
Nested Bandits

Matthieu Martin 1 Panayotis Mertikopoulos 2 1 Thibaud Rahier 1 Houssam Zenati 1 3

Abstract
In many online decision processes, the optimizing
agent is called to choose between large numbers
of alternatives with many inherent similarities; in
turn, these similarities imply closely correlated
losses that may confound standard discrete choice
models and bandit algorithms. We study this ques-
tion in the context of nested bandits, a class of
adversarial multi-armed bandit problems where
the learner seeks to minimize their regret in the
presence of a large number of distinct alternatives
with a hierarchy of embedded (non-combinatorial)
similarities. In this setting, optimal algorithms
based on the exponential weights blueprint (like
Hedge, EXP3, and their variants) may incur signif-
icant regret because they tend to spend excessive
amounts of time exploring irrelevant alternatives
with similar, suboptimal costs. To account for this,
we propose a nested exponential weights (NEW)
algorithm that performs a layered exploration of
the learner’s set of alternatives based on a nested,
step-by-step selection method. In so doing, we
obtain a series of tight bounds for the learner’s
regret showing that online learning problems with
a high degree of similarity between alternatives
can be resolved efficiently, without a red bus /
blue bus paradox occurring.

1. Introduction
Consider the following discrete choice problem (known as
the “red bus / blue bus paradox” in the context of transporta-
tion economics). A commuter has a choice between taking a
car or bus to work: commuting by car takes on average half
an hour modulo random fluctuations, whereas commuting
by bus takes an hour, again modulo random fluctuations

All authors in alphabetical order. 1Criteo AI Lab 2Univ. Greno-
ble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble,
France 3Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK,
38000 Grenoble, France. Correspondence to: Panayotis Mer-
tikopoulos <panayotis.mertikopoulos@imag.fr>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

(it’s a long commute). Then, under the classical multino-
mial logit choice model for action selection [20, 21], the
commuter’s odds for selecting a car over a bus would be
exp(−1/2)/ exp(−1) ≈ 1.6 : 1. This indicates a very clear
preference for taking a car to work and is commensurate
with the fact that, on average, commuting by bus takes twice
as long.

Consider now the same model but with a twist. The com-
pany operating the bus network purchases a fleet of new
buses that are otherwise completely identical to the existing
ones, except for their color: old buses are red, the new buses
are blue. This change has absolutely no effect on the travel
time of the bus; however, since the new set of alternatives
presented to the commuter is {car, red bus, blue bus}, the
odds of selecting a car over a bus (red or blue, it doesn’t
matter) now drops to exp(−1/2)/[exp(−1) + exp(−1)] ≈
0.8 : 1. Thus, by introducing an irrelevant feature (the color
of the bus), the odds of selecting the alternative with the
highest utility have dropped dramatically, to the extent that
commuting by car is no longer the most probable outcome
in this example.

Of course, the shift in choice probabilities may not always
be that dramatic, but the point of this example is that the
presence of an irrelevant alternative (the blue bus) would
always induce such a shift – which is, of course, absurd. In
fact, the red bus / blue bus paradox was originally proposed
as a sharp criticism of the independence from irrelevant
alternatives (IIA) axiom that underlies the multinomial logit
choice model [20] and which makes it unsuitable for choice
problems with inherent similarities between different alter-
natives. In turn, this has led to a vast corpus of literature in
social choice and decision theory, with an extensive array of
different axioms and models proposed to overcome the fail-
ures of the IIA assumption. For an introduction to the topic,
we refer the reader to the masterful accounts of McFadden
[21], Ben-Akiva & Lerman [7] and Anderson et al. [2].

Perhaps surprisingly, the implications of the red bus / blue
bus paradox have not been explored in the context of online
learning, despite the fact that similarities between alterna-
tives are prevalent in the field’s application domains – for
example, in recommender systems with categorized product
recommendation catalogues, in the economics of transport
and product differentiation, etc. What makes this gap partic-
ularly pronounced is the fact that logit choice underlies some

Nested Bandits

of the most widely used algorithmic schemes for learning
in multi-armed bandit problems – namely the exponential
weights algorithm for exploration and exploitation (EXP3)
[4, 19, 29] as well as its variants, Hedge [5], EXP3.P [6],
EXP3-IX [17], EXP4 [6] / EXP4-IX [23], etc. Thus, given
the vulnerability of logit choice to irrelevant alternatives,
it stands to reason that said algorithms may be suboptimal
when faced with a set of alternatives with many inherent
similarities.

Our contributions. Our paper examines this question in
the context of repeated decision problems where a learner
seeks to minimize their regret in the presence of a large num-
ber of distinct alternatives with a hierarchy of embedded
(non-combinatorial) similarities. This similarity structure,
which we formalize in Section 2, is defined in terms of a
nested series of attributes – like “type” or “color” – and in-
duces commensurate similarities to the losses of alternatives
that lie in the same class (just as the red and blue buses have
identical losses in the example described above).

Inspired by the nested logit choice model introduced by Mc-
Fadden [21] to resolve the original red bus / blue bus para-
dox, we develop in Section 3 a nested exponential weights
(NEW) algorithm for no-regret learning in decision prob-
lems of this type. Our main result is that the regret incurred
by NEW is bounded as O(

√
neff log n · T), where n is the

total number of alternatives and neff is the “effective” num-
ber when taking similarities into account (for example, in
the standard red bus / blue bus paradox, neff = 2, cf. Sec-
tion 4). The gap between nested and non-nested algorithms
can be quantified by the problem’s price of affinity (PoAf),
defined here as the ratio α =

√
n/neff measuring the worst-

case ratio between the regret guarantees of the NEW and
EXP3 algorithms (the latter scaling as O(

√
n log n · T) in

the problem at hand).

In practical applications (such as the type of recommenda-
tion problems that arise in online advertising), α can be
exponential in the number of attributes, indicating that the
NEW algorithm could lead to significant performance gains
in this context. We verify that this is indeed the case in a
range of synthetic experiments in Section 5.

Related Work. The problem of exploiting the structure of
the loss model and/or any side information available to the
learner is a staple of the bandit literature. More precisely, in
the setting of contextual bandits, the learner is assumed to
observe some “context-based” information and tries to learn
the “context to reward” mapping underlying the model in
order to make better predictions. Bandit algorithms of this
type – like EXP4 – are often studied as “expert” models [6,
11] or attempt to model the agent’s loss function with a semi-
parametric contextual dependency in the stochastic setting
to derive optimistic action selection rules [1]; for a survey,

we refer the reader to [18] and references therein. While the
nested bandit model we study assumes an additional layer
of information relative to standard bandit models, there are
no experts or a contextual mapping conditioning the action
taken, so it is not comparable to the contextual setup.

The type of feedback we consider assumes that the learner
observes the “intra-class” losses of their chosen alternative,
similar to the semi-bandit in the study of combinatorial
bandit algorithms [12, 15]. However, the similarity with
combinatorial bandit models ends there: even though the
categorization of alternatives gives rise to a tree structure
with losses obtained at its leaves, there is no combinatorial
structure defining these costs, and modeling this as a combi-
natorial bandit would lead to the same number of arms and
ground elements, thus invalidating the concept.

Besides these major threads in the literature, [28] recently
showed that the range of losses can be exploited with an
additional free observation, while [13] improves the regret
guarantees by using effective loss estimates. However, both
works are susceptible to the advent of irrelevant alternatives
and can incur significant regret when faced with such a prob-
lem. Finally, in the Lipschitz bandit setting, [14, 16] obtain
order-optimal regret bounds by building a hierarchical cov-
ering model in the spirit of [10]; the correlations induced by
a Lipschitz loss model cannot be compared to our model, so
there is no overlap of techniques or results.

2. The general model
We begin in this section by defining our general nested
choice model. Because the technical details involved can
become cumbersome at times, it will help to keep in mind
the running example of a music catalogue where songs are
classified by, say, genre (classical music, jazz, rock,. . .),
artist (Rachmaninov, Miles Davis, Led Zeppelin,. . .), and
album. This is a simple – but not simplistic – use case which
requires the full capacity of our model, so we will use it as
our “go-to” example throughout.

2.1. Attributes, classes, and the relations between them

Let A = {ai : i = 1, . . . , n} be a set of alternatives (or
atoms) indexed by i = 1, . . . , n. A similarity structure (or
structure of attributes) on A is defined as a tower of nested
similarity partitions (or attributes) Sℓ, ℓ = 0, . . . , L, of A
with {A} =: S0 ≽ S1 ≽ · · · ≽ SL := {{a} : a ∈ A}.
As a result of this definition, each partition Sℓ captures
successively finer attributes of the elements of A (in our
music catalogue example, these attributes would correspond
to genre, artist, album, etc.).1 Accordingly, each constituent

1The trivial partitions S0 = {A} and SL = {{a} : a ∈ A} do
not carry much information in themselves, but they are included
for completeness and notational convenience later on.

Nested Bandits

set A of a partition Sℓ will be referred to as a similarity class
and we assume it collects all elements of A that share the
attribute defining Sℓ: for example, a similarity class for the
attribute “artist” might consist of all Beethoven symphonies,
all songs by Led Zeppelin, etc.

Collectively, a structure of attributes will be represented by
the disjoint union

S :=
∐L

ℓ=0
Sℓ ≡

⋃L

ℓ=0
{(A, ℓ) : A ∈ Sℓ} (1)

of all class/attribute pairs of the form (A, ℓ) for A ∈ Sℓ. In
a slight abuse of terminology (and when there is no danger
of confusion), the pair S = (A, ℓ) will also be referred to
as a “class”, and we will write S ∈ Sℓ and a ∈ S instead of
A ∈ Sℓ and a ∈ A respectively. By contrast, when we need
to clearly distinguish between a class and its underlying set,
we will write A = elem(S) for the set of atoms contained
in S and ℓ = attr(S) for the attached attribute label.

Remark 1. The reason for including the attribute label ℓ in
the definition of S is that a set of alternatives may appear in
different partitions of A in a different context. For example,
if “IV” is the only album by Led Zeppelin in the catalogue,
the album’s track list represents both the set of “all songs in
IV” as well as the set of “all Led Zeppelin songs”. However,
the focal attribute in each case is different – “artist” in the
former versus “album” in the latter – and this additional
information would be lost in the non-discriminating union⋃L

ℓ=0 Sℓ (unless, of course, the partitions Sℓ happen to be
mutually disjoint, in which case the distinction between
“union” and “disjoint union” becomes set-theoretically su-
perfluous). ¶

Moving forward, if a class S ∈ Sℓ contains the class S′ ∈
Sk for some k > ℓ, we will say that S′ is a descendant of S
(resp. S is an ancestor of S′), and we will write “S′ ≺ S”
(resp. “S ≻ S′”).2 As a special case of this relation, if
S′ ≺ S and k = ℓ + 1, we will say that S′ is a child of
S (resp. S is parent of S′) and we will write “S′ ◁ S”
(resp. “S ▷ S′”). For completeness, we will also say that S′

and S′′ are siblings if they are children of the same parent,
and we will write S′ ∼ S′′ in this case. Finally, when we
wish to focus on descendants sharing a certain attribute, we
will write “S′ ≺ℓ S” as shorthand for the predicate “S′ ≺ S
and attr(S′) = ℓ”.

Building on this, a similarity structure on A can also be
represented graphically as a rooted directed tree – an ar-
borescence – by connecting two classes S, S′ ∈ S with a
directed edge S → S′ whenever S ▷ S′. By construction,

2More formally, we will write S′ ≺ S when elem(S′) ⊆
elem(S) and attr(S′) > attr(S). The corresponding weak rela-
tion “≼” is defined in the standard way, i.e., allowing for the case
attr(S′) = attr(S) which in turn implies that S′ = S.

S0 = A

S0
2

S1
1S0

1

S2
2S1

2 S3
2

S0
3 S1

3 S2
3 S3

3 S4
3 S5

3 S6
3 S7

3

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = L

{a1} {a2} {a3} {a4} {a5} {a6} {a7} {a8}

Figure 1: A structure with L = 3 attributes on the set A =
{a1, . . . , a8}; for example, the class S1

2 consists of {a3, a4}.

the root of this tree isA itself,3 and the unique directed path
A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S from A to any class S ∈ S
will be referred to as the lineage of S. For notational sim-
plicity, we will not distinguish between S and its graphical
representation, and we will use the two interchangeably; for
an illustration, see Fig. 1.

2.2. The loss model

Throughout what follows, we will consider loss models in
which alternatives that share a common set of attributes
incur similar costs, with the degree of similarity depending
on the number of shared attributes. More precisely, given a
similarity class S ∈ S , we will assume that all its immediate
subclasses S′ share the same base cost cS (determined by
the parent class S) plus an idiosyncratic cost increment rS′

(which is specific to the child S′ ◁ S in question). Formally,
starting with cA = 0 (for the root class A), this boils down
to the recursive definition

cS′ = cS + rS′ for all S′ ◁ S, (2)

which, when unrolled over the lineage A ≡ S0 ▷ S1 ▷
· · · ▷ Sℓ ≡ S of a target class S ∈ Sℓ, yields the expression

cS =
∑

S′≽S
rS′ = rS1

+ · · ·+ rSℓ
. (3)

Thus, in particular, when S ← a ∈ A, the cost assigned to
an individual alternative a ∈ A will be given by

ca =
∑L

ℓ=1
rSℓ

=
∑

S∋a
rS for all a ∈ A. (4)

Finally, to quantify the “intra-class” variability of costs, we
will assume throughout that the idiosyncratic cost incre-
ments within a given parent class S are bounded as

rS′ ∈ [0, RS] for all S′ ◁ S. (5)

3Stricto sensu, the root of the tree is (A, 0), but since there is
no danger of confusion, the attribute label “0” will be dropped.

Nested Bandits

This terminology is justified by the fact that, under the
loss model (2), the costs cS′ , cS′′ to any two sibling classes
S′, S′′ ◁ S (i.e., any two classes parented by S) differ by
at most RS . Analogously, the costs to any two alternatives
a, a′ ∈ A that share a set of common attributes S1, . . . , Sℓ

will differ by at most
∑L

k=ℓ+1 RSk
.

Example 1. To represent the original red bus / blue bus
problem as an instance of the above framework, let S1 =
{{red bus, blue bus}, car} be the partition of the set A =
{red bus, blue bus, car} by type (“bus” or “car”), and let
S2 be the corresponding sub-partition by color (“red” or
“blue” for elements of the class “bus”). The fact that color
does not affect travel times may then be represented suc-
cinctly by taking Rcolor = 0 (representing the fact that color
does not affect travel times). ¶

Remark 2. We make no distinction here between ca and
c{a}, i.e., between an alternative a of A and the (unique)
singleton class of {a} ∈ SL containing it. This is done
purely for reasons of notational convenience. ¶

Remark 3. For posterity, we also note that the optimizing
agent is assumed to be aware of the cost decomposition
(4) after selecting an alternative a ∈ A. In the context
of combinatorial bandits [12] this would correspond to the
so-called “semi-bandit” setting. ¶

2.3. Sequence of events

With all this in hand, we will consider a generic online
decision process that unfolds over a set of alternatives A
endowed with a similarity structure S =

∐
ℓ Sℓ as follows:

1. At each stage t = 1, 2, . . . , the learner selects an alterna-
tive at ∈ A by selecting attributes from S one-by-one.

2. Concurrently, nature sets the idiosyncratic, intra-class
losses rS,t for each similarity class S ∈ S.

3. The learner incurs rS,t for each chosen class S ∋ at for
a total cost of ct =

∑
S∋at

rS,t, and the process repeats.

To align our presentation with standard bandit models with
losses in [0, 1], we will assume throughout that

∑
S∋a RS ≤

1 for all a ∈ A, meaning in particular that the maximal cost
incurred by any alternative a ∈ A is upper bounded by 1.
Other than this normalization, the sequence of idiosyncratic
loss vectors rt ∈ RS , t = 1, 2, . . . , is assumed arbitrary
and unknown to the learner as per the standard adversarial
setting [11, 26].

To avoid deterministic strategies that could be exploited
by an adversary, we will assume that the learner selects
an alternative at at time t based on a mixed strategy xt ∈
∆(A), i.e., at ∼ xt. The regret of a policy xt, t = 1, 2, . . . ,
against a benchmark strategy p ∈ ∆(A) is then defined as
the cumulative difference between the player’s mean cost

under p and xt, that is

Regp(T) =

T∑
t=1

[Ext
[cat,t]− Ep[cat,t]] =

T∑
t=1

⟨ct, xt − p⟩

(6)
where ct = (ca,t)a∈A ∈ RA denotes the vector of costs
encountered by the learner at time t, i.e., ca,t =

∑
S∋a rS,t

for all a ∈ A. This definition will be our main figure of
merit in the sequel.

3. The nested exponential weights algorithm
Our goal in what follows will be to design a learning policy
capable of exploiting the type of similarity structures intro-
duced in the previous section. The main ingredients of our
method are a nested attribute selection and cost estimation
rule, which we describe in detail in Sections 3.1 and 3.2 re-
spectively; the proposed nested exponential weights (NEW)
algorithm is then developed and discussed in Section 3.3.

3.1. Probabilities, propensities, and nested logit choice

We begin by introducing the attribute selection scheme that
forms the backbone of our proposed policy. Our guiding
principle in this is the nested logit choice (NLC) rule of Mc-
Fadden [21] which selects an alternative a ∈ A by travers-
ing S one attribute at a time and prescribing the correspond-
ing conditional choice probabilities at each level of S.

To set the stage for all this, if x = (x1, . . . , xn) ∈ ∆(A) is
a mixed strategy on A we will write

xS =
∑

a∈S xa (7)
for the probability of choosing S ∈ S under x, and

xS′|S = xS′/xS (8)

for the conditional probability of choosing a descendant S′

of S assuming that S has already been selected under x.4

Then the NLC rule proceeds as follows: first, it prescribes
choice probabilities xS1

for all classes S1 ∈ S1 (i.e., the
coarsest ones); subsequently, once a class S1 ∈ S1 has been
selected, NLC prescribes the conditional choice probabili-
ties xS2|S1

for all children S2 of S1 and draws a class from
S2 based on xS2|S1

. The process then continues downwards
along S until reaching the finest partition SL and selecting
an atom {a} ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A.

This step-by-step selection process captures the “nested”
part of the nested logit choice rule; the “logit” part refers
to the way that the conditional probabilities (8) are actually
prescribed given the agent’s predisposition towards each
alternative a ∈ A. To make this precise, suppose that the
learner associates to each element a ∈ A a propensity score

4Note here that the joint probability of selecting both S and S′

under x is simply xS′ whenever S′ ≼ S.

Nested Bandits

ya ∈ R indicating their tendency – or propensity – to select
it. The associated propensity score of a similarity class
Sℓ−1 ∈ Sℓ−1, ℓ = 1, . . . , L, is then defined inductively as

ySℓ−1
= µℓ log

∑
Sℓ◁Sℓ−1

exp(ySℓ
/µℓ) (9)

where µℓ > 0 is a tunable parameter that reflects the
learner’s uncertainty level regarding the ℓ-th attribute Sℓ
of S. In words, this means that the score of a class is the
weighted softmax of the scores of its children; thus, starting
with the individual alternatives of A – that is, the leaves of
S – propensity scores are propagated backwards along S,
and this is repeated one attribute at a time until reaching the
root of S.
Remark 4. We should also note that Eq. (9) assigns a propen-
sity score to any similarity class S ∈ S. However, because
the primitives of this assignment are the original scores
assigned to each alternative a ∈ A, we will reserve the no-
tation y = (y1, . . . , yn) ∈ RA for the profile of propensity
scores (ya)a∈A that comprises the basis of the recursive
definition (9). ¶

With all this in hand, given a propensity score profile y =
(y1, . . . , yn) ∈ RA, the nested logit choice (NLC) rule is
defined via the family of conditional selection probabilities

PSℓ|Sℓ−1
(y) =

exp(ySℓ
/µℓ)

exp(ySℓ−1
/µℓ)

(NLC)

where:

1. Sℓ ∈ Sℓ and Sℓ−1 ∈ Sℓ−1 is a child / parent pair of
similarity classes of S.

2. µ1 ≥ · · · ≥ µL > 0 is a nonincreasing sequence of
uncertainty parameters (indicating a higher uncertainty
level for coarser attributes; we discuss this later).

In more detail, the choice of an alternative a ∈ A under
(NLC) proceeds as follows: given a propensity score ya ∈ R
for each a ∈ A, every similarity class SL−1 ∈ SL−1 is as-
signed a propensity score via the recursive softmax expres-
sion (9), and the same procedure is applied inductively up
to the root A of S . Then, to select an alternative a ∈ A, the
conditional logit choice rule (NLC) proceeds in a top-down
manner, first by selecting a similarity class S1 ◁ S0 ≡ A,
then by selecting a child S2 ◁ S1 of S1, and so on until
reaching a leaf {a} ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A of S.

Equivalently, unrolling (NLC) over the lineage A ≡ S0 ▷
S1 ▷ · · · ▷ Sℓ ≡ S of a target class S ∈ Sℓ, we obtain the
expression

PS(y) =
∏ℓ

k=1

exp(ySk
/µk)

exp(ySk−1
/µk)

(10)

for the total probability of selecting class S under the propen-
sity score profile y ∈ RA. Clearly, (NLC) and (10) are

mathematically equivalent, so we will refer to either one as
the definition of the nested logit choice rule.

3.2. The nested importance weighted estimator

The second key ingredient of our method is how to estimate
the costs of alternatives that were not chosen under (NLC).
To that end, given a cost vector c ∈ [0, 1]A and a mixed
strategy x ∈ ∆(A) with full support, a standard way to do
this is via the importance-weighted estimator [9, 18]

ĉa =
1{a = â}

xa
ca (IWE)

where â ∼ x is the (random) element of A chosen under x.

This estimator enjoys the following important properties:

a) It is non-negative.

b) It is unbiased, i.e.,

E[ĉa] = ca for all a ∈ A. (11)

c) Its importance-weighted mean square is bounded as

E
[∑

a∈A
xaĉ

2
a

]
≤ n (12)

This trifecta of properties plays a key role in establishing
the no-regret guarantees of the vanilla exponential weights
algorithm [5, 19, 29]; at the same time however, (IWE)
fails to take into account any side information provided
by similarities between different elements of A. This is
perhaps most easily seen in the original red bus / blue bus
paradox: if the commuter takes a red bus, the observed
utility would be immediately translateable to the blue bus
(and vice versa). However, (IWE) is treating the red and
blue buses as unrelated, so ĉblue bus is not updated under
(IWE), even though cblue bus = cred bus by default.

To exploit this type of similarities, we introduce below a
layered estimator that shadows the step-by-step selection
process of (NLC). To define it, let x ∈ ∆(A) be a mixed
strategy on A with full support, and assume that an element
â ∈ A is selected progressively according to x as in the
case of (NLC):5 First, the learner chooses a similarity class
Ŝ1 ∈ S1 with probability P(Ŝ1 = S1) = xS1

; subsequently,
conditioned on the choice of Ŝ1, a class Ŝ2 ◁ Ŝ1 is selected
with probability P(Ŝ2 = S2|Ŝ1) = xS2|Ŝ1

, and the process

repeats until reaching a leaf ŜL = {â} of S (at which point
the selection procedure terminates and returns â). Then,
given a loss profile r ∈ [0,+∞)S and a mixed strategy x ∈
∆(A), the nested importance weighted estimator (NIWE)
is defined for all ℓ = 1, . . . , L as

5To clarify, this process adheres to the “nested” part of (NLC);
the conditional probabilities xS′|S may of course differ.

Nested Bandits

r̂Sℓ
=
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
xSℓ|Sℓ−1

· · ·xS2|S1
xS1

rSℓ
(NIWE)

where the chain of categorical random variables A ≡ Ŝ0 ▷
Ŝ1 ▷ · · · ▷ ŜL = {â} is drawn according to x ∈ ∆(A) as
outlined above.6

This estimator will play a central part in our analysis, so
some remarks are in order. First and foremost, the non-
nested estimator (IWE) is recovered as a special case of
(NIWE) when there are no similarity attributes on A (i.e.,
L = 1). Second, in a bona fide nested model, we should
note that ĉSℓ

is Ŝℓ-measurable but not Ŝℓ−1-measurable:
this property has no analogue in (IWE), and it is an intrin-
sic feature of the step-by-step selection process underlying
(NIWE). Third, it is also important to note that (NIWE)
concerns the idiosyncratic losses of each chosen class, not
the base costs ca of each alternative a ∈ A. This distinction
is again redundant in the non-nested case, but it leads to a
distinct estimator for ca in nested environments, namely

ĉa =
∑

S∋a
r̂S for all a ∈ A. (13)

In particular, in the red bus / blue bus paradox, this means
that an observation for the class “bus” automatically updates
both ĉred bus and ĉblue bus, thus overcoming one of the main
drawbacks of (IWE) when facing irrelevant alternatives.

To complete the comparison with the non-nested setting,
we summarize below the most important properties of the
layered estimator (NIWE):

Proposition 1. Let S =
∐L

ℓ=1 Sℓ be a similarity structure
on A. Then, given a mixed strategy x ∈ ∆(A) and a vector
of cost increments r ∈ RS as per (5), the estimator (NIWE)
satisfies the following:

1. It is unbiased:

E[r̂S] = rS for all S ∈ S. (14)

2. It enjoys the importance-weighted mean-square bound

E
[
xS r̂

2
S

]
≤ R2

S for all S ∈ S. (15)

Accordingly, the loss estimator (13) is itself unbiased and
enjoys the bound

E
[∑

a∈A
xaĉ

2
a

]
≤ neff (16)

where neff is defined as

√
neff =

∑L

ℓ=1

√
nℓR̄ℓ (17)

6The indicator in (NIWE) is assumed to take precedence over
xSk|Sk−1

, i.e., ĉSℓ = 0 if Sk ̸= Ŝk for some k = 1, . . . , ℓ.

with nℓ = |Sℓ| denoting the number of classes of attribute
Sℓ, and

R̄ℓ =

√
1

nℓ

∑
Sℓ∈Sℓ

R2
Sℓ

(18)

denoting the “root-mean-square” range of all classes in Sℓ.

Of course, Proposition 1 yields the standard properties of
(IWE) as a special case when L = 1 (in which case there are
no similarities to exploit between alternatives). To stream-
line our presentation, we prove this result in Appendix B.

3.3. The nested exponential weights algorithm

We are finally in a position to present the nested exponential
weights (NEW) algorithm in detail. Building on the original
exponential weights blueprint [5, 19, 29], the main steps of
the NEW algorithm can be summed up as follows:

1. For each stage t = 1, 2, . . . , the learner maintains and
updates a propensity score profile yt ∈ RA.

2. The learner selects an action at ∈ A based on the nested
logit choice rule at ∼ P(ηtyt) where ηt ≥ 0 is the
method’s learning rate and P is given by (NLC).

3. The learner incurs rS,t for each class S ∋ at and con-
structs a model ĉt of the cost vector ct of stage t via
(NIWE).

4. The learner updates their propensity score profile based
on ĉt and the process repeats.

For a presentation of the algorithm in pseudocode form,
see Algorithm 1; the tuning of the method’s uncertainty
parameters µ1 ≥ . . . ≥ µL > 0 and the learning rate ηt
is discussed in the next section, where we undertake the
analysis of the NEW algorithm.

4. Analysis and results
We are now in a position to state and discuss our main regret
guarantees for the NEW algorithm. These are as follows:

Theorem 1. Suppose that Algorithm 1 is run with a non-
increasing learning rate ηt > 0 and uncertainty parameters
µ1 ≥ · · · ≥ µL > 0 against a sequence of cost vectors ct ∈
[0, 1]A, t = 1, 2, . . . , as per (4). Then, for all p ∈ ∆(A),
the learner enjoys the regret bound

E[Regp(T)] ≤
H

ηT+1
+

neff

2µL

T∑
t=1

ηt (19)

with neff given by (17) and H ≡ H(µ1, . . . , µL) defined by

Nested Bandits

Algorithm 1: Nested exponential weights (NEW)

Require: set of alternatives A; attribute structure S =
∐L

ℓ=1 Sℓ
Params: uncertainty levels µ1, . . . , µL > 0; learning rate ηt ≥ 0
Input: sequence of class costs rt ∈ [0, 1]S , t = 1, 2, . . .

1: initialize y ← 0 ∈ RA, S0 = A # initialization
2: for t = 1, 2, . . . do # scoring phase
3: for ℓ = L− 1, . . . , 0 and for all S ∈ Sℓ do
4: yS ← µℓ+1 log

∑
S′◁S exp(yS′/µℓ+1) # as per (9)

5: set r̂S ← 0 # baseline guess
6: end for
7: for ℓ = 1, . . . , L do # selection phase
8: select class Sℓ ◁ Sℓ−1 # class choice

Sℓ ∼ xSℓ|Sℓ−1
=

exp(ηtySℓ/µℓ)

exp(ηtySℓ−1/µℓ)
(NLC)

9: get rSℓ,t # intra-class cost
10: set r̂Sℓ ← r̂Sℓ +

rSℓ,t

xSℓ|Sℓ−1
· · ·xS1|S0

(NIWE)

11: end for
12: set ĉa ←

∑
S∋a r̂S for all a ∈ A # loss model

13: set y ← y − ĉ # update propensities
14: end for

setting y = 0 in (9) and taking H = yA, i.e.,

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

(20)
In particular, if Algorithm 1 is run with µ1 = · · · = µL =√

neff/2 and ηt =
√
log n/(2t), we have

E[Regp(T)] ≤ 2
√
neff log n · T . (21)

Theorem 1 is our main regret guarantee for NEW so, be-
fore discussing its proof (which we carry out in detail in
Appendices A–C), some remarks are in order.

The first thing of note is the comparison to the corresponding
bound for EXP3, namely

E[Regp(T)] ≤ 2
√

n log n · T . (22)

This shows that the guarantees of NEW and EXP3 differ by
a factor of7

α =
√
n/neff , (23)

which, for reasons that become clear below, we call the
price of affinity (PoAf).

7Depending on the source, the bound (22) may differ up to a
factor of

√
2, compare for example [26, Corollary 4.2] and [18,

Theorem 11.2]. This factor is due to the fact that (22) is usually
stated for a known horizon T (which saves a factor of

√
2 relative

to anytime algorithms). Ceteris paribus, the bound (21) can be
sharpened by the same factor, but we omit the details.

Since the variabilities of the idiosyncratic losses within
each attribute have been normalized to 1 (recall the relevant
discussion in Section 2.3), Hölder’s inequality trivially gives
neff ≤ n, no matter the underlying similarity structure. Of
course, if there are no similarities to exploit (L = 1), we get
neff = n, in which case the two bounds coincide (α = 1).

At the other extreme, suppose we have a red bus / blue bus
type of problem with, say, n1 = 2 similarity classes, n2 =
100 alternatives per class, and a negligible intra-class loss
differential (R2 ≈ 0). In this case, EXP3 would have to
wrestle with n = n1n2 = 200 alternatives, while NEW
would only need to discriminate between neff ≈ n1 = 2
alternatives, leading to an improvement by a factor of α ≈
10 in terms of regret guarantee. Thus, even though the red
bus / blue bus paradox could entangle EXP3 and cause the
algorithm to accrue significant regret over time, this is no
longer the case under the NEW method; we also explore
this issue numerically in Section 5.

As another example, suppose that each non-terminal class
in S has m children and the variability of the idiosyncratic
losses likewise scales down by a factor of m per attribute. In
this case, a straightforward calculation shows that neff scales
as Θ(m), so the gain in efficiency would be of the order
of α =

√
n/neff = Θ(m(L−1)/2), i.e., polynomial in m

and exponential in L. This gain in performance can become
especially pronounced when there is a very large number
of atlernatives organized in categories and subcategories of
geometrically decreasing impact on the end cost of each
alternative. We explore this issue in practical scenarios in
Section 5 and Appendix D.

Finally, we should also note that the parameters of NEW
have been tuned so as to facilitate the comparison with
EXP3. This tuning is calibrated for the case where S is fully
symmetric, i.e., all subcategories of a given attribute have
the same number of children. Otherwise, in full generality,
the tuning of the algorithm’s uncertainty levels would boil
down to a transcedental equation involving the nested term
H(µ1, . . . , µL) of (19). This can be done efficiently offline
via a line search, but since the result would be structure-
dependent, we do not undertake this analysis here.

Proof outline of Theorem 1. The detailed proof of The-
orem 1 is quite lengthy, so we defer it to Appendices A–C
and only sketch here the main ideas.

The first basic step is to derive a suitable “potential function”
that can be used to track the evolution of the NEW policy
relative to the benchmark p ∈ ∆(A). The main ingredient
of this potential is the “nested” entropy function

h(x) =
∑L

k=0
δk
∑

Sk∈Sk

xSk
log xSk

, (24)

where δk = µk−µk+1 for all k = 1, . . . , L (with µL+1 = 0

Nested Bandits

by convention).8 As we show in Proposition A.1 in Ap-
pendix A, the “tiers” of h can be unrolled to give the “non-
tiered” recursive representation

h(x) =
∑

S∈S
h(x|S) (25)

where h(x|S) = µℓ+1

∑
S′◁S xS′ log(xS′/xS) denotes the

“conditional” entropy of x relative to class S ∈ Sℓ. Then, by
means of this decomposition and a delicate backwards in-
duction argument, we show in Proposition A.2 that a) the re-
cursively defined propensity score yA ofA can be expressed
non-recursively as yA = argmaxx∈∆(A){⟨y, x⟩ − h(x)};
and b) that the choice rule (NLC) can be expressed itself as

Pa(y) =
∂yA
∂ya

for all y ∈ RA, a ∈ A. (26)

This representation of (NLC) provides the first building
block of our proof because, by Danskin’s theorem [8], it
allows us to rewrite Algorithm 1 in more concise form as

yt+1 = yt − ĉt

xt+1 = argmax
x∈∆(A)

{⟨ηt+1yt+1, x⟩ − h(x)} (NEW)

with ĉt given by (13) appplied to x← xt. Importantly, this
shows that the NEW algorithm is an instance of the well-
known “follow the regularized leader” (FTRL) algorithmic
framework [26, 27]. Albeit interesting, this observation is
not particularly helpful in itself because there is no uni-
versal, “regularizer-agnostic” analysis giving optimal (or
near-optimal) regret rates for FTRL with bandit/partial in-
formation.9 Nonetheless, by adapting a series of techniques
that are used in the analysis of FTRL algorithms, we show
in Appendix C that the iterates of (NEW) satisfy the “energy
inequality”

⟨ĉt, xt − p⟩ ≤ Et − Et+1 +
1

ηt
F (xt, ηtyt+1)

+ (η−1
t+1 − η−1

t)[h(p)−minh] (27)

where ĉt is the nested importance weighted estimator (13)
for the cost vector encountered ct, and we have set

F (x, y) = h(x) + yA − ⟨y, x⟩ (28)

and Et = η−1
t F (p, ηtyt).

Then, by Proposition 1, we obtain:

8In the non-nested case, (24) boils down to the standard (neg-
ative) entropy h(x) =

∑
a xa log xa. However, the inverse prob-

lem of deriving the “correct” form of h in a nested environment
involves a technical leap of faith and a fair degree of trial-and-error.

9For the analysis of specific versions of FTRL with non-
entropic regularizers, cf. [3, 30] and references therein.

0 200 400 600 800
Steps

0

10

20

30

40

50

Re
gr

et

Env - Red Bus/Blue Bus Paradox - Regret
EXP3 - N 2
EXP3 - N 5
EXP3 - N 10
EXP3 - N 50

NEW - N 2
NEW - N 5
NEW - N 10
NEW - N 50

Figure 2: Regret of EXP3 and NEW in the red bus / blue bus
problem with different numbers of buses.

Proposition 2. The NEW algorithm enjoys the bound

E[Regp(T)] ≤
H

ηT+1
+

T∑
t=1

E[F (xt, ηtyt+1)]

ηt
. (29)

Proposition 2 provides the first half of the bound (19), with
the precise form of H derived in Lemma C.1. The second
half of (19) revolves around the term E[F (xt, ηtyt+1)] and
boils down to estimating how propensity scores are back-
propagated along S. In particular, the main difficulty is to
bound the difference y+A − yA in the propensity score of the
root nodeA of S when the underlying score profile y ∈ RA

is incremented to y+ = y + w for some w ∈ RA.

A first bound that can be obtained by convex analysis ar-
guments is |y+A − yA| ≤ ⟨y, P(y)⟩ + ∥w∥2∞; however, be-
cause the increments of (NEW) are unbounded in norm,
this global bound is far too lax for our puposes. A similar
issue arises in the analysis of EXP3, and is circumvented
by deriving a bound for the log-sum-exp function using the
identity exp(x) ≤ 1 + x+ x2/2 for x ≤ 0 and the fact that
the estimator (IWE) is non-negative [11, 18, 26]. Extending
this idea to nested environments is a very delicate affair,
because each tier in S introduces an additional layer of error
propagation in the increments yt+1 − yt. However, by a
series of inductive arguments that traverse S both forward
and backward, we are able to show the bound

y+A − yA ≤ ⟨y, P(y)⟩+
1

2µL

L∑
ℓ=1

∑
Sℓ∈Sℓ

PSℓ
(y)r2Sℓ

(30)

which, after taking expecations and using the bounds of
Proposition 1, finally yields the pseudo-regret bound (19).

5. Numerical experiments
In this section we present a series of numerical experiments
designed to test the efficiency of our method compared to
EXP3. We use a synthetic environment where we simu-
late nested similarity partitions with trees. While NEW ex-
ploits the similarity structure by making forward/backward

Nested Bandits

0 2000 4000 6000 8000 10000
0

100

200

300

400

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 4, M 3
EXP3 - L 5, M 3
EXP3 - L 6, M 3

NEW - L 4, M 3
NEW - L 5, M 3
NEW - L 6, M 3

Figure 3: Regret of EXP3 and NEW in a tree environment with
different values of levels L and classes per level M

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 2, M 50
EXP3 - L 2, M 100
EXP3 - L 2, M 200

NEW - L 2, M 50
NEW - L 2, M 100
NEW - L 2, M 200

Figure 4: Regret of EXP3 and NEW in a tree environment with
different values of levels L and classes per level M

passes through the associated tree with its logit choice rule
(NLC), EXP3 is simply run over the leaves of the tree,
i.e., A. All experiment details (as well as additional re-
sults) are presented in Appendix D. For every setting, we
report the results of our experiments by plotting the av-
erage regret of each algorithm for 20 seeds of randomly
drawn losses. The code to reproduce the experiments can
be found at https://github.com/criteo-research/
Nested-Exponential-Weights.

Benefits in the red bus/blue bus problem. We consider
here a variant of the red bus/blue bus problem with N dif-
ferent buses (the original paradox has N = 2). In this
experiment (see illustration in Fig. 5, Appendix D.2) we
allow each bus to have non-zero intrinsic losses and illus-
trate in Fig. 2 how both algorithms perform when N grows.
We observe there that for all configurations NEW achieves
better regret than EXP3. While both methods achieve sub-
linear regret, EXP3 requires far more steps to identify the
best alternative as N grows and suffers overall from worse
regret while NEW achieves similar regret and does not suf-
fer as much from the number of irrelevant alternatives. We
provide additional plots in Appendix D.2 which show that
NEW performs consistently better than EXP3 when there
exists a similarity structure allowing to efficiently update
scores of classes that have very similar losses.

Performance in general nested structures. In this setting
we generate symmetric trees and experiment with different
values of number of levels L and number of child per nodes
M = |Sℓ| for ℓ = 1, . . . , L. Specifically, in Fig. 3 with a
fixed M , we see that NEW obtains better regret than EXP3
even when L increases. We provide variance plots for the
experiments that generated the same performance on the
plots in D.3 as well as additional visualisations. Finally, in
Fig. 4, we can see that for a shallow tree (L = 2) NEW
performs always better than EXP3, even for high values
of M . Indeed, when the number of children per nodes M
increases, the tree loses its “factorized” structure which also
affects NEW due to the less "structured" tree. Thus, again,
NEW performs consistently better than EXP3 when it is
possible to efficiently handle classes with similar losses.

Overall, our experiments confirm that a learning algorithm
based on nested logit choice can lead to significant bene-
fits in problems with a high degree of similarity between
alternatives. This leaves open the question of whether a sim-
ilar approach can be applied to structures with non-nested
attributes; we defer this question to future work.

6. Concluding remarks
One limitation of the current framework is that the nested
estimator (13) requires knowledge of the intra-class cost
increments rS for every chosen similarity class S ∋ at. This
is akin to the difference between the “full bandit” and “semi-
bandit” setting that arises in combinatorial bandits [12].
While relevant in a number of application domains (e.g., in
path-planning or when layering a structured security, such as
the tranches of a CDO), treating the fully unobservable case
– possibly using an approach in the spirit of the hierarchical
contextual analysis of Sen et al. [25] – is an important open
question for future research.

Finally, it is also interesting to note that our analysis has
been carried out in an arbitrarily changing “adversarial”
environment. In a stochastic environment, it would be fruit-
ful to consider other, contextual-based approaches such as
LinUCB, KernelUCB and their variants [18]. Ideally, one
would like to employ a nested variant of the “universal” al-
gorithm of Zimmert & Seldin [30] that attains optimal regret
guarantees in both stochastic and adversarial environments,
but this question lies beyond the scope of our work.

Acknowledgements
P. Mertikopoulos is grateful for financial support by the French
National Research Agency (ANR) in the framework of the “In-
vestissements d’avenir” program (ANR-15-IDEX-02), the LabEx
PERSYVAL (ANR-11-LABX-0025-01), MIAI@Grenoble Alpes
(ANR-19-P3IA-0003), and the bilateral ANR-NRF grant ALIAS
(ANR-19-CE48-0018-01).

https://github.com/criteo-research/Nested-Exponential-Weights
https://github.com/criteo-research/Nested-Exponential-Weights

Nested Bandits

References
[1] Abbasi-yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In Adv. Neural Infor-
mation Processing Systems (NIPS), 2011.

[2] Anderson, S. P., de Palma, A., and Thisse, J.-F. Discrete
Choice Theory of Product Differentiation. MIT Press, Cam-
bridge, MA, 1992.

[3] Audibert, J.-Y., Bubeck, S., and Lugosi, G. Minimax policies
for combinatorial prediction games. In COLT ’11: Proceed-
ings of the 24th Annual Conference on Learning Theory,
2011.

[4] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
Gambling in a rigged casino: The adversarial multi-armed
bandit problem. In Proceedings of the 36th Annual Sympo-
sium on Foundations of Computer Science, 1995.

[5] Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time anal-
ysis of the multiarmed bandit problem. Machine Learning,
47:235–256, 2002.

[6] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The nonstochastic multiarmed bandit problem. SIAM Journal
on Computing, 32(1):48–77, 2002.

[7] Ben-Akiva, M. and Lerman, S. R. Discrete Choice Analy-
sis: Theory and Application to Travel Demand. MIT Press,
Cambridge, 1985.

[8] Berge, C. Topological Spaces. Dover, New York, 1997.

[9] Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Founda-
tions and Trends in Machine Learning, 5(1):1–122, 2012.

[10] Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. X -
armed bandits. Journal of Machine Learning Research, 12:
1655–1695, 2011.

[11] Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006.

[12] Cesa-Bianchi, N. and Lugosi, G. Combinatorial bandits.
Journal of Computer and System Sciences, 78:1404–1422,
2012.

[13] Cesa-Bianchi, N. and Shamir, O. Bandit regret scaling with
the effective loss range. In ALT ’18: Proceedings of the 29th
International Conference on Algorithmic Learning Theory,
2018.

[14] Cesa-Bianchi, N., Gaillard, P., Gentile, C., and Gerchinovitz,
S. Algorithmic chaining and the role of partial feedback in
online nonparametric learning. In COLT ’17: Proceedings
of the 30th Annual Conference on Learning Theory, 2017.

[15] György, A., Linder, T., Lugosi, G., and Ottucsák, G. The on-
line shortest path problem under partial monitoring. Journal
of Machine Learning Research, 8:2369–2403, 2007.

[16] Héliou, A., Martin, M., Mertikopoulos, P., and Rahier, T.
Zeroth-order non-convex learning via hierarchical dual aver-
aging. In ICML ’21: Proceedings of the 38th International
Conference on Machine Learning, 2021.

[17] Kocák, T., Neu, G., Valko, M., and Munos, R. Efficient
learning by implicit exploration in bandit problems with
side observations. In NIPS ’14: Proceedings of the 28th
International Conference on Neural Information Processing
Systems, 2014.

[18] Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cam-
bridge University Press, Cambridge, UK, 2020.

[19] Littlestone, N. and Warmuth, M. K. The weighted majority
algorithm. Information and Computation, 108(2):212–261,
1994.

[20] Luce, R. D. Individual Choice Behavior: A Theoretical
Analysis. Wiley, New York, 1959.

[21] McFadden, D. L. Conditional logit analysis of qualitative
choice behavior. In Zarembka, P. (ed.), Frontiers in Econo-
metrics, pp. 105–142. Academic Press, New York, NY, 1974.

[22] Nesterov, Y. Primal-dual subgradient methods for convex
problems. Mathematical Programming, 120(1):221–259,
2009.

[23] Neu, G. Explore no more: Improved high-probability regret
bounds for non-stochastic bandits. In NIPS ’15: Proceedings
of the 29th International Conference on Neural Information
Processing Systems, 2015.

[24] Rockafellar, R. T. Convex Analysis. Princeton University
Press, Princeton, NJ, 1970.

[25] Sen, R., Rakhlin, A., Ying, L., Kidambi, R., Foster, D.,
Hill, D., and Dhillon, I. Top-k eXtreme contextual bandits
with arm hierarchy. In ICML ’21: Proceedings of the 38th
International Conference on Machine Learning, 2021.

[26] Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning, 4
(2):107–194, 2011.

[27] Shalev-Shwartz, S. and Singer, Y. Convex repeated games
and Fenchel duality. In NIPS’ 06: Proceedings of the 19th An-
nual Conference on Neural Information Processing Systems,
pp. 1265–1272. MIT Press, 2006.

[28] Thune, T. S. and Seldin, Y. Adaptation to easy data in predic-
tion with limited advice. In Advances in Neural Information
Processing Systems, volume 31, 2018.

[29] Vovk, V. G. Aggregating strategies. In COLT ’90: Proceed-
ings of the 3rd Workshop on Computational Learning Theory,
pp. 371–383, 1990.

[30] Zimmert, J. and Seldin, Y. An optimal algorithm for stochas-
tic and adversarial bandits. In AISTATS ’19: Proceedings of
the 22nd International Conference on Artificial Intelligence
and Statistics, 2019.

Nested Bandits

A. The nested entropy and its properties
Our aim in this appendix is to prove the basic properties of the series of (negative) entropy functions that fuel the regret
analysis of the nested exponential weights (NEW) algorithm.

To begin with, given a similarity structure S on A and a sequence of uncertainty parameters µ1 ≥ · · · ≥ µL > 0 (with
µL+1 = 0 by convention), we define:

1. The conditional entropy of x ∈ ∆(A) relative to a target class S ∈ Sℓ:

h(x|S) = µℓ+1

∑
S′◁S

xS′ log
xS′

xS
= µℓ+1 xS

∑
S′◁S

xS′|S log xS′|S . (A.1)

2. The nested entropy of x ∈ ∆(A) relative to S ∈ Sℓ:

hS(x) =

L∑
k=ℓ

δk
∑

Sk≼kS

xSk
log xSk

(A.2)

where δk = µk − µk+1 for all k = 1, . . . , L.

3. The restricted entropy of x ∈ ∆(A) relative to S ∈ Sℓ:

h|S(x) = hS(x) + χ∆(S)(x) =

{
hS(x) if x ∈ ∆(S),

∞ otherwise,
(A.3)

where χ∆(S) denotes the (convex) characteristic function of ∆(S), i.e., χ∆(S)(x) = 0 if x ∈ ∆(S) and χ∆(S)(x) =∞
otherwise. [Obviously, h|S(x) = hS(x) whenever x ∈ ∆(S).]

Remark 1. As per our standard conventions, we are treating S interchangeably as a subset of A or as an element of S;
by analogy, to avoid notational inflation, we are also viewing ∆(S) as a subset of ∆(A) – more precisely, a face thereof.
Finally, in all cases, the functions h(x|S), hS(x) and h|S(x) are assumed to take the value +∞ for x ∈ RA \∆(A). ¶

Remark 2. For posterity, we also note that the nested and restricted entropy functions (hS(x) and h|S(x) respectively) are
both convex – though not necessarily strictly convex – over ∆(A). This is a consequence of the fact that each summand
xS log xS in (A.2) is convex in x and that δk = µk − µk+1 ≥ 0 for all k = 1, . . . , L. Of course, any two distributions
x, x′ ∈ ∆(A) that assign the same probabilities to elements of S but not otherwise have hS(x) = hS(x

′), so hS is not
strictly convex over ∆(A) if S ̸= A. However, since the function

∑
a∈S xa log xa is strictly convex over ∆(S), it follows

that hS – and hence h|S – is strictly convex over ∆(S). ¶

Our main goal in the sequel will be to prove the following fundamental properties of the entropy functions defined above:

Proposition A.1. For all S ∈ Sℓ, ℓ = 1, . . . , L, and for all x ∈ ∆(A), we have:

hS(x) =
∑
S′≼S

h(x|S′) + µℓ xS log xS . (A.4)

Consequently, for all x ∈ ∆(S), we have:

h|S(x) =
∑
S′≼S

h(x|S′). (A.5)

Proposition A.2. For all S ∈ S and all y ∈ RA, we have:

1. The recursively defined propensity score yS of S as given by (9) can be expressed as

yS = max
x∈∆(S)

{⟨y, x⟩ − h|S(x)} (A.6)

Nested Bandits

2. The conditional probability of choosing a ∈ A given that S has already been selected under (NLC) is given by

Pa|S(y) =
∂yS
∂ya

(A.7)

and the conditional probability vector P|S(y) = (Pa|S(y))a∈A solves the problem (A.6), viz.

P|S(y) = argmax
x∈∆(S)

{⟨y, x⟩ − h|S(x)} (A.8)

These propositions will be the linchpin of the analysis to follow, so some remarks are in order:
Remark 3. Note here that the maximum in (A.6) is taken over the restricted entropy function h|S , not the nested entropy hS .
This distinction will play a crucial role in the sequel; in particular, since h|S is strictly convex over ∆(S), it implies that the
argmax in (A.8) is a singleton. ¶

Remark 4. The first part of Proposition A.2 can be rephrased more concisely (but otherwise equivalently) as

yS = h∗
|S(y) (A.9)

where
h∗
|S(y) = max

x∈∆(A)
{⟨y, x⟩ − h|S(x)} (A.10)

denotes the convex conjugate of h|S . This interpretation is conceptually important because it spells out the precise functional
dependence between the (primitive) propensity score profile y ∈ RA and the propensity scores yS that are propagated to
higher-tier similarity classes S ∈ S via the recursive definition (9). In particular, this observation leads to the recursive rule

exp

(
h∗
|S(y)

µℓ+1

)
=
∑
S′◁S

exp

(
h∗
|S′(y)

µℓ+1

)
for all S ∈ Sℓ, ℓ = 0, 1, . . . , L− 1. (A.11)

We will we use this representation freely in the sequel. ¶

Remark 5. It is also worth noting that the propensity scores ySℓ
, Sℓ ∈ Sℓ, can also be seen as primitives for the arborescence

S ′ =
∐ℓ

k=0 Sk obtained from S by excising all (proper) descendants of Sℓ. Under this interpretation, the second part of
Proposition A.2 readily gives the more general expression

PS′|S(y) =
∂yS
∂yS′

for all S′ ≼ S, (A.12)

where, in the right-hand side, yS is to be construed as a function of yS′ , defined recursively via (9) applied to the truncated
arborescence S ′. Even though we will not need this specific result, it is instructive to keep it in mind for the sequel.

The rest of this appendix is devoted to the proofs of Propositions A.1 and A.2.

Proof of Proposition A.1. Let ℓ = attr(S), and fix some attribute label k > ℓ. We will proceed inductively by collecting all
terms in (A.4) associated to the attribute Sk and then summing everything together. Indeed, we have:

µk

∑
S′≼kS

xS′ log xS′ = µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′ log xS′

 # collect attributes

= µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′|Sk−1
xSk−1

log(xS′|Sk−1
xSk−1

)

 # by definition

= µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′|Sk−1
xSk−1

log xS′|Sk−1

 (A.13a)

+ µk

∑
Sk−1≼k−1S

 ∑
S′◁Sk−1

xS′|Sk−1
xSk−1

log xSk−1

 (A.13b)

Nested Bandits

with the tacit understanding that any empty sum that appears above is taken equal to zero.

Now, by the definition of the nested entropy, we readily obtain that

(A.13a) =
∑

Sk−1≼k−1S

h(x|Sk−1) (A.14a)

whereas, by noting that
∑

S′◁Sk−1
xS′|Sk−1

= 1 (by the definition of conditional class choice probabilities), Eq. (A.13b)
becomes

(A.13b) = µk

∑
Sk−1≼k−1S

xSk−1
log xSk−1

. (A.14b)

Hence, combining Eqs. (A.13), (A.14a) and (A.14b), we get:

µk

∑
S′≼kS

xS′ log xS′ =
∑

Sk−1≼k−1S

h(x|Sk−1) + µk

∑
Sk−1≼k−1S

xSk−1
log xSk−1

. (A.15)

The above expression is our basic inductive step. Indeed, summing (A.15) over all k = L, . . . , ℓ = attr(S), we obtain:

hS(x) =

L∑
k=ℓ

(µk − µk+1)
∑

S′≼kS

xS′ log xS′ # by definition

=

ℓ+1∑
k=L

µk

∑
S′≼kS

xS′ log xS′ − µk+1

∑
S′≼kS

xS′ log xS′

+ (µℓ − µℓ+1)xS log xS # isolate S

=

ℓ+1∑
k=L

 ∑
Sk−1≼k−1S

h(x|Sk−1) + µk

∑
Sk−1≼k−1S

xSk−1
log xSk−1

− µk+1

∑
S′≼kS

xS′ log xS′


+ (µℓ − µℓ+1)xS log xS # by (A.15)

=

L−1∑
k=ℓ

∑
S′≼kS

h(x|S′) + µℓ xS log xS − µL+1

∑
S′≼LS

xS′ log xS′ (A.16)

with the last equality following by telescoping the terms involving µk. Now, given that µL+1 = 0 by convention, the third
sum above is zero. Finally, since the conditional entropy of x relative to any childless class is zero by definition, the first
sum in (A.16) can be rewritten as

∑L−1
k=ℓ

∑
S′≼kS

h(x|S′) =
∑

S′≼S h(x|S′), and our claim follows.

Finally, (A.5) is a consequence of the fact that xS = 1 whenever x ∈ ∆(S) – i.e., whenever supp(x) ⊆ S. ■

Proof of Proposition A.2. We begin by noting that the optimization problem (A.6) can be written more explicitly as

maximize ⟨y, x⟩ − hS(x),

subject to x ∈ ∆(A) and supp(x) ⊆ S.
(OptS)

We will proceed to show that the (unique) solution of (OptS) is given by the vector of conditional probabilities (Pa|S(y))a∈A.
The expression (A.6) for the maximal value of (OptS) will then be derived from Proposition A.1, and the differential
representation (A.8) will follow from Legendre’s identity. We make all this precise in a series of individual steps below.

Step 1: Optimality conditions for (OptS). For all a ∈ S, the definition of the nested entropy gives

∂hS

∂xa
=

L∑
k=ℓ

δk
∑

S′≼kS

∂

∂xa
(xS′ log xS′) =

L∑
k=ℓ

δk
∑

S′≼kS

(1 + log xS′)
∂xS′

∂xa

=

L∑
k=ℓ

δk
∑

S′≼kS

(1 + log xS′)1{a ∈ S′}

Nested Bandits

=

L∑
k=ℓ

δk(1 + log xSk
)

= µℓ +

L∑
k=ℓ

δk log xSk
(A.17)

where S ≡ Sℓ ▷ Sℓ+1 ▷ · · · ▷ SL ≡ {a} denotes the lineage of a up to S (inclusive). This implies that ∂ahS(x)→ −∞
whenever xa → 0, so any solution x of (OptS) must have xa > 0 for all a ∈ S. In view of this, the first-order optimality
conditions for (OptS) become

ya −
∂hS

∂xa
= ya − µℓ −

L∑
k=ℓ

δk log xSk
= λ for all a ∈ S, (A.18)

where λ is the Lagrange multiplier for the equality constraint
∑

a∈A xa = 1.10 Thus, after rearranging terms and
exponentiating, we get

xδL
SL
· xδL−1

SL−1
· · ·xδℓ

Sℓ
=

exp(ya)

Z
, (A.19)

for some proportionality constant Z ≡ Z(y) > 0.

Step 2: Solving (OptS). The next step of our proof will focus on unrolling the chain (A.19), one attribute at a time. To
start, recall that δL = µL, so (A.19) becomes

xSL
· xδL−1/µL

SL−1
· · ·xδℓ/µL

Sℓ
=

exp(ySL
/µL)

Z1/µL
, (A.20)

where we used the fact that SL = a by definition. Now, since SL−1 ≼ Sℓ = S, it follows that all children of SL−1 are also
desendants of S, so (A.20) applies to all siblings of SL as well. Hence, summing (A.20) over SL ◁ SL−1, we get

xSL−1
· xδL−1/µL

SL−1
· · ·xδℓ/µL

Sℓ
=

exp(ySL−1
/µL)

Z1/µL
, (A.21)

where we used the definition (7) of xSL−1
=
∑

SL◁SL−1
xSL

and the recursive definition (9) for ySL−1
, i.e., the fact that

exp(ySL−1
/µL) =

∑
SL◁SL−1

exp(ySL
/µL). Therefore, noting that

1 +
δL−1

µL
= 1 +

µL−1 − µL

µL
=

µL−1

µL
(A.22)

the product (A.21) becomes

x
µL−1

SL−1
· xδL−2

SL−2
· · ·xδℓ

Sℓ
=

exp(ySL−1
)

Z
(A.23)

or, equivalently

xSL−1
· xδL−2/µL−1

SL−2
· · ·xδℓ/µL−1

Sℓ
=

exp(ySL−1
/µL−1)

Z1/µL−1
. (A.24)

This last equation has the same form as (A.21) applied to the chain Sℓ ▷ Sℓ+1 ▷ · · · ▷ SL−1 instead of Sℓ ▷ Sℓ+1 ▷
· · · ▷ SL. Thus, proceeding inductively, we conclude that

xµk

Sk

ℓ∏
j=k−1

x
δj
Sj

=
exp(ySk

)

Z
for all k = L, . . . , ℓ (A.25)

with the empty product
∏

j∈∅ x
δj
Sj

taken equal to 1 by standard convention.

Now, substituting k ← k + 1 in (A.25), we readily get

x
µk+1

Sk+1
· xδk

Sk

ℓ∏
j=k−1

x
δj
Sj

=
exp(ySk+1

)

Z
for all k = L− 1, . . . , ℓ. (A.26)

10Since xa > 0 for all a ∈ S, the multipliers for the corresponding inequality constraints all vanish by complementary slackness.

Nested Bandits

Consequently, recalling that δk = µk − µk+1 and dividing (A.25) by (A.26), we get

x
µk+1

Sk+1

x
µk+1

Sk

=
exp(ySk+1

)

exp(ySk
)
, (A.27)

and hence
xSk+1

xSk

=
exp(ySk+1

/µk+1)

exp(ySk
/µk+1)

= PSk+1|Sk
(y) (A.28)

by the definition of the conditional logit choice model (NLC). Therefore, by unrolling the chain

xa|S =
xa

xS
=

xSL

xSL−1

·
xSL−1

xSL−2

· · ·
xSℓ+1

xSℓ

= PSL|SL−1
(y)× PSL−1|SL−2

(y)× · · · × PSℓ+1|Sℓ
(y) (A.29)

we obtain the nested expression

xa = xS

L−1∏
k=ℓ

PSk+1|Sk
(y) for all a ∈ S. (A.30)

Thus, with xS = 1 (by the fact that supp(x) = S), we finally conclude that

xa =

L−1∏
k=ℓ

PSk+1|Sk
(y) = Pa|S(y) for all a ∈ S. (A.31)

Step 3: The maximal value of (OptS). To obtain the value of the maximization problem (OptS), we will proceed to
substitute (A.31) in the expression (A.4) provided by Proposition A.1 for hS(x). To that end, for all k = ℓ, . . . , L− 1 and
all Sk ≼k S, the definition (A.1) of the conditional entropy gives:

h(x|Sk) = µk+1 xSk

∑
Sk+1◁Sk

xSk+1|Sk
log xSk+1|Sk

by definition

= µk+1 xSk

∑
Sk+1◁Sk

xSk+1|Sk
log

exp(ySk+1
/µk+1)

exp(ySk
/µk+1)

by (A.28)

= xSk

∑
Sk+1◁Sk

xSk+1|Sk
ySk+1

− xSk
ySk

since
∑

Sk+1◁Sk
xSk+1|Sk

= 1

=
∑

Sk+1◁Sk

xSk+1
ySk+1

− xSk
ySk

(A.32)

and hence∑
Sk≼kS

h(x|Sk) =
∑

Sk≼kS

 ∑
Sk+1◁Sk

xSk+1
ySk+1

− xSk
ySk

 =
∑

Sk+1≼k+1S

xSk+1
ySk+1

−
∑

Sk≼kS

xSk
ySk

. (A.33)

Thus, telescoping this last releation over k = ℓ, . . . , L and invoking Proposition A.1, we obtain:

hS(x) =
∑
S′≼S

h(x|S′) + µk xS���log xS # by Proposition A.1

=

L−1∑
k=ℓ

∑
Sk≼kS

h(x|Sk) # collect parent classes

=

L−1∑
k=ℓ

 ∑
Sk+1≼k+1S

xSk+1
ySk+1

−
∑

Sk≼kS

xSk
ySk

 # by (A.33)

= ⟨y, x⟩ − xSyS (A.34)

where, in the second line, we used the fact that the conditional entropy h(x|SL) relative to any childless class SL ∈ SL is
zero by definition. Accordingly, substituting back to (OptS) we conclude that

val (OptS) = ⟨y, x⟩ − hS(x) = xSyS = yS , (A.35)

as claimed.

Nested Bandits

Step 4: Differential representation of conditional probabilities. To prove the second part of the proposition, recall that
the restricted entropy function h|S is convex, and let

h∗
|S(y) = max

x∈∆(A)
{⟨y, x⟩ − h|S(x)} (A.36)

denote its convex conjugate.11 By standard results in convex analysis [e.g., Theorem 23.5 in 24], h∗
|S is differentiable in y

and we have the Legendre identity:

x = ∇h∗
|S(y) ⇐⇒ y ∈ ∂h|S(x) ⇐⇒ x ∈ argmax

x′∈∆(A)

{⟨y, x′⟩ − h|S(x
′)} (A.37)

Now, by (A.31), we have xa = Pa|S(y) whenever x solves (OptS) and hence, by Fermat’s rule, whenever y− ∂h|S(x) ∋ 0.
Our claim then follows by noting that h∗

|S(y) = yS and combining the first and third legs of the equivalence (A.37). ■

These properties of the nested entropy function (and its restricted variant) will play a key role in deriving a suitable energy
function for the nested exponential weights algorithm. We make this precise in Appendix C below.

B. Auxiliary bounds and results
Throughout this appendix, we assume the following primitives:

• A fixed sequence of real numbers µ1 ≥ µ2 ≥ · · · ≥ µL > 0; all entropy-related objects will be defined relative to this
sequence as per the previous section.

• A score vector y ∈ RA that defines inductively the score yS of any class S ∈ S using (9), as well as the associated nested
choice probability P(y) as per (NLC).

• A vector of cost increments r = (rS)S∈S ∈ RS that defines an associated cost vector c ∈ RA as per (4), viz.

ca =
∑
S∋a

rS for all a ∈ A. (B.1)

Moreover, for all c, y ∈ RA, we define the nested power sum function σc,y : S\SL → R which, to any S ∈ S\SL, associates
the real number

σc,y(S) =


∑
a◁S

Pa|S(y) exp(−ca/µL) if attr(S) = L− 1,∑
S′◁S

PS′|S(y)σc,y(S
′)

µℓ+2
µℓ+1 if attr(S) = ℓ < L− 1.

(B.2)

The following lemma links the increments of the conjugate entropy h∗ to the nested power sum defined above:

Lemma B.1. For all y ∈ RA, c ∈ RA, we have

h∗(y − c) = h∗(y) + µ1 log(σc,y(A)). (B.3)

Lemma B.1 will be proved as a corollary of the more general result below:

Lemma B.2. Fix some y ∈ RA and c ∈ RA. Then, for all Sℓ ∈ Sℓ, ℓ < L,we have

exp

(
h∗
|Sℓ

(y − c)

µℓ+1

)
= exp

(
h∗
|Sℓ

(y)

µℓ+1

)
σc,y(Sℓ) (B.4)

Proof of Lemma B.1. Simply invoke Lemma B.2 with S ← A. ■

Proof of Lemma B.2. We proceed by descending induction on ℓ = attr(S).

11Note here that h∗
|S(y) is bounded from above by the convex conjugate h∗

S(y) of hS(x) because the latter does not include the
constraint supp(x) ⊆ S.

Nested Bandits

Base step. Fix some S ∈ S with attr(S) = L− 1. We then have:

exp

(
h∗
|S(y − c)

µL

)
=
∑
a◁S

exp

(
h∗
|a(y − c)

µL

)
by Eq. (A.11)

=
∑
a◁S

exp

(
h∗
|a(y)− ca

µL

)
the a’s are leaves

=
∑
a◁S

exp

(
h∗
|a(y)

µL

)
exp

(
− ca
µL

)

= exp

(
h∗
|S(y)

µL

)∑
a◁S

 exp
(

h∗
|a(y)

µL

)
exp
(

h∗
|S(y)

µL

)
 exp

(
− ca
µL

)
︸ ︷︷ ︸

=σc,y(S) by definition

= exp

(
h∗
|S(y)

µL

)
σc,y(S) (B.5)

with the last equality following from the definition of Pa|S via (NLC) and by the definition of σc,y(S). This concludes the
start of the induction process.

Induction step. Fix some S ∈ S with attr(S) = ℓ− 1, ℓ < L, and suppose that (B.4) holds at level ℓ. We then have:

exp

(
h∗
|S(y − c)

µℓ

)
=
∑
S′◁S

exp

(
h∗
|S′(y − c)

µℓ

)

=
∑
S′◁S

exp

(
h∗
|S′(y − c)

µℓ+1

)µℓ+1
µℓ

=
∑
S′◁S

[
exp

(
h∗
|S′(y)

µℓ+1

)
σc,y(S

′)

]µℓ+1
µℓ

inductive hypothesis

=
∑
S′◁S

exp

(
h∗
|S′(y)

µℓ

)
σc,y(S

′)
µℓ+1
µℓ

= exp

(
h∗
|S(y)

µℓ

) ∑
S′◁S

exp
(

h∗
|S′ (y)

µℓ

)
exp
(

h∗
|S(y)

µℓ

)
σc,y(S

′)
µℓ+1
µℓ

︸ ︷︷ ︸
=σc,y(S) by definition

= exp

(
h∗
|S(y)

µL

)
σc,y(S) (B.6)

with the last equality following from the definition of PS′|S and σc,y(S). This being true for all S ∈ S with attr(S) = ℓ−1,
the inductive step and – a fortiori – our proof are complete. ■

The next lemma provides an upper bound for σc,y(A), which will in turn allow us to derive a bound for the increment of h∗.

Lemma B.3. For y ∈ RA and c ∈ [0,+∞)A, we have:

σc,y(A) ≤ 1− 1

µ1

[∑
a∈A

Pa(y)ca −
1

2µL

∑
a∈A

Pa(y)c
2
a

]
. (B.7)

Nested Bandits

As in the case of B.1, Lemma B.3 will follow as a special case of the more general, class-based result below:

Lemma B.4. Fix some y ∈ RA and c ∈ RA
+ . Then, for all Sℓ ∈ Sℓ, ℓ < L,we have

σc,y(Sℓ) ≤ 1− 1

µℓ+1

[∑
a∈Sℓ

Pa|Sℓ
(y)ca −

1

2µL

∑
a∈Sℓ

Pa|Sℓ
(y)c2a

]
, (B.8)

Proof of Lemma B.3. Simply invoke Lemma B.4 with S ← A. ■

Proof of Lemma B.4. We proceed again by descending induction on ℓ = attr(S).

Base step. Fix some S ∈ S with attr(S) = L− 1. We then have:

σc,y(S) =
∑
S′◁S

PS′|S(y) exp(−
cS′

µL
)

≤
∑
S′◁S

PS′|S(y)(1−
cS′

µL

c2S′

2µ2
L

) # e−x ≤ 1− x+ x2/2 for x ≥ 0

= 1− 1

µL

[∑
S′◁S

PS′|S(y)cS′ − 1

2µL

∑
S′◁S

PS′|S(y)c
2
S′

]

= 1− 1

µ(L−1)+1

[∑
a◁S

Pa|S(y)ca −
1

2µL

∑
a◁S

Pa|S(y)c
2
a

]
(B.9)

so the initialization of the induction process is complete.

Induction step. Fix some S ∈ S with attr(S) = ℓ− 1, ℓ < L, and suppose that (B.8) holds at level ℓ. We then have:

σc,y(S) =
∑
S′◁S

PS′|S(y)σc,y(S
′)

µℓ+1
µℓ

=
∑
S′◁S

PS′|S(y)

[
1 +

1

µℓ+1

(
−
∑
a◁S′

Pa|S′(y)ca +
1

2µL

∑
a◁S′

Pa|S′(y)c2a

)]µℓ+1
µℓ

inductive hypothesis

≤
∑
S′◁S

PS′|S(y)

[
1 +

1

µℓ

(
−
∑
a◁S′

Pa|S′(y)ca +
1

2µL

∑
a◁S′

Pa|S′(y)c2a

)]
(1 + x)β ≤ 1 + βx for β ≤ 1

= 1 +
1

µℓ

[
−
∑
S′◁S

∑
a◁S′

Pa|S′(y)PS′|S(y)ca +
1

2µL

∑
S′◁S

∑
a◁S′

Pa|S′(y)PS′|S(y)c
2
a

]
(B.10)

= 1 +
1

µ(ℓ−1)+1

[∑
a◁S

Pa|S(y)ca +
1

2µL

∑
a◁S

Pa|S(y)c
2
a

]
(B.11)

This being true for all S ∈ S s.t. attr(S) = ℓ− 1, the induction step and the proof of our assertion are complete. ■

With all this in hand, we are now in a position to upper bound the increments of the conjugate nested entropy h∗.

Proposition B.1. For y ∈ RA and c ∈ [0,+∞)A, we have:

h∗(y − c)− h∗(y) ≤ −⟨P(y), c⟩+ 1

2µL

∑
a∈A

Pa(y)c
2
a. (B.12)

Proof. Using Lemmas B.1 and B.3 and the concavity inequality log x ≤ 1 + x directly delivers our assertion. ■

Nested Bandits

Remark 6. It is useful to note that, given a cost increment vector r ∈ RS with associated aggregate costs given by c ∈ RA

we have:

⟨P(y), c⟩ =
∑
a∈A

Pa(y)ca

=
∑
a∈A

Pa(y)
∑
S∋a

rS

=
∑
a∈A

Pa(y)
∑
S∈S

rS 1a∈S

=
∑
S∈S

[∑
a∈A

Pa(y)1a∈S

]
rS

=
∑
S∈S

PS(y)rS .

We are finally in a position to prove the basic properties of the NIWE estimator, which we restate below for convenience:
Proposition 1. Let S =

∐L
ℓ=1 Sℓ be a similarity structure on A. Then, given a mixed strategy x ∈ ∆(A) and a vector of

cost increments r ∈ RS as per (5), the estimator (NIWE) satisfies the following:

1. It is unbiased:
E[r̂S] = rS for all S ∈ S. (14)

2. It enjoys the importance-weighted mean-square bound

E
[
xS r̂

2
S

]
≤ R2

S for all S ∈ S. (15)

Accordingly, the loss estimator (13) is itself unbiased and enjoys the bound

E
[∑

a∈A
xaĉ

2
a

]
≤ neff (16)

where neff is defined as
√
neff =

∑L

ℓ=1

√
nℓR̄ℓ (17)

with nℓ = |Sℓ| denoting the number of classes of attribute Sℓ, and

R̄ℓ =

√
1

nℓ

∑
Sℓ∈Sℓ

R2
Sℓ

(18)

denoting the “root-mean-square” range of all classes in Sℓ.

Proof. Fix some S ∈ S with attr(S) = ℓ ∈ {1, . . . , L} and lineage A ≡ S0 ▷ S1 ▷ · · · ▷ Sℓ ≡ S. We will now prove
both properties of the (NIWE) estimator.

Part 1. We begin by showing that the estimator (NIWE) is unbiased. Indeed, we have:

E[r̂S] = E

[
1
{
Sℓ = Ŝℓ, . . . , S1 = Ŝ1

}
xSℓ|Sℓ−1

· · ·xS2|S1
xS1

rSℓ

]
= E

[
1
{
S = Ŝ

}
xS

rS

]
Rewriting (NIWE)

=
rS
xS

E
[
1
{
S = Ŝ

}]
︸ ︷︷ ︸

xS

= rS . (B.13)

Part 2. We now turn to the proof of the importance-weighted mean-square bound of the estimator (NIWE). In this case, for
any S ∈ S, we have:

E
[
xS r̂

2
S

]
= xS E

[
r̂2S
]
= xS E

(1{S = Ŝ
}

xS
rSℓ

)2


Nested Bandits

= xS

r2Sℓ

x2
S

E
[
1
{
S = Ŝ

}]
= r2Sℓ

because E
[
1
{
S = Ŝ

}]
= xS

≤ R2
S . (B.14)

We are left to derive the bound for the aggregate cost estimator (13), viz.

ĉa =
∑
S∋a

r̂S . (B.15)

With this in mind, we can write:

∑
a∈A

xaĉ
2
a =

∑
a∈A

xa

(∑
S∋a

r̂S

)2

=
∑
a∈A

xa

[∑
S∋a

r̂2S + 2
∑
S′∋a

∑
S≻S′

r̂S r̂S′

]
=
∑
a∈A

∑
S∈S

xar̂
2
S 1a∈S +2

∑
a∈A

∑
S′∈S

∑
S≻S′

xar̂S r̂S′ 1a∈S′

=
∑
S∈S

r̂2S
∑
a∈A

xa 1a∈S︸ ︷︷ ︸
xS

+2
∑
S′∈S

∑
S≻S′

r̂S r̂S′

∑
a∈A

xa 1a∈S′︸ ︷︷ ︸
xS′

=
∑
S∈S

xS r̂
2
S + 2

∑
S′∈S

∑
S≻S′

xS′ r̂S r̂S′ . (B.16)

Now, decomposing the above sums attribute-by-attribute and taking expectations in (B.16), we get:

E

[∑
a∈A

xaĉ
2
a

]
=

L∑
ℓ=1

∑
Sℓ∈Sℓ

xSℓ
E
[
r̂2Sℓ

]
+ 2

∑
1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂Sℓ

r̂Sℓ′

]
. (B.17)

The first term in (B.17) can simply be bounded using (B.14). Indeed:

L∑
ℓ=1

∑
Sℓ∈Sℓ

xSℓ
E
[
r̂2Sℓ

]
≤

L∑
ℓ=1

∑
Sℓ∈Sℓ

R2
Sℓ

=

L∑
ℓ=1

nℓR̄
2
ℓ . (B.18)

with R̄ℓ =
√

1
nℓ

∑
Sℓ∈Sℓ

R2
Sℓ

for any ℓ = 1, . . . , L.

We now turn to the second term in (B.17). Let {ϵℓ,ℓ′}1≤ℓ′<ℓ≤L be any fixed sequence of positive numbers. For any
ℓ, ℓ′ ∈ {1, . . . , L} and any Sℓ ∈ Sℓ and Sℓ′ ∈ Sℓ′ , the Peter-Paul inequality yields:

2r̂Sℓ′ r̂Sℓ
≤ 1

ϵℓ,ℓ′
r̂2Sℓ′

+ ϵℓ,ℓ′ r̂
2
Sℓ

(B.19)

Injecting (B.19) into the second term of (B.17) yields:

2
∑

1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂Sℓ

r̂Sℓ′

]

≤
∑

1≤ℓ<ℓ′≤L

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′

(
1

ϵℓ,ℓ′
E
[
r̂2Sℓ′

]
+ ϵℓ,ℓ′ E

[
r̂2Sℓ

])

=
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ
Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂2Sℓ

]

Nested Bandits

=
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ∈Sℓ

Sℓ′≺ℓ′Sℓ

xSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ

E
[
r̂2Sℓ

] ∑
Sℓ′≺ℓ′Sℓ

xSℓ′︸ ︷︷ ︸
xSℓ

=
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ′∈Sℓ′

xSℓ′ E
[
r̂2Sℓ′

]
+

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ

xSℓ
E
[
r̂2Sℓ

]
≤

∑
1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′

∑
Sℓ′∈Sℓ′

R2
Sℓ′

+
∑

1≤ℓ<ℓ′≤L

ϵℓ,ℓ′
∑

Sℓ∈Sℓ

R2
Sℓ

by (B.14)

≤
∑

1≤ℓ<ℓ′≤L

1

ϵℓ,ℓ′
nℓ′R̄

2
ℓ′ +

∑
1≤ℓ<ℓ′≤L

ϵℓ,ℓ′nℓR̄
2
ℓ . (B.20)

Injecting (B.18) and (B.20) into (B.17) ensures that:

E
[∑

a∈A
xaĉ

2
a

]
≤
∑L

ℓ=1
nℓR̄

2
ℓ +

∑
1≤ℓ<ℓ′≤L

(
1

ϵℓ,ℓ′
nℓ′R̄

2
ℓ′ + ϵℓ,ℓ′nℓR̄

2
ℓ

)
holds for any sequence of positive numbers {ϵℓ,ℓ′}1≤ℓ′<ℓ≤L. As a result, taking ϵℓ,ℓ′ =

√
nℓ′
nℓ

R̄ℓ′
R̄ℓ

yields the tight bound

E
[∑

a∈A
xaĉ

2
a

]
≤
∑L

ℓ=1
nℓR̄

2
ℓ + 2

∑
1≤ℓ<ℓ′≤L

√
nℓ′R̄ℓ′

√
nℓR̄

2
ℓ =

(∑L

ℓ=1

√
nℓR̄ℓ

)2

, (B.21)

which proves our original assertion. ■

C. Regret analysis
As we mentioned in the main text, the principal component of our analysis is a recursive inequality which, when telescoped
over t = 1, 2, . . . , will yield the desired regret bound. To establish this “template inequality”, we will first require an energy
function measuring the disparity between a benchmark strategy x ∈ ∆(A) and a propensity score profile y ∈ RA. To that
end, building on the notions introduced in Appendix A, let h : ∆(A)→ R denote the total nested entropy function

h(x) = hA(x) =

L∑
k=0

δk
∑

Sk∈Sk

xSk
log xSk

, x ∈ ∆(A), (C.1)

and let

h∗(y) = max
x∈∆(A)

{⟨y, x⟩ − h(x)}, y ∈ RA, (C.2)

denote the convex conjugate of h so, by Proposition A.2, we have

h∗(y) = yA and Pa(y) =
∂h∗

∂ya
for all y ∈ RA. (C.3)

The Fenchel coupling between x ∈ ∆(A) and y ∈ RA is then defined as

F (x, y) = h(x) + h∗(y)− ⟨y, x⟩ for all x ∈ ∆(A), y ∈ RA, (C.4)

and we have the following key result:

Proposition C.1. Let S =
∐L

ℓ=0 Sℓ be a similarity structure on A with uncertainty parameters µ1 ≥ · · · ≥ µL > 0. Then:

1. The Fenchel coupling (C.4) is positive-definite, i.e.,

F (x, y) ≥ 0 for all x ∈ ∆(A) and all y ∈ RA, (C.5)

with equality if and only if x is given by (NLC), i.e., if and only if x = P(y).

Nested Bandits

2. For all x ∈ A, we have
F (x, 0) = h(x) + h∗(0) = h(x)−minh (C.6)

where minh ≡ minx′∈∆(A) h(x
′) denotes the minimum of h over ∆(A).

Proof. Our first claim follows by setting S ← A in Propositions A.1 and A.2 and noting that hS = h|S when S = A:
indeed, by Young’s inequality, we have h(x) + h∗(y)− ⟨y, x⟩ ≥ 0 with equality if and only if y ∈ ∂h(x), so the equality
x = P(y) follows from (A.37) applied to S ← A and the fact that Pa|A(y) = Pa(y). As for our second claim, simply
note that h∗(0) = maxx∈∆(A){⟨0, x⟩ − h(x)} = −minx∈∆(A) h(x) and set y ← 0 in the definition (C.4) of the Fenchel
coupling. ■

With all this in hand, the specific energy function that we will use for our regret analysis is the “rate-deflated” Fenchel
coupling

Et =
1

ηt
F (p, ηtyt) (C.7)

where p ∈ ∆(A) is the regret comparator, ηt is the algorithm’s learning rate at stage t, and yt is the corrsponding propensity
score estimate. In words, since the mixed strategy employed by the learner at stage t is xt = P(ηtyt), the energy Et

essentially measures the disparity between xt and the target strategy p (suitably rescaled by the method’s learning rate). We
then have the following fundamental estimate:

Proposition C.2. For all p ∈ ∆(A) and all t = 1, 2, . . . , we have:

Et+1 ≤ Et + ⟨ĉt, xt − p⟩+ (η−1
t+1 − η−1

t)[h(p)−minh] +
1

ηt
F (xt, ηtyt+1). (C.8)

Proof. By the definition of Et, we have

Et+1 − Et =
1

ηt+1
F (p, ηt+1yt+1)−

1

ηt
F (p, ηtyt) =

1

ηt+1
F (p, ηt+1yt+1)−

1

ηt
F (p, ηtyt+1) (C.9a)

+
1

ηt
F (p, ηtyt+1)−

1

ηt
F (p, ηtyt). (C.9b)

We now proceed to upper-bound each of the two terms (C.9a) and (C.9b) separately.

For the term (C.9a), the definition of the Fenchel coupling (C.4) readily yields:

(C.9a) =
[

1

ηt+1
− 1

ηt

]
h(p) +

1

ηt+1
h∗(ηt+1yt+1)−

1

ηt
h∗(ηtyt+1). (C.10)

Inspired by a trick of Nesterov [22], consider the function φ(η) = η−1[h∗(ηy) + minh]. Then, by Proposition A.2, letting
x = P(ηy) and differentiating φ with respect to η gives

φ′(η) =
1

η
⟨y, P(ηy)⟩ − 1

η2
[h∗(ηy) + minh]

=
1

η2
[⟨ηy, x⟩ − h∗(ηy)−minh]

=
1

η2
[h(x)−minh] ≥ 0. (C.11)

Since ηt+1 ≤ ηt, the above shows that φ(ηt) ≥ φ(ηt+1). Accordingly, setting y ← yt+1 in the definition of φ yields

1

ηt+1
h∗(ηt+1yt+1)−

1

ηt
h∗(ηtyt+1) ≤

[
1

ηt
− 1

ηt+1

]
minh (C.12)

and hence
(C.9a) ≤ (η−1

t+1 − η−1
t)[h(p)−minh]. (C.13)

Nested Bandits

Now, after a straightforward rearrangement, the second term of (C.9) becomes

(C.9b) =
1

ηt
[h(p) + h∗(ηtyt+1)− ηt⟨yt+1, p⟩]−

1

ηt
[h(p) + h∗(ηtyt)− ηt⟨yt, p⟩]

=
1

ηt
[h∗(ηtyt+1)− h∗(ηtyt)− ηt⟨ĉt, p⟩] # by (NEW)

=
1

ηt
[h∗(ηtyt+1)− h∗(ηtyt)− ηt⟨ĉt, xt⟩] + ⟨ĉt, xt − p⟩ # isolate benchmark

=
1

ηt
[h∗(ηtyt+1)− ⟨ηtyt, xt⟩+ h(xt)− ηt⟨ĉt, xt⟩] + ⟨ĉt, xt − p⟩ # by Proposition A.2

=
1

ηt
F (xt, ηtyt+1) + ⟨ĉt, xt − p⟩ (C.14)

Thus, combining the above with (C.13), we finally obtain

Et+1 = Et + (C.9a) + (C.9b)

≤ Et + (η−1
t+1 − η−1

t)[h(p)−minh] + ⟨ĉt, xt − p⟩+ 1

ηt
F (xt, ηtyt+1) (C.15)

and our proof is complete. ■

We are now in a position to state and prove the template inequality that provides the scaffolding for our regret bounds:

Proposition 2. The NEW algorithm enjoys the bound

E[Regp(T)] ≤
H

ηT+1
+

T∑
t=1

E[F (xt, ηtyt+1)]

ηt
. (29)

Proof. Let Zt = ĉt − vt denote the error in the learner’s estimation of the t-th stage payoff vector vt. Then, by substituting
in Proposition C.2 and rearranging, we readily get:

⟨vt, p− xt⟩ ≤ Et − Et+1 + ⟨Zt, xt − p⟩+
(
η−1
t+1 − η−1

t

)
[h(p)−minh] + ηtF (p, ηtyt+1) (C.16)

Thus, telescoping over t = 1, 2, . . . , T , we have

Regp(T) ≤ E1 − ET+1 +

(
1

ηT+1
− 1

η1

)
[h(p)−minh] +

T∑
t=1

⟨Zt, xt − p⟩+
T∑

t=1

1

ηt
F (xt, ηtyt+1)

≤ h(p)−minh

ηT+1
+

T∑
t=1

⟨Zt, xt − p⟩+
T∑

t=1

1

ηt
F (xt, ηtyt+1) (C.17)

where we used the fact that a) Et ≥ 0 for all t (a consequence of the first part of Proposition C.1); and that
b) E1 = η−1

1 [h(p) + h∗(0)] = η−1
1 [h(p) − minh] (from the second part of the same proposition). Our claim then

follows by taking expectations in (C.17) and noting that E[Zt | Ft] = 0 (by Proposition 1). ■

In view of the above, our main regret bound follows by bounding the two terms in the template inequality (C.8). The second
term is by far the most difficult one to bound, and is where Appendix B comes in; the first term is easier to handle, and it can
be bounded as follows:

Lemma C.1. Suppose that each class S ∈ Sℓ−1 has at most mℓ children, ℓ = 1, . . . , L. Then, for all p ∈ ∆(A), we have

H ≤
L∑

ℓ=1

µℓ logmℓ with equality iff the tree is symmetric, (C.18)

H = µ log(n) if µ1 = µ2 = · · · = µL = µ. (C.19)

Nested Bandits

Proof. Suppose that ya = 0 for all a ∈ A. Then, applying (9) inductively, we have:

ySL
= 0 for all SL ∈ SL

ySL−1
= µL log

∑
SL◁SL−1

exp(0) ≤ µL logmL for all SL−1 ∈ SL−1

ySL−2
= µL−1 log

∑
SL−1◁SL−2

exp(ySL−1
/µL−1) ≤ µL−1 logmL−1 + µL logmL for all SL−2 ∈ SL−2

...
...

ySℓ−1
= µℓ log

∑
Sℓ◁Sℓ−1

exp(ySℓ
/µℓ) ≤

L∑
k=ℓ

µk logmk for all Sℓ−1 ∈ Sℓ−1

(C.20)

and hence H = h∗(0) = yA ≤
∑L

ℓ=1 µℓ logmℓ. Eq. (C.18) then follows from Proposition C.1.

Now, if µ1 = µ2 = · · · = µL = µ, we have

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

= µ log
∑

S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1

· · ·


= µ log

[∑
SL◁LS0

1

]
= µ log n, (C.21)

which proves Eq. (C.19) and completes our proof. ■

Proposition C.3. For all p ∈ ∆(A) and all t = {1, 2, . . . }, we have:

F (xt, µtyt+1) + ηt⟨ĉt, xt⟩ = h∗(ηtyt + ηtĉt)− h∗(ηtyt). (C.22)

Proof. Let p ∈ ∆(A) and t ∈ 1, 2, . . . , we simply write:

F (xt, ηtyt+1) = h(xt) + h∗(ηtyt+1)− ηt⟨yt+1, xt⟩
= h(xt) + h∗(ηtyt)− ⟨ηtyt, xt⟩︸ ︷︷ ︸

=F (xt,ηtyt)

+h∗(ηtyt+1)− h∗(ηtyt)− ηt⟨ĉt, xt⟩

= h∗(ηtyt + ηtĉt)− h∗(yt)− ηt⟨ĉt, xt⟩ # F (xt, ηtyt) = 0

and our assertion follows. ■

We are finally in a position to prove our main result (which we restate below for convenience):
Theorem 1. Suppose that Algorithm 1 is run with a non-increasing learning rate ηt > 0 and uncertainty parameters
µ1 ≥ · · · ≥ µL > 0 against a sequence of cost vectors ct ∈ [0, 1]A, t = 1, 2, . . . , as per (4). Then, for all p ∈ ∆(A), the
learner enjoys the regret bound

E[Regp(T)] ≤
H

ηT+1
+

neff

2µL

T∑
t=1

ηt (19)

with neff given by (17) and H ≡ H(µ1, . . . , µL) defined by setting y = 0 in (9) and taking H = yA, i.e.,

H = log

 ∑
S1◁S0

 ∑
S2◁S1

· · ·

 ∑
SL◁SL−1

1


µL

µL−1

· · ·


µ2
µ1


µ1

(20)

Nested Bandits

In particular, if Algorithm 1 is run with µ1 = · · · = µL =
√
neff/2 and ηt =

√
log n/(2t), we have

E[Regp(T)] ≤ 2
√

neff log n · T . (21)

Proof. Injecting Eq. (C.22) in the result of Proposition 2 and using Proposition B.1 and Eq. (16) of Proposition 1 directly
yields the pseudo-regret bound (19).

Finally, if we choose µ1 = · · · = µL =
√
neff/2, Lemma C.1 gives

H =
√

neff/2 log n. (C.23)

Thus, taking ηt =
√
log n/(2t) and substituting in (19) along with (C.23) finally delivers

E[Regp(T)] ≤ 2
√

neff log n · T , (C.24)

and our claim follows. ■

D. Additional Experiment Details and Discussions
In this appendix we provide additional details on the experiments as well as further discussions on the settings we presented.
The code with the implementation of the algorithms as well as the code to reproduce the figures will be open-sourced and is
provided along with the supplementary materials.

D.1. Experiment additional details

In the synthetic environment, at each level, the rewards are generated randomly according for each class nodes, through
uniform distributions of randomly generated means and fixed bandwidth. From a level ℓ to the next ℓ + 1, the rewards
range are divided by a multiplicative factor Rℓ/Rℓ+1 = 10. The implemented method of NEW uses the reward based IW.
Moreover, no model selection was used in this experiment as no hyperparameter was tuned. Indeed, a decaying rate of 1√

t
was used for the score updates for all methods, as is common in the bandit litterature [18].

D.2. Blue Bus/ Red Bus environment

We detail in Figure 5 a graphical representation of such blue bus/red bus environment, where many colors of the bus item
build irrelevant alternatives. In this setting, with few arms, we run the methods up to the horizon T = 1000. We provide in
Figure 6 the average reward of the two methods NEW and EXP3 with varying number of subclasses of the “bus”.

S0

red bus

car bus

car blue bus
a1 a2a0

...

ai

...

Figure 5: Diagram of the blue Bus/Red Bus environment.

While the NEW method ends up selecting the best alternative and having the lowest regret, the EXP3 seems to pick wrong
alternative in some experiments, and ends up having higher regret and requiring more iterations to converge to higher
average reward. In some of our experiments over the multiple random runs, alternatives of very low sampling probability
that were sampled changed the score vector too brutally in the IPS estimator which seemed to hurt the EXP3 method much
more than the NEW algorithm.

D.3. Tree structures

In this appendix we show additional results and visualisations for the second setting presented in the main paper. We start
with discussions on the depth parameter L and follow with the breadth parameter related to the number of child per class
M = |S|.

Nested Bandits

0 200 400 600 800
Steps

0

10

20

30

40

50

Re
gr

et

Env - Red Bus/Blue Bus Paradox - Regret
EXP3 - N 2
EXP3 - N 5
EXP3 - N 10
EXP3 - N 50

NEW - N 2
NEW - N 5
NEW - N 10
NEW - N 50

0 200 400 600 800
Steps

0.64

0.65

0.66

0.67

0.68

0.69

Av
er

ag
e

Re
wa

rd

Env - Red Bus/Blue Bus Paradox - Average Reward

EXP3 - N 2
EXP3 - N 5
EXP3 - N 10
EXP3 - N 50

NEW - N 2
NEW - N 5
NEW - N 10
NEW - N 50

Figure 6: Regret and Average Reward of NEW and EXP3 on the Blue Bus/ Red Bus environment.

Influence of the depth parameter L In Figure 7 we show the influence of the depth parameter with a fixed number of
child per class. By making the tree deeper, we illustrate the effect of knowing the nested structure compared to running the
logit choice to the whole alternative set. As shown in both the regret and average reward plots, the NEW method outperforms
the EXP3 algorithm. While the NEW method also use an IPS estimator, it is less prone to variance issues than the EXP3
method. Indeed, due to the nested structure and the reward decay related to the ratio Rℓ+1/Rℓ, the NEW estimator end up
not hurting the regret by still selecting "right" parent classes.

0 2000 4000 6000 8000 10000
0

100

200

300

400

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 4, M 3
EXP3 - L 5, M 3
EXP3 - L 6, M 3

NEW - L 4, M 3
NEW - L 5, M 3
NEW - L 6, M 3

0 2000 4000 6000 8000 10000
Steps

0.710

0.715

0.720

0.725

0.730

0.735

0.740

Av
er

ag
e

Re
wa

rd

Env - Tree Structure - Average Reward
EXP3 - L 4, M 3
EXP3 - L 5, M 3
EXP3 - L 6, M 3

NEW - L 4, M 3
NEW - L 5, M 3
NEW - L 6, M 3

Figure 7: Regret and Average Reward of NEW and EXP3 on the synthetic environment with varying number of levels L.

Influence of the number of child per class (wideness) M = |S| In this setting we fix the number of levels L and vary
the number of child per classes M . In Figure 8 we can see that the NEW method outperforms the EXP3 in terms of regret
and average reward. Interestingly, we see that the gap between the two methods shrinks when the number of child per class
augments. This is because when the size of a class increase, the NEW method also end up having less knowledge locally
and end up having a large number of alternatives to choose among.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 2, M 50
EXP3 - L 2, M 100
EXP3 - L 2, M 200

NEW - L 2, M 50
NEW - L 2, M 100
NEW - L 2, M 200

0 2000 4000 6000 8000 10000
Steps

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

Re
wa

rd

Env - Tree Structure - Average Reward

EXP3 - L 2, M 50
EXP3 - L 2, M 100
EXP3 - L 2, M 200

NEW - L 2, M 50
NEW - L 2, M 100
NEW - L 2, M 200

Figure 8: Regret and Average Reward of NEW and EXP3 on the synthetic environment with varying number of child per class M = |S|.

Nested Bandits

D.4. A visualisation of the effects of NEW

In this appendix we want to show the effects of NEW through the simple setting where we assume a nested structure with
L = 4 and M = |S| = 3. We illustrate in Figure 9 the score vectors of the NEW method along the optimal path in the tree
(path which nodes have the highest cumulated mean, i.e which generates the highest reward) along with the oracle means
of the child nodes. We can see that the algorithm takes advantage of the nested structure and updates the scores vectors
optimally with regards to the oracle means of all the nodes. The NEW algorithm therefore estimates correctly the rewards of
the environment.

1 2 3
0.0

0.2

0.4

0.6

0.8

NEW - Level 0
Normalized score vector
Rescaled reward distribution

1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

NEW - Level 1
Normalized score vector
Rescaled reward distribution

1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NEW - Level 2
Normalized score vector
Rescaled reward distribution

1 2 3
0.0

0.1

0.2

0.3

0.4

NEW - Level 3
Normalized score vector
Rescaled reward distribution

Figure 9: Histograms of the score vectors along the optimal path in the nested structure, with visualisation of the mean value of the node.

Inversely we see in Figure 10 that the EXP3 method has suffered from variance issue and selected a suboptimal alternative
among the |S|L = 81 possible ones. The EXP3 did not take advantage of the nested structure and therefore did not learn as
correctly as the NEW algorithm the reward values.

1 11 21 31 41 51 61 71 81
0.0

0.2

0.4

0.6

0.8

1.0
EXP3 on all alternatives

Normalized score vector
Rescaled reward distribution

Figure 10: Histogram of the score vector of the all alternatives, with a visualisation of the mean value of all nodes.

D.5. Cases where both algorithms perform identically

In this appendix we merely show that the implementation of the NEW and EXP3 algorithm match exactly and observe the
same behavior when the number of levels L is set to 1. This setting is where we have no knowledge of any nested structure,
therefore both algorithms perform identically in Figure 11.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

Re
gr

et

Env - Tree Structure - Regret
EXP3 - L 1, M 5
EXP3 - L 1, M 10
EXP3 - L 1, M 50

NEW - L 1, M 5
NEW - L 1, M 10
NEW - L 1, M 50

0 2000 4000 6000 8000 10000
Steps

0.45

0.50

0.55

0.60

0.65

Av
er

ag
e

Re
wa

rd

Env - Tree Structure - Average Reward

EXP3 - L 1, M 5
EXP3 - L 1, M 10
EXP3 - L 1, M 50

NEW - L 1, M 5
NEW - L 1, M 10
NEW - L 1, M 50

Figure 11: Regret and Average Reward of NEW and EXP3 on the synthetic environment where L = 1.

D.6. Variance plots for the synthetic experiments

We discuss here the variance of the regret at the final timestep T = 10000. Indeed, as shown on Figure 6 for the NEW
algorithm , on Figure 7 for both algorithms EXP3 and NEW, and on Figure 8 for EXP3, some of the plots do no exhibit the

Nested Bandits

monotonicity one would have expected when increasing the number of arms through L or M , and are even overlapping
on the regret plot. This can be explained on Figures 12 for the Red Bus/Blue Bus environment, and in Figures 13 and 14
respectively for depth and wideness tree experiments. Those plots show the variances (across the 20 random seeds) of the
final regret for both methods at the final step-size. In Figure 13 we see that the EXP3 arms have similar mean values with
large variances, which explains why they are overlapping on the plot in Figure 3. In Figure 14 when varying M we can also
have a closer look on how NEW outperforms EXP3 and how the close values of NEW regrets through different M can be
explained by their high variance.

EXP3 - N 2 NEW - N 2 EXP3 - N 5 NEW - N 5 EXP3 - N 10 NEW - N 10 EXP3 - N 50 NEW - N 50

0

10

20

30

40

50

60

70

80

Re
gr

et

Env - Red Bus/Blue Bus Paradox - Final Regret CIs at T = 1000

Figure 12: Regret distribution at the final stepsize T = 1000 for the Red Bus/Blue Bus environment.

EXP3 - L 4, M 3 NEW - L 4, M 3 EXP3 - L 5, M 3 NEW - L 5, M 3 EXP3 - L 6, M 3 NEW - L 6, M 3

0

200

400

600

800

1000

1200

Re
gr

et

Env - Tree Structure - Final Regret CIs at T = 10000

Figure 13: Regret distribution at the final stepsize T = 10000 when varying the depth parameter L.

D.7. Reproducibility

We provide code for reproducibility of our experiments and plots, in addition to a more general implementation of both
the NEW algorithm and EXP3 baseline. All experiments were run on a Mac book pro laptop, with 1 processor of 6 cores
@2.6GHz (6-Core Intel Core i7). The code and all experiments can be found in the attached .zip.

Nested Bandits

EXP3 - L 2, M 50 NEW - L 2, M 50 EXP3 - L 2, M 100 NEW - L 2, M 100 EXP3 - L 2, M 200 NEW - L 2, M 200

0

1000

2000

3000

4000

5000

6000

7000

Re
gr

et

Env - Tree Structure - Final Regret CIs at T = 10000

Figure 14: Regret distribution at the final stepsize T = 10000 when varying the wideness parameter M .

	1 Introduction
	2 The general model
	2.1 Attributes, classes, and the relations between them
	2.2 The loss model
	2.3 Sequence of events

	3 The nested exponential weights algorithm
	3.1 Probabilities, propensities, and nested logit choice
	3.2 The nested importance weighted estimator
	3.3 The nested exponential weights algorithm

	4 Analysis and results
	5 Numerical experiments
	6 Concluding remarks
	A The nested entropy and its properties
	B Auxiliary bounds and results
	C Regret analysis
	D Additional Experiment Details and Discussions
	D.1 Experiment additional details
	D.2 Blue Bus/ Red Bus environment
	D.3 Tree structures
	D.4 A visualisation of the effects of NEW
	D.5 Cases where both algorithms perform identically
	D.6 Variance plots for the synthetic experiments
	D.7 Reproducibility

