We begin by showing how this local inequality leads to the claim, and we will then prove equation (16). Taking equation
(16) for granted, it suffices to prove

inf
G∈Ok(Θ)
D(G,G0)≥δ0

V (pG, pG0)

D(G,G0)
> 0. (18)

Suppose by way of a contradiction that the above display does not hold. Then, there exists a sequence of mixing measures
Gn ∈ Ok(Θ) with D(Gn, G0) ≥ δ0 such that V (pGn ,pG0

)

D(Gn,G0) → 0. Since the parametric family F is assumed to be 2-strongly
identifiable, the model {pG : G ∈ Ok(Θ)} is identifiable, thus the map

(G,G′) ∈ Ok(Θ)×Ok(Θ) 7→ V (pG, pG′)

defines a metric on Ok(Θ). Since this metric is bounded, the sequence {Gn} admits a subsequence converging to some
mixing measureG ∈ Ok(Θ). For ease of exposition, we replace this subsequence by the entire sequenceGn in what follows,
thus we have V (pGn , pG) → 0. Now, notice that D(G,G0) ≥ δ0 by definition of Gn. Furthermore, V (pGn , pG0

) → 0
by assumption. Combining these facts leads to V (pG0

, pG) = 0, and hence G = G0, which contradicts the fact that
D(G,G0) > 0, and hence proves equation (18).

It remains to prove the local inequality (16). We again assume by way of a contradiction that there exists a sequence of
mixing measures Gn =

∑kn
i=1 p

n
i δθni ∈ Ok(Θ) such that D(Gn, G0)→ 0 but

V (pGn , pG0
)

D(Gn, G0)
→ 0, n→∞. (19)

Define
Anj = Aj(Gn) = {i ∈ {1, . . . , kn} : ‖θni − θ0

j‖ ≤ ‖θni − θ0
`‖ ∀` 6= j}, j = 1, . . . , k0.

Since kn ≤ k for all n, there exists a subsequence of Gn such that kn does not change with n. Therefore, up to replacing
Gn by this subsequence, we may assume that kn = k′ ≤ k for all n. Similarly, since there are only a finite number of
distinct sets An1 × . . .×Ank0

over the range of n ≥ 1, we may assume without loss of generality that Aj = Anj does not
change with n, for all j = 1, . . . , k0. Now, consider the decomposition

pGn(x)− pG0
(x) =

∑

j:|Aj |>1

∑

i∈Aj

pi

(
f(x|θni )− f(x|θ0

j )
)

+
∑

j:|Aj |=1

∑

i∈Aj

pi

(
f(x|θni )− f(x|θ0

j )
)

+

k0∑

j=1

(p̄nj − p0
j )f(x|θ0

j )

:= An,1(x) +An,2(x) +Bn(x),

where we write p̄nj =
∑
i∈Aj p

n
i for all j ∈ [k0]. By a Taylor expansion to second order, notice that

An,1(x) =
∑

j:|Aj |>1

∑

i∈Aj

pi

[
(θni − θ0

j )
> ∂f

∂θ
(x|θ0

j ) +
1

2
(θni − θ0

j )
> ∂

2f

∂θ2
(x|θ0

j )(θ
n
i − θ0

j )

]
+Rn,1(x)

where Rn,1(x) is a Taylor remainder satisfying

‖Rn,1‖L∞(ν) .
∑

j:|Aj |>1

∑

i∈Aj

pni
∥∥θni − θ0

j

∥∥2+γ
, (20)

for some γ > 0, due to condition A(2). Furthermore, by a Taylor expansion to first order, we also have

An,2(x) =
∑

j:|Aj |=1

∑

i∈Aj

pi(θ
n
i − θ0

j )
> ∂f

∂θ
(x|θ0

j ) +Rn,2(x),

where, again, the Taylor remainder Rn,2 satisfies

‖Rn,2‖L∞(ν) .
∑

j:|Aj |=1

∑

i∈Aj

pni
∥∥θni − θ0

j

∥∥1+γ
, (21)
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Let Dn = D(Gn, G0). By equations (20)–(21) and the definition of D, we deduce that ‖Rn,`‖L∞(ν)/Dn = o(1) for
` = 1, 2. Therefore, we have uniformly almost everywhere in x ∈ X that,

∣∣∣∣
pGn(x)− pG0

(x)

Dn

∣∣∣∣ �
∣∣∣∣
An,1(x) +An,2(x) +Bn(x)

Dn

∣∣∣∣ .

Notice that the ratio (An,1(x)+An,2(x)+Bn(x))/Dn is a linear combination of f(x|θ0
j ) and its first two partial derivatives,

with coefficients not depending on x. We claim that at least one of these coefficients does not tend to zero as n → ∞.
Indeed, suppose by way of a contradiction that this is not the case. Then, in particular the coefficients corresponding to the
second derivatives in An,1/Dn and the coefficients corresponding to the first derivatives in An,2/Dn must vanish, and the
absolute sum of any subset of these coefficients must vanish, implying the following display,

1

Dn


 ∑

j:|Aj |>1

∑

i∈Aj

pi
∥∥θni − θ0

j

∥∥2
+

∑

j:|Aj |=1

∑

i∈Aj

pi
∥∥θni − θ0

j

∥∥

 −→ 0.

The definition of Dn then implies that ∑k0

j=1 |p̄j − p0
j |

Dn
−→ 1.

We deduce that at least one coefficient in the linear combination Bn(x)/Dn does not tend to zero, which is a contradiction.
Thus, there indeed exists at least one coefficient in the linear combinations An,`(x)/Dn, Bn(x)/Dn, ` = 1, 2, which does
not vanish. Let mn denote the greatest absolute value of these nonzero coefficients, and set dn = 1/mn. Then, there must
exist scalars αi ∈ R and vectors βj , νj ∈ Rd, j = 1, . . . , k0, not all of which are zero, such that for almost all x ∈ X ,

dnAn,1(x)

Dn
+
dnAn,2(x)

Dn
−→

k0∑

j=1

[
β>j

∂f

∂θ
(x|θ0

j ) + ν>j
∂2f

∂θ2
(x|θ0

j )νj

]

dnBn(x)

Dn
−→

k0∑

j=1

αjf(x|θ0
j ).

(22)

On the other hand, the assumption (19) and the fact that dn are uniformly bounded implies that

dn
V (pGn , pG0

)

Dn
=

∫
dn

∣∣∣∣
An,1(x) +An,2(x) +Bn(x)

Dn

∣∣∣∣ dx→ 0.

By Fatou’s Lemma combined with equation (22), it follows that for almost all x ∈ X ,

k0∑

j=1

[
αjf(x|θ0

j ) + β>j
∂f

∂θ
(x|θ0

j ) + ν>j
∂2f

∂θ2
(x|θ0

j )νj

]
= 0.

Since the coefficients αj , βj , νj are not all zero, the above display contradicts the second-order strong identifiability
assumption on the parametric family F . It follows that equation (19) could not have held, whence the claim (16) is proved.
This completes the proof.

A.4. Proof of Theorem 5

We will prove Theorem 5 as a consequence of the following upper bound of D by the Total Variation distance.
Lemma 10. Assume the same conditions as Theorem 5, and let c0 ∈ (0,min1≤j≤k0

p0
j ). Then, there exists C > 0,

depending on G0, c0, d, k,Θ such that for all G ∈ Ok,c0(Θ),

V (pG, pG0) ≥ CD(G,G0). (23)

Before proving Lemma 10, we show how it leads to the claim. Under the conditions of Theorem 5 regarding the parameter
space Θ, it follows from Lemma 2.1 of Ho & Nguyen (2016a) (see also Ghosal & van der Vaart (2001)) that the location-scale
Gaussian density family F satisfies

HB(ε,P1/2
k (Θ, ε), ν) ≤ C1 log(1/ε), ε > 0,
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for a constant C1 > 0 depending on d, k,Θ. Given L > 0, it follows that for all ε ≥ L(log n/n)1/2,

JB(ε,P1/2
k (Θ, ε), ν) ≤ C1ε

√
log(1/ε) = C1

√
n

(
ε√
n

)√
log(1/ε) ≤ C1

√
nε2

L
.

Condition B(k) is then satisfied by choosing L = C1/J , thus we may apply Theorem 2 and Proposition 3 in what follows.

By Proposition 3, there is an event An and a constant c > 1 such that P(Ac
n) ≤ c/n and p̂ni ≥ 1/c for all i = 1, . . . , k̂n. In

particular, letting c0 = min{p0
j : j ∈ [k0]} ∧ c−1, we have Ĝn ∈ Ok,c0(Θ) over the event An. Therefore, by Lemma 11

and the fact that D is bounded by a constant depending only on diam(Θ), k we arrive at

E
[
D(Ĝn, G

n
0 )
]

= E
[
D(Ĝn, G

n
0 )IAn

]
+ E

[
D(Ĝn, G

n
0 )IAc

n

]

. E
[
h(pĜn , pG

n
0
)IAn

]
+ P(Ac

n) . log n/
√
n+ 1/n . log n/

√
n,

where we used the inequality V ≤ h and we invoked the Hellinger rate of convergence of pĜn , given in Theorem 2(ii). The
claim follows; it thus remains to prove Lemma 10.

Proof of Lemma 10. We will prove the following local version of the claim:

lim
δ→0

inf
G∈Ok,c0 (Θ)

D(G,G0)≤δ

V (pG, pG0
)

D(G,G0)
> 0. (24)

The above local statement directly leads to the claim by the same argument as in the beginning of the proof of Lemma 9, and
we therefore omit it. Our proof follows along similar lines as the proof of Proposition 2.2 of Ho & Nguyen (2016b), though
with key modifications to account for our distinct loss function. We proceed with the following steps.

Step 1: Setup. To prove inequality (24), assume by way of a contradiction that it does not hold. Then, there exists a
sequence of mixing measures Gn =

∑kn
i=1 p

n
i δ(µni ,Σni ) with pni ≥ c0 for all i ∈ [kn], such that Dn := D(Gn, G0) → 0

and V (pGn , pG0
)/Dn → 0. Furthermore, since kn ≤ k for all n ≥ 1, there exists a subsequence of Gn admitting a fixed

number of atoms kn = k′ ≤ k. Similarly as in the proof of Theorem 4, we replace Gn by such a subsequence throughout
the sequel.

Define the Voronoi diagram

Anj =
{

1 ≤ i ≤ k′ :
∥∥µni − µ0

j

∥∥+
∥∥Σni − Σ0

j

∥∥ ≤
∥∥µni − µ0

`

∥∥+
∥∥Σni − Σ0

`

∥∥ , ∀` 6= j
}
, j = 1, . . . , k0.

By the same argument as in the proof of Lemma 9, we may assume, up to taking a further subsequence of Gn, that the sets
Aj ≡ Anj do not change with n for all j = 1, . . . , k0 and all n ≥ 1. Furthermore, we note that, since the mixing proportions
of Gn are bounded below by c0, the fact that Dn → 0 implies

sup
i∈Aj

[ ∥∥µni − µ0
j

∥∥+
∥∥Σni − Σ0

j

∥∥
]
→ 0, j = 1, . . . , k0.

Throughout what follows, we write the coordinates of µ0
j and Σ0

j as µ0
j = (µ0

j,1, . . . , µ
0
j,d) and Σ0

j = (Σ0
j,uv)

d
u,v=1, for all

j = 1, . . . , k0, and similarly for µni ,Σ
n
i , i = 1, . . . , k′. We also write for simplicity θni = (µni ,Σ

n
i ) and θ0

j = (µ0
j ,Σ

0
j ) for

all j = 1, . . . , k0 and i = 1, . . . , k′.

Step 2: Taylor Expansions. Similarly to the proof of Lemma 9, consider the following representation

pGn(x)− pG0
(x) =

∑

j:|Aj |>1

∑

i∈Aj

pni

(
f(x|θni )− f(x|θ0

j )
)

+
∑

j:|Aj |=1

∑

i∈Aj

pni

(
f(x|θni )− f(x|θ0

j )
)

+

k0∑

j=1

(p̄nj − p0
j )f(x|θ0

j )

:= Ān(x) + B̄n(x) + Cn(x),
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where p̄nj =
∑
i∈Aj p

n
i for all j ∈ [k0]. By repeated Taylor expansions to order r̄(|Anj |) for all j = 1, . . . , k0, we obtain

Ān(x) =
∑

j:|Aj |>1

∑

i∈Aj

pni
∑

α,β

1

α!β!
(µni − µ0

j )
α(Σni − Σ0

j )
β ∂
|α|+|β|f

∂µα∂Σβ
(x|θ0

j ) +Rn,1(x) =: An(x) +Rn,1(x),

where the third summation in the above display is over all multi-indices α ∈ Nd and β ∈ Nd×d satisfying 1 ≤ |α|+ |β| :=∑d
l=1 αl +

∑d
l,s=1 βls ≤ r̄(|Aj |). Above, we write α! =

∏d
l=1 αl! and β! =

∏d
l,s=1 βls!. Furthermore, Rn,1 is a Taylor

remainder which satisfies

‖Rn,1‖L∞(ν) .
∑

j:|Aj |>1

∑

i∈Aj

pni

[ ∥∥µni − µ0
j

∥∥r̄(|Aj |)+γ +
∥∥Σni − Σ0

j

∥∥r̄(|Aj |)+γ
]
,

for some constant γ > 0, as a result of the Hölder smoothness over Θ, up to arbitrary order, of the location-scale Gaussian
parametric family. Now, recall the key PDE (5), which implies that for any multi-indices α ∈ Nd and β ∈ Nd×d,

∂|α|+|β|f

∂µα∂Σβ
=

1

2|β|
∂|α|+2|β|f

∂µτ0(α,β)
,

where we denote by τ0(α, β) ∈ Nd the multi-index with coordinates αv +
∑d
u=1(βuv + βvu), v = 1, . . . , d. Notice that we

may then write for all x ∈ Rd,

An(x) =
∑

j:|Aj |>1

∑

i∈Aj

pni
∑

α,β
1≤|α|+|β|≤r̄(|Aj |)

1

2|β|α!β!
(µni − µ0

j )
α(Σni − Σ0

j )
β ∂
|α|+2|β|f

∂µτ0(α,β)
(x|θ0

j )

=
∑

j:|Aj |>1

2r̄(|Aj |)∑

|τ |=1

aτ,j
∂|τ |f

∂µτ
(x|θ0

j ),

where for all τ ∈ Nd, we write

aτ,j =
∑

α,β
1≤|α|+|β|≤r̄(|Aj |)

τ0(α,β)=τ

∑

i∈Aj

1

2|β|α!β!
pni (µni − µ0

j )
α(Σni − Σ0

j )
β .

Furthermore, by a first-order Taylor expansion in the definition of B̄n, we obtain

B̄n(x) =
∑

j:|Aj |=1

∑

i∈Aj

pi

{
(µni − µ0

j )
> ∂f

∂µ
(x|θ0

j ) + tr

[
∂f

∂Σ
(x|θ0

j )
>(Σni − Σ0

j )

]}
+Rn,2(x)

=: Bn(x) +Rn,2(x),

where Rn,2 is a Taylor remainder which satisfies,

‖Rn,2‖L∞(ν) .
∑

j:|Aj |=1

∑

i∈Aj

pni

[ ∥∥µni − µ0
j

∥∥1+γ
+
∥∥Σni − Σ0

j

∥∥1+γ
]
.

Similarly as the term An, we may explicitly rewrite Bn as a linear combination of the first- and second-order partial
derivatives of the density f with respect to µ,

Bn(x) =
∑

j:|Aj |=1

∑

i∈Aj

pi

{
(µni − µ0

j )
> ∂f

∂µ
(x|θ0

j ) +
1

2
tr

[
∂f

∂µ∂µ>
(x|θ0

j )
>(Σni − Σ0

j )

]}

=
∑

j:|Aj |=1

2∑

|κ|=1

bκ,j
∂|κ|f

∂µκ
(x|θ0

j ),
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where
bκ,j =

∑

α,β
|α|+|β|=1
τ0(α,β)=κ

∑

i∈Aj

1

2|β|
pni (µni − µ0

j )
α(Σni − Σ0

j )
β .

Notice that the conditions on the remainder terms Rn,1, Rn,2 together with the definition of Dn readily imply that, uniformly
in x ∈ Rd,

∣∣∣∣
pGn(x)− pG0(x)

Dn

∣∣∣∣ �
∣∣∣∣
An(x) +Bn(x) + Cn(x)

Dn

∣∣∣∣ . (25)

Letting cj = p̄nj − p0
j , it can be seen that the right-hand side of the above display is a linear combination of partial

derivatives of f with respect to µ, with coefficients aτ,j/Dn, bκ,j/Dn, cj/Dn, j = 1, . . . , k0, where τ and κ vary over the
aforementioned ranges. In the next step, we will show that not all of these coefficients decay to zero.

Step 3: Nonvanishing Coefficients. Assume by way of a contradiction that all coefficients aτ,j/Dn, bκ,j/Dn, cj/Dn tend
to zero. Define the following quantities,

Dn,1 =
∑

j:|Aj |>1

∑

i∈Aj

pni

{
‖µni − µ0

j‖r̄(|Aj |) + ‖(Σni,uu − Σ0
j,uu)1≤u≤d‖

r̄(|Aj |)
2

}
,

Dn,2 =
∑

j:|Aj |>1

∑

i∈Aj

pni ‖
(
Σni,uv − Σ0

j,uv

)
1≤u6=v≤d ‖

r̄(|Aj |)
2 ,

Dn,3 =
∑

j:|Aj |=1

∑

i∈Aj

pni
(
‖µni − µ0

j‖+ ‖Σni − Σ0
j‖
)
,

Dn,4 =

k0∑

j=1

∣∣p̄nj − p0
j

∣∣ .

In the special case d = 1, Dn,2 is understood to be identically equal to zero. Note that there must exist 1 ≤ i ≤ 4 such that
Dn,i/Dn 6→ 0. We will consider four cases according to which of the terms Dn,i dominates Dn

Case 3.1: Dn,1/Dn 6→ 0. In this case, it must hold that for some indices 1 ≤ j ≤ k0 and 1 ≤ u ≤ d such that
D̃n,1/Dn 6→ 0, where

D̃n,1 =
∑

i∈Aj

pni

[
|µni,u − µ0

j,u|r̄(|Aj |) + |Σni,uu − Σ0
j,uu|r̄(|Aj |)/2

]

Fix such j and assume u = 1 without loss of generality, throughout the rest of this Case. It follows by assumption that
aτ,j/D̃n,1 → 0 for all 1 ≤ |τ | ≤ r̄(|Aj |). In particular, this property holds for all τ such that τl = 0 for l = 2, . . . , d.
Notice that τ = τ0(α, β) takes the latter form if and only if αl = β1l = βl1 = βls = 0 for all l, s = 2, . . . , d. Therefore,
taking the sum over such multi-indices leads to the limit

1

D̃n,1

∑

i∈Aj

∑

α1,β11
α1+2β11=τ1

pni
1

2β11α1!β11!
(µni,1 − µ0

j,1)α1(Σni,11 − Σ0
j,11)β11 → 0, τ1 = 1, . . . , r̄(|Aj |). (26)

Now, define
mn = max

i∈Aj
pni , Mn = max{|µni,1 − µ0

j,1|, |Σni,11 − Σ0
j,11|1/2 : i ∈ Aj}.

For any i ∈ Aj , pni /mn forms a bounded sequence of positive real numbers. Therefore, up to replacing it by a subsequence, it
admits a nonnegative limit which we denote by z2

i = limn→∞ pni /mn. We similarly define xi = limn→∞(µni,1−µ0
j,1)/Mn,

and yi = limn→∞(Σni,11 − Σ0
j,11)/2M2

n. We note that, since pni ≥ c0 due to the definition of Ok,c0(Θ), the real numbers
zi are nonvanishing, and at least one is equal to 1. Similarly, at least one of each of the ai and bi is equal to 1 or −1.
Furthermore, D̃n,1/(mnM

τ1
n ) 6→ 0 for any τ1 = 1, . . . , r̄(|Aj |). We may then divide the numerator and denominator in

equation (26) by Mτ1
n mn and take n→∞, to obtain the following system of polynomial equations

∑

i∈Aj

∑

α1+2β11=τ1

z2
i x

α1
i yβ11

i

α1!β11!
= 0, τ1 = 1, . . . , r̄(|Aj |).
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By definition of r̄(|Aj |), this system cannot have any nontrivial solutions, which is a contradiction.

Case 3.2: Dn,2/Dn 6→ 0. In this case, there must instead exist indices 1 ≤ j ≤ k0 and 1 ≤ u 6= v ≤ d for which
D̃n,2/Dn,2 6→ 0, where

D̃n,2 =
∑

i∈Aj

pni |Σni,uv − Σ0
j,uv|r̄(|Aj |)/2.

Without loss of generality, we assume u = 1 and v = 2, and fix the above choice of j throughout the sequel. Similarly to the
previous case, we have by assumption that aτ,j/D̃n,2 → 0 for all 1 ≤ |τ | ≤ r̄(|Aj |). It must also follow that for all such τ ,
aτ,j/Dn,2 → 0, where

Dn,2 =
∑

i∈Aj

pni |Σni,12 − Σ0
j,12|2.

Here, we used the fact that |Aj | ≥ 2, hence r̄(|Aj |) ≥ 4. In particular, this property holds for the value τ = (2, 2, 0, . . . , 0),
where we again note that this choice of τ is allowable because r̄(|Aj |) ≥ 4 = |τ |. Therefore,

1

Dn,2

∑

α,β
τ0(α,β)=τ

∑

i∈Aj

1

2|β|α!β!
pni (µni − µ0

j )
α(Σni − Σ0

j )
β → 0.

Since Case 3.1 does not hold, we have Dn,1/D2,n → 0. Therefore, under the assumption of Case 3.2, any term in the above
summation with αl > 0 or βll > 0 (l = 1, 2) vanishes, and the preceding display thus reduces to

1

Dn,2

∑

i∈Aj

pni (Σni,12 − Σ0
j,12)2 → 0.

By definition of Dn,2, this is a contradiction, thus Case 3.2 could not have held.

Case 3.3: Dn,3/Dn 6→ 0. By assumption, the coefficients bκ,j/Dn vanish for all multi-indices κ ∈ Nd satisfying
|κ| ∈ {1, 2}, and all j = 1, . . . , k0. Therefore, their absolute sum also vanishes, implying

1

Dn

∑

j:|Aj |=1

2∑

|κ|=1

|bκ,j | =
1

Dn

∑

j:|Aj |=1

∑

i∈Aj

pni

(∥∥µni − µ0
j

∥∥
1

+
1

2

∥∥Σni − Σ0
j

∥∥
1

)
→ 0

The assumption of Case 3.3, together with the topological equivalence of the norms ‖·‖1 and ‖·‖2, then implies

1

Dn,3

∑

j:|Aj |=1

∑

i∈Aj

pni
(∥∥µni − µ0

j

∥∥+
∥∥Σni − Σ0

j

∥∥)→ 0,

which is a clear contradiction.

Case 3.4: Dn,4/Dn 6→ 0. In this case, it is clear that the coefficients cj/Dn,4 6→ 0, whence cj/Dn 6→ 0, for all
j = 1, . . . , k0, and we immediately obtain a contradiction.

We have thus shown that each of Cases 3.1-3.4 lead to a contradiction. We conclude that at least one of the coefficients
aτ,j/Dn, bκ,j/Dn, cj/Dn does not tend to zero.

Step 4: Reduction to Location-Gaussian Strong Identifiability. Let mn denote the maximum of the absolute values of
the coefficients aτ,j/Dn, bκ,j/Dn, cj/Dn, and set dn = 1/mn. Similarly as in the proof of Lemma 9, there exist real
numbers ζτ,j , ξκ,j , νj not all zero such that for almost all x ∈ R,

dnAn(x)

Dn
−→

∑

j:|Aj |>1

2r̄(|Aj |)∑

|τ |=1

ζτ,j
∂|τ |f

∂µτ
(x|θ0

j ),

dnBn(x)

Dn
−→

∑

j:|Aj |=1

2∑

|κ|=1

ξκ,j
∂|κ|f

∂µκ
(x|θ0

j ),
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dnCn(x)

Dn
−→

k0∑

j=1

νjf(x|θ0
j ).

Furthermore, by Step 3, supn≥1 dn <∞, and by the assumption V (pGn , pG0
)/Dn → 0, we arrive at

dn
V (pGn , pG0

)

Dn
�
∫
dn

∣∣∣∣
An(x) +Bn(x) + Cn(x)

Dn

∣∣∣∣ dx→ 0.

By Fatou’s Lemma, the integrand of the above display vanishes for almost all x ∈ R, whence

∑

j:|Aj |>1

2r̄(|Aj |)∑

|τ |=1

ζτ,j
∂|τ |f

∂µτ
(x|θ0

j ) +
∑

j:|Aj |=1

2∑

|κ|=1

ξκ,j
∂|κ|f

∂µκ
(x|θ0

j ) +

k0∑

j=1

νjf(x|θ0
j ) = 0.

The strong identifiability of the location-Gaussian family now implies that the coefficients ζτ,j , ξκ,j , νj are all zero, which is
a contradiction. The claim follows. �

A.5. Proof of Theorem 6

For any mixing measure G ∈ Ok(Θ), let F (x,G) =
∫ x
−∞ pG(x)dν(x) denote the CDF of pG. Similarly to the previous

subsections, the proof will follow from the following key inequality relating W̃ to a statistical distance, which we take to be
the Kolmogorov-Smirnov distance by analogy with Heinrich & Kahn (2018).

Lemma 11. Under the same conditions as Theorem 6, there exist C, ε0 > 0 depending on c0,F , and G∗ such that

‖F (·, G)− F (·, G′)‖∞ ≥ CW̃ (G,G′), (27)

for any G ∈ Ok,c0(Θ) and G′ ∈ Ek0,c0(Θ) such that W̃ (G,G∗) ∨ W̃ (G′, G∗) ≤ ε0.

Taking Lemma 11 for granted, notice that

‖F (·, Ĝn)− F (·, Gn0 )‖∞ ≤ h(pĜn , pG
n
0
).

Furthermore, under the conditions of Theorem 6, we may apply Proposition 3 to deduce that there is an event An and a
constant c > 1 such that P(Ac

n) ≤ c/n and p̂ni ≥ 1/c for all i ∈ [k̂n] over An. As in the proof of Theorem 5, we may
therefore set c′0 = c0 ∧ c−1 and deduce that Ĝn ∈ Ok,c′0(Θ) over the event An. Therefore, by Lemma 11 and Theorem 2(ii),

EW̃ (Ĝn, G
n
0 ) = E

[
W̃ (Ĝn, G

n
0 )IAn

]
+ E

[
W̃ (Ĝn, G

n
0 )IAc

n

]
. E

[
h(pĜn , pG

n
0
)IAn

]
+ 1/n . log n/

√
n.

This proves the claim; it thus remains to prove the key Lemma 11.

Proof of Lemma 11. The proof of Lemma 11 is a refinement of the proof of Theorem 6.3 in Heinrich & Kahn (2018) where
we carefully consider the behavior of individual mixing components and weights of the mixing measures involved. Notice
that in the special case k∗ = 1, the loss function W̃ is equal to W k+k0−1

k+k0−1 , and the claim can be deduced identically as
in Heinrich & Kahn (2018). We therefore assume k∗ ≥ 2 throughout the sequel.

To prove inequality (27), we assume that it does not hold. Therefore, there exist sequences Gn ∈ Ok,c0(Θ), G′n ∈ Ek0,c0(Θ)

such that W̃ (Gn, G∗) → 0, W̃ (G′n, G∗) → 0, and ‖F (·, Gn) − F (·, G′n)‖∞/W̃ (Gn, G
′
n) → 0 as n → ∞. Similarly to

the proof of Theorem 9, we can find subsequences of Gn, G′n such that Aj(Gn),Aj(G′n) do not change with n ≥ 1, for
all 1 ≤ j ≤ k0. Without loss of generality, we therefore assume that Aj = Aj(Gn) and A′j = Aj(G′n) are constant with
n ≥ 1, for all j ∈ [k0]. Furthermore, up to taking subsequences once again, we may assume that Gn has exact order k̄ ≤ k
for all n ≥ 1, and we denote Gn =

∑k̄
i=1 p

n
i δθni and G′n =

∑k0

i=1(pni )′δ(θni )′ . Now, define

(ωni , ν
n
i ) =

{
(pni , θ

n
i ), 1 ≤ i ≤ k̄

(−(pn
i−k̄)′, (θn

i−k̄)′), k̄ + 1 ≤ i ≤ k̄ + k0,
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and let Bj = A′j + k̄ = {i+ k̄ : i ∈ A′j}. Based on this notation, we may rewrite W̃ (Gn, G
′
n) as follows:

W̃ (Gn, G
′
n) = inf

q∈Π(Gn,G′n)

{ k∗∑

l=1

∑

(i,j)∈Al×Bl

qi(j−k̄)|νni − νnj ||Al|+|Bl|−1 +
∑

(i,j)6∈∪k∗l=1Al×Bl

qi(j−k̄)

}
.

From Lemma 7.1 in Heinrich & Kahn (2018), we can find a finite number (S+1) of scaling sequences 0 ≡ τ0(n) < τ1(n) <
. . . < τS(n) ≡ 1, where τs(n) = o(τs+1(n)), such that for any j, j′ ∈ {1, 2, . . . , k̄ + k0}, we can find a unique integer
s(j, j′) ∈ {0, 1, . . . , S} satisfying |νnj − νnj′ | � τs(j,j′)(n). In the sequel, we shall sometimes omit the dependence on n in
the preceding notation. It can be inferred from its definition that s(·, ·) defines an ultrametric on the set {1, 2, . . . , k̄ + k0}.
As in Heinrich & Kahn (2018), this allows us to construct a coarse-graining tree over the set of balls in {1, . . . , k̄ + k0}
relative to the metric s. In the interest of being self-contained, we recall their definition as follows.

Definition 2 (Definition 7.2 (Heinrich & Kahn, 2018)). The coarse-graining tree T is the collection of distinct balls
J = {i ∈ {1, . . . , k̄ + k0} : s(i, j) ≤ s}, called nodes, for j = 1, . . . , k̄ + k0 and s = 0, . . . , S. Moreover,

• The root of T is Jroot = {1, . . . , k̄ + k0}.

• J↑ ∈ T is called the parent of a node J ∈ T if the following implication holds for all I ∈ T ,

(J ⊆ I ( J↑, I ∈ T ) =⇒ I = J.

• The set of children of a node J ∈ T is Child(J) = {I ∈ T : I↑ = J}.

• The set of descendants of a node J ∈ T is Desc(J) = {I ∈ T : I↑ ⊆ J}.

• The diameter of a node J ∈ T is s(J) = maxj,j′∈J s(j, j
′).

Since k∗ ≥ 2, it is a straightforward consequence of these definitions that the cardinality of Child(Jroot) is exactly k∗, and
we shall write Child(Jroot) = {J1, . . . ,Jk∗}. Furthermore, note that

Jl = Al ∪ Bl, l = 1, . . . , k∗. (28)

Now, let πJ =
∑
j∈J ω

n
j and τJ = τs(J)(n), for all J ∈ T . We claim that the following key asymptotic equivalence holds.

Lemma 12. We have,

W̃ (Gn, G
′
n) � max

{
max

1≤l≤k∗
max

J∈Desc(Jl)
|πJ |τ |Al|+|Bl|−1

J↑
, max
1≤l≤k∗

|πJl |
}
. (29)

The proof of Lemma 12 is deferred to Section A.5.1. We next show how this Lemma may be used to lower bound the
expansion of F (·, Gn) around F (·, G′n). We begin with the following result, which is a simplified statement of Lemma 7.4
of Heinrich & Kahn (2018). In the sequel, for any node J ∈ T , let νJ denote an arbitrary but fixed element of {νnj : j ∈ J}.
Lemma 13 (Lemma 7.4 Heinrich & Kahn (2018)). For every l = 1, . . . , k∗, there exists a vector al = (al(p))0≤p≤k+k0

and a remainder Rl such that for all x ∈ R,

∑

j∈Jl

ωjF (x, νnj ) =

k+k0∑

p=0

al(p)τ
p
JlF

(p)(x, νJl) +Rl(x),

Furthermore, the following assertions hold.

(i) We have al(0) = πJl , and,

‖al‖ � max
0≤p≤|Jl|−1

|al(p)| & max
J∈Desc(Jl)

|πJ |
(
τJ↑

τJl

)|Jl|−1

.
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(ii) We have, ‖Rl‖∞ = o(‖al‖τk+k0

Jl ).

By Lemma 13, we have for all x ∈ R,

F (x,Gn)− F (x,G′n) =

k∗∑

l=1

∑

j∈Jl

ωjF (x, νnj ) =

k∗∑

l=1

k+k0∑

p=0

al(p)τ
p
JlF

(p)(x, νJl) +

k∗∑

l=1

Rl(x).

Let Mn,l = max0≤p≤|Jl|−1 |al(p)|τpJl for any l = 1, . . . , k∗, and let Mn = max1≤l≤k∗Mn,l. By Lemma 13(i), we have

Mn,l ≥ |al(0)| = |πJl |, (30)

and additionally,

Mn,l & max
J∈Desc(Jl)

|πJ |
(
τJ↑

τJl

)|Jl|−1

min
0≤p≤|Jl|−1

τpJl = max
J∈Desc(Jl)

|πJ |τ |Jl|−1

J↑
. (31)

Let Dn = W̃ (Gn, G
′
n). By Lemma 12 and equations (30)–(31), we deduce that Mn/Dn & 1. Additionally, by

Lemma 13(ii), we have ‖∑lRl‖∞ = o(Mn). Therefore, setting dn = Dn/Mn, we obtain that there exist finite real
numbers αlp ∈ R, not all of which are zero, such that,

∥∥∥∥∥dn
F (·, Gn)− F (·, G′n)

Dn
−

k∗∑

l=1

k+k0∑

p=0

αlpF
(p)(·, θ∗l )

∥∥∥∥∥
∞

→ 0.

On the other hand, since dn . 1, we have by assumption that dn‖F (·, Gn)− F (·, G′n)‖∞/Dn → 0, thus we must obtain
∥∥∥∥∥
k∗∑

l=1

k+k0∑

p=0

αlpF
(p)(·, θ∗l )

∥∥∥∥∥
∞

= 0.

By the strong identifiability condition of order k+k0, it must follow that αlp = 0 for all l = 1, . . . , k∗ and p = 0, . . . , k+k0,
which is a contradiction. The claim thus follows.

A.5.1. PROOF OF LEMMA 12.

We first prove the lower bound of equation (29). For any coupling q ∈ Π(Gn, G
′
n) and for any J, J ′ ∈ T , we denote

W (J, J ′; q) =

k∗∑

l=1

∑

(i,j)∈(Al∩J)×(Bl∩J′)

qi(j−k̄)|νni − νnj ||Al|+|Bl|−1 +
∑

(i,j)∈M(J,J ′)\∪k∗l=1(Al∩J)×(Bl∩J′)

qi(j−k̄),

whereM(J, J ′) = (J ∩{1, . . . , k̄})× (J ′∩{k̄+1, . . . , k̄+k∗}). From the above definition, we obtain that W̃ (Gn, G
′
n) =

infq∈Π(Gn,G′n)W (Jroot,Jroot; q). Now, for any coupling q between Gn and G′n and for any node J in the tree T , we obtain
that

W (Jroot,Jroot; q) ≥W (J, Jc; q) +W (Jc, J ; q).

Since |vni − vnj | & τJ↑ for any (i, j) ∈ J × Jc or (i, j) ∈ Jc × J , it follows that

W (J, Jc; q) +W (Jc, J ; q) &
k∗∑

l=1


 ∑

(i,j)∈(Al∩J)×(Bl∩Jc)

qi(j−k̄) +
∑

(i,j)∈(Al∩Jc)×(Bl∩J)

qi(j−k̄)


 τ |Al|+|Bl|−1

J↑

+


 ∑

(i,j)∈M(J,Jc)\∪k∗l=1(Al∩J)×(Bl∩Jc)

qi(j−k̄) +
∑

(i,j)∈M(Jc,J)\∪k∗l=1(Al∩Jc)×(Bl∩J)

qi(j−k̄)


 := C, (32)

There are two settings of node J :
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Case 1: J ∈ Child(Jroot). In this case, J = Jl for some l ∈ [k∗]. We deduce from equation (28) thatAl∩Jc = Bl∩Jc = ∅.
Therefore, from equation (32), we obtain that

C =
∑

(i,j)∈M(J,Jc)

qi(j−k̄) +
∑

(i,j)∈M(Jc,J)

qi(j−k̄) ≥

∣∣∣∣∣∣
∑

(i,j)∈M(J,J∪Jc)

qi(j−k̄) −
∑

(i,j)∈M(J∪Jc,J)

qi(j−k̄)

∣∣∣∣∣∣
= |πJ |. (33)

Case 2: J ∈ Desc(Jl) for some l ∈ [k∗]. Under this case, we can verify that

C &
[ ∑

(i,j)∈(Al∩J)×(Bl∩Jc)

qi(j−k̄) +
∑

(i,j)∈(Al∩Jc)×(Bl∩J)

qi(j−k̄) +
∑

(i,j)∈M(J,Jc)\∪k∗l=1(Al∩J)×(Bl∩Jc)

qi(j−k̄)

+
∑

(i,j)∈M(Jc,J)\∪k∗l=1(Al∩Jc)×(Bl∩J)

qi(j−k̄)

]
τ
|Al|+|Bl|−1

J↑
& |πJ |τ |Al|+|Bl|−1

J↑
. (34)

Combining the results of equations (32), (33), and (34), we obtain the lower bound that

W̃ (Gn, G
′
n) & max

{
max

1≤l≤k∗
max

J∈Desc(J l)
|πJ |τ |Al|+|Bl|−1

J↑
, max
1≤l≤k∗

|πJ l |
}
.

Therefore, to obtain the conclusion of claim (29), it remains to verify the upper bound of W̃ (Gn, G
′
n) in that claim. Based

on Lemma B.2 of Heinrich & Kahn (2018), we can construct a coupling q̄ between Gn and G′n such that for any node
J ∈ T , we have

k∗∑

l=1

∑

(i,j)∈(Al∩J)×(Bl∩J)

q̄i(j−k̄) = min{pJ , p′J}, (35)

where pJ =
∑
i∈J∩{1,...,k̄} p

n
i and p′J =

∑
i∈J∩{k̄+1,...,k̄+k0}(p

n
i−k̄)′. Given the coupling q̄, we first prove that for any

node J that is a descendant of J l or equal to J l for some l ∈ [k∗], we have

W (J, J ; q̄) . max
K∈Desc(J)

|πK |τ |Al|+|Bl|−1

K↑
. (36)

We prove the inequality (36) by induction. When J is an end node of J l, W (J, J ; q̄) = 0; therefore, inequality (36) holds
true. We assume that this inequality holds for any node K which is a child of a given node J . We now proceed to show that
this inequality also holds for J . In fact, we have the following identity:

W (J, J ; q̄) =
∑

K∈Child(J)

(
W (K,K; q̄) +

∑

K′ 6=K;K′∈Child(J)

W (K,K ′; q̄)

)
.

Note that, for any K and K ′ that are children of node J , we have

W (K,K ′; q̄) =
∑

(i,j)∈(Al∩K)×(Bl∩K′)

q̄i(j−k̄)|νni − νnj ||Al|+|Bl|−1.

From the induction hypothesis, we obtain that W (K,K; q̄) . maxQ∈Desc(K) |πQ|τ |Al|+|Bl|−1

Q↑
. Furthermore, for any

K ′ 6= K and K ′ ∈ Child(J), we find that

W (K,K ′; q̄) .

( ∑

(i,j)∈(Al∩K)×(Bl∩K′)

q̄i(j−k̄)

)
τ
|Al|+|Bl|−1
J . |πK |τ |Al|+|Bl|−1

J ,

where the bound on the first factor follows from equation (35). Collecting the above results, we arrive at W (J, J ; q̄) .

maxK∈Desc(J) |πK |τ |Al|+|Bl|−1

K↑
. Therefore, inequality (36) is proved for any node J that is a descendant of J l or equal to

J l for some l ∈ [k∗].
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Now, we proceed to prove the following inequality

W (Jroot,Jroot; q̄) . max

{
max

1≤l≤k∗
max

J∈Desc(J l)
|πJ |τ |Al|+|Bl|−1

J↑
, max
1≤l≤k∗

|πJ l |
}
. (37)

In fact, we have

W (Jroot,Jroot; q̄) =

k∗∑

l=1

(
W (J l,J l; q̄) +

∑

l′ 6=l

W (J l,J l′ ; q̄)

)
.

From inequality (36), we obtain that W (J l,J l; q̄) . maxJ∈Desc(J l) |πJ |τ |Al|+|Bl|−1

J↑
for any l ∈ [k∗]. Furthermore, for

any l′ 6= l, we find that

W (J l,J l′ ; q̄) =
∑

(i,j)∈M(J l,J l′ )\∪k∗l=1(Al∩J l)×(Bl∩J l′ )

q̄i(j−k̄) . |πJ l | = |πJ l |.

Putting the above results together, we obtain the conclusion of inequality (37). Since W̃ (Gn, G
′
n) ≤W (Jroot,Jroot; q̄), we

reach the conclusion of claim (29).

B. Additional Results
In this appendix, we state and prove the following result which was deferred from the main text.

Lemma 14. Let Θ ⊆ Rd be a compact set with nonempty interior.

(a) Let ∆ = 1 ∨ diam(Θ) <∞ and G0 ∈ Ek0
(Θ). Then, for any G ∈ Ok(Θ), we have

D(G,G0) ≥ 1

∆2
W 2

2 (G,G0).

(b) Assume the mixing measure G0 ∈ Ek0
(Θ) admits a support point θ0 lying in the interior of Θ. Then,

sup
G∈Ok(Θ)
G 6=G0

D(G,G0)

W 2
2 (G,G0)

=∞.

Proof. Let G ∈ Ok(Θ) and Aj = Aj(G) for all j = 1, . . . , k0. By Lemma B.2 of Heinrich & Kahn (2018), there exists a
coupling q̄ ∈ Π(G,G0) such that ∑

i∈Aj

q̄ij = p0
j ∧

∑

i∈Aj

pi, j = 1, . . . , k0.

Using the above display and the marginal constraints in the definition of a coupling, we obtain

W 2
2 (G,G0) ≤

k∑

i=1

k0∑

j=1

q̄ij‖θi − θ0
j‖2

≤
k0∑

j=1

∑

i∈Aj

q̄ij‖θi − θ0
j‖2 + ∆2

k0∑

j=1

∑

i6∈Aj

q̄ij

=

k0∑

j=1

∑

i∈Aj

q̄ij‖θi − θ0
j‖2 + ∆2

k0∑

j=1


p0

j −
∑

i∈Aj

q̄ij




≤
k0∑

j=1

∑

i∈Aj

pi‖θi − θ0
j‖2 + ∆2

k0∑

j=1

∣∣∣∣∣∣
p0
j −

∑

i∈Aj

pi

∣∣∣∣∣∣
(38)
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≤
∑

j:|Aj |=1

∑

i∈Aj

pi‖θi − θ0
j‖2 +

∑

j:|Aj |≥2

∑

i∈Aj

pi‖θi − θ0
j‖2 + ∆2

k0∑

j=1

∣∣∣∣∣∣
p0
j −

∑

i∈Aj

pi

∣∣∣∣∣∣

≤ ∆
∑

j:|Aj |=1

∑

i∈Aj

pi‖θi − θ0
j‖+

∑

j:|Aj |≥2

∑

i∈Aj

pi‖θi − θ0
j‖2 + ∆2

k0∑

j=1

∣∣∣∣∣∣
p0
j −

∑

i∈Aj

pi

∣∣∣∣∣∣

≤ ∆2





∑

j:|Aj |=1

∑

i∈Aj

pi‖θi − θ0
j‖+

∑

j:|Aj |≥2

∑

i∈Aj

pi‖θi − θ0
j‖2 +

k0∑

j=1

∣∣∣∣∣∣
p0
j −

∑

i∈Aj

pi

∣∣∣∣∣∣





= ∆2D(G,G0), (39)

since ∆ ≥ 1. This proves part (a). To prove part (b), recall that G0 =
∑k0

j=1 p
0
jδθ0

j
admits a support point lying in the

interior of Θ. Without loss of generality, we assume this support point is θ0
1 . Therefore, there exists ε0 > 0 such that for all

ε ∈ (0, ε0), θ0
ε := (1 + ε)θ0

1 ∈ Θ. Define the mixing measure

Gε = p0
1δθ0

ε
+

k0∑

j=2

p0
jδθ0

j
∈ Ok0

(Θ) ⊆ Ok(Θ).

Clearly, we may also choose ε0 small enough such that θ0
ε ∈ A1(Gε) for all ε ∈ (0, ε0). Thus, |Aj(Gε)| = 1 for every

j = 1, . . . , k0. By equation (38), we therefore have

W 2
2 (Gε, G0) ≤ p0

1‖θ0
ε − θ0

1‖2 = p0
1ε

2.

On the other hand, using again the fact that |Aj(Gε)| = 1 for each j = 1, . . . , k0, we have

D(Gε, G0) = p0
1ε.

We deduce that

sup
G∈Ok(Θ)
G6=G0

D(G,G0)

W 2
2 (G,G0)

≥ sup
ε∈(0,ε0)

D(Gε, G0)

W 2
2 (Gε, G0)

≥ sup
ε∈(0,ε0)

1

ε
=∞,

as claimed.

C. Simulation Study
We perform a simulation study to illustrate the convergence rates of the penalized MLE given in Sections 3 and 4. All
simulations hereafter were performed in Python 3.7 on a standard Unix machine, and we provide further numerical details in
Appendix C.1. All code for reproducing our simulation study is publicly available.1

We consider three models A–C, which respectively correspond to the settings described in Sections 3.1, 3.2, and 4. In each
case, we choose the kernel density f to be the d-dimensional Gaussian density, and we generate observations from the
Gaussian mixture density,

pG0
(x) =

k0∑

j=1

π0
j

exp
{
− 1

2 (x− µ0
j )
>(Σ0

j )
−1(x− µ0

j )
}

√
det(2πΣ0

j )
,

where x ∈ Rd. The models are defined as follows.

Model A. We treat the scale parameters as equal and known, and set

Σ0
1 = . . .Σ0

k0
= .01Id, (40)

with d = 2 and k0 = 2. The resulting location-Gaussian family of densities is strongly identifiable (Chen, 1995; Ho &
Nguyen, 2016a), thus the result of Theorem 4 applies to this family. We set the location parameters and mixing proportions

1https://github.com/tmanole/Refined-Mixture-Rates

https://github.com/tmanole/Refined-Mixture-Rates
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as follows,

θ0
1 =

(
0
0

)
, θ0

2 =

(
.2
.2

)
, π0

1 = π0
2 =

1

2
.

Model B. We next consider a two-dimensional Gaussian mixture model with k0 = 3 components, however we now treat
both location and scale parameters as unknown. Define,

µ0
1 =

(
0
.3

)
, µ0

2 =

(
.1
−.4

)
, µ0

3 =

(
.5
.2

)
,

Σ0
1 =

(
.042824 .017324
.017324 .081759

)
, Σ0

2 =

(
.0175 −.0125
−.0125 .0175

)
,

Σ0
3 =

(
0.01 −.0125
−.0125 .0175

)
, π0

1 =
1

3
, π0

2 =
1

4
, π0

3 =
1

3
.

The above parameters are taken from the simulation study of Ho & Nguyen (2016b), up to rescaling. This model falls within
the setting of Theorem 5.

Model C. We again consider a location-Gaussian family as in Model A, but now with parameters G0 ≡ Gn0 depending
on the sample size n. We set the scale parameters as in equation (40) with d = 1. Furthermore, we consider two distinct
submodels, depending on the true number of components k0. Our definitions depend on the sequence εn = n−

1
4k0−6 .

• When k0 = 3, we set

µ0
1,n = 0, µ0

2,n = .2 + εn, µ
0
3,n = .2 + 4εn.

• When k0 = 4, we retain the above parameters and additionally define

µ0
4,n = .2− 1.5εn.

In both cases, the mixing proportions are chosen such that the resulting mixtures are balanced. These models correspond to
the setting described in Section 4, relative to the limiting mixing measure

G∗ =
1

2
δ0 +

1

2
δ.2, k∗ = 2.

For each model, we generate 20 samples of size n, for 100 different choices of n between 102 and 105. For each sample,
we compute the penalized MLE Ĝn with respect to the tuning parameter ξn = log n, and with respect to a number of
components k. For the fixed Models A–B, we choose k ∈ {k0 + 1, k0 + 2}, whereas for the varying Model C, we choose
k = k0 ∈ {k∗ + 1, k∗ + 2}.
We report in Figure 2 the average discrepancy between Ĝn and G0 for each model and choice of k. The discrepancies are
respectively taken to be D,D and W̃ for Models A–C. In each case, it can be seen that the average discrepancy from Ĝn to
G0 decays approximately at the rate n−1/2, as was anticipated by Theorems 4, 5 and 6.

While these empirical convergence rates are similar across the three models, they imply vastly different convergence
behaviors for the individual fitted parameters. For example, Figure 2(a) implies that Ĝn has exactly two location parameters
µ̂nj which converge to one of their population counterparts at the approximate rate αn = n−1/4, and a third location
parameter converging at the faster rate βn = n−1/2. Under Figure 2(e), a similar conclusion holds true, but now two
possibilities arise: either αn = n−1/6 and βn = n−1/2, or αn = βn = n−1/4. In contrast, past literature on mixture models
only implies that the worst of these rates (i.e. n−1/4 for Model A and n−1/6 for Model C) hold for all three fitted parameters.
The main contribution of our work was to show that such results are overly pessimistic, and that the fitted parameters of
finite mixture models typically enjoy heterogeneous rates of convergence. In particular, a subset of the estimated parameters
in finite mixture models may converge as fast as the parametric rate.
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Figure 2. Log-log scale plots for the simulation results under Models A–C. For each model and sample size n, we compute the estimator
Ĝn on 20 independent samples of size n. Its average discrepancy from the true mixing measure is plotted in blue, with error bars
representing two empirical standard deviations. We additionally plot, in orange, the fitted linear regression line of these points, obtained
using the method of least squares.

C.1. Numerical Specifications

We implement the penalized MLE Ĝn using Algorithm 1, which is a slight modification of the EM algorithm Dempster et al.
(1977) accounting for the penalty on the mixing proportions. This algorithm was previously discussed, for instance, by Chen
& Khalili (2008); Manole & Khalili (2021), and only differs from the traditional EM algorithm for Gaussian mixture models
through the update on line 6. We used Algorithm 1 as written for Model B, whereas for Models A and C, we omitted the
update on line 8 for the scale parameters, and simply held them fixed to their true values.

Algorithm 1 Modified EM Algorithm.

Input: Starting values Ψ(0) = (θ
(0)
1 , . . . , θ

(0)
k ,Σ

(0)
1 , . . . ,Σ

(0)
k , π

(0)
1 , . . . , π

(0)
k ); i.i.d. sample X1, . . . , Xn; tuning parameter

ξn = log n; maximum number of iterations T > 0; convergence criterion ε > 0.
1 repeat
2 E-Step :

3 Compute w(t+1)
ij ← π

(t)
j log f(Xi;θ

(t)
j ,Σ

(t)
j )∑k

l=1 π
(t)
l log f(Xi;θ

(t)
l ,Σ

(t)
l )

, i = 1, . . . , n; j = 1, . . . , k.

4 M-Step :
5 For j = 1, . . . , k,

6 π
(t+1)
j ←

∑n
i=1 w

(t)
ij +ξn

n+kξn
,

7 µ
(t+1)
j ←∑n

i=1 w
(t)
ij Xi/

∑n
i=1 w

(t)
ij ,

8 Σ
(t+1)
j ←∑n

i=1 w
(t)
ij (Xi − µ(t)

j )(Xi − µ(t)
j )>/

∑n
i=1 w

(t)
ij ,

9 Ψ(t+1) ← (θ
(t)
1 , . . . , θ

(t)
k ,Σ

(t)
1 , . . .Σ

(t)
k , π

(t)
1 , . . . , π

(t)
k ),

10 t← t+ 1.

11 until
∥∥Ψ(t) −Ψ(t−1)

∥∥ ≤ ε or t ≥ T .
Output: Ψ(t).
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We chose the convergence criteria ε = 10−8 and T = 2, 000. Since our aim is to illustrate theoretical properties of the
estimator Ĝn, we initialized the EM algorithm favourably. In particular, for any given k and k0, and for each replication, we
randomly partitioned the set {1, . . . , k} into k0 index sets I1, . . . , Ik0 , each containing at least one point. We then sampled
θ

(0)
j (resp. Σ

(0)
j ) from a Gaussian distribution with vanishing covariance, centered at θ0

` (resp. Σ0
` ), where ` is the unique

index such that j ∈ I`.


