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Abstract
Multi-agent reinforcement learning (MARL) al-
gorithms often suffer from an exponential sample
complexity dependence on the number of agents,
a phenomenon known as the curse of multiagents.
We address this challenge by investigating sample-
efficient model-free algorithms in decentralized
MARL, and aim to improve existing algorithms
along this line. For learning (coarse) correlated
equilibria in general-sum Markov games, we pro-
pose stage-based V-learning algorithms that sig-
nificantly simplify the algorithmic design and
analysis of recent works, and circumvent a rather
complicated no-weighted-regret bandit subroutine.
For learning Nash equilibria in Markov potential
games, we propose an independent policy gradi-
ent algorithm with a decentralized momentum-
based variance reduction technique. All our al-
gorithms are decentralized in that each agent can
make decisions based on only its local informa-
tion. Neither communication nor centralized co-
ordination is required during learning, leading
to a natural generalization to a large number of
agents. Finally, we provide numerical simulations
to corroborate our theoretical findings.

1. Introduction
Many real-world sequential decision-making problems in-
volve the strategic interactions of multiple agents in a shared
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environment, which are commonly addressed with multi-
agent reinforcement learning (MARL). Successful applica-
tions of MARL include playing the game of Go (Silver et al.,
2016), Poker (Brown & Sandholm, 2018), real-time strategy
games (Vinyals et al., 2019), autonomous driving (Shalev-
Shwartz et al., 2016), and robotics (Kober et al., 2013).

Despite the empirical successes, sample-efficient solutions
are still relatively lacking for MARL with a large number
of agents, mostly due to the well-known challenge named
the curse of multiagents (Jin et al., 2021): The joint ac-
tion space in a MARL problem is equal to the Cartesian
product of the individual action spaces of all agents, which
scales exponentially in the number of agents. A typical
kind of algorithms that easily fail at this challenge are those
using centralized/joint learning (Boutilier, 1996; Claus &
Boutilier, 1998). Specifically, centralized learning assumes
the existence of a single coordinator who can access the lo-
cal information of all the agents, and learns policies jointly
for all of them. This centralized training (though possibly
decentralized execution) approach has become a common
practice in empirical MARL (Oliehoek et al., 2008; Foerster
et al., 2016; Lowe et al., 2017; Rashid et al., 2018; Son et al.,
2019; Mao et al., 2020a). Centralized learning essentially
reduces the multi-agent problem to a single-agent one, but
unfortunately suffers from the exponential dependence as it
usually needs to exhaustively search the joint action space.

Such a computation bottleneck can be partially resolved
by allowing communications among the agents and hence
distributing the workload to each of them (Kar et al., 2013;
Zhang et al., 2018; Dubey & Pentland, 2021). However,
communication-based methods instead suffer from the addi-
tional communication overheads, which can be unrealistic
in some real-world scenarios where communication may
be expensive and/or unreliable, such as in unmanned aerial
vehicle (UAV) field coverage (Pham et al., 2018).

Given the aforementioned limitations, in this paper, we are
interested in a more practical setting: decentralized learn-
ing1. We focus on solutions where each agent can make

1This setting has been studied under various names in the litera-
ture, including individual learning (Leslie & Collins, 2005), decen-
tralized learning (Arslan & Yüksel, 2016), agnostic learning (Tian
et al., 2021; Wei et al., 2021), and independent learning (Claus &
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decisions based on only its local information (e.g., local
actions and rewards), and need not communicate with its
opponents or be coordinated by any central controller dur-
ing learning. In fact, in our algorithms, the agents can be
completely oblivious to the presence of other agents. Un-
der such weak assumptions, decentralized algorithms are
suitable for many practical MARL scenarios (Fudenberg
et al., 1998), and do not suffer from the exponential sample
& computation complexity. Such algorithms are naturally
model-free, as they do not maintain explicit estimates of
the transition functions. Compared with model-based algo-
rithms, model-free ones typically enjoy higher time- and
space-efficiency, and are more compatible with the modern
deep RL architectures (Jin et al., 2018; Zhang et al., 2020b).

In this paper, we investigate the theoretical aspects of de-
centralized MARL in the non-asymptotic regime. We ad-
dress the curse of multiagents by presenting sample-efficient
model-free algorithms that scale to a large number of agents,
and aim to improve the existing algorithms along this line.
Our main contributions are summarized as follows.

Contributions. 1) For general-sum Markov games (Sec-
tion 3), we present algorithms that learn an ε-approximate
coarse correlated equilibrium (CCE) in Õ(H5SAmax/ε

2)
episodes, and an ε-approximate correlated equilibrium (CE)
in Õ(H5SA2

max/ε
2) episodes, where S is the number of

states,Amax is the size of the largest individual action space,
and H is the length of an episode. Our algorithms rely on a
novel stage-based V-learning method that significantly sim-
plifies the algorithmic design and analysis of recent works.
2) In the important special case of Markov potential games
(MPGs, Section 4), we propose an independent policy gra-
dient algorithm that learns an ε-approximate Nash equilib-
rium (NE) in ∝ Õ(1/ε4.5) episodes. Our algorithm utilizes
a momentum-based variance reduction technique that can
be executed in a decentralized way. 3) We further provide
numerical results that corroborate our theoretical findings
(Section 5). All our algorithms are decentralized and model-
free, and readily generalize to a large number of agents.

Related Work. A common mathematical framework of
MARL is stochastic games (Shapley, 1953), which are also
referred to as Markov games. Early attempts to learn NE in
Markov games include Littman (1994; 2001); Hu & Well-
man (2003); Hansen et al. (2013), but they either assume
the transition kernel and rewards are known, or only yield
asymptotic guarantees. Recently, various sample-efficient
methods have been proposed (Wei et al., 2017; Bai & Jin,
2020; Sidford et al., 2020; Xie et al., 2020; Bai et al., 2020;
Liu et al., 2021; Zhao et al., 2021; Guo et al., 2021), mostly
for learning in two-player zero-sum Markov games. Several

Boutilier, 1998; Daskalakis et al., 2020). It also belongs to a more
general category of teams/games with decentralized information
structure (Ho, 1980; Nayyar et al., 2013a;b).

works have investigated zero-sum games in a decentralized
setting as we consider here (Daskalakis et al., 2020; Tian
et al., 2021; Wei et al., 2021; Sayin et al., 2021), but these
results do not carry over in any way to general-sum games
or MPGs. We refer the reader to Appendix A for a more
detailed discussion on these related works.

For general-sum games, Rubinstein (2016) has shown a
sample complexity lower bound for learning NE that is
exponential in the number of agents. Recently, Liu et al.
(2021) has presented a line of results on learning NE, CE,
or CCE, but their algorithm is model-based, and suffers
from such exponential dependence. Song et al. (2021); Jin
et al. (2021); Mao & Başar (2022) have proposed V-learning
based methods for learning CCE and/or CE, and our stage-
based V-learning significantly simplifies the algorithmic
design and analysis along this line. Learning CE and CCE
has also been extensively studied in normal-form games
with no state transitions (Hart & Mas-Colell, 2000; Cesa-
Bianchi & Lugosi, 2006; Blum & Mansour, 2007).

Another line of research (Macua et al., 2018; Mguni et al.,
2021; Ding et al., 2022) has considered learning in Markov
potential games. Arslan & Yüksel (2016) has shown that
decentralized Q-learning can converge to NE in weakly
acyclic games, which cover potential games as a special
case. Their algorithm requires a coordinated exploration
phase, and only yields asymptotic guarantees. Two recent
works (Zhang et al., 2021; Leonardos et al., 2021) have
proposed independent policy gradient methods in MPGs,
which are most relevant to ours. We improve their sample
complexity dependence on ε by utilizing decentralized vari-
ance reduction, and we do not require the two-timescale
framework to coordinate policy evaluation as in Zhang et al.
(2021). Fox et al. (2021) has shown that independent natural
policy gradient also converges to NE, though only asymp-
totic convergence has been established. Finally, MPGs have
also been studied in Song et al. (2021), but their model-
based method is not decentralized, and requires the agents
to take turns to learn the policies.

2. Preliminaries
An N -player episodic Markov game is defined by a
tuple (N , H,S, {Ai}Ni=1, {ri}Ni=1, P ), where (1) N =
{1, 2, . . . , N} is the set of agents; (2) H ∈ N+ is the num-
ber of time steps in each episode; (3) S is the finite state
space; (4) Ai is the finite action space for agent i ∈ N ;
(5) ri : [H] × S × A → [0, 1] is the reward function for
agent i, where A = ×Ni=1Ai is the joint action (or action
profile) space; and (6) P : [H] × S × A → ∆(S) is the
transition kernel. We remark that both the reward func-
tion and the state transition function depend on the joint
actions of all the agents. We assume for simplicity that the
reward function is deterministic. Our results can be easily
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generalized to stochastic reward functions. Let S = |S|,
Ai = |Ai|,∀i ∈ N , and Amax = maxi∈N Ai.

The agents interact in an unknown environment for K
episodes. We assume that the initial state s1 of the en-
vironment follows a fixed distribution ρ ∈ ∆(S). At
each time step h ∈ [H], the agents observe the state
sh ∈ S, and take actions ah,i ∈ Ai, i ∈ N simultaneously.
Agent i then receives its private reward rh,i(sh,ah), where
ah = (ah,1, . . . , ah,N ), and the environment transitions to
the next state sh+1 ∼ Ph(·|sh,ah). Note that the state
transition here is general and not restricted to be determinis-
tic. This makes decentralized learning considerably more
challenging, as the agents cannot implicitly coordinate by
enumerating/rehearsing all possible states. We focus on the
decentralized setting, where each agent only observes the
states and its own rewards and actions, but not the rewards
or actions of the other agents. In fact, in our algorithms,
each agent is completely oblivious of the existence of the
others, and does not communicate with each other. This
decentralized information structure requires each agent to
learn to make decisions based on only its local information.

Policy and value function. A (Markov) policy πi : [H]×
S → ∆(Ai) for agent i ∈ N is a mapping from the time
index and state space to a distribution over its own action
space. We use Πi to denote the space of Markov policies
for agent i, and let Π = ×Ni=1Πi. Each agent seeks to
find a policy that maximizes its own cumulative reward. A
joint policy (or policy profile) π = (π1, . . . , πN ) induces a
probability measure over the sequence of states and joint
actions. For notational convenience, we use the subscript
−i to denote the set of agents excluding agent i, i.e.,N\{i}.
For example, we can rewrite π = (πi, π−i) using this con-
vention. For a policy profile π, and for any h ∈ [H], s ∈ S ,
and a ∈ A, we define the value function and the state-action
value function (or Q-function) for agent i as follows:

V πh,i(s)
def
= Eπ

[ H∑
h′=h

rh′,i(sh′ ,ah′) | sh = s

]
, (1)

Qπh,i(s,a)
def
= Eπ

[ H∑
h′=h

rh′,i(sh′ ,ah′) | sh = s,ah = a

]
.

For ease of notation, we also write V
(πi,π−i)
h,i (s) as

V
πi,π−i
h,i (s), and similarly for Q(πi,π−i)

h,i (s, a).

Best response and Nash equilibrium. For agent i, a policy
π?i is a best response to π−i for a given initial state s1 if
V
π?i ,π−i
1,i (s1) = supπi V

πi,π−i
1,i (s1). A policy profile π =

(πi, π−i) ∈ Π is a Nash equilibrium (NE) if πi is a best
response to π−i for all i ∈ N . We also have an approximate
notion of Nash equilibrium as follows:

Definition 1. (ε-approximate Nash equilibrium). For any
ε > 0, a policy profile π = (πi, π−i) ∈ Π is an ε-

approximate Nash equilibrium for an initial state s1 if
V
πi,π−i
1,i (s1) ≥ supπi′ V

πi′ ,π−i
1,i (s1)− ε, ∀i ∈ N .

Markov potential game. One particular subclass of games
that we are interested in is the Markov potential game.
Specifically, an episodic Markov game is an MPG if there
exists a global potential function Φs : Π → [0,Φmax] for
every initial state s ∈ S, such that for any i ∈ N , any
πi, πi′ ∈ Πi, and any π−i ∈ Π−i,

Φs(πi, π−i)− Φs(πi′ , π−i) = V
πi,π−i
1,i (s)− V πi′ ,π−i1,i (s).

(2)
Our definition of MPG follows Song et al. (2021), which
in turn is a variant of the definitions introduced in Macua
et al. (2018); Leonardos et al. (2021); Zhang et al. (2021). It
follows immediately that MPGs cover Markov teams (Lauer
& Riedmiller, 2000) as a special case, a cooperative setting
where all agents share the same reward function.

Correlated policy. More generally, we define π = {πh :
R × (S × A)h−1 × S → ∆(A)}h∈[H] as a (non-Markov)
correlated policy, where for each h ∈ [H], πh maps from
a random variable z ∈ R and a history of length h − 1
to a distribution over the joint action space. We assume
that the agents following a correlated policy can access a
common source of randomness (e.g., a common random
seed) for the random variable z. We let πi and π−i be the
proper marginal policies of π whose outputs are restricted
to ∆(Ai) and ∆(A−i), respectively.

For non-Markov correlated policies, we can still define their
value functions at step h = 1 in a sense similar to (1). A
best response π?i with respect to the non-Markov policies
π−i is a policy (independent of the randomness of π−i) that
maximizes agent i’s value at step 1, i.e., V π

?
i ,π−i

1,i (s1) =

supπi V
πi,π−i
1,i (s1). The best response to the non-Markov

policies of the opponents is not necessarily Markov.

(Coarse) correlated equilibrium. Given the PPAD-
hardness of calculating Nash equilibria in general-sum
games (Daskalakis et al., 2009), we introduce two relaxed
solution concepts, namely coarse correlated equilibrium
(CCE) and correlated equilibrium (CE). A CCE states that
no agent has the incentive to deviate from a correlated policy
π by playing a different independent policy.
Definition 2. (CCE). A correlated policy π is an ε-
approximate coarse correlated equilibrium for an initial
state s1 if V π

?
i ,π−i

1,i (s1)− V π1,i(s1) ≤ ε,∀i ∈ N .

CCE relaxes NE by allowing possible correlations in the
policies. Before introducing the definition of CE, we need
to first specify the concept of a strategy modification.
Definition 3. (Strategy modification). For agent i, a strat-
egy modification ψi = {ψsh,i : h ∈ [H], s ∈ S} is a
set of mappings from agent i’s action space to itself, i.e.,
ψsh,i : Ai → Ai.
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Algorithm 1: Stage-Based V-Learning for CCE (agent i)

1 Initialize: V h,i(s)← H − h+ 1, Ṽh,i(s)← H − h+ 1, Nh(s)← 0, Ňh(s)← 0, řh,i(s)← 0, v̌h,i(s)← 0,

Ťh(s)← H,µh,i(a | s)← 1/Ai, and Lh,i(s, a)← 0, ∀h ∈ [H], s ∈ S, a ∈ Ai.
2 for episode k ← 1 to K do
3 Receive s1;
4 for step h← 1 to H do
5 Nh(sh)← Nh(sh) + 1, ň

def
= Ňh(sh)← Ňh(sh) + 1;

6 Take action ah,i ∼ µh,i(· | sh), and observe reward rh,i and next state sh+1;
7 řh,i(sh)← řh,i(sh) + rh,i, v̌h,i(sh)← v̌h,i(sh) + V h+1,i(sh+1);

8 ηi ←
√
ι/AiŤh(sh), γi ← ηi/2;

9 Lh,i(sh, ah,i)← Lh,i(sh, ah,i) +
[H−h+1−(rh,i+V h+1,i(sh+1))]/H

µh,i(ah,i|sh)+γi
;

10 µh,i(a | sh)← exp(−ηiLh,i(sh,a))∑
a′∈Ai

exp(−ηiLh,i(sh,a′)) ,∀a ∈ Ai;
11 if Nh(sh) ∈ L then
12 //Entering a new stage

13 Ṽh,i(sh)← řh,i(sh)
ň +

v̌h,i(sh)
ň + bň, where bň ← 6

√
H2Aiι/ň;

14 V h,i(sh)← min{Ṽh,i(sh), H − h+ 1};
15 Ňh(sh)← 0, řh,i(sh)← 0, v̌h,i(sh)← 0, Ťh(sh)←

⌊
(1 + 1

H )Ťh(sh)
⌋
;

16 µh,i(a | sh)← 1/Ai, Lh,i(sh, a)← 0,∀a ∈ Ai;

Given a strategy modification ψi, for any policy π,
step h and state s, if π selects the joint action ah =
(ah,1, . . . , ah,N ), then the modified policy ψi � π will select
(ah,1, . . . , ah,i−1, ψ

s
h,i(ah,i), ah,i+1, . . . , ah,N ). Let Ψi de-

note the set of all possible strategy modifications for agent
i. A CE is a distribution where no agent has the incentive
to deviate from a correlated policy π by using any strategy
modification. It is known that {NE}⊂{CE}⊂{CCE} in
general-sum games (Nisan et al., 2007).

Definition 4. (CE). A correlated policy π is an ε-
approximate correlated equilibrium for initial state s1 if

sup
ψi∈Ψi

V ψi�π1,i (s1)− V π1,i(s1) ≤ ε,∀i ∈ N .

3. Stage-Based V-Learning for General-Sum
Markov Games

In this section, we introduce our stage-based V-learning
algorithms for learning CCE and CE in general-sum Markov
games, and establish their sample complexity guarantees.

3.1. Learning CCE

The Stage-Based V-Learning for CCE algorithm run by
agent i ∈ N is presented in Algorithm 1. The agent main-
tains upper confidence bounds on the value functions to
actively explore the unknown environment, and uses a stage-
based rule to independently update the value estimates.

For each step-state pair (h, s) ∈ [H]× S , we divide the vis-
itations to this pair into multiple stages, where the lengths

of the stages increase exponentially at a rate of (1 + 1/H)
(Zhang et al., 2020b). Specifically, we let e1 = H , and
ei+1 = b(1 + 1/H)eic, i ≥ 1 denote the lengths of the
stages, and let the partial sums L def

= {
∑j
i=1 ei | j =

1, 2, 3, . . . } denote the set of ending times of the stages. For
each (h, s) pair, we update our optimistic estimates V h(sh)
of the value function at the end of each stage (i.e., when the
total number of visitations to (s, h) lies in the set L), using
samples only from this single stage (Lines 11-16). This
way, our stage-based V-learning ensures that only the most
recent O(1/H) fraction of the collected samples are used
to calculate V h(sh), while the first 1−O(1/H) fraction is
forgotten. Such a stage-based update framework in some
sense mimics the celebrated optimistic Q-learning algorithm
with a learning rate of αt = H+1

H+t (Jin et al., 2018), which
also roughly uses the last O(1/H) fraction of samples for
value updates. Stage-based value updates also create a stage-
wise stationary environment for the agents, thereby partly
alleviating the well-known challenge of non-stationarity
in MARL. As a side remark, stage-based Q-learning has
also achieved near-optimal regret bounds in single-agent
RL (Zhang et al., 2020b).

At each time step h and state sh, agent i selects its ac-
tion ah,i by following a distribution µh,i(· | sh), where
µh,i(· | sh) is updated using an adversarial bandit subrou-
tine (Lines 9-10). This is consistent with the recent works
under the V-learning framework (Jin et al., 2021; Song et al.,
2021; Mao & Başar, 2022), but with a vital improvement:
Existing works using the celebrated αt = H+1

H+t learning rate
for V-learning inevitably entail a no-weighted-regret bandit
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problem, because such a time-varying learning rate assigns
different weights to each step in the history. A few methods
such as weighted follow-the-regularized-leader (Jin et al.,
2021; Song et al., 2021) and stabilized online mirror de-
scent (Mao & Başar, 2022) have been recently proposed to
address such a challenge, by simultaneously dealing with a
changing step size, a weighted regret, and a high-probability
guarantee, at the cost of less natural algorithms and more so-
phisticated analyses. In contrast, our stage-based V-learning
assigns uniform weights to each step in the previous stage,
and hence leads to a standard no(-average)-regret bandit
problem. This allows us to directly plug in any off-the-shelf
adversarial bandit algorithm and its analysis to our prob-
lem. For example, Algorithm 1 utilizes a simple Exp3 (Auer
et al., 2002) subroutine for policy updates, and a standard
implicit exploration technique (Neu, 2015) to achieve high-
probability guarantees. We provide a more detailed discus-
sion on such an improvement in Remark 1 of Appendix C.

Based on the policy trajectories from Algorithm 1, we con-
struct an output policy profile π̄ that we will show is a CCE.
For any step h ∈ [H] of an episode k ∈ [K] and any state
s ∈ S, we let µkh,i(· | s) ∈ ∆(Ai) be the distribution pre-
scribed by Algorithm 1 at this step. Let Ňk

h (s) denote the
value of Ňh(s) at the beginning of the k-th episode. Our
construction of the output policy is presented in Algorithm 2,
which follows the “certified policies” introduced in Bai et al.
(2020). We further let the agents sample the episode in-
dices using a common source of randomness, and hence the
output policy is correlated by nature. Such common random-
ness is also termed a correlation device, and is standard in
decentralized learning (Bernstein et al., 2009; Arabneydi &
Mahajan, 2015; Zhang et al., 2019). In practice, this can be
achieved by letting the agents agree on a common random
seed at the very beginning of the game, which only requires
exchanging a single scalar value. Note that the correlation
device is never used during the learning process to coor-
dinate the exploration, but is simply used to synchronize
the selection of the policies after they have been generated.
A common random seed is generally considered as a mild
assumption and does not break the decentralized paradigm.
It is also worth remarking that our stage-based update rule
simplifies the generating procedure of the output policy: In
the original construction of Bai et al. (2020), the certified
policy plays a weighted mixture of {µkh,i(· | s) : k ∈ [K]},
while in Algorithm 2, we only need to uniformly sample an
episode index from the previous stage.

The following theorem presents the sample complexity guar-
antee of Algorithm 1 for learning CCE in general-sum
Markov games. Our sample complexity bound improves
over Mao & Başar (2022) and matches those established
in Song et al. (2021); Jin et al. (2021), while significantly
simplifying their algorithmic design and analysis. The proof
is deferred to Appendix C due to space limitations.

Algorithm 2: Construction of the Output Policy π̄

1 Input: The distribution trajectory specified by
Algorithm 1: {µkh,i : i ∈ N , h ∈ [H], k ∈ [K]};

2 Uniformly sample k from [K];
3 for step h← 1 to H do
4 Receive sh;
5 Take joint action ah ∼ ×Ni=1µ

k
h,i(· | sh);

6 Uniformly sample j from {1, 2, . . . , Ňk
h (sh)};

7 Set k ← ľk
′

h,j , where ľkh,j is the index of the episode
such that state sh was visited the j-th time (among
the total Ňk

h (sh) times) in the last stage;

Theorem 1. (Sample complexity of learning CCE). For
any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let
the agents run Algorithm 1 for K episodes with K =
O(SAmaxH

5ι/ε2). Then, with probability at least 1 − p,
the output policy π̄ of Algorithm 2 is an ε-approximate CCE.

3.2. Learning CE

In this subsection, we aim at learning a more strict solu-
tion concept named correlated equilibrium. Our algorithm
for learning CE (a complete description presented in Al-
gorithm 6 of Appendix D) also relies on stage-based V-
learning, but replaces the no-regret learning subroutine in
Algorithm 1 with a no-swap-regret learning algorithm. Our
no-swap-regret algorithm follows the generic reduction in-
troduced in Blum & Mansour (2007), and converts a follow-
the-regularized-leader (FTRL) algorithm with sublinear ex-
ternal regret to a no-swap-regret algorithm (Jin et al., 2021).
A detailed description of such a no-swap-regret FTRL sub-
routine as well as its regret analysis is presented in Ap-
pendix D. Again, due to the stage-based update rule, we can
avoid the additional complication of dealing with a weighted
swap regret as faced by recent works (Jin et al., 2021; Song
et al., 2021). The construction of the output policy π̄ is
the same as Algorithm 2 and thus omitted. The following
theorem shows that our sample complexity guarantee for
learning CE improves over Song et al. (2021) and matches
the best known result in the literature (Jin et al., 2021). The
proof of the theorem can also be found in Appendix D.

Theorem 2. (Sample complexity of learning CE). For
any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let
the agents run Algorithm 6 for K episodes with K =
O(SA2

maxH
5ι/ε2). Then, with probability at least 1 − p,

the output policy π̄ is an ε-approximate CE.

As a final remark, notice that both the V-learning and the
no-regret learning components of our algorithms are decen-
tralized, which can be implemented using only the states
observed and the local action and reward information, with-
out any communication or central coordination among the
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agents. In addition, the sample complexity of our algorithms
only depend on Amax instead of

∏N
i=1Ai. This allows our

methods to easily generalize to a large number of agents.

4. Learning NE in Markov Potential Games
In this section, we present an algorithm for learning Nash
equilibria in decentralized Markov potential games, an im-
portant subclass of Markov games. Motivated by Leonardos
et al. (2021); Zhang et al. (2021), we utilize a policy gradient
method, where each agent independently runs a projected
gradient ascent (PGA) algorithm to update their policies.
We start from the case where the policy gradients can be cal-
culated exactly (using an infinite number of samples), and
then move to the more practical case where the gradients
are estimated using finite samples.

We first introduce a few notations for ease of presentation.
Let dπh,ρ(s) be the probability of visiting state s at step h
by following policy π starting from the initial state distri-
bution ρ, i.e., dπh,ρ(s)

def
= Pπ(sh = s | s1 ∼ ρ). We also

overload the notations of the value function and the po-
tential function, and write V π1,i(ρ)

def
= Es1∼ρ

[
V π1,i(s1)

]
and

Φρ(π) = Es∼ρ [Φs(π)]. We further introduce the following
variant of the distribution mismatch coefficient (Agarwal
et al., 2021) to characterize the difficulty of exploration.

Definition 5. (Finite-horizon distribution mismatch coef-
ficient). Given two policies π, π′ ∈ Π and an initial state
distribution ρ ∈ ∆(S), we define∥∥∥∥∥dπ

′

ρ

dπρ

∥∥∥∥∥
∞

def
= max
h∈[H],sh∈S

dπ
′

h,ρ(sh)

dπh,ρ(sh)
, and D def

= max
π,π′

∥∥∥∥∥dπ
′

ρ

dπρ

∥∥∥∥∥
∞

.

4.1. Exact Gradient Estimates

The PGA algorithm updates the policy as follows:

π
(t+1)
i ← ProjΠi

(
π

(t)
i + η∇πiV π

(t)

1,i (ρ)
)
, (3)

where π(t)
i is the policy of agent i at the t-th iteration, ProjΠi

denotes the Euclidean projection onto Πi, and η > 0 is the
step size. Here, we use the direct parameterization of the
policy (Agarwal et al., 2021), where πh,i(a | s) = θs,ah,i
for some θs,ah,i ≥ 0 and

∑
a∈Ai θ

s,a
h,i = 1,∀i ∈ N , h ∈

[H], s ∈ S, a ∈ Ai. We assume for now that the policy
gradients ∇πiV π

(t)

1,i (ρ) can be calculated exactly, and such
an assumption will be relaxed in the next subsection.

Before presenting the analysis of PGA, we first introduce
the following definition of an approximate stationary point.

Definition 6. For any ε > 0, a policy profile π =
(π1, . . . , πN ) is a (first-order) ε-approximate stationary
point of a function Φρ : Π → [0,Φmax] if for any

δ1 ∈ RA1 , . . . , δN ∈ RAN , such that
∑
i∈N ‖δi‖

2
2 ≤ 1

and πi + δi ∈ ∆(Ai),∀i ∈ N , it holds that∑
i∈N

δᵀi ∇πiΦρ(π) ≤ ε.

Intuitively, π is an approximate stationary point if the func-
tion Φρ cannot increase by more than ε along any direc-
tion that lies in the intersection of the policy space and the
neighborhood of π. The following lemma establishes the
equivalence between stationary points and NE.

Lemma 1. Let π = (π1, . . . , πN ) be an ε-approximate
stationary point of the potential function Φρ of an MPG for
some ε > 0. Then, π is a D

√
SHε-approximate NE.

The proof of Lemma 1 relies on a gradient domination
property that has been shown in single-agent RL (Agarwal
et al., 2021). Its multi-agent counterpart has been studied
in Zhang et al. (2021); Leonardos et al. (2021), though to
the best of our knowledge, a gradient domination property
in finite-horizon episodic MDPs/MPGs is still missing in
the literature. For completeness, we derive such a result, to-
gether with the finite-horizon variants of the policy gradient
theorem (Sutton et al., 2000) and performance difference
lemma (Kakade & Langford, 2002) in Appendix E. With
the above results, we arrive at the convergence guarantee of
PGA in the exact gradient case. The proof of Theorem 3 is
also deferred to Appendix E.

Theorem 3. For any initial state distribution ρ ∈ ∆(S),
let the agents independently run the projected gradient
ascent updates (3) with a step size η = 1

4NAmaxH3 for

T = 32NSAmaxD
2H4Φmax

ε2 iterations. Then, there exists
t ∈ [T ], such that π(t) is an ε-approximate Nash equilib-
rium policy profile for the MPG.

4.2. Finite-Sample Gradient Estimates

When the exact policy gradients are not given, we need
to replace ∇πiV π

(t)

1,i (ρ) in (3) with an estimate ∇̂(t)
πi (π(t))

that is calculated from a finite number of samples. For any
policy π used in the t-iteration of PGA, we use a standard
REINFORCE (Williams, 1992) gradient estimator

∇̂(t)
πi (π) = R

(t)
i

H∑
h=1

∇ log πh,i(a
(t)
h,i | s

(t)
h ), (4)

where R(t)
i =

∑H
h=1 r

(t)
h,i(s

(t)
h ,a

(t)
h ) is the sum of rewards

obtained at iteration t, and s(t)
1 ∼ ρ.

To ensure that the variance of the gradient estimator is
bounded, we let each agent use an epsilon-greedy vari-
ant of direct policy parameterization. Specifically, each
agent i selects its actions according to a policy πi, such
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that πh,i(a | s) = (1 − ε̃)θs,ah,i + ε̃/Ai, where θs,ah,i ≥ 0,∑
a∈Ai θ

s,a
h,i = 1, and ε̃ > 0 is the exploration parameter.

In the following lemma, we show that the gradient estimator
(4) under ε̃-greedy exploration is unbiased, has a bounded
variance, and is mean-squared smooth. The first two proper-
ties have appeared in Daskalakis et al. (2020); Leonardos
et al. (2021), while the third property is new and is used to
derive an improved sample complexity result in our analysis.

Lemma 2. For any agent i ∈ N and any iteration t ∈ [T ],
the REINFORCE gradient estimator (4) with ε̃-greedy ex-
ploration is an unbiased estimator with a bounded variance:

Eπ(t)

[
∇̂(t)
πi (π(t))

]
= ∇πiV π

(t)

1,i (ρ),

Eπ(t)

∥∥∥∇̂(t)
πi (π(t))−∇πiV π

(t)

1,i (ρ)
∥∥∥2

2
≤ A2

maxH
4

ε̃
.

Further, it is mean-squared smooth, i.e., for any π′(t) ∈ Πi,

Eπ(t)

∥∥∥∇̂(t)
πi (π(t))− ∇̂(t)

π′i
(π′(t))

∥∥∥2

2
≤ A3

maxH
3

ε̃3
‖π(t)−π′(t)‖22.

Each agent now runs (projected) stochastic gradient ascent
(SGA) to update its policy, where the gradient estimator is
given by (4). In the following, we present the analysis of
a generic stochastic gradient descent method that might be
of independent interest, and the SGA policy update rule is
simply an instantiation of such a generic method.

Consider a generic stochastic non-convex optimization
problem as follows: We are given an objective function
F : Rn → R, and our goal is to find a point x ∈ X ⊆ Rn
such that∇F (x) is close to 0, whereX is the feasible region.
We do not have accurate information about the function F ,
and can only access it through a stochastic sampling oracle
f(·, ξ), where the random variable ξ represents the “random-
ness” of the oracle. We introduce the following assumptions
that are standard in smooth non-convex optimization (Arje-
vani et al., 2019).

Assumption 1. 1. We have access to a stream of random
variables ξ1, . . . , ξT , such that the gradient estimators are
unbiased and have bounded variances: ∇Eξt [f(x, ξt)] =

∇F (x), and E[‖∇f(x, ξt)−∇F (x)‖22] ≤ σ2 for some
σ > 0 for all t ∈ [T ] and x ∈ X .

2. The objective F has bounded initial sub-optimality
and is L-smooth: F (x0) − infx∈X F (x) < ∞, and
‖∇F (x)−∇F (y)‖2 ≤ L·‖x− y‖2 ,∀x, y ∈ Rn for some
L > 0. The stochastic oracle is mean-squared smooth
for the same constant L: E[‖∇f(x, ξ)−∇f(y, ξ)‖22] ≤
L2 · ‖x− y‖22 ,∀x, y ∈ Rn.

For an improved sample complexity bound, we utilize
a momentum-based stochastic gradient descent (SGD)
method with variance reduction (Johnson & Zhang, 2013;

Algorithm 3: Stochastic Recursive Momentum with
Projections

1 d1 ← ∇f(x1, ξ1);
2 for t← 1 to T do
3 ηt ← k

(w+σ2t)1/3 ;
4 xt+1 ← ProjX (xt − ηtdt);
5 at+1 ← cη2

t ;
6 dt+1 ← ∇f(xt+1,ξt+1)+(1−at+1)(dt−∇f(xt,ξt+1));
7 Output xτ where τ is uniformly sampled from [T ];

Allen-Zhu & Hazan, 2016; Reddi et al., 2016). Our method
is a variant of the non-adaptive STOchastic Recursive Mo-
mentum (STORM) algorithm proposed in Cutkosky &
Orabona (2019), and is formally described in Algorithm 3. It
achieves an optimal convergence rate of O(1/T 1/3), which
improves over the standard convergence rate O(1/T 1/4)
of SGD with no variance reduction (e.g., Ghadimi & Lan
(2013)). The key advantage of this method is to apply vari-
ance reduction in a decentralized way: Compared with other
SGD methods with variance reduction (e.g., Allen-Zhu &
Hazan (2016); Reddi et al. (2016); Fang et al. (2018)), our
momentum-based algorithm does not require a batch of sam-
ples to compute checkpoint gradients. The agents hence do
not need to coordinate on when to stop updating policies
and to collect a batch of samples for a fixed policy profile, a
common behavior when using batch-based methods.

The following result characterizes the convergence rate
of Algorithm 3, and is a variant of the analysis given
in Cutkosky & Orabona (2019). The proofs of Proposition 1
and its supporting lemmas are given in Appendix G.

Proposition 1. Suppose Assumption 1 holds, and let
x+
t+1 = ProjX (xt − ηt∇F (xt)). For any b >

0, let k = bσ
2
3

L , c = L2
(
32 + 1/

(
7b3
))
, w =

σ2 max((4b)3, 2, (32b+ 1
7b2 )3/64), and M = 16(F (x1)−

infx∈X F (x)) + w1/3σ2

2L2k + k3c2

L2 ln(T + 2). Then, the follow-
ing result holds for Algorithm 3:

E

[
1

T

T∑
t=1

∥∥∥∥ 1

ηt
(x+
t+1 − xt)

∥∥∥∥2

2

]
≤ Mw1/3

Tk
+
Mσ2/3

T 2/3k
.

Since we have shown in Lemma 2 that the conditions in
Assumption 1 are satisfied by the potential function Φρ and
the REINFORCE policy gradient estimator ∇̂(t)

πi (π(t)), we
can let each agent run an instance of Algorithm 3 and the
convergence result in Proposition 1 directly applies. This
leads us to the following sample complexity guarantee of
learning Nash equilibria in MPGs. The proof of Theorem 4
can be found in Appendix F.

Theorem 4. For any initial policies and any ε > 0,
let the agents independently run SGA policy updates
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(Algorithm 3) for T iterations with T = O(1/ε4.5) ·
poly(N,D, S,Amax, H). Then, there exists t ∈ [T ], such
that π(t) is an ε-approximate NE in expectation.

The polynomial sample complexity dependence on Amax is
a natural benefit of decentralized learning, while centralized
methods would typically have an exponential dependence∏N
i=1Ai. Such an improvement becomes more significant

as the number of agents N increases. Also note that our
sample complexity bound in Theorem 4 holds in expecta-
tion. To obtain a standard high-probability result that holds
with probability 1 − p, one could either apply Markov’s
inequality and tolerate an additional O(1/p) factor of sam-
ple complexity, or replace our SGA method with one that
has high-probability guarantees (Li & Orabona, 2020). We
also remark that our results only guarantee the existence
of a certain t ∈ [T ] (“best-iterate”), such that π(t) is an
ε-approximate NE, but in general do not guarantee that
π(T ) (“last-iterate”) is an approximate NE. This is mostly
due to the nonconvexity of the potential function, and such
a “best-iterate” convergence of gradient/gradient-mapping
norm (i.e., stationary-point convergence) is consistent with
the standard results in the nonconvex optimization litera-
ture (Ghadimi & Lan, 2013).

To obtain a sample complexity lower bound of the problem,
we consider a simple instance where the agents share the
same reward function (which clearly satisfies the definition
of an MPG) and the action spaces of all but one agent i are
singletons, i.e., Aj = 1,∀j 6= i. Learning an approximate
NE in such an MPG reduces to finding a near-optimal policy
in a single-agent RL problem. Applying the regret lower
bound of single-agent RL yields the following result for
MARL in MPGs.

Corollary 1. (Corollary of Jaksch et al. (2010)). For any
algorithm, there exists a Markov potential game that takes
the algorithm at least Ω(H3SAmax/ε

2) episodes to learn
an ε-approximate Nash equilibrium.

We remark that such a lower bound might be very loose.
Reducing to a single-agent RL problem evades the strategic
learning behavior of the agents and the non-stationarity
that such behavior causes to the environment, which in our
opinion are the central difficulties of decentralized MARL.
To derive a tighter lower bound in our decentralized setting,
one should also utilize the additional constraint that each
agent only has access to its local information, a factor that
Corollary 1 apparently does not take into account. It is
hence unsurprising that when comparing Theorem 4 with
Corollary 1, we can see an obvious gap in the parameter
dependence. We leave the tightening of both the upper and
lower bounds to our future work.

4.3. Global Optimality in Smooth MPGs

We further show that our independent SGA algorithm can
nearly find the globally optimal NE (i.e., the NE that max-
imizes the potential function, which is guaranteed to ex-
ist (Leonardos et al., 2021)) in an important subclass of
MPGs named smooth MPGs.

Our definition of a (λ, ω)-smooth MPG is also adapted from
the definition of smooth games in the literature (Roughgar-
den, 2009; Radanovic et al., 2019). Let π? = (π?i , π

?
−i)

be a policy that maximizes the potential function, i.e.,
Φρ(π

?) = maxπ∈Π Φρ(π). Let V ?1,i denote the value func-
tion for agent i under policy π?. We consider the following
definition of a smooth Markov potential game:

Definition 7. (Adapted from Radanovic et al. (2019)). For
λ ≥ 0 and 0 < ω < 1, an N -player Markov potential game
is (λ, ω)-smooth if for any policy profile π = (πi, π−i):

V
π?i ,π

−i

1,i (s) ≥ λ · V ?1,i(s)− ω · V π1,i(s),∀i ∈ N , s ∈ S.

The (λ, ω)-smoothness ensures that agent i continues do-
ing well by playing its optimal policy even when the other
agents are using slightly sub-optimal policies. It immedi-
ately follows that Algorithm 3 can nearly find the globally
optimal NE in smooth MPGs.
Theorem 5. In a (λ, ω)-smooth MPG, for any initial poli-
cies and any ε > 0, let the agents independently run
SGA policy updates (Algorithm 3) for T iterations with
T = O(1/ε4.5) · poly(N,D, S,Amax, H). Then, there ex-
ists t ∈ [T ], such that

E
[
V π

(t)

1,i (ρ)
]
≥ λ

1 + ω
V ?1,i(ρ)− ε

1 + ω
,∀i ∈ N .

The proof of Theorem 5 can be found in Appendix F.2.
We remark that our definition of smooth MPGs generalizes
that of smooth teams in Radanovic et al. (2019); Mao et al.
(2020b), who assume an identical reward function of all
the agents. Our approach also significantly improves the
two works in that we design natural update rules for all the
agents, who play symmetric roles in the self-play setting;
the other two works only assign the algorithm to one agent,
and have to assume that the policies of the other agent(s)
change slowly.

5. Simulations
We empirically evaluate Algorithm 3 (SGA) on a classic
matrix team task (Claus & Boutilier, 1998), and both Algo-
rithms 1 and 3 on two Markov games, namely GoodState
and BoxPushing (Seuken & Zilberstein, 2007). Figure 1
illustrates the performances of the algorithms in terms of the
collected rewards. Detailed descriptions of the simulations
are deferred to Appendix H due to space limitations.
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Figure 1. (a) Rewards of Algorithm 3 on the matrix team task, and rewards of Algorithms 1 and 3 on the (b) GoodState and (c) BoxPushing
tasks. “Last Iterate” denotes the policy of the current iterate t, while “Average” represents a uniformly sampled policy from the first t
iterates. “V-Learning” and “PG” denote the policies at the current iterate t of Algorithms 1 and 3, respectively. “Centralized” is an oracle
that can control the actions of the agents in a centralized way. In “Independent”, each agent runs a naı̈ve single-agent Q-learning algorithm
independently, by taking greedy actions with respect to its local Q-function estimates. All results are averaged over 20 runs.

For the matrix team, “Last Iterate” in Figure 1 (a) denotes
the policy of the current iterate t of Algorithm 3, while
“Average” represents a uniformly sampled policy from the
first t iterates. We can see from Figure 1 (a) that both “Last
Iterate” and “Average” converge, and obtain reward values
close to 9 (where the global-optimal value is 10). This sug-
gests that Algorithm 3 not only finds a NE in this specific
task, but actually converges to a team-optimal equilibrium
frequently. An encouraging observation is that, for Algo-
rithm 1, the actual policy trajectories converge and achieve
high rewards, even though our theoretical guarantees only
hold for a “certified” output policy.

For learning in Markov games, we compare Algorithms 1
and 3 with two useful baselines, namely “Centralized” and
“Independent” in Figures 1 (b) and (c). The “Centralized”
oracle acts as a centralized coordinator that can control the
actions of both agents. Such an oracle essentially converts
the multi-agent task into a single-agent RL problem, and
upper bounds the performances that our decentralized learn-
ing algorithms can possibly achieve in this task. The second
baseline we consider is the naı̈ve “Independent” Q-learning.
Specifically, we let each agent run a single-agent Q-learning
algorithm independently, without being aware of the exis-
tence of the other agents or the structure of the game. Each
agent maintains a local optimistic Q-function, and takes
greedy actions with respect to such optimistic estimates,
without taking into account the other agents’ actions.

Figure 3 illustrates the performances of our algorithms and
the two baseline methods in terms of the collected rewards,
where “V-Learning” and “PG” denote the policies at the
current iterate t of Algorithms 1 and 3, respectively. Notice
that the actual policy trajectories of both algorithms numer-
ically converge and achieve high rewards. Further, both of
our algorithms outperform the “Independent” baseline on
the two tasks. In the GoodState problem, Algorithm 3 even

approaches the performance of the “Centralized” oracle.
The “Independent” baseline converges, albeit faster, to a
clearly suboptimal value. This reiterates that the naı̈ve idea
of independent learning does not work well for MARL in
general, and a careful treatment of the game structure (like
our adversarial bandit subroutine) is necessary. Finally, the
implemented algorithms take much fewer samples to con-
verge than our theoretical results suggested. This indicates
that the theoretical bounds might be overly conservative,
and our algorithms could converge much faster in practice.

6. Concluding Remarks
In this paper, we have studied sample-efficient MARL in
decentralized scenarios. We have proposed stage-based V-
learning algorithms that learn CCE and CE in general-sum
Markov games, and policy gradient algorithms that learn NE
in Markov potential games. Our algorithms have improved
existing results either through a simplified algorithmic de-
sign or a sharper sample complexity bound. An interesting
future direction would be to tighten the sample complexity
upper and lower bounds established in this paper. The prob-
lem of efficiently finding the globally optimal NE in generic
MPGs through decentralized learning is also left open.

Acknowledgements
We thank Zihan Zhang and Chen-Yu Wei for helpful dis-
cussions and feedback. Research of W.M. and T.B. was
supported in part by the ONR MURI Grant N00014-16-1-
2710 and in part by the IBM-Illinois Discovery Accelerator
Institute. Research of L.Y. was supported in part by DARPA
grant HR00112190130. K.Z. was supported by the Simons-
Berkeley Research Fellowship.



On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning

References
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.

On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1–76, 2021.

Allen-Zhu, Z. and Hazan, E. Variance reduction for faster
non-convex optimization. In International Conference on
Machine Learning, pp. 699–707. PMLR, 2016.

Arabneydi, J. and Mahajan, A. Reinforcement learning
in decentralized stochastic control systems with partial
history sharing. In American Control Conference, pp.
5449–5456. IEEE, 2015.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J.,
Srebro, N., and Woodworth, B. Lower bounds for
non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, 2019.
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A. Detailed Discussions on Related Work

A common mathematical framework of multi-agent RL is stochastic games (Shapley, 1953), which are also referred
to as Markov games. Early attempts to learn Nash equilibria in Markov games include Littman (1994; 2001); Hu
& Wellman (2003); Hansen et al. (2013), but they either assume the transition kernel and rewards are known, or
only yield asymptotic guarantees. More recently, various sample efficient methods have been proposed (Wei et al.,
2017; Bai & Jin, 2020; Sidford et al., 2020; Xie et al., 2020; Bai et al., 2020; Liu et al., 2021; Zhao et al., 2021),
mostly for learning in two-player zero-sum Markov games. Most notably, several works have investigated two-player
zero-sum games in a decentralized environment: Daskalakis et al. (2020) have shown non-asymptotic convergence
guarantees for independent policy gradient methods when the learning rates of the two agents follow a two-timescale
rule. Tian et al. (2021) have studied online learning when the actions of the opponents are not observable, and
have achieved the first sub-linear regret Õ(K

3
4 ) in the decentralized setting for K episodes. More recently, Wei

et al. (2021) have proposed an Optimistic Gradient Descent Ascent algorithm with a slowly-learning critic, and have
shown a strong finite-time last-iterate convergence result in the decentralized/agnostic environment. Overall, these
works have mainly focused on two-player zero-sum games. These results do not carry over in any way to general-sum
games or MPGs that we consider in this paper.

In general-sum normal-form games, a folklore result is that when the agents independently run no-regret learning
algorithms, their empirical frequency of plays converges to the set of coarse correlated equilibria (CCE) of the game
(Hart & Mas-Colell, 2000). However, a CCE may suggest that the agents play obviously non-rational strategies. For
example, Viossat & Zapechelnyuk (2013) have constructed an example where a CCE assigns positive probabilities
only to strictly dominated strategies. On the other hand, given the PPAD completeness of finding a Nash equilibrium,
convergence to NE seems hopeless in general. An impossibility result (Hart & Mas-Colell, 2003) has shown that
uncoupled no-regret learning does not converge to Nash equilibrium in general, due to the informational constraint
that the adjustment in an agent’s strategy does not depend on the reward functions of the others. Hence, convergence
to Nash equilibria is guaranteed mostly in games with special reward structures, such as two-player zero-sum games
(Freund & Schapire, 1999) and potential games (Kleinberg et al., 2009; Cohen et al., 2017).

For learning in general-sum Markov games, Rubinstein (2016) has shown a sample complexity lower bound for NE
that is exponential in the number of agents. Recently, Liu et al. (2021) has presented a line of results on learning
NE, CE, or CCE, but their algorithm is model-based, and suffers from such exponential dependence. Song et al.
(2021); Jin et al. (2021); Mao & Başar (2022) have proposed V-learning based methods for learning CCE and/or CE,
which are similar to the ones that we study here, and avoid the exponential dependence. Nevertheless, our methods
significantly simplify their algorithmic design and analysis, by introducing a stage-based V-learning update rule that
circumvents their rather complicated no-weighted-regret bandit subroutine.

Another line of research has considered RL in Markov potential games (Macua et al., 2018; Mguni et al., 2021; Ding
et al., 2022). Arslan & Yüksel (2016) has shown that decentralized Q-learning style algorithms can converge to NE
in weakly acyclic games, which cover MPGs as an important special case. Their decentralized setting is similar to
ours in that each agent is completely oblivious to the presence of the others. Later, such a method has been improved
in Yongacoglu et al. (2019) to achieve team-optimality. However, both of them require a coordinated exploration
phase, and only yield asymptotic guarantees. Decentralized learning has also been studied in single-stage weakly
acyclic games (Marden et al., 2009b) or potential games (Marden et al., 2009a; Cohen et al., 2017). Two recent
works (Zhang et al., 2021; Leonardos et al., 2021) have proposed independent policy gradient methods in MPGs,
which are most relevant to ours. We improve their sample complexity dependence on ε by utilizing a decentralized
variance reduction technique, and do not require the two-timescale framework to coordinate policy evaluation as in
Zhang et al. (2021). Fox et al. (2021) has shown that independent Natural Policy Gradient also converges to NE in
MPGs, though only asymptotic convergence has been established. Finally, MPGs have also been studied in Song
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et al. (2021), but their model-based method is not decentralized, and requires the agents to take turns to learn the
policies.

MARL has also been studied in teams or cooperative games, which can be considered as a subclass of MPGs. Without
enforcing a decentralized environment, Boutilier (1996) has proposed to coordinate the agents by letting them take
actions in a lexicographic order. In a similar setting, Wang & Sandholm (2002) have studied optimal adaptive learning
that converges to the optimal NE in Markov teams. Verbeeck et al. (2002) have presented an independent learning
algorithm that achieves a Pareto optimal NE in common interest games with limited communication. These methods
critically relied on communications among the agents (beforehand) or observing the teammates’ actions. In contrast,
the distributed Q-learning algorithm in (Lauer & Riedmiller, 2000) is decentralized and coordination-free, which,
however, only works for deterministic tasks, and has no non-asymptotic guarantees.

Efficient exploration has also been widely studied in the literature of single-agent RL, see, e.g., Brafman & Tennen-
holtz (2002); Jaksch et al. (2010); Azar et al. (2017); Jin et al. (2018). For the tabular episodic setting, various methods
(Azar et al., 2017; Zhang et al., 2020b; Menard et al., 2021) have achieved the sample complexity of Õ(H3SA/ε2),
which matches the information-theoretical lower bound. When reduced to the bandit case, decentralized MARL is
also related to the cooperative multi-armed bandit (MAB) problem (Lai et al., 2008; Avner & Mannor, 2014), orig-
inated from the literature of cognitive radio networks. The difference is that, in cooperative MAB, each agent is
essentially interacting with an individual copy of the bandit, with an extra caution of action collisions; in the MARL
formulation, the reward function is defined on the Cartesian product of the action spaces, which allows the agents
to be coupled in more general forms. A concurrent work (Chang et al., 2021) has studied cooperative multi-player
multi-armed bandits with information asymmetry. Nevertheless, (Chang et al., 2021) requires stronger conditions
than our decentralized setting as their algorithm relies on playing a predetermined sequence of actions.

B. Technical Lemmas

Lemma 3. (Bubeck et al., 2015, Lemma 3.6). Let f be a β-smooth function with a convex domainX . For any x ∈ X ,
let x+ = ProjX (x− η∇f(x)) be a projected gradient descent update with η = 1

β
, and let Gη(x) = 1

η
(x − x+).

Then, the following holds true

f(x+)− f(x) ≤ − 1

2β
‖Gη(x)‖22 .

Lemma 4. (Agarwal et al., 2021, Proposition B.1). Let f : X → R be a β-smooth function. Define the gradient
mapping as

Gη(x) =
1

η
(ProjX (x+ η∇f(x))− x) .

The update rule for projected gradient ascent is x+ = x+ ηGη(x). If ‖Gη(x)‖2 ≤ ε, then

max
x+δ∈X ,‖δ‖22≤1

δᵀ∇f(x+) ≤ ε(ηβ + 1).

Lemma 5. (Leonardos et al., 2021, Lemma D.3). Let Φρ : Π → R be the potential function (which is β-smooth),
and assume that π ∈ Π uses εi-greedy parameterization. Define the gradient mapping as

Gη(π) =
1

η
(ProjΠ (π + η∇Φρ(π))− π) .

The update rule for projected gradient ascent is π+ = π + ηGη(π). If ηβ ≤ 1 and ‖Gη(π)‖2 ≤ ε, then

max
π+δ∈Π,‖δ‖22≤1

δᵀ∇Φρ(π
+) ≤ 2ε+

√
NSA2

maxH
5ε2
i .

Lemma 6. (Leonardos et al., 2021, Claim C.2). Consider a symmetric block matrix C with n × n sub-matrices,
and let Cij denote the sub-matrix at the i-th and j-th column. If ‖Cij‖2 ≤ L for some L > 0, then it holds that
‖C‖ ≤ nL, i.e., if every sub-matrix of C have a spectral norm of at most L, then C has a spectral norm of at most
nL.
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C. Proofs for Section 3.1

We first introduce a few notations to facilitate the analysis. For a step h ∈ [H] of an episode k ∈ [K], we denote by skh
the state that the agents observe at this time step. For any state s ∈ S , we let µkh,i(· | s) ∈ ∆(Ai) be the distribution
prescribed by Algorithm 1 to agent i at this step. Notice that such notations are well-defined for every s ∈ S even if s
might not be the state skh that is actually visited at the given step. We further let µkh,i = {µkh,i(· | s) : s ∈ S}, and let
akh,i ∈ Ai be the actual action taken by agent i. For any s ∈ S , let Nk

h (s) and Ňk
h (s) denote, respectively, the values

of Nh(s) and Ňh(s) at the beginning of the k-th episode. Note that it is proper to use the same notation to denote
these values from all the agents’ perspectives, because the agents maintain the same estimates of these terms as they
can be calculated from the common observations (of the state-visitation). We also use V

k

h,i(s) and Ṽ k
h,i(s) to denote

the values of V h,i(s) and Ṽh,i(s), respectively, at the beginning of the k-th episode from agent i’s perspective.

Further, for a state skh, let ňkh denote the number of times that state skh has been visited (at the h-th step) in the stage
right before the current stage, and let ľkh,j denote the index of the episode that this state was visited the j-th time
among the ňkh times. For notational convenience, we use ň to denote ňkh, and ľj to denote ľkh,j , whenever h and k
are clear from the context. With the new notations, the update rule in Line 13 of Algorithm 1 can be equivalently
expressed as

Ṽh,i(sh)← 1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ bň. (5)

For notational convenience, we introduce the operators PhV (s,a) = Es′∼Ph(·|s,a)V (s′) for any value function V ,
and DµhQ(s) = Ea∼µhQ(s,a). With these notations, the Bellman equations can be rewritten more succinctly as
Qπ
h(s,a) =

(
rh + PhV π

h+1

)
(s,a), and V π

h (s) = (DµhQπ
h) (s) for any (s,a, h) ∈ S ×A× [H], where µh = πh.

In the following proof, we assume without loss of generality that the initial state s1 is fixed, i.e., ρ is a point mass
distribution at s1. Our proof can be easily generalized to the case where the initial state is drawn from a fixed
distribution ρ ∈ ∆(S).

In the following, we start with an intermediate result, which justifies our choice of the bonus term.
Lemma 7. With probability at least 1− p

2
, it holds for all (i, s, h, k) ∈ N × S × [H]× [K] that

max
µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

ľj

h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
≤ 6

√
H2Aiι/ň.

Proof. For a fixed (s, h, k) ∈ S × [H] × [K], let Fj be the σ-algebra generated by all the random variables up

to episode ľj . Then,
{
rh,i(s,a

ľj
h,i) + V

ľj

h+1,i(s
ľj
h+1)− D

µ
ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s)

}ň
j=1

is a martingale difference

sequence with respect to {Fj}ňj=1. From the Azuma-Hoeffding inequality, it holds with probability at least 1 −
p/(4NSHK) that

1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
≤
√
H2ι/ň.

Therefore, we only need to bound

R?
ň

def
= max

µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

ľj

h+1,i

)
(s)− 1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s). (6)

Notice that R?
ň can be considered as the averaged regret of visiting the state s with respect to the optimal policy in

hindsight. Such a regret minimization problem can be handled by an adversarial multi-armed bandit problem, where
the loss function at step j ∈ [ň] is defined as

`j(ai) = E
a−i∼µ

ľj
h,−i

(s)

[
H − h+ 1− rh,i(s,a)− PhV

ľj

h+1,i(s,a)

]
/H.
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Algorithm 1 applies the Exp3-IX algorithm (Neu, 2015), which ensures that with probability at least 1 − p
4NHS

, it
holds for all k ∈ [K] that

R?
ň ≤

√
8H2Ai logAi

ň
+

(√
2Ai

ň logAi
+

1

ň

)
H log(2/p).

A union bound over all (i, s, h, k) ∈ N × S × [H]× [K] completes the proof.

Remark 1. We would like to discuss the alternative of using V-learning with the celebrated learning rate αt = H+1
H+t

(Jin et al., 2018) to update V h instead of employing stage-based updates. This is the case for several recent works
also under the V-learning formulation for MARL (Bai et al., 2020; Jin et al., 2021; Song et al., 2021; Mao & Başar,
2022). Such a learning rate induces an update rule as follows:

V h,i (sh)← (1− αt)V h,i (sh) + αt
(
rh,i (sh,ah) + V h+1,i (sh+1) + βt

)
, (7)

where t is the number of times that sh has been visited, and βt is some bonus term. In this way, V h,i(sh) is updated
every time the state sh is visited. With such a learning rate, the update rule (7) of V h,i can be equivalently expressed
as

V
k

h,i(sh) = α0
tH +

t∑
j=1

αjt

[
rh,i

(
s,ak

j

h

)
+ V

kj

h+1,i

(
sk

j

h+1

)
+ βj

]
,

where kj is the index of the episode such that sh is visited the j-th time. The weights αjt are given by

α0
t =

t∏
j=1

(1− αj) , and αjt = αj

t∏
k=j+1

(1− αk) ,∀1 ≤ j ≤ t.

Compared with stage-based updates (6), we now need to upper bound a regret term of the following form:

R?
t (s) = max

µh,i

t∑
j=1

αjtDµh,i×µkjh,−i

(
rh,i + PhV

kj

h+1,i

)
(s)−

t∑
j=1

αjtDµkjh,i×µkjh,−i

(
rh,i + PhV

kj

h+1,i

)
(s).

Notice that the above definition of regret induces a adversarial bandit problem with a time-varying weighted regret,
where the loss at time j is assigned a weight αjt . As t varies, the weight αjt assigned to the same step j also
changes over time. These weights also cannot be pre-computed, because it relies on knowing the total number of
times that a certain state sh is visited during the entire horizon, which is impossible before seeing the output of the
algorithm. To address such an additional challenge, Bai et al. (2020) proposed a Follow-the-Regularized-Leader
(FTRL) algorithm that simultaneously achieves with a changing step size, a weighted regret, and a high-probability
guarantee, which inevitably leads to a more delicate analysis. In contrast, we have shown in (6) that our stage-based
update rule leads to an adversarial bandit problem with a simple averaged regret. In our approach, it suffices to plug
in any existing adversarial bandit solution with a high-probability regret bound, such as the Exp3-IX method that we
used in Algorithm 1. Therefore, our stage-based update significantly simplifies both the algorithmic design and the
analysis of V-learning in MARL.

Based on the trajectory of the distributions {µkh,i : i ∈ N , h ∈ [H], k ∈ [K]} specified by Algorithm 1, we construct
a correlated policy π̄kh for each (h, k) ∈ [H]×[K]. Our construction of the correlated policies, largely inspired by the
“certified policies” (Bai et al., 2020) for learning in two-player zero-sum games, is formally presented in Algorithm 4.
We further define an output policy π̄ that first uniformly samples an index k from [K], and then proceed with π̄k1 . A
more formal description of π̄ has been given in Algorithm 2. By construction of the correlated policies π̄kh, we know
that for any (i, s, h, k) ∈ N × S × [H + 1] × [K], the corresponding value function can be written recursively as
follows:

V
π̄kh
h,i (s) =

1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

π̄
ľj
h+1

h+1,i

)
(s),
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Algorithm 4: Construction of the Correlated Policy π̄kh
1 Input: The distribution trajectory {µkh,i : i ∈ N , h ∈ [H], k ∈ [K]} specified by Algorithm 1.
2 Initialize: k′ ← k.
3 for step h′ ← h to H do
4 Receive sh′ ;
5 Take joint action ah′ ∼ ×Ni=1µ

k′

h′,i(· | sh′);
6 Uniformly sample j from {1, 2, . . . , Ňk′

h′ (sh′)};
7 Set k′ ← ľk

′

h′,j , where ľk
′

h′,j is the index of the episode such that state sh′ was visited the j-th time (among the total
Ňk′

h′ (sh′) times) in the last stage;

and V π̄kh
h,i (s) = 0 if h = H + 1 or k is in the first stage of the corresponding (h, s) pair. We also immediately obtain

that

V π̄
1,i(s1) =

1

K

K∑
k=1

V
π̄k1

1,i (s1).

Only for analytical purposes, we introduce two new notations V and V˜ that serve as lower confidence bounds of the
value estimates. Specifically, for any (i, s, h, k) ∈ N × S × [H + 1] × [K], we define V k

h,i(s) = V˜ kh,i(s) = 0 if
h = H + 1 or k is in the first stage of the (h, s) pair, and

V˜ kh,i(s) =
1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h ) + V

ľj
h+1,i(s

ľj
h+1)

)
− bň, and V k

h,i(s) = max
{
V˜ kh,i(s), 0} .

Notice that these two notations are only introduced for ease of analysis, and the agents need not explicitly maintain

such values during the learning process. Further, recall that V
?,π̄kh,−i
h,i (s) is agent i’s best response value against its

opponents’ policy π̄kh,−i. Our next lemma shows that V
k

h,i(s) and V k
h,i(s) are indeed valid upper and lower bounds

of V
?,π̄kh,−i
h,i (s) and V π̄kh

h,i (s), respectively.

Lemma 8. It holds with probability at least 1− p that for all (i, s, h, k) ∈ N × S × [H]× [K],

V
k

h,i(s) ≥ V
?,π̄kh,−i
h,i (s), and V k

h,i(s) ≤ V
π̄kh
h,i (s).

Proof. Consider a fixed (i, s, h, k) ∈ N × S × [H] × [K]. The desired result clearly holds for any state s that is
in its first stage, due to our initialization of V

k

h,i(s) and V k
h,i(s) for this special case. In the following, we only need

to focus on the case where V h,i(s) and V k
h,i(s) have been updated at least once at the given state s before the k-th

episode.

We first prove the first inequality. It suffices to show that Ṽ k
h,i(s) ≥ V

?,π̄kh,−i
h,i (s) because V

k

h,i(s) =

min{Ṽ k
h,i(s), H − h + 1}, and V

?,π̄kh,−i
h,i (s) is always less than or equal to H − h + 1. Our proof relies on in-

duction on k ∈ [K]. First, the claim holds for k = 1 due to the aforementioned logic. For each step h ∈ [H] and
s ∈ S , we consider the following two cases.

Case 1: Ṽh,i(s) has just been updated in (the end of) episode k − 1. In this case,

Ṽ k
h,i(s) =

1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ bň. (8)
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By the definition of V ?,ν̄kh
h (s), it holds with probability at least 1− p

2NSKH
that

V
?,π̄kh,−i
h,i (s) ≤max

µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

?,π̄
ľj
h+1,−i

h+1,i

)
(s)

≤max
µh,i

1

ň

ň∑
j=1

D
µh,i×µ

ľj
h,−i

(
rh,i + PhV

ľj

h+1,i

)
(s)

≤ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ 6
√
H2Aiι/ň

≤Ṽ k
h,i(s), (9)

where the second step is by the induction hypothesis, the third step holds due to Lemma 7, and the last step is by the
definition of bň.

Case 2: Ṽh,i(s) was not updated in (the end of) episode k − 1. Since we have excluded the case that Ṽh,i has
never been updated, we are guaranteed that there exists an episode j such that Ṽh,i(s) has been updated in the end of

episode j − 1 most recently. In this case, Ṽ k
h,i(s) = Ṽ k−1

h,i (s) = · · · = Ṽ j
h,i(s) ≥ V

?,π̄jh,−i
h,i (s), where the last step

is by the induction hypothesis. Finally, observe that by our definition, the value of V
?,π̄jh,−i
h,i (s) is a constant for all

episode indices j that belong to the same stage. Since we know that episode j and episode k lie in the same stage,

we can conclude that V
?,π̄kh,−i
h,i (s) = V

?,π̄jh,−i
h,i (s) ≤ Ṽ k

h,i(s).

Combining the two cases and applying a union bound over all (i, s, h, k) ∈ N ×S × [H]× [K] complete the proof
of the first inequality.

Next, we prove the second inequality in the statement of the lemma. Notice that it suffices to show V˜ kh,i(s) ≤ V π̄kh
h,i (s)

because V k
h,i(s) = max{V˜ kh,i(s), 0}. Our proof again relies on induction on k ∈ [K]. Similar to the proof of the

first inequality, the claim apparently holds for k = 1, and we consider the following two cases for each step h ∈ [H]
and s ∈ S .

Case 1: The value of V˜ h,i(s) has just changed in (the end of) episode k − 1. In this case,

V˜ kh,i(s) =
1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V˜ ľjh+1,i(s

ľj
h+1)

)
− bň. (10)

By the definition of V π̄kh
h,i (s), it holds with probability at least 1− p

2NSKH
that

V
π̄kh
h,i (s) =

1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

π̄
ľj
h+1

h+1,i

)
(s)

≥ 1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV˜ ľjh+1,i

)
(s)

≥ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V˜ ľjh+1,i(s

ľj
h+1)

)
−
√
H2ι/ň

≥V˜ kh,i(s), (11)

where the second step is by the induction hypothesis, the third step holds due to the Azuma-Hoeffding inequality, and
the last step is by the definition of bň.

Case 2: The value of V˜ h,i(s) has not changed in (the end of) episode k − 1. Since we have excluded the case
that V˜ h,i has never been updated, we are guaranteed that there exists an episode j such that V˜ h,i(s) has changed in
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the end of episode j − 1 most recently. In this case, we know that indices j and k belong to the same stage, and

V˜ kh,i(s) = V˜ k−1
h,i (s) = · · · = V˜ jh,i(s) ≤ V π̄jh

h,i (s), where the last step is by the induction hypothesis. Finally, observe

that by our definition, the value of V π̄jh
h,i (s) is a constant for all episode indices j that belong to the same stage. Since

we know that episode j and episode k lie in the same stage, we can conclude that V π̄kh
h,i (s) = V

π̄jh
h,i (s) ≥ V˜ kh,i(s).

Again, combining the two cases and applying a union bound over all (i, s, h, k) ∈ N × S × [H] × [K] complete
the proof.

The following result shows that the agents have no incentive to deviate from the correlated policy π̄, up to a regret
term of the order Õ(

√
H5SAmax/K).

Theorem 6. For any p ∈ (0, 1], let ι = log(2NSAmaxKH/p). Suppose K ≥ SH
Amaxι

, with probability at least
1− p, it holds that

V
?,π̄−i

1,i (s1)− V π̄
1,i(s1) ≤ O

(√
H5SAmaxι/K

)
,

Proof. We first recall the definitions of several notations and define a few new ones. For a state skh, recall that ňkh
denotes the number of visits to the state skh (at the h-th step) in the stage right before the current stage, and ľkh,j
denotes the j-th episode among the ňkh episodes. Similarly, let nkh be the total number of episodes that this state has
been visited prior to the current stage, and let lkh,j denote the index of the episode that this state was visited the j-th
time among the total nkh times. For simplicity, we use lj and ľj to denote lkh,j and ľkh,j , and ň to denote ňkh, whenever
h and k are clear from the context.

From Lemma 8, we know that

V
?,π̄−i

1,i (s1)− V π̄
1,i(s1) ≤ 1

K

K∑
k=1

(
V
?,π̄k1,−i

1,i (s1)− V π̄k1
1,i (s1)

)

≤ 1

K

K∑
k=1

(
V
k

1,i(s1)− V k
1,i(s1)

)
.

We hence only need to upper bound 1
K

∑K
k=1(V

k

1,i(s1)−V k
1,i(s1)). For a fixed agent i ∈ N , we define the following

notation:
δkh

def
= V

k

h,i(s
k
h)− V k

h,i(s
k
h).

The main idea of the subsequent proof is to upper bound
∑K

k=1 δ
k
h by the next step

∑K
k=1 δ

k
h+1, and then obtain a

recursive formula. From the update rule of V
k

h,i(s
k
h) in (5), we know that

V
k

h,i(s
k
h) ≤ I[nkh = 0]H +

1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ bň,

where the I[nkh = 0] term counts for the event that the optimistic value function has never been updated for the given
state.

Further recalling the definition of V k
h,i(s

k
h), we have

δkh ≤I[nkh = 0]H +
1

ň

ň∑
j=1

(
V
ľj

h+1,i(s
ľj
h+1)− V ľj

h+1,i(s
ľj
h+1)

)
+ 2bň

≤I[nkh = 0]H +
1

ň

ň∑
j=1

δ
ľj
h+1 + 2bň, (12)
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To find an upper bound of
∑K

k=1 δ
k
h, we proceed to upper bound each term on the RHS of (12) separately. First, notice

that
∑K

k=1 I
[
nkh = 0

]
≤ SH , because each fixed state-step pair (s, h) contributes at most 1 to

∑K
k=1 I

[
nkh = 0

]
.

Next, we turn to analyze the second term on the RHS of (12). Observe that

K∑
k=1

1

ňkh

ňkh∑
j=1

δ
ľkh,j
h+1 =

K∑
k=1

K∑
m=1

1

ňkh
δmh+1

ňkh∑
j=1

1

[
ľkh,j = m

]

=
K∑
m=1

δmh+1

K∑
k=1

1

ňkh

ňkh∑
j=1

1

[
ľkh,j = m

]
. (13)

For a fixed episode m, notice that
∑ňkh

j=1 1[ľkh,j = m] ≤ 1, and that
∑ňkh

j=1 1[ľkh,j = m] = 1 happens if and
only if skh = smh and (m,h) lies in the previous stage of (k, h) with respect to the state-step pair (skh, h). Define
Km

def
= {k ∈ [K] :

∑ňkh
j=1 1[ľkh,j = m] = 1}. We then know that all episode indices k ∈ Km belong to the same

stage, and hence these episodes have the same value of ňkh. That is, there exists an integer Nm > 0, such that
ňkh = Nm,∀k ∈ Km. Further, since the stages are partitioned in a way such that each stage is at most (1 + 1

H
) times

longer than the previous stage, we know that |Km| ≤ (1 + 1
H

)Nm. Therefore, for every m, it holds that

K∑
k=1

1

ňkh

ňkh∑
j=1

1

[
ľkh,j = m

]
≤ 1 +

1

H
. (14)

Combining (13) and (14) leads to the following upper bound of the second term in (12):

K∑
k=1

1

ňkh

ňkh∑
j=1

δ
ľkh,j
h+1 ≤ (1 +

1

H
)
K∑
k=1

δkh+1. (15)

So far, we have obtained the following upper bound:

K∑
k=1

δkh ≤ SH2 + (1 +
1

H
)
K∑
k=1

δkh+1 + 2
K∑
k=1

bňkh .

Iterating the above inequality over h = H,H − 1, . . . , 1 leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňkh

)
, (16)

where we used the fact that (1 + 1
H

)H ≤ e. In the following, we analyze the bonus term bňkh more carefully. Recall
our definitions that e1 = H, ei+1 =

⌊
(1 + 1

H
)ei
⌋
, i ≥ 1, and bň = 6

√
H2Aiι/ň. For any h ∈ [H],

K∑
k=1

(1 +
1

H
)h−1bňkh ≤

K∑
k=1

(1 +
1

H
)h−16

√
H2Aiι/Ňk

h

=6
√
H2Aiι

∑
s∈S

∑
j≥1

(1 +
1

H
)h−1e

− 1
2

j

K∑
k=1

I
[
skh = s, Ňk

h (skh) = ej
]

=6
√
H2Aiι

∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ,

where we define w(s, j)
def
=
∑K

k=1 I
[
skh = s, Ňk

h (skh) = ej
]

for any s ∈ S . If we further let w(s)
def
=
∑

j≥1w(s, j),
we can see that

∑
s∈S w(s) = K. For each fixed state s, we now seek an upper bound of its corresponding j
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value, denoted as J in what follows. Since each stage is (1 + 1
H

) times longer than its previous stage, we know that
w(s, j) =

∑K
k=1 I

[
skh = s, Ňk

h (skh) = ej
]

=
⌊
(1 + 1

H
)ej
⌋

for any 1 ≤ j ≤ J . Since
∑J

j=1w(s, j) = w(s), we
obtain that eJ ≤ (1 + 1

H
)J−1 ≤ 10

1+ 1
H

w(s)

H
by taking the sum of a geometric sequence. Therefore, by plugging in

w(s, j) =
⌊
(1 + 1

H
)ej
⌋
,

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ≤ O
(

J∑
j=1

e
1
2

j

)
≤ O

(√
w(s)H

)
,

where in the second step we again used the formula of the sum of a geometric sequence. Finally, using the fact that∑
s∈S w(s) = K and applying the Cauchy-Schwartz inequality, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňkh =O

(√
H4Aiι

∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j

)
≤O

(√
SAiKH5ι

)
. (17)

Summarizing the results above leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

√
SAiKH5ι

)
.

In the case when K is large enough, such that K ≥ SH
Aiι

, the second term becomes dominant, and we obtain the
desired result:

V
?,π̄−i

1,i (s1)− V π̄
1,i(s1) ≤ 1

K

K∑
k=1

δk1 ≤ O
(√

SAiH5ι/K

)
.

This completes the proof of the theorem.

An immediate corollary is that we obtain an ε-approximate CCE when
√
SAmaxH5ι/K ≤ ε, which is Theorem 1

in the main text.

Theorem 1. (Sample complexity of learning CCE). For any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let the
agents run Algorithm 1 for K episodes with K = O(SAmaxH

5ι/ε2). Then, with probability at least 1 − p, the
output policy π̄ constitutes an ε-approximate coarse correlated equilibrium.

D. Proofs for Section 3.2

We first present a no-swap-regret learning algorithm for the adversarial bandit problem, which serves as an important
subroutine to achieve correlated equilibria in Markov games. We consider a standard adversarial bandit problem that
lasts for T time steps. The agent has an action space of A = {1, . . . , A}. At each time step t ∈ [T ], the agent
specifies a distribution pt ∈ ∆(A) over the action space, and takes an action at according to pt. The adversary then
selects a loss vector lt ∈ [0, 1]A, where lt(a) ∈ [0, 1] denotes the loss of action a at time t. We consider partial
information (bandit) feedback, where the agent only receives the reward associated with the selected action at. The
external regret measures the difference between the cumulative reward that an algorithm obtains and that of the best
fixed action in hindsight. Specifically,

Rexternal(T ) = max
a?∈A

T∑
t=1

(lt(at)− lt(a?)) .

The swap regret, instead, measures the difference between the cumulative reward of an algorithm and the cumulative
reward that could be achieved by swapping multiple pairs of actions of the algorithm. To be more specific, we define
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Algorithm 5: No-swap-regret learning

1 Initialize: p1(a)← 1/A, ∀a ∈ A, γ ←
√

logA/T , and η ←
√

logA/T .
2 for t← 1 to T do
3 Take action at ∼ pt(·), and observe loss lt(at);
4 for action a ∈ A do
5 for action a′ ∈ A do
6 l̂t(a

′ | a)← pt(a)lt(at)I{at = a′}/(pt(a′) + γ);

7 qt+1(a′ | a)← exp(−η
∑t
i=1 l̂i(a

′|a))∑
b∈A exp(−η

∑t
i=1 l̂i(b|a))

;

8 Set pt+1 such that pt+1(·) =
∑
a∈A pt+1(a)qt+1(· | a);

a strategy modification F : A → A to be a mapping from the action space to itself. For any action selection
distribution p, we let F �p be the swapped distribution that takes action a ∈ A with probability

∑
a′∈A,F (a′)=a p(a

′).
The swap regret2 is then defined as

Rswap(T ) = max
F :A→A

T∑
t=1

(〈pt, lt〉 − 〈F � pt, lt〉) ,

where recall that pt is the distribution that the algorithm specifies at time t for action selection.

We follow the generic reduction introduced in Blum & Mansour (2007), and convert a Follow-the-Regularized-Leader
algorithm with sublinear external regret to a no-swap-regret algorithm (Jin et al., 2021). The resulting algorithm
is presented as Algorithm 5. The following lemma shows that Algorithm 5 is indeed a no-swap-regret learning
algorithm.
Lemma 9. (Jin et al., 2021, Theorem 26). For any T ∈ N and p ∈ (0, 1), let ι = log(A2/p). With probability at
least 1− 3p, it holds that

Rswap(T ) ≤ 10
√
A2Tι.

It is worth noting that Jin et al. (2021) presented a more general analysis with an anytime weighted swap regret
guarantee. Such complication can be avoided in our algorithm, as our stage-based learning approach only entails a
simple averaged swap regret analysis.

The complete Stage-Based V-Learning algorithm for CE is presented in Algorithm 6. In the following analysis, we
follow the same notations as have been used in the CCE analysis. We again start with the following lemma that
justifies our choice of the bonus term.
Lemma 10. With probability at least 1− p

2
, it holds for all (i, s, h, k) ∈ N × S × [H]× [K] that

max
ψi∈Ψi

1

ň

ň∑
j=1

D
ψsh,i�µ

ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
≤ 11

√
H2A2

i ι/ň.

Proof. For a fixed (s, h, k) ∈ S × [H] × [K], let Fj be the σ-algebra generated by all the random variables up

to episode ľj . Then,
{
rh,i(s,a

ľj
h,i) + V

ľj

h+1,i(s
ľj
h+1)− D

µ
ľj
h,i

(
rh,i + PhV

ľj

h+1,i

)
(s)

}ň
j=1

is a martingale difference

sequence with respect to {Fj}ňj=1. From the Azuma-Hoeffding inequality, it holds with probability at least 1 −
p/(4NSHK) that

1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s)− 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
≤
√
H2ι/ň.

2This is a modified version of the swap regret used in Blum & Mansour (2007), which is defined as Rswap(T ) =

maxF :A→A
∑T

t=1 (lt(at)− lt(F (at))).
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Algorithm 6: Stage-Based V-Learning for CE (agent i)

1 Initialize: V h,i(s)← H − h+ 1, Ṽh,i(s)← H − h+ 1, Nh(s)← 0, Ňh(s)← 0, řh,i(s)← 0, v̌h,i(s)← 0,

Ťh(s)← H, ph,i(a | s)← 1/Ai, Lsh,i(a
′ | a)← 0, ∀h ∈ [H], s ∈ S, a, a′ ∈ Ai.

2 for episode k ← 1 to K do
3 Receive s1;
4 for step h← 1 to H do
5 Nh(sh)← Nh(sh) + 1, ň

def
= Ňh(sh)← Ňh(sh) + 1;

6 Take action ah,i ∼ ph,i(· | sh), and observe reward rh,i and next state sh+1;
7 řh,i(sh)← řh,i(sh) + rh,i, v̌h,i(sh)← v̌h,i(sh) + V h+1,i(sh+1);

8 ηi ←
√
ι/Ťh(sh), γi ← ηi;

9 for action a ∈ Ai do
10 for action a′ ∈ Ai do
11 Lsh,i(a

′ | a)← Lsh,i(a
′ | a) +

ph,i(a|sh)[H−h+1−(rh,i+V h+1,i(sh+1))]
H(ph,i(ah,i|sh)+γi)

I{ah,i = a};

12 qshh,i(a
′ | a)← exp(−ηiL

sh
h,i(a

′|a))∑
b∈Ai

exp(−ηiL
sh
h,i(b|a))

;

13 Set ph,i(a | sh) such that ph,i(· | sh) =
∑
a∈A ph,i(a | sh)qshh,i(· | a);

14 if Nh(sh) ∈ L then
15 //Entering a new stage

16 Ṽh,i(sh)← řh,i(sh)
ň +

v̌h,i(sh)
ň + bň, where bň ← 11

√
H2A2

i ι/ň;
17 V h,i(sh)← min{Ṽh,i(sh), H − h+ 1};
18 Ňh(sh)← 0, řh,i(sh)← 0, v̌h,i(sh)← 0, Ťh(sh)←

⌊
(1 + 1

H )Ťh(sh)
⌋
;

19 ph,i(a | sh)← 1/Ai, L
sh
h,i(a

′ | a)← 0,∀a, a′ ∈ Ai;

Therefore, we only need to bound

Rswap(ň)
def
= max

ψi∈Ψi

1

ň

ň∑
j=1

D
ψsh,i�µ

ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s)− 1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s).

Notice that Rswap(ň) can be considered as the swap regret of an adversarial bandit problem at state s, where the loss
function at step j ∈ [ň] is defined as

`j(ai) = E
a−i∼µ

ľj
h,−i

(s)

[
H − h+ 1− rh,i(s,a)− PhV

ľj

h+1,i(s,a)

]
/H.

Such a problem can be addressed by a no-swap-regret learning algorithm as presented in Algorithm 5. Applying
Lemma 9, we obtain that with probability at least 1− p

4NHS
, it holds for all k ∈ [K] that

Rswap(ň) ≤ 10

√
H2A2

i ι

ň
.

A union bound over all (i, s, h, k) ∈ N × S × [H]× [K] completes the proof.

We again define the notations π̄kh, π̄, V
π̄kh
h,i , V

k
h,i, and V˜ kh,i(s) in the same sense as in Appendix C. The next lemma

shows that V
k

h,i(s) and V k
h,i(s) are valid upper and lower bounds.

Lemma 11. It holds with probability at least 1− p that for all (i, s, h, k) ∈ N × S × [H]× [K],

V
k

h,i(s) ≥ max
ψi∈Ψi

V
ψi�π̄kh
h,i (s), and V k

h,i(s) ≤ V
π̄kh
h,i (s).
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Proof. Consider a fixed (i, s, h, k) ∈ N × S × [H] × [K]. The desired result clearly holds for any state s that is
in its first stage, due to our initialization of V

k

h,i(s) and V k
h,i(s) for this special case. In the following, we only need

to focus on the case where V h,i(s) and V k
h,i(s) have been updated at least once at the given state s before the k-th

episode.

We start with the first inequality. It suffices to show that Ṽ k
h,i(s) ≥ maxψi∈Ψi V

ψi�π̄kh
h,i (s) because V

k

h,i(s) =

min{Ṽ k
h,i(s), H − h+ 1}, and maxψi∈Ψi V

ψi�π̄kh
h,i (s) is always less than or equal to H − h+ 1. Our proof relies on

induction on k ∈ [K]. First, the claim holds for k = 1 due to the aforementioned logic. For each step h ∈ [H] and
s ∈ S , we consider the following two cases.

Case 1: Ṽh,i(s) has just been updated in (the end of) episode k − 1. In this case,

Ṽ k
h,i(s) =

1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ bň. (18)

By the definition of maxψi∈Ψi V
ψi�π̄kh
h,i (s), it holds with probability at least 1− p

2NSKH
that

max
ψi∈Ψi

V
ψi�π̄kh
h,i (s) ≤ max

ψi∈Ψi

1

ň

ň∑
j=1

D
ψi�µ

ľj
h

(
rh,i + Ph max

ψ′i∈Ψi
V
ψ′i�π̄

ľj
h+1

h+1,i

)
(s)

≤ max
ψi∈Ψi

1

ň

ň∑
j=1

D
ψi�µ

ľj
h

(
rh,i + PhV

ľj

h+1,i

)
(s)

≤ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ 11

√
H2A2

i ι/ň

≤Ṽ k
h,i(s), (19)

where the second step is by the induction hypothesis, the third step holds due to Lemma 10, and the last step is by
the definition of bň.

Case 2: Ṽh,i(s) was not updated in (the end of) episode k − 1. Since we have excluded the case that Ṽh,i has
never been updated, we are guaranteed that there exists an episode j such that Ṽh,i(s) has been updated in the end of

episode j − 1 most recently. In this case, Ṽ k
h,i(s) = Ṽ k−1

h,i (s) = · · · = Ṽ j
h,i(s) ≥ maxψi∈Ψi V

ψi�π̄jh
h,i (s), where the

last step is by the induction hypothesis. Finally, observe that by our definition, the value of maxψi∈Ψi V
ψi�π̄jh
h,i (s) is

a constant for all episode indices j that belong to the same stage. Since we know that episode j and episode k lie in

the same stage, we can conclude that maxψi∈Ψi V
ψi�π̄kh
h,i (s) = maxψi∈Ψi V

ψi�π̄jh
h,i (s) ≤ Ṽ k

h,i(s).

Combining the two cases and applying a union bound over all (i, s, h, k) ∈ N ×S × [H]× [K] complete the proof
of the first inequality.

Next, we prove the second inequality in the statement of the lemma. Notice that it suffices to show V˜ kh,i(s) ≤ V π̄kh
h,i (s)

because V k
h,i(s) = max{V˜ kh,i(s), 0}. Our proof again relies on induction on k ∈ [K]. Similar to the proof of the

first inequality, the claim apparently holds for k = 1, and we consider the following two cases for each step h ∈ [H]
and s ∈ S .

Case 1: The value of V˜ h,i(s) has just changed in (the end of) episode k − 1. In this case,

V˜ kh,i(s) =
1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V˜ ľjh+1,i(s

ľj
h+1)

)
− bň. (20)
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By the definition of V π̄kh
h,i (s), it holds with probability at least 1− p

2NSKH
that

V
π̄kh
h,i (s) =

1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV

π̄
ľj
h+1

h+1,i

)
(s)

≥ 1

ň

ň∑
j=1

D
µ
ľj
h

(
rh,i + PhV˜ ľjh+1,i

)
(s)

≥ 1

ň

ň∑
j=1

(
rh,i(s,a

ľj
h ) + V˜ ľjh+1,i(s

ľj
h+1)

)
−
√
H2ι/ň

≥V˜ kh,i(s), (21)

where the second step is by the induction hypothesis, the third step holds due to the Azuma-Hoeffding inequality, and
the last step is by the definition of bň.

Case 2: The value of V˜ h,i(s) has not changed in (the end of) episode k − 1. Since we have excluded the case
that V˜ h,i has never been updated, we are guaranteed that there exists an episode j such that V˜ h,i(s) has changed in
the end of episode j − 1 most recently. In this case, we know that indices j and k belong to the same stage, and

V˜ kh,i(s) = V˜ k−1
h,i (s) = · · · = V˜ jh,i(s) ≤ V π̄jh

h,i (s), where the last step is by the induction hypothesis. Finally, observe

that by our definition, the value of V π̄jh
h,i (s) is a constant for all episode indices j that belong to the same stage. Since

we know that episode j and episode k lie in the same stage, we can conclude that V π̄kh
h,i (s) = V

π̄jh
h,i (s) ≥ V˜ kh,i(s).

Again, combining the two cases and applying a union bound over all (i, s, h, k) ∈ N × S × [H] × [K] complete
the proof.

Theorem 7. For any p ∈ (0, 1], let ι = log(2NSAmaxKH/p). Suppose K ≥ SH
A2

maxι
. With probability at least

1− p,

max
ψi∈Ψi

V ψi�π̄
1,i (s1)− V π̄

1,i(s1) ≤ O
(√

H5SA2
maxι/K

)
,

Proof. The proof follows a similar procedure as the proof of Theorem 6. From Lemma 11, we know that

max
ψi∈Ψi

V ψi�π̄
1,i (s1)− V π̄

1,i(s1) = max
ψi∈Ψi

1

K

K∑
k=1

(
V
ψi�π̄k1

1,i (s1)− V π̄k1
1,i (s1)

)
≤ 1

K

K∑
k=1

(
max
ψi∈Ψi

V
ψi�π̄k1

1,i (s1)− V π̄k1
1,i (s1)

)

≤ 1

K

K∑
k=1

(
V
k

1,i(s1)− V k
1,i(s1)

)
.

We hence only need to upper bound 1
K

∑K
k=1(V

k

1,i(s1)−V k
1,i(s1)). For a fixed agent i ∈ N , we define the following

notation:
δkh

def
= V

k

h,i(s
k
h)− V k

h,i(s
k
h).

The main idea of the subsequent proof is to upper bound
∑K

k=1 δ
k
h by the next step

∑K
k=1 δ

k
h+1, and then obtain a

recursive formula. From the update rule of V
k

h,i(s
k
h) in (5), we know that

V
k

h,i(s
k
h) ≤ I[nkh = 0]H +

1

ň

ň∑
j=1

(
rh,i(sh,a

ľj
h ) + V

ľj

h+1,i(s
ľj
h+1)

)
+ bň,
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where the I[nkh = 0] term counts for the event that the optimistic value function has never been updated for the given
state.

Further recalling the definition of V k
h,i(s

k
h), we have

δkh ≤I[nkh = 0]H +
1

ň

ň∑
j=1

(
V
ľj

h+1,i(s
ľj
h+1)− V ľj

h+1,i(s
ľj
h+1)

)
+ 2bň

≤I[nkh = 0]H +
1

ň

ň∑
j=1

δ
ľj
h+1 + 2bň, (22)

To find an upper bound of
∑K

k=1 δ
k
h, we proceed to upper bound each term on the RHS of (22) separately. First, notice

that
∑K

k=1 I
[
nkh = 0

]
≤ SH , because each fixed state-step pair (s, h) contributes at most 1 to

∑K
k=1 I

[
nkh = 0

]
.

Next, we turn to analyze the second term on the RHS of (22). Observe that

K∑
k=1

1

ňkh

ňkh∑
j=1

δ
ľkh,j
h+1 =

K∑
k=1

K∑
m=1

1

ňkh
δmh+1

ňkh∑
j=1

1

[
ľkh,j = m

]

=
K∑
m=1

δmh+1

K∑
k=1

1

ňkh

ňkh∑
j=1

1

[
ľkh,j = m

]
. (23)

For a fixed episode m, notice that
∑ňkh

j=1 1[ľkh,j = m] ≤ 1, and that
∑ňkh

j=1 1[ľkh,j = m] = 1 happens if and
only if skh = smh and (m,h) lies in the previous stage of (k, h) with respect to the state-step pair (skh, h). Define
Km

def
= {k ∈ [K] :

∑ňkh
j=1 1[ľkh,j = m] = 1}. We then know that all episode indices k ∈ Km belong to the same

stage, and hence these episodes have the same value of ňkh. That is, there exists an integer Nm > 0, such that
ňkh = Nm,∀k ∈ Km. Further, since the stages are partitioned in a way such that each stage is at most (1 + 1

H
) times

longer than the previous stage, we know that |Km| ≤ (1 + 1
H

)Nm. Therefore, for every m, it holds that

K∑
k=1

1

ňkh

ňkh∑
j=1

1

[
ľkh,j = m

]
≤ 1 +

1

H
. (24)

Combining (23) and (24) leads to the following upper bound of the second term in (22):

K∑
k=1

1

ňkh

ňkh∑
j=1

δ
ľkh,j
h+1 ≤ (1 +

1

H
)
K∑
k=1

δkh+1. (25)

So far, we have obtained the following upper bound:

K∑
k=1

δkh ≤ SH2 + (1 +
1

H
)
K∑
k=1

δkh+1 + 2
K∑
k=1

bňkh .

Iterating the above inequality over h = H,H − 1, . . . , 1 leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňkh

)
, (26)

where we used the fact that (1 + 1
H

)H ≤ e. In the following, we analyze the bonus term bňkh more carefully. Recall
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our definitions that e1 = H, ei+1 =
⌊
(1 + 1

H
)ei
⌋
, i ≥ 1, and bň = 11

√
H2A2

i ι/ň. For any h ∈ [H],

K∑
k=1

(1 +
1

H
)h−1bňkh ≤

K∑
k=1

(1 +
1

H
)h−111

√
H2A2

i ι/Ň
k
h

=11
√
H2A2

i ι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1e

− 1
2

j

K∑
k=1

I
[
skh = s, Ňk

h (skh) = ej
]

=11
√
H2A2

i ι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ,

where we define w(s, j)
def
=
∑K

k=1 I
[
skh = s, Ňk

h (skh) = ej
]

for any s ∈ S . If we further let w(s)
def
=
∑

j≥1w(s, j),
we can see that

∑
s∈S w(s) = K. For each fixed state s, we now seek an upper bound of its corresponding j

value, denoted as J in what follows. Since each stage is (1 + 1
H

) times longer than its previous stage, we know that
w(s, j) =

∑K
k=1 I

[
skh = s, Ňk

h (skh) = ej
]

=
⌊
(1 + 1

H
)ej
⌋

for any 1 ≤ j ≤ J . Since
∑J

j=1w(s, j) = w(s), we
obtain that eJ ≤ (1 + 1

H
)J−1 ≤ 10

1+ 1
H

w(s)

H
by taking the sum of a geometric sequence. Therefore, by plugging in

w(s, j) =
⌊
(1 + 1

H
)ej
⌋
,

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j ≤ O
(

J∑
j=1

e
1
2

j

)
≤ O

(√
w(s)H

)
,

where in the second step we again used the formula of the sum of a geometric sequence. Finally, using the fact that∑
s∈S w(s) = K and applying the Cauchy-Schwartz inequality, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1bňkh =O

(√
H4A2

i ι
∑
s∈S

∑
j≥1

(1 +
1

H
)h−1w(s, j)e

− 1
2

j

)

≤O
(√

SA2
iKH

5ι

)
. (27)

Summarizing the results above leads to

K∑
k=1

δk1 ≤ O
(
SH3 +

√
SA2

iKH
5ι

)
.

In the case when K is large enough, such that K ≥ SH
A2
i ι

, the second term becomes dominant, and we obtain the
desired result:

max
ψi∈Ψi

V ψi�π̄
1,i (s1)− V π̄

1,i(s1) ≤ 1

K

K∑
k=1

δk1 ≤ O
(√

SA2
iH

5ι/K

)
.

This completes the proof of the theorem.

An immediate corollary is that we obtain an ε-approximate CE when
√
SA2

maxH
5ι/K ≤ ε, which is Theorem 2 in

the main text.

Theorem 2. (Sample complexity of learning CE). For any p ∈ (0, 1], set ι = log(2NSAmaxKH/p), and let the
agents run Algorithm 6 for K episodes with K = O(SA2

maxH
5ι/ε2). Then, with probability at least 1 − p, the

output policy π̄ constitutes an ε-approximate correlated equilibrium.
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E. Proofs for Section 4.1

We start with a multi-agent variant of the performance difference lemma (Kakade & Langford, 2002) in the finite-
horizon setting.
Lemma 12. (Performance difference lemma). For any policy π = (πi, π−i) ∈ Π and π′ = (π′i, π−i) ∈ Π, it holds
for any i ∈ N that

V π
1,i(ρ)− V π′

1,i (ρ) =
H∑
h=1

Esh∼dπh,ρEah∼πh(·|sh)

[
Aπ
′

h,i(sh,ah)
]
,

where Aπ
′

h,i(sh,ah) = Qπ′

h,i(sh,ah)− V π′

h,i(sh) is the advantage function.

Proof. For any state-action trajectory τ = (s1,a1, . . . , sH ,aH), let Pπ(τ | ρ) denote the probability of observing
the trajectory τ by following the policy π starting from the initial state distribution ρ. From the definition of the value
function, it holds that

V π
1,i(ρ)− V π′

1,i (ρ)

=Eτ∼Pπ(τ |ρ)

[
H∑
h=1

rh(sh,ah)

]
− V π′

1,i (ρ)

=Eτ∼Pπ(τ |ρ)

[
H∑
h=1

(
rh(sh,ah) + V π′

h,i(sh)− V π′

h,i(sh)
)]
− V π′

1,i (ρ)

=Eτ∼Pπ(τ |ρ)

[
H−1∑
h=1

(
rh(sh,ah) + V π′

h+1,i(sh+1)− V π′

h,i(sh)
)

+ rH(sH ,aH)− V π′

H,i(sH)

]
(a)
=Eτ∼Pπ(τ |ρ)

[
H−1∑
h=1

(
rh(sh,ah) + E

[
V π′

h+1,i(sh+1) | sh,ah
]
− V π′

h,i(sh)
)

+ rH(sH ,aH)− V π′

H,i(sH)

]
(b)
=Eτ∼Pπ(τ |ρ)

[
H∑
h=1

Aπ
′

h,i(sh,ah)

]
=

H∑
h=1

Esh∼dπh,ρEah∼πh(·|sh)

[
Aπ
′

h,i(sh,ah)
]
,

where (a) uses the tower property of conditional expectation, and (b) is due to the definition of the advantage function
and the fact that Qπ′

H,i(sh,aH) = rH(sH ,aH).

In the following, we reproduce a variant of the policy gradient theorem (Sutton et al., 2000) in the setting of finite-
horizon MPGs.
Lemma 13. (Policy gradient theorem). For any i ∈ N , it holds that

∇V π
1,i(ρ) =

H∑
h=1

Esh∼dπh,ρEah∼πh(·|sh)

[
Qπ
h,i(sh,ah)∇ log πh(ah | sh)

]
.

Proof. For any fixed initial state s1 ∈ S , differentiating both sides of the Bellman equation leads to

∇V π
1,i(s1)

=∇
∑
a1

π1(a1 | s1)Qπ
1,i(s1,a1)

=
∑
a1

(
∇π1(a1 | s1)Qπ

1,i(s1,a1) + π1(a1 | s1)∇Qπ
1,i(s1,a1)

)
=
∑
a1

(
π1(a1 | s1)∇ log π1(a1 | s1)Qπ

1,i(s1,a1) + π1(a1 | s1)∇
(
r1,i(s1,a1) + Es2∼P1(·|s1,a1)

[
V π

2,i(s2)
]))

=
∑
a1

π1(a1 | s1)
(
∇ log π1(a1 | s1)Qπ

1,i(s1,a1) + Es2∼P1(·|s1,a1)

[
∇V π

2,i(s2)
])
.
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From the linearity of expectation, we know that for any state distribution ρ,

∇V π
1,i(ρ) = ∇

(
Es1∼dπ1,ρ

[
V π

1,i(s1)
])

= Es1∼dπ1,ρEa1∼π1(·|s1)

[
Qπ

1,i(s1,a1)∇ log π1(a1 | s1)
]

+ Es2∼dπ2,ρ
[
∇V π

2,i(s2)
]
.

Applying the above equation recursively, we obtain that

∇V π
1,i(ρ) =

H∑
h=1

Esh∼dπh,ρEah∼πh(·|sh)

[
Qπ
h,i(sh,ah)∇ log πh(ah | sh)

]
.

This completes the proof of the policy gradient theorem in the finite-horizon case.

With direct parameterization, we can further derive from the policy gradient theorem that for any h ∈ [H], s ∈
S, a ∈ Ai,

∂V π
1,i(ρ)

∂πh,i(a | s)
= Eah,−i∼πh,−i(·|sh)

[
dπh,ρ(s)Q

π
h,i(s, a, ah,−i)

]
. (28)

In the following, we state and prove a finite-horizon variant of the gradient domination property, which has been
shown in single-agent policy gradient methods (Agarwal et al., 2021) and infinite-horizon discounted MPGs (Zhang
et al., 2021; Leonardos et al., 2021).

Lemma 14. (Gradient domination). For any policy π = (πi, π−i) ∈ Π in a Markov potential game, let π?i be agent
i’s best response to π−i, and let π? = (π?i , π−i). With direct policy parameterization, for any initial state distribution
ρ ∈ ∆(S), it holds that

V π?

1,i (ρ)− V π
1,i(ρ) ≤

∥∥∥∥∥dπ
?

ρ

dπρ

∥∥∥∥∥
∞

max
πi∈Πi

(π − π)ᵀ∇πiV π
1,i(ρ),

where the L∞ norm takes the maximum over [H]× S .

Proof. From the performance difference lemma (Lemma 12), we know that

V π?

1,i (ρ)− V π
1,i(ρ) =

H∑
h=1

Esh∼dπ?h,ρEah,i∼π?h,i(·|sh)Eah,−i∼πh,−i(·|sh)

[
Aπh,i(sh, ah,i, ah,−i)

]
≤

H∑
h=1

∑
sh∈S

dπ
?

h,ρ(sh) max
a?h,i∈Ai

∑
ah,−i∈A−i

πh,−i(ah,−i | sh)Aπh,i(sh, a
?
h,i, ah,−i)

=
H∑
h=1

∑
sh∈S

dπ
?

h,ρ(sh)

dπh,ρ(sh)
dπh,ρ(sh) max

a?h,i∈Ai

∑
ah,−i∈A−i

πh,−i(ah,−i | sh)Aπh,i(sh, a
?
h,i, ah,−i)

≤
(

max
h∈[H],sh∈S

dπ
?

h,ρ(sh)

dπh,ρ(sh)

)
H∑
h=1

∑
sh∈S

dπh,ρ(sh) max
a?h,i∈Ai

∑
ah,−i∈A−i

πh,−i(ah,−i | sh)Aπh,i(sh, a
?
h,i, ah,−i),

where in the last step we used the fact that∑
ah,i∈Ai

∑
ah,−i∈A−i

πh,i(ah,i | sh)πh,−i(ah,−i | sh)Aπh,i(sh, ah,i, ah,−i) = 0, (29)

which in turn implies that

max
a?h,i∈Ai

∑
ah,−i∈A−i

πh,−i(ah,−i | sh)Aπh,i(sh, a
?
h,i, ah,−i) ≥ 0.
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Further, we have that
H∑
h=1

∑
sh∈S

dπh,ρ(sh) max
a?h,i∈Ai

∑
ah,−i∈A−i

πh,−i(ah,−i | sh)Aπh,i(sh, a
?
h,i, ah,−i)

=
H∑
h=1

∑
sh∈S

dπh,ρ(sh) max
πi∈Πi

∑
ah,i∈Ai

∑
ah,−i∈A−i

πh,i(ah,i | sh)πh,−i(ah,−i | sh)Aπh,i(sh, ah,i, ah,−i)

(a)
=

H∑
h=1

∑
sh∈S

dπh,ρ(sh) max
πi∈Πi

∑
ah,i∈Ai

∑
ah,−i∈A−i

(πh,i(ah,i | sh)− πh,i(ah,i | sh))πh,−i(ah,−i | sh)Aπh,i(sh, ah,i, ah,−i)

(b)
=

H∑
h=1

∑
sh∈S

dπh,ρ(sh) max
πi∈Πi

∑
ah,i∈Ai

∑
ah,−i∈A−i

(πh,i(ah,i | sh)− πh,i(ah,i | sh))πh,−i(ah,−i | sh)Qπ
h,i(sh, ah,i, ah,−i)

(c)
= max

πi∈Πi
(π − π)ᵀ∇πiV π

1,i(ρ)

where (a) again uses (29), and (b) relies on the fact that∑
ah,i∈Ai

(πh,i(ah,i | sh)− πh,i(ah,i | sh))V π
h,i(sh) = 0.

Equality (c) is due to the policy gradient theorem with direct parameterization (28). Finally, putting everything
together, we conclude that

V π?

1,i (ρ)− V π
1,i(ρ) ≤

∥∥∥∥∥dπ
?

ρ

dπρ

∥∥∥∥∥
∞

max
πi∈Πi

(π − π)ᵀ∇πiV π
1,i(ρ),

where the L∞ norm takes the maximum over the space [H]×S . This completes the proof of the gradient domination
property.

We are now ready to prove Lemma 1 from Section 4, which states that a stationary point of the potential function
implies a NE policy.

Lemma 1. Let π = (π1, . . . , πN) be an ε-approximate stationary point of the potential function Φρ of an MPG for
some ε > 0. Then, π is a D

√
SHε-approximate Nash equilibrium policy profile for this MPG.

Proof. For any i ∈ N , since π = (πi, π−i) is an ε-approximate stationary point of Φρ, we know from Definition 6
that

max
π?i ∈Πi

(π?i − πi)ᵀ∇πiΦρ(π) =
√
SH max

π?i ∈Πi

(
π?i − πi√
SH

)ᵀ

∇πiΦρ(π) ≤
√
SHε,

where we used the fact that
∥∥∥π?i−πi√

SH

∥∥∥2

2
≤ 1. Let π? = (π?i , π−i). From the definition of the potential function, we

obtain that ∇πiV π
1,i(ρ) = ∇πiΦρ(π). Further, the linearity of expectation immediately implies that Φρ(πi, π−i) −

Φρ(πi′ , π−i) = V
πi,π−i

1,i (ρ)− V πi′ ,π−i
1,i (ρ). By the gradient domination property (Lemma 14), we know that

V π?

1,i (ρ)− V π
1,i(ρ) ≤

∥∥∥∥∥dπ
?

ρ

dπρ

∥∥∥∥∥
∞

max
π?i ∈Πi

(π? − π)ᵀ∇πiV π
1,i(ρ)

=D max
π?i ∈Πi

(π? − π)ᵀ∇πiΦρ(π)

≤D
√
SHε.

Since the above inequality holds for any i ∈ N , we conclude that π is a D
√
SHε-approximate Nash equilibrium

policy profile of the MPG.
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Before proceeding to the proof of Theorem 3, we first state and prove the following supporting lemmas. The first
lemma investigates the smoothness of the potential function, while the second one ensures that the projected gradient
descent algorithm (3) can be executed in a decentralized way.
Lemma 15. For any state distribution ρ, the potential function Φρ is 4NAmaxH

3-smooth; that is,

‖∇Φρ(π)−∇Φρ(π
′)‖

2
≤ 4NAmaxH

3 ‖π − π′‖2 .

Proof. It suffices to show that ∥∥∇2Φρ

∥∥
2
≤ 4NAmaxH

3.

From Claim C.2 of Leonardos et al. (2021) (restated as Lemma 6 in Appendix B), we know that we only need to
show ∥∥∇πjπiV π

1,j(ρ)
∥∥

2
≤ 4AmaxH

3, ∀i, j ∈ N ,
and the desired result immediately follows.

Our proof follows a similar argument as in Agarwal et al. (2021); Leonardos et al. (2021). For a fixed policy profile
π, initial state s1, and agents i 6= j ∈ N , let s, t ≥ 0 be scalars and u, v be unit vectors such that πi + tu ∈ Πi and
πj + sv ∈ Πj . Further, define

V (t) = V
(πi+tu,π−i)

1,i (s1), and W (t, s) = V
(πi+tu,πj+sv,π−i,−j)

1,i (s1).

Then, it suffices to show that

max
‖u‖2=1

∣∣∣∣d2V (0)

dt2

∣∣∣∣ ≤ 4AmaxH
3, and max

‖u‖2=1

∣∣∣∣d2W (0, 0)

dtds

∣∣∣∣ ≤ 4AmaxH
3. (30)

We start with the first inequality. From the Bellman equation, we know that

V (t) =
∑

a1,i∈Ai

∑
a1,−i∈A−i

(π1,i(a1,i | s1) + tu1(a1,i | s1))
∏
j 6=i

π1,j(a1,j | s1)Q
(πi+tu,π−i)
1,i (s1,a1),

and in what follows we will write πh,−i(ah,−i | sh) =
∏
j 6=i πh,j(ah,j | sh) for short. Taking the second derivative

on both sides,

d2V (t)

dt2
=2

∑
a1,i∈Ai

∑
a1,−i∈A−i

u1(a1,i | s1)π1,−i(a1,−i | s1)
dQ

(πi+tu,π−i)
1,i (s1,a1)

dt

+
∑

a1,i∈Ai

∑
a1,−i∈A−i

(π1,i(a1,i | s1) + tu1(a1,i | s1))π1,−i(a1,−i | s1)
d2Q

(πi+tu,π−i)
1,i (s1,a1)

dt2
. (31)

In the following, we will bound each of the two terms on the RHS separately. Let π(t) = (πi + tu, π−i). From the
Bellman equation, we know that for any h ∈ [H],

Q
π(t)
h,i (sh,ah) =rh,i(sh,ah) +

∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

(πh+1,i(ah+1,i | sh+1) + tuh+1(ah+1,i | sh+1))

× πh+1,−i(ah+1,−i | sh+1)Q
π(t)
h+1,i(sh+1,ah+1). (32)

Differentiating both sides of the equation,∣∣∣∣∣dQ
π(t)
h,i (sh,ah)

dt

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

(πh+1,i + tuh+1)πh+1,−i
dQ

π(t)
h+1,i(sh+1,ah+1)

dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

uh+1πh+1,−iQ
π(t)
h+1,i(sh+1,ah+1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

(πh+1,i + tuh+1)πh+1,−i
dQ

π(t)
h+1,i(sh+1,ah+1)

dt

∣∣∣∣∣∣+
√
AmaxH,
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where we abbreviated πh+1,i(ah+1,i | sh+1) as πh+1,i, uh+1(ah+1,i | sh+1) as uh+1, and πh+1,−i(ah+1,−i | sh+1)

as πh+1,−i. The last step holds because Qπ(t)
h+1,i(sh+1,ah+1) ≤ H ,

∑
ah+1,−i

πh+1,−i(ah+1,−i | sh+1) = 1,∑
ah+1,i

|uh+1(ah+1,i | sh+1)| ≤
√
Ai ≤

√
Amax, and

∑
sh+1

Ph(sh+1 | sh,ah) = 1. Applying the above in-
equality recursively over h = H,H − 1, . . . , 1, and recalling the facts that

dQ
π(t)
H,i (sH ,aH)

dt
=
drH,i(sH ,aH)

dt
= 0

and that
∑

ah+1,i
(πh+1,i(ah+1,i | sh+1) + tuh+1(ah+1,i | sh+1)) = 1 lead to the result that

∣∣∣∣∣dQ
π(t)
h,i (sh,ah)

dt

∣∣∣∣∣ ≤√AmaxH
2,∀h ∈ [H]. (33)

Further, taking the second derivative on both sides of (32), we get that

∣∣∣∣∣d2Q
π(t)
h,i (sh,ah)

dt2

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

(πh+1,i + tuh+1)πh+1,−i
d2Q

π(t)
h+1,i(sh+1,ah+1)

dt2

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

uh+1πh+1,−i
dQ

π(t)
h+1,i(sh+1,ah+1)

dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1 | sh,ah)
∑
ah+1,i

∑
ah+1,−i

(πh+1,i + tuh+1)πh+1,−i
d2Q

π(t)
h+1,i(sh+1,ah+1)

dt2

∣∣∣∣∣∣+ 2AmaxH
2,

where in the last step we used (33), and the facts that
∑

ah+1,−i
πh+1,−i(ah+1,−i | sh+1) = 1,∑

ah+1,i
|uh+1(ah+1,i | sh+1)| ≤

√
Ai ≤

√
Amax, and

∑
sh+1

Ph(sh+1 | sh,ah) = 1. Again, applying the above
inequality recursively over h = H,H − 1, . . . , 1, we obtain that

∣∣∣∣∣d2Q
π(t)
h,i (sh,ah)

dt2

∣∣∣∣∣ ≤ 2AmaxH
3, ∀h ∈ [H]. (34)

Substituting (33) and (34) back into (31), we can conclude that

∣∣∣∣d2V (t)

dt2

∣∣∣∣ ≤ 2AmaxH
2 + 2AmaxH

3 ≤ 4AmaxH
3.

This proves the first inequality in (30). The second inequality in (30) can be shown using a similar procedure. This
completes the proof of the lemma.

Lemma 16. For any policy profile π = (π1, . . . , πN), let π+ = ProjΠ (π + η∇πΦρ(π)) be a PGA update step on
the potential function, where η > 0 is the step size. For each agent i ∈ N , let π+

i = ProjΠi
(
πi + η∇πiV π

1,i(ρ)
)

be
an independent PGA update on its own value function with the same step size. Then, π+ = (π+

1 , . . . , π
+
N). That is,

running PGA on the potential function as a whole is equivalent to running PGA independently on each agent’s value
function.
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Proof. By the definition of the projection operator,

π+ =ProjΠ (π + η∇πΦρ(π)) = argmin
x∈Π

‖π + η∇πΦρ(π)− x‖2
2

= argmin
(x1,...,xN )∈Π1×···×ΠN

N∑
i=1

‖πi + η∇πiΦρ(π)− xi‖22

(a)
= argmin

(x1,...,xN )∈Π1×···×ΠN

N∑
i=1

∥∥πi + η∇πiV π
1,i(ρ)− xi

∥∥2

2

=

(
argmin
x1∈Π1

∥∥π1 + η∇π1
V π

1,1(ρ)− x1

∥∥2

2
, . . . , argmin

xN∈ΠN

∥∥πN + η∇πNV π
1,N(ρ)− xN

∥∥2

2

)
=
(
π+

1 , . . . , π
+
N

)
,

where (a) is due to the fact that∇πiV π
1,i(ρ) = ∇πiΦρ(π).

With Lemma 16 at hand, we only need to analyze the behavior of running PGA on the potential function, as it is
equivalent to the case where each agent runs PGA independently on its own value function, i.e., the update rule given
in (3). We are now ready to prove Theorem 3.

Theorem 3. For any initial state distribution ρ ∈ ∆(S), let the agents independently run the projected gradient
ascent algorithm (3) with step size η = 1

4NAmaxH3 for T = 32NSAmaxD
2H4Φmax

ε2
iterations. Then, there exists t ∈ [T ],

such that π(t) is an ε-approximate Nash equilibrium policy profile.

Proof. Let π(t) be the policy profile at the beginning of the t-th iteration of the PGA algorithm. Since we have shown
in Lemma 15 that Φρ is 4NAmaxH

3-smooth, we can apply a standard sufficient ascent property for smooth functions
(Lemma 3 in Appendix B) to conclude that

Φρ(π
(t+1))− Φρ(π

(t)) ≥ 1

8NAmaxH3

∥∥∥∥1

η

(
π(t+1) − π(t)

)∥∥∥∥2

2

.

Summing over t = 1, 2, . . . , T , we know that

T∑
t=1

∥∥∥∥1

η

(
π(t+1) − π(t)

)∥∥∥∥2

2

≤ 8NAmaxH
3
(

Φρ(π
(T+1))− Φρ(π

(1))
)
≤ 8NAmaxH

3Φmax.

When T is large enough such that T ≥ 32NSAmaxD
2H4Φmax

ε2
, we know that there exists a time step t ∈ [T ] that satisfies∥∥∥ 1

η

(
π(t+1) − π(t)

)∥∥∥
2
≤ ε

2D
√
SH

. Then, from a standard gradient mapping property (Lemma 4 in Appendix B), we

know that π(t+1) is a ε

D
√
SH

-approximate stationary point of the potential function. Finally, invoking the result that an

ε-approximate stationary point implies an D
√
SHε-approximate Nash equilibrium policy profile, we can conclude

that π(t+1) is an ε-approximate NE policy profile.

F. Proofs for Section 4.2
F.1. Proof of Theorem 4

Lemma 2. For any agent i ∈ N and any iteration t ∈ [K], the REINFORCE gradient estimator (4) with ε̃-greedy
exploration is an unbiased estimator with a bounded variance:

Eπ(t)

[
∇̂(t)
πi

(π(t))
]

= ∇πiV π(t)

1,i (ρ), and Eπ(t)

[∥∥∥∇̂(t)
πi

(π(t))−∇πiV π(t)

1,i (ρ)
∥∥∥2

2

]
≤ A2

maxH
4

ε̃
.
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Further, it is mean-squared smooth, such that for any policy π′(t) ∈ Πi,

Eπ(t)

[∥∥∥∇̂(t)
πi

(π(t))− ∇̂(t)
π′i

(π′(t))
∥∥∥2

2

]
≤ A3

maxH
3

ε̃3

∥∥∥π(t) − π′(t)
∥∥∥2

2
.

Proof. In this proof, we omit the iteration index t in the superscripts of the notations as there is no ambiguity. We
first show that the gradient estimator is unbiased. For any state-action trajectory τ = (s1,a1, . . . , sH ,aH), let Pπ(τ)
denote the probability of observing the trajectory τ by following the policy π starting from the state distribution ρ,
and let R(τ) =

∑H
h=1 rh(sh,ah) denote the total reward of the trajectory. Then, we know that

Pπ(τ) =
H∏
h=1

πh,i(ah,i | sh)πh,−i(ah,−i | sh)P (sh+1 | sh,ah).

Therefore, by the definition of the value function,

∇πiV π
1,i(ρ) =∇πi

∑
τ

R(τ)Pπ(τ) =
∑
τ

R(τ)∇πiPπ(τ)

=
∑
τ

R(τ)Pπ(τ)∇πi log Pπ(τ)

=
∑
τ

R(τ)Pπ(τ)∇πi

(
H∑
h=1

log πh,i(ah,i | sh)

)

=Eπ

[(
H∑
h=1

rh(sh,ah)

)
H∑
h=1

∇πi log πh,i(ah,i | sh)

]
=Eπ

[
∇̂πi(π)

]
Next, we proceed to bound the variance of the gradient estimator. Since the gradient estimator is unbiased,

Eπ
[∥∥∥∇̂πi(π)−∇πiV π

1,i(ρ)
∥∥∥2

2

]
≤Eπ

[∥∥∥∇̂πi(π)
∥∥∥2

2

]
= Eπ

∥∥∥∥∥Ri
H∑
h=1

∇πi log πh,i(ah,i | sh)

∥∥∥∥∥
2

2


≤H2Eπ

∥∥∥∥∥
H∑
h=1

∇πi log πh,i(ah,i | sh)

∥∥∥∥∥
2

2


≤H3Eπ

[
H∑
h=1

‖∇πi log πh,i(ah,i | sh)‖2
2

]

=H3Eπ

[
H∑
h=1

∑
s,ai

(1− ε̃)2I{s = sh, ai = ah,i}
1

π2
h,i(ai | s)

]
,

where the last step is a consequence of direct parameterization with ε̃-greedy exploration. We further upper bound
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the above term as

Eπ
[∥∥∥∇̂πi(π)−∇πiV π

1,i(ρ)
∥∥∥2

2

]
≤H3Eπ

[
H∑
h=1

∑
s,ai

I{s = sh, ai = ah,i}
1

π2
h,i(ai | s)

]

=H3Eπ

[
H∑
h=1

∑
s,ai

I{s = sh}
1

πh,i(ai | s)

]

≤AmaxH
3

ε̃
Eπ

[
H∑
h=1

∑
s,ai

I{s = sh}
]

≤A
2
maxH

4

ε̃
.

Finally, we proceed to show the mean-squared smoothness of the gradient estimator. Using a similar argument as
above,

Eπ
[∥∥∥∇̂πi(π)− ∇̂π′i(π

′)
∥∥∥2

2

]
≤H2Eπ

∥∥∥∥∥
H∑
h=1

(
∇πi log πh,i(ah,i | sh)−∇π′i log π′h,i(ah,i | sh)

)∥∥∥∥∥
2

2


≤H3Eπ

[
H∑
h=1

∥∥∇πi log πh,i(ah,i | sh)−∇π′i log π′h,i(ah,i | sh)
∥∥2

2

]

≤H3Eπ

 H∑
h=1

∑
s,ai

I{s = sh, ai = ah,i}
(

1

πh,i(ai | s)
− 1

π′h,i(ai | s)

)2


≤H
3A3

max

ε̃3
Eπ

[
H∑
h=1

∑
s,ai

I{s = sh}
(
πh,i(ai | s)− π′h,i(ai | s)

)2]

≤H
3A3

max

ε̃3
.

This completes the proof of the lemma.

Theorem 4. For any initial policies, let the agents independently run SGA policy updates (Algorithm 3) for T
iterations with T = O(1/ε4.5) · poly(N,D, S,Amax, H). Then, there exists t ∈ [T ], such that π(t) is an ε-
approximate Nash equilibrium policy profile in expectation.

Proof. It suffices to verify that Assumption 1 is satisfied in our SGA policy updates, and then apply the conver-
gence results from Proposition 1. From Lemma 2, we know that the REINFORCE gradient estimator with ε̃-greedy
exploration is unbiased, mean-squared smooth, and has a bounded variance. We also know from Lemma 15 that
the potential function is smooth (The smoothness parameter does not increase with epsilon-greedy exploration, e.g.,
Daskalakis et al. (2020, Proposition 3)). Hence, we can conclude that all the conditions in Assumption 1 are satisfied
with the following choice of parameters:

σ2 =
NA2

maxH
4

ε̃
, and L2 =

N2A3
maxH

3

ε̃3
.

Applying the convergence result from Theorem 1, and setting ε̃ =
√
Nε

2NDSH3Amax
, we conclude that we can obtain an

ε-approximate Nash equilibrium when T = Õ
(
N9/4D9/2S3A9/2

maxH
12

ε9/2

)
. This completes the proof of the theorem.
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F.2. Decentralized MARL in Smooth MPGs

Smooth games were first introduced in Roughgarden (2009) to study the Price of Anarchy (POA) in normal-form
games. A large class of games are covered as examples of smooth games, including congestion games and many
forms of auctions (Roughgarden, 2009; Syrgkanis & Tardos, 2013). The notion of smoothness was later extended to
learning in normal-form games (Syrgkanis et al., 2015; Foster et al., 2016) and cooperative Markov games (Radanovic
et al., 2019; Mao et al., 2020b). This concept enables decentralized no-regret learning dynamics to converge to near-
optimality.

Theorem 5. In a (λ, ω)-smooth MPG, for any initial policies and any ε > 0, let the agents independently run SGA
policy updates (Algorithm 3) for T iterations with T = O(1/ε4.5) · poly(N,D, S,Amax, H). Then, there exists
t ∈ [T ], such that

E
[
V π(t)

1,i (ρ)
]
≥ λ

1 + ω
V ?

1,i(ρ)− ε

1 + ω
, ∀i ∈ N .

Proof. Since T = O(1/ε4.5) · poly(N,D, S,Amax, H), Theorem 4 guarantees that there exists t ∈ [T ], such that
π(t) is an ε-approximate NE in expectation. That is,

E
[
V π(t)

1,i (ρ)
]
≥E

[
V
π?i ,π

(t)
−i

1,i (ρ)

]
− ε ≥ λ · V ?

1,i(ρ)− ω · E
[
V π(t)

1,i (ρ)
]
− ε,

where the second step is by the definition of smoothness. Rearranging the terms leads to the desired result.

G. SGD with Variance Reduction

Before we present the convergence guarantee of Algorithm 3, we first introduce a few notations for ease of presenta-
tions. For any t ∈ [T ], we break the update rule into two steps:

x̃t+1
def
= xt − ηtdt, and xt+1 = ProjX (x̃t+1).

In addition, for each t ∈ [T ], we define x+
t+1

def
= ProjX (xt − ηt∇F (xt)) to be the next iterate updated using the full

gradient ∇F (xt), a value we do not have access to. Define εt
def
= dt −∇F (xt) to be the error in dt. The high-level

procedure of our proof is to seek to upper bound the value E
[∑T

t=1

∥∥∥ 1
ηt

(
x+
t+1 − xt

)∥∥∥2
]

, and then to invoke the

gradient mapping property in Lemma 4 to conclude with a stationary point. This is in contrast with the unconstrained
case, where Cutkosky & Orabona (2019) directly derive an upper bound of E

[∑T
t=1 ‖∇F (xt)‖2

]
. In the following,

we start with a few technical lemmas.

Lemma 17. Suppose ηt ≤ 1
4L

for all t ∈ [T ]. Then,

E[F (xt+1)− F (xt)] ≤ E
[
− 3

16ηt

∥∥x+
t+1 − xt

∥∥2
+

7ηt
8
‖εt‖2

]
.

Proof. From the first-order optimality condition, we know that

〈x− xt+1, xt+1 − (xt − ηtdt)〉 ≥ 0,

for any x ∈ X . Taking x = xt leads to

〈xt − xt+1, xt+1 − xt〉+ 〈xt − xt+1, ηtdt〉 ≥ 0,

which in turn implies that

〈xt+1 − xt, dt〉 ≤ −
1

ηt
‖xt − xt+1‖2 . (35)
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It follows that

〈∇F (xt), xt+1 − xt〉 = 〈dt − εt, xt+1 − xt〉

≤ − 1

ηt
‖xt − xt+1‖2 − 〈εt, xt+1 − xt〉

≤ − 1

ηt
‖xt − xt+1‖2 +

ηt
2
‖εt‖2 +

1

2ηt
‖xt+1 − xt‖2

=− 1

2ηt
‖xt − xt+1‖2 +

ηt
2
‖εt‖2 ,

where the first inequality uses (35), and the second inequality is due to Hölder’s inequality and Young’s inequality.
From the smoothness of F ,

E[F (xt+1)] ≤E
[
F (xt) + 〈∇F (xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2

]
≤E

[
F (xt)−

1

2ηt
‖xt − xt+1‖2 +

ηt
2
‖εt‖2 +

L

2
‖xt+1 − xt‖2

]
≤E

[
F (xt)−

3

8ηt
‖xt − xt+1‖2 +

ηt
2
‖εt‖2

]
, (36)

where the last step uses ηt ≤ 1
4L

. From the fact that ‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2, we know∥∥x+
t+1 − xt

∥∥2
=
∥∥x+

t+1 − xt+1 + xt+1 − xt
∥∥2 ≤ 2

∥∥x+
t+1 − xt+1

∥∥2
+ 2 ‖xt+1 − xt‖2 .

Rearranging the terms leads to

−‖xt − xt+1‖2 ≤
∥∥x+

t+1 − xt+1

∥∥2 − 1

2

∥∥x+
t+1 − xt

∥∥2

≤‖ProjX (xt − ηt∇F (xt))− ProjX (xt − ηtdt)‖2 −
1

2

∥∥x+
t+1 − xt

∥∥2

≤‖(xt − ηt∇F (xt))− (xt − ηtdt)‖2 −
1

2

∥∥x+
t+1 − xt

∥∥2

=η2
t ‖εt‖

2 − 1

2

∥∥x+
t+1 − xt

∥∥2
. (37)

The second inequality uses the definition of x+
t+1. The third step holds because the projection operator is non-

expansive, i.e. ‖ProjX (x)− ProjX (y)‖ ≤ ‖x− y‖. Substituting (37) back to (36) leads to

E[F (xt+1)] ≤ E
[
F (xt)−

3

16ηt

∥∥x+
t+1 − xt

∥∥2
+

7ηt
8
‖εt‖2

]
.

Rearranging the terms completes the proof.

Lemma 18. (Lemma 3 in Cutkosky & Orabona (2019)). For any t ∈ [T ], it holds that

E
[

(1− at)2

ηt−1

(∇f(xt, ξt)−∇F (xt)) · εt−1

]
= 0,

E
[

(1− at)2

ηt−1

(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)) · εt−1

]
= 0.

Lemma 19. (Adapted from Lemma 5 in Cutkosky & Orabona (2019)). With the notations in Algorithm 3, we have

E

[
‖εt‖2

ηt−1

]
≤ E

[
2c2η3

t−1σ
2 +

(4L2η2
t−1 + 1)(1− at)2

ηt−1

‖εt−1‖2 +
4 (1− at)2

L2

ηt−1

∥∥x+
t − xt−1

∥∥2

]
.
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Proof. First, observe that

E
[
‖∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1)‖2

]
≤E

[
‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2 + ‖∇F (xt)−∇F (xt−1)‖2

]
− 2E [〈∇f(xt, ξt)−∇f(xt−1, ξt),∇F (xt)−∇F (xt−1)〉]

≤E
[
‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2 + ‖∇F (xt)−∇F (xt−1)‖2

]
− 2E [E [〈∇f(xt, ξt)−∇f(xt−1, ξt),∇F (xt)−∇F (xt−1)〉 | ξ1, . . . , ξt−1]]

=E
[
‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2 − ‖∇F (xt)−∇F (xt−1)‖2

]
≤E

[
‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2

]
. (38)

By the definition of εt, we have εt = dt − ∇F (xt) = ∇f(xt, ξt) + (1 − at)(dt−1 − ∇f(xt−1, ξt)) − ∇F (xt).
Therefore,

E

[
‖εt‖2

ηt−1

]
=E

[
1

ηt−1

‖∇f(xt, ξt) + (1− at)(dt−1 −∇f(xt−1, ξt))−∇F (xt)‖2
]

=E
[

1

ηt−1

‖at(∇f(xt, ξt)−∇F (xt)) + (1− at)(dt−1 −∇F (xt−1))

+ (1− at)(∇f(xt, ξt)−∇f(xt−1, ξt)−∇F (xt) +∇F (xt−1))‖2
]

≤E
[
2c2η3

t−1 ‖∇f (xt, ξt)−∇F (xt)‖2 +
1

ηt−1

(1− at)2 ‖εt−1‖2

+
2

ηt−1

(1− at)2 ‖∇f (xt, ξt)−∇f (xt−1, ξt)−∇F (xt) +∇F (xt−1)‖2
]
,

where in the last step we used Lemma 18 and the simple fact that ‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2. Further applying

(38) and the assumption that E
[
‖∇f(xt, ξt)−∇F (xt)‖2

]
≤ σ2 leads to

E

[
‖εt‖2

ηt−1

]
=E

[
2c2η3

t−1σ
2 +

(1− at)2

ηt−1

‖εt−1‖2 +
2 (1− at)2

ηt−1

‖∇f(xt, ξt)−∇f(xt−1, ξt)‖2
]

≤E
[

2c2η3
t−1σ

2 +
(1− at)2

ηt−1

‖εt−1‖2 +
2 (1− at)2

L2

ηt−1

‖xt − xt−1‖2
]

≤E
[

2c2η3
t−1σ

2 +
(1− at)2

ηt−1

‖εt−1‖2 +
4 (1− at)2

L2

ηt−1

(∥∥xt − x+
t

∥∥2
+
∥∥x+

t − xt−1

∥∥2
)]

≤E
[

2c2η3
t−1σ

2 +
(4L2η2

t−1 + 1)(1− at)2

ηt−1

‖εt−1‖2 +
4 (1− at)2

L2

ηt−1

∥∥x+
t − xt−1

∥∥2

]
.

The first inequality is due to the L-smoothness of the function f . The second inequality again uses the fact that
‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2. The last step holds because of the non-expansiveness of the projection operator, that
is, ∥∥xt − x+

t

∥∥ = ‖ProjX (xt−1 − ηt−1dt−1)− ProjX (xt−1 − ηt−1∇F (xt−1))‖ ≤ η2
t−1 ‖εt−1‖2 .

This completes the proof of the lemma.

Now, we are ready to present the convergence guarantee of Algorithm 3.
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Proposition 1. (Adapted from Theorem 2 in Cutkosky & Orabona (2019)). Suppose the conditions in Assump-

tion 1 are satisfied. For any b > 0, let k = bσ
2
3

L
, c = 32L2 + σ2/ (7Lk3) = L2 (32 + 1/ (7b3)) , w =

max
(

(4Lk)3, 2σ2,
(
ck
4L

)3)
= σ2 max

(
(4b)3, 2,

(
32b+ 1

7b2

)3
/64
)

, and M = 16(F (x1) − F ?) + w1/3σ2

2L2k
+

k3c2

L2 ln(T + 2). Then, the following convergence guarantee holds for Algorithm 3:

E

[
1

T

T∑
t=1

∥∥∥∥ 1

ηt
(x+
t+1 − xt)

∥∥∥∥2
]
≤ Mw1/3

Tk
+
Mσ2/3

T 2/3k
.

Proof. First, define the Lyapunov function Φt = F (xt) + 1
32L2ηt−1

‖εt‖2. From Lemma 19, we can derive that

E

[
‖εt+1‖2

ηt
− ‖εt‖

2

ηt−1

]

≤E
[

2c2η3
tσ

2 +
(4L2η2

t + 1)(1− at+1)2

ηt
‖εt‖2 +

4 (1− at+1)
2
L2

ηt

∥∥x+
t+1 − xt

∥∥2 − ‖εt‖
2

ηt−1

]

≤E

2c2η3
tσ

2︸ ︷︷ ︸
At

+

(
(4L2η2

t + 1)(1− at+1)2

ηt
− 1

ηt−1

)
‖εt‖2︸ ︷︷ ︸

Bt

+
4 (1− at+1)

2
L2

ηt

∥∥x+
t+1 − xt

∥∥2

︸ ︷︷ ︸
Ct

 .
The first two terms At and Bt are exactly the same as in the proof of Theorem 2 in Cutkosky & Orabona (2019), and
we refer to their results as follows:

T∑
t=1

At ≤ 2k3c2 ln(T + 2), and
T∑
t=1

Bt ≤ −28L2
T∑
t=1

ηt ‖εt‖2 .

From w ≥ (4Lk)3, we know that ηt ≤ 1
4L

. Further, since at+1 = cη2
t , we have that at+1 ≤ ck

4Lw1/3 ≤ 1 for all t,

and hence Ct ≤ 4L2

ηt

∥∥x+
t+1 − xt

∥∥2
. Putting it all together, we obtain

1

32L2

T∑
t=1

(
‖εt+1‖2

ηt
− ‖εt‖

2

ηt−1

)
≤ k3c2

16L2
ln(T + 2) +

T∑
t=1

(
1

8ηt

∥∥x+
t+1 − xt

∥∥2 − 7ηt
8
‖εt‖2

)
. (39)

From Lemma 17, we know that

E [Φt+1 − Φt] ≤ E
[
− 3

16ηt

∥∥x+
t+1 − xt

∥∥2
+

7ηt
8
‖εt‖2 +

1

32L2ηt
‖εt+1‖2 −

1

32L2ηt−1

‖εt‖2
]
.

Summing over t from 1 to T and then applying (39), we obtain

E [ΦT+1 − Φ1] ≤
T∑
t=1

E
[
− 3

16ηt

∥∥x+
t+1 − xt

∥∥2
+

7ηt
8
‖εt‖2 +

1

32L2ηt
‖εt+1‖2 −

1

32L2ηt−1

‖εt‖2
]

≤E
[
k3c2

16L2
ln(T + 2)−

T∑
t=1

1

16ηt

∥∥x+
t+1 − xt

∥∥2

]
.

Rearranging the terms leads to

E

[
T∑
t=1

1

ηt

∥∥x+
t+1 − xt

∥∥2

]
≤E

[
16(Φ1 − ΦT+1) +

k3c2

L2
ln(T + 2)

]
≤16(F (x1)− F ?) +

1

2L2η0

E[‖ε1‖2] +
k3c2

L2
ln(T + 2)

≤16(F (x1)− F ?) +
w1/3σ2

2L2k
+
k3c2

L2
ln(T + 2),
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where the last step holds due to the definition that η0 = k
w1/3 . Since ηt is decreasing in t,

E

[
T∑
t=1

1

ηt

∥∥x+
t+1 − xt

∥∥2

]
= E

[
T∑
t=1

ηt

∥∥∥∥ 1

ηt
(x+
t+1 − xt)

∥∥∥∥2
]
≥ ηTE

[
T∑
t=1

∥∥∥∥ 1

ηt
(x+
t+1 − xt)

∥∥∥∥2
]
.

Dividing both sides by TηT and recalling the definition M = 16(F (x1) − F ?) + w1/3σ2

2L2k
+ k3c2

L2 ln(T + 2), we
obtain

E

[
1

T

T∑
t=1

∥∥∥∥ 1

ηt
(x+
t+1 − xt)

∥∥∥∥2
]
≤ M

TηT
=
M(w + σ2T )3

Tk
≤ Mw1/3

Tk
+
Mσ2/3

T 2/3k
,

where in the last step we used the fact that (a+ b)1/3 ≤ a1/3 + b1/3.

H. Simulations

In this section, we demonstrate the empirical performances of our algorithms, and compare their performances with
various benchmarks. We evaluate Algorithm 3 (SGA) on a classic matrix team task (Claus & Boutilier, 1998), and
both Algorithms 1 and 3 on two Markov games, namely GoodState and BoxPushing (Seuken & Zilberstein, 2007).

H.1. Markov Teams

We use a classic matrix team example from the literature (Claus & Boutilier, 1998; Lauer & Riedmiller, 2000),
where a team problem is a special case of potential games. Its reward table is reproduced in Table 1, where agent
1 is the row player, and agent 2 is the column player, both being maximizers. The action spaces of the agents are
A1 = {a0, a1, a2} and B2 = {b0, b1, b2}. There are three deterministic Nash equilibria in this team, among which
two of them, (a0, b0) and (a2, b2), are team-optimal. It would be preferred that the agents not only learn a NE, but
also settle on the same NE out of the two team-optimal ones.

b0 b1 b2

a0 10 0 -10

a1 0 2 0

a2 -10 0 10

Table 1. Reward table for the matrix team.

s0 b0 b1

a0 -2 5

a1 2 -2

s1 b0 b1

a0 0 0

a1 0 0

Table 2. Reward tables for GoodState.

We run Algorithm 3 on this task for T = 5000 rounds, and we set the step size ηt = 10−4 and the momentum
parameter at = 0.5. We evaluate our algorithm in terms of both the rewards it obtained and its L2 equilibrium gap.
Specifically, we define the L2 equilibrium gap as the L2 distance to a equilibrium point. For a pair of strategies
(µ, ν) ∈ ∆(A1)×∆(A2), its L2 equilibrium gap is defined as:

Gap(µ, ν)
def
=
∥∥µ− µ†(ν)

∥∥2

2
+
∥∥ν − ν†(µ)

∥∥2

2
, (40)

where ν†(µ) (resp. µ†(ν)) is the best response with respect to µ (resp. ν), and ‖·‖2 is the L2 norm. The simulation
results are presented in Figure 2. All results are averaged over 20 runs. Notice that we evaluate two sets of strategy
trajectories: The “Last Iterate” strategy (µt, νt) is the strategy pair used by Algorithm 3 at round t, while the “Aver-
age” strategy is to uniformly draw a random time index τ from {1, . . . , t} and run the strategy pair (µτ , ντ ). Notice
that in Theorem 4, our theoretical guarantees only hold in expectation, which correspond to the “Average” strategies.

From Figure 2(a), we can see that the equilibrium gap of both “Last Iterate” and “Average” converge to zero, in-
dicating that they indeed find an equilibrium as the number of iterations increase. The convergence of “Average”
slightly lags behind “Last Iterate” because “Average” essentially takes the time-averaged value of the actual trajecto-
ries, which requires some time to reflect the convergence behavior. A more promising result is that from Figure 2(b),
we can see that the rewards collected by “Last Iterate” and “Average” converge to values close to 9. This suggests
that Algorithm 3 not only finds a NE in this specific task, but actually converges to a team-optimal equilibrium most
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Figure 2. (a) L2 equilibrium gaps and (b) rewards of Algorithm 3 on the matrix team task given in Table 1. “Last Iterate” denotes the
actual strategy trajectory, while “Average” represents the uniformly sampled strategy pair. Shaded areas denote the standard deviations of
the equilibrium gap or reward. All results are averaged over 20 runs.

of the time. It does not exactly reach the team-optimal value of 10 because it still converges to non-team-optimal NE
at a rather low frequency.

H.2. Markov Games

We further evaluate both Algorithm 1 and Algorithm 3 on two Markov games, namely GoodState and BoxPush-
ing (Seuken & Zilberstein, 2007). The GoodState task is a simple Markov team problem inspired by Yongacoglu
et al. (2019). It has two states S = {s0, s1}, where s0 is the “good state” and s1 is the “bad state”. Each agent has
two candidate actions A1 = {a0, a1} and A2 = {b0, b1}. The reward function at each state is presented in Table 2.
Specifically, at state s1, both agents get a reward of 0 no matter what actions they select, while at state s0, they will
obtain a strictly positive reward if they either take the joint action (a0, b1) or the one (a1, b0). The state transition
function is defined as follows:

Ph(s0 | s0 or s1, a0, b1) = 1− ε, Ph(s1 | s0 or s1, not (a0, b1)) = 1− ε, ∀h ∈ [H],

and all the other transitions happen with probability ε. Intuitively, no matter which state the agents are in, they will
transition to the good state s0 with a high probability 1 − ε at the next step as long as they select the action pair
(a0, b1). All the other joint actions will lead to the bad state s1 with a high probability 1− ε. The task hence rewards
the agents who learn to consistently play the action pair (a0, b1).

We run our two algorithms on this example for K = 50000 episodes, each episode containing H = 10 steps. We
set the transition probability ε = 0.1. For Algorithm 1, the step size is set to be ηi = 1

5
√
AiŤh(sh)

, and the implicit

exploration parameter is γi = ηi/2. For Algorithm 3, the step size is set to be ηt = 10−4 and the momentum
parameter is at = 0.5.

The BoxPushing task (Seuken & Zilberstein, 2007) is a classic DecPOMDP problem with with ∼100 states. It has
two 2 agents, where each agent has 4 candidate actions. In the original BoxPushing problem, each agent only has
a partial observation of the state. We make proper modifications to the task so that the agents can fully observe
the state information and fit in our problem formulation. For Algorithm 1 on this task, the step size is set to be
ηi = 1

20
√
AiŤh(sh)

, and the implicit exploration parameter is γi = ηi/2. For Algorithm 3, the step size is set to be

ηt = 5× 10−4 and the momentum parameter is at = 0.1.

We compare our algorithms with two meaningful benchmarks. The first benchmark is a “Centralized” oracle. This
oracle acts as a centralized coordinator that can control the actions of both agents. Such an oracle essentially con-
verts the multi-agent task into a single-agent RL problem. The (randomized) action space of the centralized agent is
∆(A1 × A2), which is larger than the ∆(A1) × ∆(A2) space that we allow for Algorithm 3 in our decentralized
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Figure 3. Rewards of Algorithms 1 and 3 on the (a) GoodState and (b) BoxPusing tasks. “V-Learning” and “PG” denote the policies at the
current iterate t of Algorithms 1 and 3, respectively. “Centralized” is an oracle that can control the actions of the agents in a centralized
way. In “Independent”, each agent runs a naı̈ve single-agent Q-learning algorithm independently, by taking greedy actions w.r.t its local
Q-function estimates. All results are averaged over 20 runs.

approach. “Centralized” clearly upper bounds the performances that our decentralized learning algorithms can pos-
sibly achieve in this task. In our simulations, we implement “Centralized” by using a Hoeffding-based variant of a
state-of-the-art single-agent RL algorithm UCB-ADVANTAGE (Zhang et al., 2020a). This algorithm has achieved
a tight sample complexity bound for single-agent RL in theory, and has also demonstrated remarkable empirical
performances in practice (Mao et al., 2020b). Such an algorithm could provide a strong performance upper bound in
our task. The second benchmark we consider is the naı̈ve “Independent” Q-learning. Specifically, we let each agent
run a single-agent Q-learning algorithm independently, without being aware of the existence of the other agent or the
structure of the game. Each agent maintains an local optimistic Q-function, and takes greedy actions with respect
to such optimistic estimates, without taking into account the other agents’ actions. Since the agents update their
policies simultaneously, the stationarity assumption of the environment in single-agent RL quickly collapses, and
the theoretical guarantees for single-agent Q-learning no longer hold. This is also reminiscent of the “independent
learner” approach proposed in an early work (Claus & Boutilier, 1998) for learning in Markov teams. We believe
that such a benchmark could provide meaningful intuitions about the consequences of not taking care of the multi-
agent structure in decentralized methods. In our simulations, we implement such a benchmark by letting each agent
running a variant of the single-agent UCB-ADVANTAGE (Zhang et al., 2020a) algorithm independently, where the
(randomized) action spaces of the agents are ∆(A1) and ∆(A2).

Figure 3 illustrates the performances of our algorithms and the two benchmark methods in terms of the collected
rewards, where “V-Learning” and “PG” denote the policies at the current iterate t of Algorithms 1 and 3, respectively.
Notice that the actual policy trajectories of both algorithms numerically converge and achieve high rewards. This
is more encouraging than our theoretical guarantees, because for Algorithm 1, our Theorem 4 only holds for a
“certified” output policy but not the last-iterate policy. Further, both of our algorithms outperform the “Independent”
learning benchmark on the two tasks. In the GoodState problem, Algorithm 3 even approaches the performance
of the “Centralized” oracle. On the other hand, the “Independent” benchmark converges, albeit faster, to a clearly
suboptimal value. This reiterates that the naı̈ve idea of independent learning does not work well for MARL in
general, and a careful treatment of the game structure (like our adversarial bandit subroutine) is necessary. Finally, the
implemented algorithms take much fewer samples to converge than our theoretical results suggested. This indicates
that the theoretical bounds might be overly conservative, and our algorithms could converge much faster in practice.


