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Abstract
Decision trees are one of the most useful and
popular methods in the machine learning tool-
box. In this paper, we consider the problem of
learning optimal decision trees, a combinatorial
optimization problem that is challenging to solve
at scale. A common approach in the literature
is to use greedy heuristics, which may not be
optimal. Recently there has been significant inter-
est in learning optimal decision trees using vari-
ous approaches (e.g., based on integer program-
ming, dynamic programming)—to achieve com-
putational scalability, most of these approaches
focus on classification tasks with binary features.
In this paper, we present a new discrete optimiza-
tion method based on branch-and-bound (BnB)
to obtain optimal decision trees. Different from
existing customized approaches, we consider both
regression and classification tasks with continu-
ous features. The basic idea underlying our ap-
proach is to split the search space based on the
quantiles of the feature distribution—leading to
upper and lower bounds for the underlying opti-
mization problem along the BnB iterations. Our
proposed algorithm Quant-BnB shows signifi-
cant speedups compared to existing approaches
for shallow optimal trees on various real datasets.

1. Introduction
A decision tree is a classic machine learning predictive tool
with a flowchart-like structure that allows users to derive
interpretable decisions. Combined with its effectiveness
in solving classification and regression tasks, it is an im-
mensely useful tool in domains where interpretability is of
great importance. Despite its appeal, the task of learning
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an optimal decision tree (with smallest training error) is
NP-hard (Laurent & Rivest, 1976) and thus computation-
ally challenging. Therefore, greedy methods such as CART
(Breiman et al., 1984) and ID3 (Quinlan, 1986) are popular
choices. They construct decision trees through a top-down
approach. Starting from the root node, data is iteratively
split into subsets according to local objectives. In spite of
high efficiency, greedy heuristics may not lead to an opti-
mal solution, possibly resulting in suboptimal predictive
performance (Bertsimas & Dunn, 2017).

In recent years, there have been major advances in exploring
optimization methods to construct optimal1 decision trees.
Verwer & Zhang (2019); Günlük et al. (2021) explore mixed
integer programming (MIP) approaches to learn optimal
trees with a fixed depth. Aglin et al. (2020); Demirović
et al. (2020) propose interesting dynamic programming (DP)
approaches for optimal decision trees. Despite impressive
methodological advances, optimal tree-learning approaches
face the following challenges: (i) MIP formulations appear
to have limited scalability. Verwer & Zhang (2019) report
that a MIP solver cannot solve an optimal tree of depth
2 with less than 1000 observations and 10 features in 10
minutes. (ii) Most state-of-the-art algorithms (Demirović
et al., 2020; Aghaei et al., 2021; McTavish et al., 2021)
consider datasets with binary features (i.e, every feature is
{0, 1}) rather than continuous ones. Algorithms for optimal
trees with continuous features are much less developed2—
our goal in this paper is to bridge this gap in the literature.

In this work we take a step towards addressing the afore-
mentioned shortcomings by developing a novel branch-and-
bound (BnB) algorithm for the computation of shallow opti-
mal trees (e.g. depth=2, 3). In contrast to earlier approaches,
our algorithm can handle both classification and regression
tasks and is designed to directly handle continuous features
(including a mix of continuous and binary features). In
a nutshell, our proposed algorithm Quant-BnB utilizes

1In this paper, optimal refers to a global optimal solution to the
optimization problem associated with learning a decision tree.

2While it is possible to convert continuous features to binary
features, this may result in a large number of features, which
leads to large computation times—see our experiments for details.
To achieve scalability, it may be more beneficial to have tailored
approaches for continuous features.
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the quantiles of the feature distribution to decompose the
search space into sub-regions—these are subsequently used
to generate lower bounds and upper bounds on the opti-
mal value, and prune sub-optimal regions of the search-
space. To our knowledge, Quant-BnB is the first stan-
dalone method (i.e, does not rely on proprietary optimiza-
tion solvers) for optimal classification/regression trees that
directly applies to datasets with continuous features. We
show that Quant-BnB computes the optimal solution (cf.
Section 4.3), and achieves significant empirical improve-
ments compared to existing methods (cf Section 6). A Julia
implementation of our code is open-sourced on GitHub3.

Paper Opt Feat Task Model
Carreira-Perpiñán, 2018 7 3 R/C TAO
Bertsimas & Dunn, 2019 3 3 R/C MIP
Verwer & Zhang, 2019 3 3 C MIP
Aglin et al., 2020 3 7 C DP&BnB
Demirović et al., 2020 3 7 C DP
Lin et al., 2020 3 7 C DP&BnB
Aghaei et al., 2021 3 7 R/C MIP
Our approach 3 3 R/C BnB

Table 1. Related works on decision tree optimization. Opt indicates
if the approach finds an optimal tree. Feat indicates whether the
method works for continuous features (without binarizing features).
Task indicates what tasks the method can handle: R for regression
and C for classification. TAO is an alternating optimization-based
heuristic. The optimal methods are based on BnB, MIP (optimiza-
tion solvers) and DP.

Related Work: Various optimization techniques have been
explored to learn high-quality decision trees (Bennett &
Blue, 1996; Dobkin et al., 1997; Nijssen & Fromont, 2007;
Farhangfar et al., 2008; Nijssen & Fromont, 2010; Carreira-
Perpinán & Tavallali, 2018). A number of recent works
explore MIP-approaches for optimal decision trees. For
example, Bertsimas & Dunn (2019) formulate learning opti-
mal trees with a fixed depth as a MIP model. Günlük et al.
(2021) design an improved model with much fewer binary
decision variables for classification problems with binary
features. Verwer & Zhang (2019) propose a model that
works for numerical features with the same order of binary
variables as in Günlük et al. (2021). Zhu et al. (2020) present
a MIP approach for optimal decision trees with hyperplane
splits (aka oblique trees). Other MIP-based approaches have
been proposed in Aghaei et al. (2019; 2021). In addition to
the MIP approach, SAT solvers have been explored to learn
optimal decision trees (Bessiere et al., 2009; Narodytska
et al., 2018; Hu et al., 2020).

3https://github.com/mengxianglgal/
Quant-BnB

Another line of work explores pruning techniques to im-
prove the efficiency of DP-based approaches. Angelino
et al. (2017); Chen & Rudin (2018); Hu et al. (2019) solve
the optimal sparse decision tree using analytical bounds on
the optimal solution together with a customized bit-vector
library. Lin et al. (2020) improve the efficiency of earlier
approaches by using DP methods. Aglin et al. (2020) uti-
lize DP to compute better dual bounds during BnB search.
Demirović et al. (2020) show useful computational gains by
using pre-computed information from sub-trees and hash
functions. McTavish et al. (2021) design smart guessing
strategies to improve the performance of BnB-based ap-
proaches.

As mentioned earlier, current approaches are unable to com-
pute optimal classification/regression trees with continuous
features at scale—a problem we address in this paper. Ta-
ble 1 presents a summary of the key characteristics of re-
lated existing approaches vis-a-vis our proposed method
Quant-BnB.

2. Preliminaries and Notations
2.1. Overview of optimal decision trees

Consider a supervised learning problem with n observations
{(xi, yi)}i∈[n], each with p features xi ∈ X ⊆ Rp and
response yi ∈ Y . A decision tree recursively partitions
the feature space X into a number of hierarchical, disjoint
regions, and makes a prediction for each region. In this
paper, we focus on binary decision trees (i.e., every non-
terminal node splits into left and right children) with axis-
aligned splits. See Breiman et al. (1984) for further details.

For a decision tree T and feature vector x, let T (x) ∈ Y
denote the corresponding prediction. Given a loss function
`(·, ·) on Y×Y , and a family T of decision trees, an optimal
decision tree is a global optimal solution to the following
optimization problem:

minT∈T
∑n

i=1
`(yi, T (xi)). (1)

For regression problems with a scalar output, we can take
Y ⊂ R and ` as the squared loss: `SE(y, ŷ) := (y −
ŷ)2. We also consider extensions to multivariate continuous
outcomes with y ∈ Y ⊂ Rm, m ≥ 1 and `SE(y, ŷ) :=
‖y − ŷ‖2. For classification problems with C classes, one
can take Y = [C] := {1, 2, ..., C}, and ` to be the 0-1 (or
mis-classification) loss i.e., `01(y, ŷ) = 1(y 6= ŷ).

2.2. Data types for the feature space

In this paper, we consider the general case where xi contains
continuous and possibly binary features. If a feature f is
continuous, then {xi,f}ni=1 can contain at most n different
values. Our approach also applies to the setting where the
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number of distinct values of f is much smaller than n. Re-
call that if f is a binary feature then xi,f ∈ {0, 1}, i ∈ [n].
As mentioned earlier, when the features are all binary, the
optimal decision tree can be computed quite efficiently as
shown in recent works (cf Section 1). To gather some in-
tuition, note that, if all features are binary, computing an
optimal regression tree of depth d costs O(npd) operations
by exhaustive search—this can be acceptable even when n is
large (e.g. n ≈ 104 ∼ 105) but d is small (e.g. d = 2, 3). In
contrast, if all features are drawn from a continuous distribu-
tion, then an exhaustive search would cost O(ndpd) (almost
surely)—this may be computationally intractable for the
same values of n, d. In this paper, our focus is to propose
an efficient BnB framework for the challenging case when
the features are continuous—a topic that seems to be less
studied when compared to the case where all features are
binary.

2.3. Notations

For a feature f ∈ [p], let u(f) ∈ [n] be the number of
distinct elements in {xi,f}ni=1—i.e., the number of unique
values assumed by feature f in the training data. We let
wf1 < wf2 < · · · < wfu(f) denote these distinct values. In

addition, we set wf0 = −∞ and wfu(f)+1 = +∞. For any

integer t with 0 ≤ t ≤ u(f), let w̃ft := (wft +wft+1)/2. For
Problem (1), it suffices to consider candidate trees with all
splitting thresholds located in the set {w̃ft }f∈[p],0≤t≤u(f)

(Note that different splitting thresholds in the interval
(wft , w

f
t+1) give the same routing decision on the training

set, so we choose the mid-point w̃ft as a candidate threshold).
As we consider axis-aligned splits, each splitting node of a
tree can be described by a tuple (f, t), where f ∈ [p] is the
splitting feature, and 0 ≤ t ≤ u(f) is an integer indicating
that the splitting threshold is w̃t. We say (f, t) is the split-
ting rule of this node. For a set I ⊆ [n], a feature f ∈ [p]
and two integers a, b with 0 ≤ a ≤ b ≤ u(f), define

If[a,b] := {i ∈ I | w̃fa ≤ xi,f ≤ w̃
f
b }

to be the set of sample indices i for which xi,f lies between
w̃fa and w̃fb .

ForA,B > 0, we use the notationsA = O(B) orA . B to
denote that there exists a universal constantC such thatA ≤
CB; and use the notation A = Õ(B) if A = O(B log(n)),
where n is the number of samples.

2.4. Preliminaries for decision tree with depth 2

The algorithms we present in this paper are capable of solv-
ing shallow (e.g., d = 2 or 3) optimal trees within practical
runtimes. We present an in-depth description of our pro-
posed approach Quant-BnB for the case d = 2. Section 5
presents a sketch of how it can be extended to deeper trees.

An optimal tree of depth 2 is a solution to the following
problem

min
T∈T2

n∑
i=1

`(yi, T (xi)), (2)

where, T2 is the set of all decision trees with depth 2 whose
splitting thresholds are in {w̃ft }f∈[p],0≤t≤u(f).

For a tree T ∈ T2, let (fO(T ), tO(T )), (fL(T ), tL(T )) and
(fR(T ), tR(T )) denote the splitting rules at the root node
(O), the left child (L) and right child (R) of the root node
respectively. Given f0, f1, f2 ∈ [p] and two integers a, b
with 0 ≤ a ≤ b ≤ u(f0), we define

T2(f0, [a, b], f1, f2) :=
{
T ∈ T2

∣∣∣fO(T ) = f0, tO(T ) ∈ [a, b],

fL(T ) = f1, fR(T ) = f2

}
to be the set of trees in T2 whose root node, left child and
right child splitting features are f0, f1 and f2 respectively,
and the splitting threshold of the root node is between w̃a
and w̃b. Given F1, F2 ⊆ [p], define

T2(f0, [a, b], F1, F2) :=
⋃

f1∈F1,f2∈F2

T2(f0, [a, b], f1, f2).

We adopt the convention that T2(f0, [a, b], F1, F2) = ∅
if F1 or F2 is empty. Note that here a and b are inte-
gers indicating that the splitting threshold of f0 lies in
{w̃f0a , w̃

f0
a+1, , ...., w̃

f0
b }. See the appendix for an illustra-

tive example.

For a given subset of samples I ⊆ [n], define

L0(I) := miny∈Y
∑

i∈I
`(yi, y) (3)

to be the loss of the best constant fit to {yi}i∈I . As concrete
examples, for regression problem with Y = Rm and ` =
`SE , it holds

L0(I) =
∑

i∈I

∥∥yi − (1/|I|)
∑

j∈I
yj
∥∥2
. (4)

For classification problem with Y = [C] and loss ` = `01,
it holds

L0(I) = minc∈[C]

∑
i∈I

1{yi 6=c}. (5)

Note that L0(I) can be viewed as the minimum loss of a
“depth-0” decision tree with observations in I. Similarly,
we define a function L1 to be the best possible objective
value for a depth-1 decision tree (a “stump”) when using
observations in I and a feature f ∈ [p]:

L1(I, f) := min
0≤t≤u(f)

{
L0(If[0,t]) + L0(If[t,u(f)])

}
. (6)

Note that for a given feature f and a set of indices I , if L0 is
given by (4) or (5), then L1(I, f) can be computed within
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O(|I| log |I|) ≤ Õ(|I|) operations (the log-factor is from
a sorting operation).

Let us consider f0, f1, f2 ∈ [p], integers a, b with 0 ≤ a ≤
b ≤ u(f0) and I ⊆ [n]. Extending the definitions of L0 and
L1 above, we now consider the best objective for a depth-2
decision tree. Define

L2(I, f0, [a, b], f1, f2)

:= min
a≤t≤b

{
L1(If0[0,t], f1) + L1(If0[t,u(f0)], f2)

} (7)

to be the minimum value of
∑
i∈I `(yi, T (xi)) over all

depth-2 trees T ∈ T2(f0, [a, b], f1, f2).

To simplify the notation above, define the parameter space

Φ :=
{

(f0, [a, b], f1, f2) | f0, f1, f2 ∈ [p],

a, b are integers with 0 ≤ a ≤ b ≤ u(f0)
}
.

(8)

Then for any φ = (f0, [a, b], f1, f2) ∈ Φ, and I ⊆ [n], we
use the short-hand notations

T2(φ) = T2(f0, [a, b], f1, f2),

L2(I, φ) = L2(I, f0, [a, b], f1, f2).

3. Upper and Lower Bounds for L2(I, φ)
For any φ ∈ Φ and I ⊆ [n], recall that L2(I, φ) is the best
objective value of (2) across trees in T2(φ) with samples
in I. In this section, we discuss upper and lower bounds
for L2(I, φ)—the costs for computing these bounds are
lower than directly computing L2(I, φ). Quant-BnB crit-
ically makes use of these upper and lower bounds while
performing BnB (cf Section 4).

3.1. Upper bounds for L2(I, φ)

Given φ = (f0, [a, b], f1, f2) ∈ Φ and I ⊆ [n], we compute
an upper bound of L2(I, φ) by making use of the quantiles
of the features. For an integer s with 1 ≤ s ≤ b − a,
we say that a set of integers (t0, t1, . . . , ts) are almost s-
equi-spaced in the interval [a, b] if t0 = a, ts = b and
tj = ba+ (j/s)(b− a)c for 1 ≤ j ≤ s− 1. Given such a
sequence (t0, t1, . . . , ts), we define

Vs(I, φ) := min
0≤j≤s

{
L1(If0[0,tj ], f1) + L1(If0[tj ,u(f0)], f2)

}
.

It follows that Vs(I, φ) ≥ L2(I, φ) for all φ =
(f0, [a, b], f1, f2) ∈ Φ satisfying b− a ≥ s; and hence Vs is
an upper bound to L2. We note that quantile-based methods
are commonly used as a heuristic in decision tree algo-
rithms (e.g., XGBoost (Chen & Guestrin, 2016)). Our work
differs—as discussed below, we make use of this quantile-
based approach to obtain an optimal decision tree.

3.2. Lower bounds for L2(I, φ)

We present some lower bounds for L2(I, φ). The lower
bounds along with the upper bounds discussed earlier, form
the backbone of our BnB procedure.

Lower bound 1: The first lower bound we consider is ob-
tained by sorting the values of a feature, and dropping
the values lying in an interior sub-interval. Given any
φ = (f0, [a, b], f1, f2) ∈ Φ and I ⊆ [n], define

W0(I, φ) = W0(I, f0, [a, b], f1, f2)

:= L1(If0[0,a], f1) + L1(If0[b,u(f0)], f2).
(9)

We can interpret W0(I, φ) as follows: the samples in If0[0,a]

are routed to the left subtree yielding a loss L1(If0[0,a], f1);

the samples in If0[b,u(f0)] are routed to the right subtree

with a loss L1(If0[b,u(f0)], f2); and the samples in If0[a,b] are
“dropped” (i.e., do not enter any leaf node). Lemma 3.2
shows that W0 is a lower bound for L2 i.e., W0(I, φ) ≤
L2(I, φ) for all φ ∈ Φ. Furthermore, W0(I, φ) is easier
to compute than L2(I, φ). Figure 1 presents a schematic
diagram illustrating computation of the lower bound W0.

Arranged in ascending order of feature f0

w̃f00 w̃f0a w̃f0b w̃f0u(f0)

Figure 1. Figure showing sorting of the unique values in feature
f0 into intervals [w̃f0

0 , w̃f0
a ], [w̃f0

a , w̃f0
b ] and [w̃f0

b , w̃f0
u(f0)

]. In the

definition of W0, samples with xi,f0 between w̃f0
a and w̃f0

b (green
part in the figure) are dropped.

Lower bound 2: The second lower bound we consider is
obtained by using a subset of samples in the middle to fit
another depth-2 tree. Given any φ = (f0, [a, b], f1, f2) ∈ Φ
and I ⊆ [n], define

W2(I, φ) = W2(I, f0, [a, b], f1, f2)

:= W0(I, φ) + L2(If0[a,b], φ).
(10)

Note that in the definition of W2, the samples in If0[a,b]

are used to fit another depth-2 tree in T2(φ), and yield an
additional loss term L2(If0[a,b], φ). It can be proved that
W2(I, φ) ≤ L2(I, φ) for all φ ∈ Φ (see Lemma 3.2). Note
that W2(I, φ) is a better lower bound than W0(I, φ), but
has a higher computational cost—see Section 4.3 for details.

Lower bound 3: The third lower bound we introduce below
combines the above ideas underlying the computation of
W0 and W2. To introduce this lower bound, we need some
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additional notations. Given a φ = (f0, [a, b], f1, f2) ∈ Φ;
and almost s′-equi-spaced integers (t0, t1, . . . , t

′
s) in [a, b]

(for an integer s′ ≤ b− a), define

L̂2(I, φ, s′) = L̂2(I, f0, [a, b], f1, f2, s
′)

:= min
1≤j≤s′

{
L1(If0[0,tj−1], f1) + L1(If0[tj ,u(f0)], f2)

}
.

(11)

Note that in the j-th term of the minimum in (11), we drop
the observations in If0[tj−1,tj ]. The following lemma shows

that L̂2(·, ·, s′) is a lower bound of L2(·, ·).

Lemma 3.1. For any I ⊆ [n], any φ = (f0, [a, b], f1, f2) ∈
Φ, and any s ≤ b− a, it holds

L̂2(I, φ, s′) ≤ L2(I, φ). (12)

The proof of Lemma 3.1 is presented in the appendix. Note
that the computation of L̂2(I, φ, s′) is easier than the com-
putation of L2(I, φ).

Using L̂2, we can introduce the third lower bound for
L2(I, φ). Given any φ = (f0, [a, b], f1, f2) ∈ Φ and any
integer s′ ≤ b− a, define

W1,s′(I, φ) = W1,s′(I, f0, [a, b], f1, f2)

:= W0(I, φ) + L̂2(If0[a,b], φ, s
′).

(13)

Note that in the definition above, the samples in If0[a,b] are

used to compute a term L̂2(If0[a,b], φ, s
′). As a result, the

value W1,s′(I, φ) is larger than W0(I, φ) and smaller than
W2(I, φ) (due to Lemma 3.1).

The following lemma justifies that W0, W1,s′ and W2 are
indeed lower bounds of L2.

Lemma 3.2. For any I ⊆ [n], φ ∈ Φ and s′ ≤ b − a, it
holds

W0(I, φ) ≤W1,s′(I, φ) ≤W2(I, φ) ≤ L2(I, φ).

The proof of Lemma 3.2 is presented in the appendix.
Lemma 3.2 shows that W0, W1,s′ and W2 are lower bounds
for L2; W0 is weakest and W2 is the tightest of the three
bounds. See Section 4.3 for further discussions on the com-
putational costs of these three lower bounds.

4. A Branch and Bound Method for Optimal
Trees with Depth 2

In this section, we describe our algorithm Quant-BnB to
solve problem (2) to optimality. Quant-BnB main-
tains and updates a search space represented as disjoint
unions of sets of the form T2(f0, [a, b], F1, F2). In Sec-
tion 4.1, we first present a proposition illustrating how
we perform quantile-based pruning on a set of the form

T2(f0, [a, b], F1, F2). In Section 4.2 we present the overall
framework of Quant-BnB. In Section 4.3 we discuss the
computational cost of the algorithm.

4.1. A quantile-based pruning procedure

Suppose we are given f0 ∈ [p], integers a, b with 0 ≤ a ≤
b ≤ u(f0) and F1, F2 ⊆ [p]. We focus on the subset of trees
T2(f0, [a, b], F1, F2), and discuss a quantile-based method
to replace this collection by a smaller subset containing an
optimal solution to (2).

Let (t0, ..., ts) be almost s-equi-spaced in [a, b]. The follow-
ing proposition states a basic strategy for pruning.

Proposition 4.1. Let W be a function on 2[n] × Φ with
W (I, φ) ≤ L2(I, φ) for all φ ∈ Φ and I ⊆ [n]; let U be
an upper bound of the optimal value of problem (2). For
each j ∈ [s], define

F1,j :=
{
f1 ∈ F1

∣∣ min
f2∈F2

W ([n], φjf1,f2) ≤ U
}
, (14)

F2,j :=
{
f2 ∈ F2

∣∣ min
f1∈F1

W ([n], φjf1,f2) ≤ U
}
, (15)

where φjf1,f2 := (f0, [tj−1, tj ], f1, f2). Then any optimal
solution of (2) is not in

T2(f0, [a, b], F1, F2) \
s
∪
j=1
T2(f0, [tj−1, tj ], F1,j , F2,j).

(16)

The proof of Proposition 4.1 is presented in the appendix.
Possible choices of the lower bound W (I, φ) in Proposition
4.1 are W0(I, φ), W1,s′(I, φ) and W2(I, φ), as designed
in Section 3.2. If the assumptions of Proposition 4.1 hold,
we can replace the search space T2(f0, [a, b], F1, F2) by a
smaller space ∪sj=1T2(f0, [tj−1, tj ], F1,j , F2,j), or equiva-
lently, prune all the feasible solutions in (16). Note that it is
possible that for some j ∈ [s], the set F1,j or F2,j is empty,
and hence the set T2(f0, [tj−1, tj ], F1,j , F2,j) is also empty.
In that case, we prune the trees in T2(f0, [a, b], F1, F2) with
splitting thresholds lying in [tj−1, tj ].

4.2. Quant-BnB framework

We discuss the overall methodology of Quant-BnB to
solve (2). The proposed algorithm maintains and updates
a set AL(k) (short for “alive”) over iterations k ≥ 0. AL(k)

contains tuples of the form

(f0, [a, b], F1, F2),

where f0 ∈ [p]; a and b are integers with 0 ≤ a ≤ b ≤
u(f0); and F1, F2 ⊆ [p]. Initially (i.e., at k = 0), all the
trees in T2 are “alive”, so we set

AL(0) = ∪pf0=1 {(f0, [0, u(f0)], [p], [p])} . (17)
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Intuitively speaking, as the iterations progress, we reduce
the size of AL(k), by removing tuples (f0, [a, b], F1, F2) that
do not contain optimal solutions to (2). The algorithm also
maintains and updates the best objective value that it has
found so far, denoted by U . Initially, we set U to be the
value at any feasible solution of (2).

At every iteration k ≥ 1, to update AL(k) from AL(k−1), we
first set AL(k) = ∅. The algorithm then checks all elements
in AL(k−1). For an element (f0, [a, b], F1, F2) in AL(k−1),
if b−a is less than a pre-specified integer s (i.e., the number
of trees in the space is sufficiently small), our algorithm
performs an exhaustive search to examine all candidate trees
in the space T2(f0, [a, b], F1, F2). Otherwise, the algorithm
conducts the following 2 steps. Let (t0, ..., ts) be an almost
s-equi-spaced sequence in [a, b].

• (Step1: Update upper bound) Compute

U ′ = min
f1∈F1,f2∈F2

{
Vs([n], f0, [a, b], f1, f2)

}
.

If U ′ < U , update U ← U ′, and update the corre-
sponding best tree.

• (Step2: Compute lower bound and prune) For a func-
tionW on 2[n]×Φ satisfyingW (I, φ) ≤ L2(I, φ) for
all φ ∈ Φ and I ⊆ [n], compute sets F1,j and F2,j as
in (14) and (15) (for all j ∈ [s]), and update

AL(k) = AL(k)
⋃(
∪sj=1{(f0, [tj−1, tj ], F1,j , F2,j)}

)
.

Note that in Step 2 above, we need to compute values of
W ([n], φjf1,f2) as in (14) and (15)–these are lower bounds
of L2([n], φjf1,f2). Function W can be taken as W0, W1,s′

orW2, as introduced in Section 3.2. At the end of Step 2, the
set ∪sj=1{(f0, [tj−1, tj ], F1,j , F2,j)} is added into AL(k);
this set replaces the tuple (f0, [a, b], F1, F2) in AL(k−1). In
other words, all the trees that lie in T2(f0, [a, b], F1, F2) but
not in ∪sj=1T2(f0, [tj−1, tj ], F1,j , F2,j) are pruned.

The main steps of the algorithm above are summarized
in Algorithm 1. For illustration, a single iteration of
Quant-BnB on a toy example is provided in appendix.

4.3. Correctness of Quant-BnB, computational cost

Theorem 4.2 (see Appendix for proof) establishes that
Quant-BnB converges to the global optimum of (2).

Theorem 4.2. Algorithm 1 terminates in at most dlogs(n)e
iterations and yields an optimal solution of (2).

Computational cost: We discuss the computational cost of
Steps 1 & 2 for a given (f0, [a, b], F1, F2). To simplify the
discussion, we consider the case when the number of unique
values of feature f0 i.e., u(f0) is n.

Algorithm 1 Quant-BnB for depth-2 decision trees

Input: data {(xi, yi)}ni=1, an integer s ≥ 2, an initial
upper bound U and a feasible solution T̂ .
Initialize AL(0) as in (17), and set k = 1.
repeat

Set AL(k) = ∅.
for each (f0, [a, b], F1, F2) in AL(k−1) do

if b− a ≤ s then
Use exhaustive search to get the bound
U ′ = minf1∈F1,f2∈F2 L2([n], f0, [a, b], f1, f2).
Update U = min{U,U ′} and accordingly, the
current best solution T̂ .
continue

end if
Let (t0, t1, . . . , ts) be almost s-equi-spaced in [a, b].
Perform Steps 1 and 2.

end for
Update k ← k + 1.

until AL(k) is empty
Output: The optimal decision tree T̂ and corresponding
objective value U .

Note that in Algorithm 1, a function W satisfying
W (I, φ) ≤ L2(I, φ) for all φ ∈ Φ and I ⊆ [n] is needed.
Candidates of the lower bound W have been discussed in
Section 3.2. Different choices of W have different com-
putational costs. The simplest choice is to set W = L2

directly, in which case Step 2 of the algorithm reduces to
an exhaustive search over T2(f0, [a, b], F1, F2), which is
expensive. By Lemma 3.2, it is also possible to take W
to be W0, W1,s′ (for some proper integer s′) or W2. We
compare the computational cost of Step 1 – Step 2 under
these different choices, as shown below.

Lemma 4.3. Suppose L0 is given by (4) or (5). For a
given (f0, [a, b], F1, F2), denote p̃ := |F1|+ |F2|. Suppose
u(f0) = n. Let s, s′ be positive integers with s′ · s ≤ b− a.
The computational cost of Steps 1-2 for different choices of
the lower-bound function W are as follows:
(1) If W = W0, the cost is bounded by Õ(np̃s).
(2) If W = W1,s′ , the cost is bounded by Õ(np̃s +
p̃s′(b− a)).
(3) If W = W2, the cost is bounded by Õ(np̃s+ (b−a)2p̃

s ).
(4) If W = L2, the cost is bounded by Õ(np̃(b− a)).

Note that the assumption s · s′ ≤ b− a is necessary to make
sure the equi-spaced sequences are well-defined. By this
assumption, we have np̃s ≤ np̃s + p̃s′(b− a) ≤ np̃s +
(b− a)2p̃/s . np̃(b− a). Lemma 4.3 implies that

W0 ≺W1,s′ ≺W2 ≺ L2, (18)

where the notation “W̄ ≺ W̃ ” means that the cost (of Steps 1
& 2) in using W = W̄ is bounded by a constant multiple of
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the cost of using W = W̃ . On the other hand, by Lemma
3.2, it is known that

W0(I, φ) ≤W1,s′(I, φ) ≤W2(I, φ) ≤ L2(I, φ) (19)

for all φ ∈ Φ. Therefore, among these four choices of W ,
there is a tradeoff: the choice with lower computational time
for Step 1 – Step 2 will produce a less tight lower bound
and may result in a case where fewer trees are pruned in
this iteration. Empirically, we find that among these four
choices, choosing W = W1,s′ (for a proper s′) has the best
performance in most cases (see Section 6.1 for a comparison
of these choices). A choice of s′ that appears to work well
in practice is s′ ≈ ns

b−a , in which case the cost in Lemma
4.3 (2) reduces to Õ(np̃s). With this choice of s′, the cost
of Step 1–2 using W = W1,s′ is the same (up to a constant
multiple) as the cost of choosing W = W0, but the former
always provides a better lower bound.

We note that when choosing W = W2 or W = L2, the cost
of Algorithm 1 is not linear in n. Indeed, initially (k = 0),
for any (f0, [a, b], F1, F2) in AL(0), it holds b − a = n,
and p̃ = 2p. So by Lemma 4.3 (4) the cost of Steps 1–2
with W = L2 is Õ(n2p̃); and with W = W2 the cost is
Õ(nps+ (n2p/s)) ≥ Õ(n3/2p).

5. Extension to Deeper Trees
Algorithm 1 can be generalized for the computation of opti-
mal trees with a fixed depth d (d ≥ 3). We briefly discuss
the case when d = 3. To compute an optimal tree of depth 3,
Quant-BnB maintains and updates a set AL3 that contains
tuples of the form

(f0, [a, b],Φ1,Φ2), (20)

where f0 ∈ [p], 0 ≤ a ≤ b ≤ u(f0), and Φ1,Φ2 ⊆ Φ.
Recall that Φ is defined in (8), which contains tuples cor-
responding to subsets of depth-2 trees. Each tuple (20)
corresponds to a search space in which the elements meet
the following conditions: the root node (f0, t0) satisfies
t0 ∈ [a, b]; also, the left and right branch of the root node,
which are decision trees of depth 2, are in T2(φ1) and T2(φ2)
for some φ1 ∈ Φ1 and φ2 ∈ Φ2 respectively.

To shrink the search space corresponding to (20), we set
up an almost equi-spaced sequence of integers and work
with lower bounds for each smaller search space. Due space
limits, we present the details of the algorithm and related
discussions in Section C.

For the case d ≥ 4, similar recursion can be applied to
design BnB algorithms, but the computational cost increases
especially when p (# of features) is large. Therefore, we
recommend using our procedure for fitting optimal decision
trees with d ≤ 3.

So far, we only consider perfect binary trees (i.e., depth-d
trees that has exactly 2d − 1 branch nodes). In practice, it
is preferable to optimize over non-perfect trees to enhance
generalization capability, especially for deeper trees. Note
that we can modify Quant-BnB to handle non-perfect trees
by considering two cases for each node–it can be a branch
node or a leaf–when calculating upper and lower bounds.
This modification will not result in additional computation
costs.

6. Numerical Experiments
In this section, we study the performance of Quant-BnB
in terms of runtime and prediction accuracy. In particular we
study: (i) differences in the efficiency of Quant-BnB using
various methods to calculate the lower bound of L2(I, φ)
(ii) computational cost of optimal trees (depths 2 and 3) on
classification tasks compared to state-of-the-art algorithms
(iii) out-of-sample accuracy compared to heuristic methods.
We present details of experimental setup and results on
regression tasks in appendix Section D.

Datasets and Computing Environment: We collect 16
classification (binary and multi-class) and 11 regression
datasets from UCI Machine Learning Repository (Dua &
Graff, 2017). All experiments are carried out on MIT’s
Engaging cluster on Intel Xeon 2.30GHz machine, with a
single CPU core and 25GB of RAM. Our algorithm imple-
mentation can be found on GitHub4.

6.1. Comparison of different lower bounds

Recall that Quant-BnB requires a lower-bound function
W such that W (I, φ) ≤ L2(I, φ) for all φ ∈ Φ and I ⊆
[n]. In addition, the efficiency of the algorithm depends
largely on the choice of W . We have developed 4 possible
lower bounds—W0, W1,s′ , W2 and L2, and theoretically
studied the quality and computational cost of them (see (18)
and (19)). In this experiment, we figure out their practical
performance.

We set the parameter s in Algorithm 1 to be 3, and the
parameter s′ is dynamically chosen as b 0.6ns

b−a c for tuple
φ = (f0, [a, b], f1, f2). As discussed in Section 4.3, the
computational cost of W0 and W1,s′ is linear w.r.t n un-
der such setting, while computing W2 and L2 in the first
iteration of Quant-BnB costs O(n2).

We implement Quant-BnB with the lower-bound function
W in Step 1-2 chosen as W0, W1,s′ , W2 and L2, respec-
tively. Table 3 displays the computation time of these four
choices on UCI datasets with number of data points n ≥ 104.
Although W2 produces a tighter lower bound compared to

4https://github.com/mengxianglgal/
Quant-BnB

https://github.com/mengxianglgal/Quant-BnB
https://github.com/mengxianglgal/Quant-BnB
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W0 and W1,s′ (which helps Quant-BnB prune more trees
in every iteration), taking W = W2 still has a bad perfor-
mance due to its expensive computational cost. In contrast,
proposed lower bounds W0 and W1,s′ result in significant
speedups compared to computing L2 directly. In the follow-
ing experiments, we always choose W = W1,s′ to reduce
computational cost.

Name (n,p) W0 W1,s′ W2 L2

avila (10432,10) 5.1 4.5 - 519
bean (10888,16) 3.0 3.4 - -
eeg (11984,14) 2.9 2.9 - 47
htru (14318,8) 1.4 1.3 244 515
magic (15216,10) 1.2 1.0 - -
skin (196045,3) 2.0 2.1 - 31
casp (36584,9) 6.7 4.2 - -
energy (15788,28) 18 14 - -
gas (29386,10) 1.5 1.5 - 444
news (31715,59) 301 349 - -
query2 (159874,4) 15 9.8 - -

Table 3. Quant-BnBwith four different methods for lower bound
computation on depth-2 trees. For each dataset, the number of
observations and the number of features are provided. Each entry
denotes running time in seconds. Symbol ‘-’ refers to time out
(10min).

6.2. Comparison with state-of-the-art optimal methods

We compare our algorithm with the recently proposed meth-
ods for solving optimal classification trees: BinOCT (Ver-
wer & Zhang, 2019), MurTree (Demirović et al., 2020) and

DL8.5 (Aglin et al., 2020). We also tested other compet-
ing algorithms, but they all took substantially longer time
to deliver optimal trees—see Appendix for details. Since
MurTree and DL8.5 apply to datasets with binary features,
we adopt the equivalent-conversion pre-processing used in
Lin et al. (2020) by encoding each continuous feature f to a
set of u(f)−1 binary features, using all possible thresholds.

The computation time for learning optimal shallow trees
(depth = 2, 3) on classification tasks is presented in Table 2.
Quant-BnB can solve depth-2 trees in a few seconds–a
speedup of several orders of magnitude compared to other
methods. When the depth is 3, Quant-BnB still outper-
forms competing algorithms by a large margin on 13 of 16
datasets. Although being highly effective on datasets with
purely binary features, MurTree and DL8.5 can be expen-
sive to deliver optimal trees on datasets with continuous
features. This is perhaps due to the increase in number of
features while converting the continuous features to binary
features. On a related note, it is worth pointing out that
one may use approximate methods to convert continuous to
binary features Demirović et al. (2020)—however, such ap-
proximate schemes may result in a lossy compression of the
training data as shown in our experiments in the Appendix.
Note also that we do not use any compression of features
for Quant-BnB. The numerical results illustrate the effec-
tiveness of Quant-BnB in solving shallow optimal trees
on large datasets with continuous features.

Dataset (n,p) depth=2 depth=3
Name Quant-BnB BinOCT MurTree DL8.5 Quant-BnB BinOCT MurTree DL8.5
avila (10430,10) 4.5 (1.3%) OoM 3278 4188 OoM OoM OoM
bank (1097,4) <0.1 2963 8.4 4.6 4.4 (100%) 142 -
bean (10888,16) 3.4 (0%) OoM OoM 1014 OoM OoM OoM
bidding (5056,9) 0.2 (1.1%) 345 72 30 (154%) 6252 OoM
eeg (11984,14) 2.9 (6.3%) 288 34 4042 (13%) 1783 OoM
fault (1552,27) 1.6 (9.1%) 530 271 - (34%) - OoM
htru (14318,8) 1.3 (7.7%) OoM OoM 10303 OoM OoM OoM
magic (15216,10) 1.0 (2.6%) OoM OoM 1090 (14%) OoM OoM
occupancy (8143,5) 0.3 (2.3%) 193 33 106 (28%) 1692 OoM
page (4378,10) 0.4 (0%) 155 84 471 (35%) - OoM
raisin (720,7) 0.1 9590 13 6.2 167 (6.6%) 432 -
rice (3048,7) 0.4 (3.0%) 591 267 1340 (11%) - OoM
room (8103,16) 1.0 (25%) 18 14 180 (239%) 269 -
segment (1848,18) 1.1 (0.5%) 389 213 153 (250%) - OoM
skin (196045,3) 2.3 (28%) 37 16 350 (9.9%) 112 -
wilt (4339,5) 0.2 (0%) 653 314 67 (56%) - OoM

Table 2. Comparison of Quant-BnB aginst BinOCT, MurTree and DL8.5 on 16 classification datasets. For each dataset, the number of
observations and the number of features are provided. Each entry denotes running time in seconds. - refers to time out (4h), OoM refers to
out of memory (25GB). If BinOCT times out, we display the relative difference (LB − LQ)/LQ as a percentage instead, where LB and
LQ are the training errors of BinOCT and Quant-BnB, respectively.
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6.3. Comparison with heuristic methods

We study the test-accuracy of optimal decision trees. Earlier
work (Verwer & Zhang, 2019; Demirović et al., 2020) in
classification with binary features suggest that optimal trees
can lead to better test-performance compared to heuristics.
We explore if similar empirical findings hold true for the
tasks we consider herein. We compare our approach with
the well-known algorithm CART (Breiman et al., 1984) and
Tree Alternating Optimization (TAO) (Carreira-Perpinán
& Tavallali, 2018)—both based on heuristics. Both CART,
TAO consider the same models as Quant-BnB, namely,
axis-aligned trees with depth 2 or 3.

We compare the test error on a collection of 27 datasets:
16 classification and 11 regression tasks (see Appendix for
details). Since the range of loss function of each test set
varies, we study the relative loss (LteC − LteQ)/LteQ , where
LteQ is test error of Quant-BnB, and LteC is the test error
of the competing algorithm (here, C is CART or TAO).
The results are summarized in Fig 2. We observe from the
figure that Quant-BnB obtains depth−2 trees with lower
test error in more than 66% datasets. When the depth is 3,
Quant-BnB leads to better generalization in most of cases
compared to CART and TAO. The prediction performance
of TAO is slightly better than CART, at the expense of
higher computational cost. The results indicate that optimal
trees delivered by Quant-BnB offer an edge compared to
heuristic methods, especially for deeper trees.

7. Conclusions and Discussions
We present a novel BnB framework for optimal decision
trees that applies to both regression and classification prob-
lems with continuous features. This extend the scope of
optimal procedures in the literature that have been devel-
oped for classification problems with binary features. Our
approach is based on partitioning the feature values based
on quantiles and using them to generate upper and lower
bounds. We discuss convergence guarantees of our proce-
dure. Numerical experiments suggest the efficiency of our
approach for shallow decision trees.

Although a single optimal shallow tree appears to be some-
what restrictive in terms of prediction, it can be useful for
interpretability (it can be difficult to interpret trees with
depth much larger than 3). Additionally, a heuristic proce-
dure (e.g., CART) may require a larger depth to achieve the
same training/test error as an optimal tree with d = 3. To
improve prediction performance of a single shallow tree,
one can use an ensemble (e.g., random forest, Boosting) of
shallow trees.
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Figure 2. Performance comparison of Quant-BnB against CART and TAO on 27 datasets. Lte
C is test error of algorithm C (i.e., CART

or TAO) and Lte
Q is test error of Quant-BnB. We summarize the relative difference (Lte

C − Lte
Q )/Lte

Q -values between a heuristic method
(C) and optimal decision trees delivered by Quant-BnB (Q), shown in percentages using bar charts. A positive value of the x-axis means
Quant-BnB performs better than competing methods.
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Appendix

A. Examples
A.1. An example of the space T2(f0, [a, b], F1, F2)

We consider a classification dataset with n = 6, p = 3. The feature vectors and labels are provided in Table 4.

Data x1 x2 x3 x4 x5 x6

Feature 1 1 2 3 3 4 5
Feature 2 0 1 2 3 4 5
Feature 3 0 0 3 3 5 5
Label 1 2 1 2 1 2

Table 4. An classification example with 6 samples. Each has 3 features and a label in {1, 2}.
.

Then we have u(1) = 5, and

w1
0 = −∞, w1

1 = 1, w1
2 = 2, w1

3 = 3, w1
4 = 4, w1

5 = 5, w1
6 =∞, (21)

w̃1
0 = −∞, w̃1

1 = 1.5, w̃1
2 = 2.5, w̃1

3 = 3.5, w̃1
4 = 4.5, w̃1

5 =∞. (22)

As an example, the set T2(1, [1, 4], {2, 3}, {2, 3}) contains all trees whose splitting features at the root node are 1; splitting
thresholds at the root node are in {1.5, 2.5, 3.5, 4.5}; splitting features at the left child and the right child are in {2, 3}.

A.2. An example of a single iteration of Quant-BnB

We follow the assumption on data given in the previous section. Now suppose at some iteration k, the set AL(k−1) contains
a single tuple (1, [1, 4], {2, 3}, {2, 3}). The current upper bound U equals to 2, and the parameter s in Algorithm 1 is set to
be 2. In addition, we choose W0(I, φ) defined in Eq.(9) as the lower bound required in Proposition 4.1.

To construct AL(k), Quant-BnB checks the tuple (1, [1, 4], {2, 3}, {2, 3}). Since s = 2 ≤ 4− 1, the algorithm computes
(t0, t1, t2) = (1, 2, 4) being almost 2-equi-spaced in [1, 4] and conducts the following 2 steps.

• (Step1: Update upper bound) Quant-BnB computes U ′ by

U ′ = min
f1∈{2,3},f2∈{2,3}

{
V2([6], 1, [1, 4], f1, f2)

}
= min
f1∈{2,3},f2∈{2,3}

{
min

{
L1({1}, f1) + L1({2, 3, 4, 5, 6}, f2),

L1({1, 2}, f1) + L1({3, 4, 5, 6}, f2), L1({1, 2, 3, 4, 5}, f1) + L1({6}, f2)
}}

= 1.

Since U ′ < U , Quant-BnB then updates U = U ′ = 1.

• (Step2: Compute lower bound and prune) Quant-BnB computes W0([n], φjf1,f2) for any j ∈ {1, 2}, f1, f2 ∈ {2, 3}.
The results are (computation details are omitted for simplicity)

W0([n], φ1
2,2) = 1, W0([n], φ1

2,3) = 2, W0([n], φ1
3,2) = 1, W0([n], φ1

3,3) = 2,

W0([n], φ2
2,2) = 0, W0([n], φ2

2,3) = 1, W0([n], φ2
3,2) = 0, W0([n], φ2

3,3) = 1.
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The algorithm then computes sets F1,j and F2,j according to (14) and (15) as

F1,1 :=
{
f1 ∈ F1

∣∣ min
f2∈F2

W ([n], φ1
f1,f2) ≤ U

}
= {2, 3},

F1,2 :=
{
f1 ∈ F1

∣∣ min
f2∈F2

W ([n], φ2
f1,f2) ≤ U

}
= {2, 3},

F2,1 :=
{
f2 ∈ F2

∣∣ min
f1∈F1

W ([n], φ1
f1,f2) ≤ U

}
= {2},

F2,2 :=
{
f2 ∈ F2

∣∣ min
f1∈F1

W ([n], φ2
f1,f2) ≤ U

}
= {2, 3}.

Finally, Quant-BnB updates

AL(k) = {(1, [1, 2], F1,1, F2,1)} ∪ {(1, [2, 4], F1,2, F2,2)}.

B. Appendix for proofs
B.1. Auxiliary results

We first prove a basic equality for L0.
Lemma B.1. For any disjoint sets I,J ⊆ [n], it holds

L0(I ∪ J ) ≥ L0(I) + L0(J ). (23)

Proof. Note that

L0(I ∪ J ) = min
y∈Y

∑
i∈I∪J

`(yi, y) = min
y∈Y

{∑
i∈I

`(yi, y) +
∑
j∈J

`(yj , y)
}

≥ min
y∈Y

{∑
i∈I

`(yi, y)
}

+ min
y∈Y

{∑
j∈J

`(yj , y)
}

= L0(I) + L0(J ).
(24)

Using the equality above, we prove a useful inequality for L1 presented below.
Lemma B.2. For any disjoint sets I,J ⊆ [n] and any f ∈ [p], it holds

L1(I ∪ J , f) ≥ L1(I, f) + L1(J , f). (25)

Proof. By the definition 6, there exists integer t∗ with 0 ≤ t∗ ≤ u(f) such that

L1(I ∪ J , f) = L0

(
(I ∪ J )f[0,t∗]

)
+ L0

(
(I ∪ J )f[t∗,u(f)]

)
. (26)

Note that (I ∪ J )f[0,t∗] = (I)f[0,t∗] ∪ (J )f[0,t∗] and (I)f[0,t∗] ∩ (J )f[0,t∗] = ∅, so by Lemma B.1, we have

L0

(
(I ∪ J )f[0,t∗]

)
≥ L0(If[0,t∗]) + L0(J f[0,t∗]). (27)

By a similar argument we have

L0

(
(I ∪ J )f[t∗,u(f)]

)
≥ L0(If[t∗,u(f)]) + L0(J f[t∗,u(f)]). (28)

By (26), (27) and (28) we have

L1(I ∪ J , f) ≥ L0(If[0,t∗]) + L0(If[t∗,u(f)]) + L0(J f[0,t∗]) + L0(J f[t∗,u(f)])

≥ min
0≤t≤u(f)

{
L0(If[0,t]) + L0(If[t,u(f)])

}
+ min

0≤t≤u(f)

{
L0(J f[0,t]) + L0(J f[t,u(f)])

}
= L1(I, f) + L1(J , f).

This completes the proof.
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A similar inequality also holds for L2, as shown below.

Lemma B.3. For any disjoint sets I,J ⊆ [n] and any φ ∈ Φ, it holds

L2(I ∪ J , φ) ≥ L2(I, φ) + L2(J , φ).

Proof. Given φ = (f0, [a, b], f1, f2) ∈ Φ, from the equality (7), there exists an integer t∗ ∈ [a, b] such that

L2(I ∪ J , φ) = L1((I ∪ J )f0[0,t∗], f1) + L1((I ∪ J )f0[t∗,u(f0)], f2). (29)

Note that (I ∪ J )f0[0,t∗] = (I)f0[0,t∗] ∪ (J )f0[0,t∗] and (I)f0[0,t∗] ∩ (J )f0[0,t∗] = ∅, so by Lemma B.2, we have

L1

(
(I ∪ J )f0[0,t∗], f1

)
≥ L1(If0[0,t∗], f1) + L1(J f0[0,t∗], f1). (30)

By a similar argument we have

L1

(
(I ∪ J )f0[t∗,u(f0)], f2

)
≥ L1(If0[t∗,u(f0)], f2) + L1(J f0[t∗,u(f0)], f2). (31)

Combining (29), (30) and (31), we have

L2(I ∪ J , φ) ≥ L1(If0[0,t∗], f1) + L1(If0[t∗,u(f0)], f2) + L1(J f0[0,t∗], f1) + L1(J f0[t∗,u(f0)], f2)

≥ min
0≤t≤u(f0)

{
L1(If0[0,t], f1) + L1(If0[t,u(f0)], f2)

}
+ min

0≤t≤u(f0)

{
L1(J f0[0,t], f1) + L1(J f0[t,u(f0)], f2)

}
= L2(I, φ) + L2(J , φ).

This completes the proof.

B.2. Proof of Lemma 3.1

Proof. By definition (7) we have

L2(I, f0, [a, b], f1, f2) = min
a≤t≤b

{
L1(If0[0,t], f1) + L1(If0[t,u(f0)], f2)

}
.

Let t∗ be the integer in [a, b] such that

L2(I, f0, [a, b], f1, f2) = L1(If0[0,t∗], f1) + L1(If0[t∗,u(f0)], f2). (32)

Since there exists j∗ ∈ [s′] such that tj∗−1 ≤ t∗ ≤ tj∗ , by Lemma B.2 we have

L1(If0[0,t∗], f1) ≥ L1(If0[0,tj∗−1], f1), and L1(If0[t∗,u(f0)], f2) ≥ L1(If0[tj∗ ,u(f0)], f2). (33)

Combining (32) and (33) we have

L2(I, f0, [a, b], f1, f2) ≥ L1(If0[0,tj∗−1], f1) + L1(If0[tj∗ ,u(f0)], f2)

≥ min
j∈[s′]

{
L1(If0[0,tj−1], f1) + L1(If0[tj ,u(f0)], f2)

}
= L̂2(I, f0, [a, b], f1, f2, s

′).
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B.3. Proof of Lemma 3.2

Proof. By definition it is trivial thatW0(I, φ) ≤W1,s′(I, φ) for any s′ ≤ b−a; By Lemma 3.1, we know thatW1,s′(I, φ) ≤
W2(I, φ). In the following, we prove that W2(I, φ) ≤ L2(I, φ). Suppose φ = (f0, [a, b], f1, f2) with f0, f1, f2 ∈ [p] and
0 ≤ a ≤ b ≤ u(f0). Note that

L2(I, φ) = min
t∈[a,b]

{
L1(If0[0,t], f1) + L1(If0[t,u(f0)], f2)

}
≥ min
t∈[a,b]

{
L1(If0[0,a], f1) + L1(If0[a,t], f1) + L1(If0[t,b], f2) + L1(If0[b,u(f0)], f2)

}
= L1(If0[0,a], f1) + L1(If0[b,u(f0)], f2) + L2(If0[a,b], f0, [a, b], f1, f2) = W2(I, φ),

where the inequality follows from Lemma B.2.

B.4. Proof of Proposition 4.1

Proof. Note that

T2(f0, [a, b], F1, F2) =
s⋃
j=1

T2(f0, [tj−1, tj ], F1, F2). (34)

So we have

T2(f0, [a, b], F1, F2) \
s⋃
j=1

T2(f0, [tj−1, tj ], F1,j , F2,j) =

s⋃
j=1

(
T2(f0, [tj−1, tj ], F1, F2) \ T2(f0, [tj−1, tj ], F1,j , F2,j)

)
.

Suppose (for contradiction) that an optimal solution T ∗ is in the l.h.s. of the above set, then there exists j ∈ [s] such that

T ∗ ∈ T2(f0, [tj−1, tj ], F1, F2) \ T2(f0, [tj−1, tj ], F1,j , F2,j). (35)

Then we know fO(T ∗) = f0, fL(T ∗) ∈ F1, fR(T ∗) ∈ F2, and at least one of the following two cases hold:

(i) fL(T ∗) ∈ F1 \ F1,j ; (ii) fR(T ∗) ∈ F2 \ F2,j . (36)

If (i) holds, then we have

L2([n], f0, [tj−1, tj ], fL(T ∗), fR(T ∗)) ≥ W ([n], f0, [tj−1, tj ], fL(T ∗), fR(T ∗))

≥ min
f2∈F2

{
W ([n], f0, [tj−1, tj ], fL(T ∗), f2)

}
> U,

(37)

where the first inequality is by the assumption that W (I, φ) ≤ L2(I, φ) for all φ ∈ Φ; the last inequality is by the definition
of F1,j . Note that L2([n], f0, [tj−1, tj ], fL(T ∗), fR(T ∗)) is the optimal value of (2), this is a contradiction to the assumption
that U is an upper bound of the optimal value of (2). If (ii) holds, by a similar argument as shown above we have a
contradiction.

B.5. Proof of Theorem 4.2

Proof. Define
Ck := max

(f0,[a,b],F1,F2)∈AL(k)
{b− a}

as the length of the longest interval over all tuples in AL(k). As stated in Section 4.2, in each iteration Algorithm 1 splits
space T2(f0, [a, b], F1, F2) into at most s subsets⋃

j∈[s]

T2(f0, [tj−1, tj ], F1,j , F2,j).
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Using the definition of s-equi-spaced points in [a, b], and note that for any real numbers s1, s2 it holds bs1c−bs2c ≤ ds1−s2e,
we have

tj − tj−1 ≤ da+ (j/s)(b− a)− a− ((j − 1)/s)(b− a)e =

⌈
b− a
s

⌉
for all j ∈ [s].

Namely, the length of the interval [a, b] in the tuple (f0, [a, b], F1, F2) reduces to 1/s of its original value in every iteration.
Therefore, Ck ≤

⌈
Ck−1

s

⌉
for any k ≥ 1. Applying this inequality recursively, it holds that for any positive integers k0, m,

Ck0 ≤ m as long as C0 ≤ msk0 . Setting k0 = dlogs(n)e − 1 and m = d C0

sk0
e yields

Ck0 ≤
⌈C0

sk0

⌉
≤
⌈ n

sk0

⌉
≤ s.

If AL(k0) is not empty, then any tuple (f0, [a, b], F1, F2) in it satisfies b − a ≤ s. The algorithm will then perform the
exhaustive search method to each tuple in AL(k0) in the iteration k0 + 1. Hence, AL(k0+1) = ∅, and the algorithm terminates
in at most k0 + 1 = dlogs(n)e iterations.

Now, we prove that the algorithm yields an optimal solution. Suppose (by contradiction) that for some k0, AL(k0) becomes
empty and the algorithm offers an sub-optimal solution. This indicates that in some iteration k ≤ k0, (at least one of if there
exist multiple optimal solutions) the optimal solution is discarded during Step2, otherwise the algorithm would examine the
loss of the optimal solution and record it since it is optimal. This contradicts to Proposition 4.1, which guarantees that no
optimal solution will be eliminated in Step2. Therefore, the algorithm will give the optimal solution. The proof is completed.

B.6. Proof of Lemma 4.3

Proof. Note that for all these three choices of W , Step 1 is the same.

For the cost of Step 1, note that

U ′ = min
f1∈F1,f2∈F2,0≤j≤s

{
L1([n]f0[0,tj ], f1) + L1([n]f0[tj ,u(f0)], f2)

}
= min

0≤j≤s

{
min
f1∈F1

{L1([n]f0[0,tj ], f1)}+ min
f2∈F2

{L1([n]f0[tj ,u(f0)], f2)}
}
.

(38)

Recall that L1(I, f) can be computed within Õ(|I|) operations, so U ′ can be computed within Õ(np̃s) operations.

The major cost of Step 2 lies in the computation of

min
f2∈F2

W ([n], φjf1,f2) = min
f2∈F2

{
W ([n], f0, [tj−1, tj ], f1, f2)

}
for all f1 ∈ F1 and j ∈ [s], (39)

and
min
f1∈F1

W ([n], φjf1,f2) = min
f1∈F1

{
W ([n], f0, [tj−1, tj ], f1, f2)

}
for all f2 ∈ F2 and j ∈ [s]. (40)

Once (39) and (40) have been computed, the remaining cost of Step 2 can be bounded by O(p̃s). Below we show the costs
of (39) and (40), under different choices of W .

(1) If W = W0, we have

min
f2∈F2

{
W ([n], f0, [tj−1, tj ], f1, f2)

}
= min
f2∈F2

{
L1([n]f0[0,tj−1], f1) + L1([n]f0[tj ,n], f2)

}
= L1([n]f0[0,tj−1], f1) + min

f2∈F2

{
L1([n]f0[tj ,n], f2)

}
,

(41)

where the first equality makes use of the definition of W0 and the assumption that u(f0) = n. By the expression above, we
know that computing (39) requires at most Õ(np̃s) operations. By a similar argument, computing (40) also requires at most
Õ(np̃s) operations. Hence the cost of Step 2 is bounded by Õ(np̃s).



Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features

(2) If W = W1,s′ for some integer s′ ≤ b− a, we have

min
f2∈F2

{
W ([n], f0, [tj−1, tj ], f1, f2)

}
= min
f2∈F2

{
L1([n]f0[0,tj−1], f1) + L1([n]f0[tj ,n], f2) + L̂2([n]f0[tj−1,tj ], f0, [tj−1, tj ], f1, f2, s

′)
}
,

(42)

where we have used the assumption that u(f0) = n. Let (r0, ...., rs′) be the almost s′-equi-spaced integers in [tj−1, tj ], then
by the definition of L̂2 we have

min
f2∈F2

{
W ([n], f0, [tj−1, tj ], f1, f2)

}
= min

f2∈F2,k∈[s′]

{
L1([n]f0[0,tj−1], f1) + L1([n]f0[tj−1,rk−1], f1) + L1([n]f0[rk,tj ], f2) + L1([n]f0[tj ,n], f2)

}
= L1([n]f0[0,tj−1], f1) + min

k∈[s′]

{
L1([n]f0[tj−1,rk−1], f1) + min

f2∈F2

{
L1([n]f0[rk,tj ], f2) + L1([n]f0[tj ,n], f2)

}}
:= J1(j, f1) + min

k∈[s′]

{
J3(j, f1, k) + min

f2∈F2

{
J4(j, f2, k) + J2(j, f2)

}}
. (43)

where J1(j, f1) := L1([n]f0[0,tj−1], f1); J2(j, f2) := L1([n]f0[tj ,n], f2); J3(j, f1, k) := L1([n]f0[tj−1,rk−1], f1) and

J4(j, f2, k) := L1([n]f0[rk,tj ], f2), and we highlighted the dependence on j, f1, f2, k. Note that:

• {J1(j, f1)}j∈[s],f1∈F1
can be computed with Õ(np̃s) operations.

• {J2(j, f2)}j∈[s],f2∈F2
can be computed with Õ(np̃s) operations.

• {J3(j, f1, k)}j∈[s],f1∈F1,k∈[s′] can be computed with Õ(p̃s′(tj − tj−1)s) = Õ(p̃s′(b− a)) operations.

• {J4(j, f2, k)}j∈[s],f2∈F2,k∈[s′] can be computed with Õ(p̃s′(tj − tj−1)s) = Õ(p̃s′(b− a)) operations.

After the values above have been computed and maintained in memory,

•
{

minf2∈F2

{
J4(j, f2, k) + J2(j, f2)

}}
j∈[s],k∈[s′]

can be computed with O(p̃ss′) operations.

Based on this, we know

• Computing mink∈[s′]

{
J3(j, f1, k) + minf2∈F2

{
J4(j, f2, k) + J2(j, f2)

}}
for all j ∈ [s] and f1 ∈ F1 requires at

most O(p̃ss′) operations.

With the analysis above, the computation of (39) requires at most Õ(np̃s+ p̃s′(b− a)) operations. By a similar analysis,
the computation of (40) also requires at most Õ(np̃s+ p̃s′(b− a)) operations.

(3) If W = W2, the analysis is the same as the analysis for W = W1,s′ , with s′ being of the same order as (b− a)/s.

(4) If W = L2, it holds

min
f∈F2

W ([n], f0, [tj−1, tj ], f1, f2) = min
f∈F2

L2([n], f0, [tj−1, tj ], f1, f2)

= min
f2∈F2,tj−1≤t≤tj

{
L1([n]f0[0,t], f1) + L1([n]f0[t,n], f2)

}
.

(44)

For a fixed j ∈ [s], computing the expression above requires Õ((tj − tj−1)p̃n) operations, so the computation of (39) takes
Õ(np̃(b− a)) operations. By a similar analysis, the computation of (40) also takes Õ(np̃(b− a)) operations.
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C. Quant-BnB for depth-3 optimal regression trees
In the following we present details on Quant-BnB for depth-3 optimal regression trees.

C.1. Notations and preliminaries

Let T3 be the set of all decision trees with depth 3 whose splitting thresholds are in {w̃ft }f∈[p],0≤t≤u(f). The problem of
optimal regression tree with depth 3 can be formulated as

min
T∈T3

n∑
i=1

`(yi, T (xi)). (45)

We use the notations shown in Figure 3 to denote the nodes in a tree T ∈ T3. For S ∈ {O,L,R,LL,LR,RL,RR}, let
(fS(T ), tS(T )) denote the splitting rule for NS(T ).

NO(T )

NL(T ) NR(T )

NLL(T ) NLR(T ) NRL(T ) NRR(T )

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf

Figure 3. Decision tree with depth 3.

Given f0 ∈ [p], integers a and b with 0 ≤ a ≤ b ≤ u(f0) and φ1, φ2 ∈ Φ with φ1 = (f1, [a1, b1], f1,1, f1,2) and
φ2 = (f2, [a2, b2], f2,1, f2,2), define

T3(f0, [a0, b0], φ1, φ2) (46)

to be the set of all trees T ∈ T3 satisfying: fO(T ) = f0, tO ∈ [a0, b0]; fL(T ) = f1, tL(T ) ∈ [a1, b1], fLL(T ) = f1,1,
fLR(T ) = f1,2; fR(T ) = f2, tR(T ) ∈ [a2, b2], fRL(T ) = f2,1 and fRR(T ) = f2,2.

For Φ1,Φ2 ⊆ Φ, define
T3(f0, [a0, b0],Φ1,Φ2) :=

⋃
φ1∈Φ1,φ2∈Φ2

T3(f0, [a0, b0], φ1, φ2). (47)

For any φ = (f0, [a, b], f1, f2) ∈ Φ, and for a given positive integer s ≤ b− a, let (t0, ..., ts) be almost equi-spaced in [a, b],
and define φs,j := (f0, [tj−1, tj ], f1, f2) for any j ∈ [s].

C.2. Quantile-based pruning

In this section, we focus on a subset of trees T3(f0, [a0, b0],Φ1,Φ2), and discuss how to replace it with a smaller search
space without missing the optimal solution.
Proposition C.1. Let W and V be two functions on 2[n] × Φ satisfying W (I, φ) ≤ L2(I, φ) ≤ V (I, φ) for all I ⊆ [n]
and φ ∈ Φ. Let U be an upper bound of the optimal value of (45). Given a subset T3(f0, [a0, b0],Φ1,Φ2) with f0 ∈ [p],
0 ≤ a0 ≤ b0 ≤ u(f0) and Φ1,Φ2 ⊆ Φ; let (t0, ..., ts) be almost s-equi-spaced in [a0, b0]. For each j ∈ [s], define

Φ1,j :=
{
φs,j

′

1

∣∣∣ φ1 ∈ Φ1, j
′ ∈ [s], W ([n]f0[0,tj−1], φ

s,j′

1 ) ≤ min
φ∈Φ1

V ([n]f0[0,tj ], φ),

W ([n]f0[0,tj−1], φ
s,j′

1 ) + min
φ∈Φ2

W ([n]f0[tj ,u(f0)], φ) ≤ U
} (48)
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and
Φ2,j :=

{
φs,j

′′

2

∣∣∣ φ2 ∈ Φ2, j
′′ ∈ [s], W ([n]f0[tj ,u(f0)], φ

s,j′′

2 ) ≤ min
φ∈Φ2

V ([n]f0[tj−1,u(f0)], φ),

W ([n]f0[tj ,u(f0)], φ
s,j′′

2 ) + min
φ∈Φ1

W ([n]f0[0,tj−1], φ) ≤ U
}
.

(49)

Then any optimal solution of (45) is not in

T3(f0, [a0, b0],Φ1,Φ2) \
s⋃
j=1

T3(f0, [tj−1, tj ],Φ1,j ,Φ2,j). (50)

Proof. Let T ∗ be any optimal solution of (50). It suffices to prove that: if T ∗ ∈ T3(f0, [a0, b0],Φ1,Φ2), then there exists
j ∈ [s] such that

T ∗ ∈ T3(f0, [tj−1, tj ],Φ1,j ,Φ2,j). (51)

Suppose T ∗ ∈ T3(f0, [a0, b0],Φ1,Φ2), then tO(T ∗) ∈ [a0, b0], and there exist integers a1, b1, a2, b2 such that tL(T ∗) ∈
[a1, b1], tR(T ∗) ∈ [a2, b2], and

φ1 := (fL(T ∗), [a1, b1], fLL(T ∗), fLR(T ∗)) ∈ Φ1,

φ2 := (fR(T ∗), [a2, b2], fRL(T ∗), fRR(T ∗)) ∈ Φ2.
(52)

Since [a0, b0] = ∪sj=1[tj−1, tj ], there exists j ∈ [s] such that tO(T ∗) ∈ [tj−1, tj ]. Let (`0, ...., `s) be almost equi-spaced in
[a1, b1]. tL(T ∗) ∈ [a1, b1] = ∪si=1[`i−1, `i], so there exists j′ ∈ [s] such that tL(T ∗) ∈ [`j′−1, `j′ ]. Note that (by definition)

φs,j
′

1 = (fL(T ∗), [`j′−1, `j′ ], fLL(T ∗), fLR(T ∗)), (53)

we have

W ([n]f0[0,tj−1], φ
s,j′

1 )
(i)

≤ L2([n]f0[0,tj−1], φ
s,j′

1 )
(ii)

≤ L2([n]f0[0,t0(T∗)], φ
s,j′

1 )

(iii)
= min

φ∈Φ1

L2([n]f0[0,t0(T∗)], φ)
(iv)

≤ min
φ∈Φ1

L2([n]f0[0,tj ], φ)
(v)

≤ min
φ∈Φ1

V ([n]f0[0,tj ], φ),

(54)

where (i) is because W (I, φ) ≤ L2(I, φ) for any I ⊆ [n] and φ ∈ Φ; (ii) is because of tO(T ∗) ∈ [tj−1, tj ] and
Lemma B.3; (iii) is because T ∗ is the optimal solution of (45), and the left subtree of T ∗ (rooted at NL(T ∗)) is in T2(φs,j

′

1 );
(iv) is because of tO(T ∗) ∈ [tj−1, tj ] and Lemma B.3; (v) is because L2(I, φ) ≤ V (I, φ) for any I ⊆ [n] and φ ∈ Φ.

On the other hand,

W ([n]f0[0,tj−1], φ
s,j′

1 ) + min
φ∈Φ2

W ([n]f0[tj ,u(f0)], φ)

(i)

≤ W ([n]f0[0,tj−1], φ
s,j′

1 ) +W ([n][tj ,u(f0)], φ2)
(ii)

≤ L2([n]f0[0,tj−1], φ
s,j′

1 ) + L2([n]f0[tj ,u(f0)], φ2)

(iii)

≤ L2([n]f0[0,t0(T∗)], φ
s,j′

1 ) + L2([n]f0[t0(T∗),u(f0)], φ2)
(iv)
= min

T∈T3

n∑
i=1

`(yi, T (xi))
(v)

≤ U,

(55)

where (i) is because φ2 ∈ Φ2 (in (52)); (ii) is because W (I, φ) ≤ L2(I, φ) for any I ⊆ [n] and φ ∈ Φ; (iii) is because
of t0(T ∗) ∈ [tj−1, tj ] and Lemma B.3; (iv) is because T ∗ is the optimal solution of (45), the left subtree of T ∗ (rooted at
NL(T ∗)) is in T2(φs,j

′

1 ) and the right subtree of T ∗ (rooted at NR(T ∗)) is in T2(φ2); (v) is because U is an upper bound of
the optimal value of (45).

Combining (54), (55) and note that φ1 ∈ Φ1 (by (52)) and j′ ∈ [s], we have

(fL(T ∗), [`j′−1, `j′ ], fLL(T ∗), fLR(T ∗)) = φs,j
′

1 ∈ Φ1,j . (56)

Let (r0, ...., rs) be almost equi-spaced in [a2, b2]. Since tR(T ∗) ∈ [a2, b2] = ∪si=1[ri−1, ri], so there exists j′′ ∈ [s] such
that tR(T ∗) ∈ [rj′′−1, rj′′ ]. By a similar argument as the proof of (56), it can be proved that

(fR(T ∗), [rj′′−1, rj′′ ], fRL(T ∗), fRR(T ∗)) ∈ Φ2,j . (57)
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By (56) and (57), and recall that fO(T ∗) = f0 and tO(T ∗) ∈ [tj−1, tj ], we have

T ∗ ∈ T3(f0, [tj−1, tj ],Φ1,j ,Φ2,j). (58)

This completes the proof of Proposition C.1.

Note that in the definition of Φ1,j , two inequalities are needed to be satisfied. The first inequality corresponds to a pruning
procedure when only considering the left depth-2 subtree rooted at NL(T ) of a tree T ; the second inequality corresponds to
a pruning procedure considering the whole depth-3 tree. A similar argument holds for the definition of Φ2,j . Note that this
is slightly more intricate than the case for fitting depth-2 trees, where only one inequality is imposed (see Proposition 4.1).

C.3. Overall strategy

To solve (45), Quant-BnB maintains and updates a set AL3(k) (short for “alive”) (over iterations k = 1, 2, ...) that contains
tuples of the form

(f0, [a0, b0],Φ1,Φ2),

where f0 ∈ [p], 0 ≤ a0 ≤ b0 ≤ u(f0) and Φ1,Φ2 ⊆ Φ. A tuple (f0, [a0, b0],Φ1,Φ2) is in AL3(k) if (based on the
knowledge at iteration k) the optimal solution of (45) is possible to be in the set T3(f0, [a0, b0],Φ1,Φ2). Initially (k = 0),
all the trees in T3 are “alive”, so we set

AL3(0) =

p⋃
f0=1

{
(f0, [0, u(f0)], Φ̄0, Φ̄0)

}
, (59)

where
Φ̄0 = {(f, [0, u(f)], f1, f2) | f, f1, f2 ∈ [p]}. (60)

Quant-BnB also maintains and updates the best objective value that it has found so far, denoted by U . Initially, we set
U to be the value of any feasible solution of (45). At every iteration k ≥ 1, to update AL3(k) from AL3(k−1), we first set
AL3(k) = ∅. The algorithm then checks all elements in AL3(k−1). For an element (f0, [a0, b0],Φ1,Φ2) in AL3(k−1), if
b0 − a0 is less than a fixed integer s, then the number of trees in the space is regarded as small, and the algorithm applies
an exhaustive search method to examine all candidate trees in the space T3(f0, [a0, b0],Φ1,Φ2). Otherwise, the algorithm
conducts the following steps.

Let (t0, ..., ts) be almost s-equi-spaced in [a0, b0]. Let W and V be two functions on 2[n] × Φ satisfying W (I, φ) ≤
L2(I, φ) ≤ V (I, φ) for all I ⊆ [n] and φ ∈ Φ.

• (Step 1: Update upper bound) Compute

U ′ = min
0≤j≤s,φ1∈Φ1,φ2∈Φ2

{
V ([n]f0[0,tj ], φ1) + V ([n]f0[tj ,u(f0)], φ2)

}
.

If U ′ < U , update U ← U ′, and update the corresponding best tree.

• (Step 2: Compute lower bound and prune) Compute Φ1,j and Φ2,j as in (48) and (49), and update:

AL3(k) = AL3(k)
⋃(

∪sj=1 {(f0, [tj−1, tj ],Φ1,j ,Φ2,j)}
)
. (61)

Above we have discussed the overall strategy which Quant-BnB uses for the computation of optimal regression tree with
depth 3. Additional attentions need to be paid for the the implementation of the algorithm and the data structure. For
example, to maintain the set Φ1, it may be better to classify the elements in Φ1 into groups depending on the first two
components of the elements, i.e., for (f1, [a1, b1], f1,1, f1,2) and (f ′1, [a

′
1, b
′
1], f ′1,1, f

′
1,2) in Φ1, they are in the same group if

f1 = f ′1 and [a1, b1] = [a′1, b
′
1]. These groupings can reduce the memory usage and make the computations well-organized.

A similar argument holds for Φ2. It is also important to make use of the tree structure and reduce the computational costs of
Step 1 and Step 2.



Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features

D. Experiments
D.1. Data pre-processing

We use a collection of 16 classification and 11 regression datasets from UCI Machine Learning Repository. Unless specified
in the dataset, 80% of data are randomly selected as the training set, and the rest are used for testing. We remove all features
that do not assist prediction, i.e., unique identifiers of samples and timestamps recording when data were collected. Table 5
presents a summary of these datasets.

Name Task
number of
samples

number of
features class/dim Name Task

number of
samples

number of
features class/dim

avila C 10430 10 12 skin C 196045 3 2
bank C 1097 4 2 wilt C 4339 5 2
bean C 10888 16 7 carbon R 8576 5 3
bidding C 5056 9 2 casp R 36584 9 1
eeg C 11984 14 2 concrete R 824 8 1
fault C 1552 27 7 energy R 15788 28 1
htru C 14318 8 2 fish R 726 6 1
magic C 15216 10 2 gas R 29386 10 1
occupancy C 8143 5 2 grid R 8000 12 1
page C 4378 10 5 news R 31715 59 1
raisin C 720 7 2 qsar R 436 8 1
rice C 3048 7 2 query1 R 8000 3 1
room C 8103 16 4 query2 R 159874 4 3
segment C 1848 18 7

Table 5. A summary of datasets used in experiments. C and R refer to classification and regression task, respectively. For classification
tasks class/dim refers to the number of classes; for regression tasks, class/dim refers to the dimension of the target.

Since most state-of-the-art algorithms can only solve datasets with binary features, we perform the same pre-processing
procedure as presented in Lin et al. (2020). For a feature f ∈ [p], recall that wf1 < wf2 < · · · < wfu(f) denotes all unique

values among {xi,f}ni=1. We convert feature f to a set of binary features {fj}u(f)−1
j=1 defined as

xi,fj =

{
0 if xi,f < (wfj + wfj+1)/2,

1 otherwise.
(62)

Combining {fj}u(f)−1
j=1 for each f ∈ [p] yields a dataset with

∑
f∈[p](u(f)−1) binary features. The conversion is equivalent,

namely, an optimal tree on the pre-processed dataset can be converted to an optimal tree on the original dataset and vice
versa. In the worst case, the converted dataset has O(np) binary features. It is often computationally challenging to solve
the optimal decision tree on such a dataset.

An alternative to equivalent-conversion is approximate conversion, which can greatly reduce the number of binary features.
However, approximate conversion weakens the characterization capability of the tree model, which may result in non-
negligible decrease in training accuracy. Hence, there is a trade-off between training accuracy and computational cost.

We compare the equivalent-conversion conducted in our numerical experiments with an approximate binarising method
adopted in Demirović et al. (2020) (denoted by MDLP). MDLP uses a supervised discretisation algorithm based on the
minimum description length principle. We take the training accuracy of CART (Breiman et al., 1984) on original datasets as
a benchmark. The size of converted datasets and training accuracy are shown in Table 6. For dataset “avila”, “bean”,“fault”
“room”, “segment” and “skin”, the training accuracy on approximate datasets generated by MDLP is close to the optimal
accuracy. However, the accuracy on original datasets outperforms that on approximate datasets by a large margin in rest
cases. For several datasets, even the training accuracy of CART is comparable to the training accuracy on approximate
datasets. We thus conclude that using equivalent-conversion is indispensable for obtaining high-quality trees.
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Name continuous
feature

equivalent
conversion

MDLP
conversion

depth=2 depth=3
Opt approx CART Opt approx CART

avila 10 22176 2122 54.2% 54.1% 50.7% 58.5% 58.5% 53.2%
bank 4 4078 26 92.5% 92.3% 90.9% 98.3% 97.3% 93.3%
bean 16 170481 428 66.3% 66.2% 65.7% 87.1% 86.9% 77.7%

bidding 9 10240 44 98.1% 98.1% 98.1% 99.3% 98.1% 98.1%
eeg 14 5239 118 66.5% 65.3% 62.5% 70.8% 68.8% 66.6%
fault 27 16327 244 58.3% 58.3% 54.0% 68.2% 67.3% 55.3%
htru 8 101412 92 97.9% 97.8% 97.7% 98.1% 97.9% 97.9%

magic 10 120435 122 80.5% 80.2% 79.4% 83.1% 81.1% 80.1%
occupancy 5 8339 122 98.9% 98.9% 98.9% 99.4% 99.1% 98.9%

page 10 8175 50 95.4% 95.1% 95.4% 97.1% 96.6% 96.4%
raisin 7 5032 18 87.4% 86.5% 86.8% 89.4% 87.5% 86.9%
rice 7 19982 28 93.3% 93.2% 93.0% 93.8% 93.4% 93.3%

room 16 2879 144 94.6% 94.6% 93.2% 99.2% 99.2% 96.8%
segment 18 13129 145 57.5% 57.4% 43.0% 88.7% 88.1% 57.4%

skin 3 765 108 92.7% 92.7% 90.7% 96.9% 96.8% 96.6%
wilt 5 20329 7 99.1% 98.7% 99.1% 99.6% 98.7% 99.3%

Table 6. Training accuracy (in percentage) of optimal classification trees with depth 2 and 3. The third and forth columns provide the
numbers of binary features of datasets processed by equivalent-conversion and MDLP, respectively. Opt denotes the training accuracy
of the optimal classification tree on original datasets, approx denotes the training accuracy of the optimal classification tree on datasets
binarised using MDLP, and CART denotes the training accuracy of CART on original datasets.

D.2. Optimization algorithms

Details and experimental settings of all comparison algorithms are stated below. Unless specified, implementations of
algorithms used in our experiments are obtained from their original authors.

Quant-BnB: Our proposed algorithm is written in Julia programming language (v1.6). The parameter s in Algorithm 1 is
set to be 3. In Section 6.2 and Section 6.3, we choose W1,s′ defined in (13) as the lower bound required in Proposition 4.1.
The parameter s′ is dynamically selected as b 0.6ns

b−a c for tuple φ = (f0, [a, b], f1, f2).

CART (Breiman et al., 1984): We utilize the implementation from Python package scikit-learn.

TAO (Carreira-Perpinán & Tavallali, 2018): We implement TAO in Julia 1.6. TAO uses the solution generated by CART as
a warm start.

OCT and ORT (Bertsimas & Dunn, 2019) : Since the original code is not available, we implement both methods in Python
and call Gurobi9 to solve MIP models. Both methods takes the solution generated by CART as a warm start.

BinOCT (Aglin et al., 2020): BinOCT is written in Python. We slightly modify the code so that the MIP model is solved by
Gurobi9. BinOCT uses the solution generated by CART as a warm start.

DL8.5 (Aglin et al., 2020): DL8.5 is written in C++ and is run as an extension of Python.

MurTree (Demirović et al., 2020): MurTree is written in C++ and run as an executable.

FlowOCT and BenderOCT (Aghaei et al., 2021): Both methods are implemented in Python. MIP models are solved by
Gurobi9.

GOSDT (Lin et al., 2020): GOSDT is written in C++ and run as an executable. GOSDT does not force hard constraints on
depth, but instead applies a sparsity coefficient α to control the complexity. As α decrease, GOSDT takes longer time to
solve an optimal tree. To facilitate a fair comparison with our algorithm on learning optimal depth-2 (or 3) tree, we test
GOSDT with

α ∈ {0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001}, (63)

and select the smallest α with which GOSDT can learn an optimal tree with depth not greater than 2 (or 3).

Other works for learning optimal trees (e.g., Aghaei et al. (2019)) that do not show noticeable speed advantages are not
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mentioned above. We do not consider the comparison with these algorithms as we focus on the efficiency of solving optimal
trees,

In addition to BinOCT, MurTree and DL8.5, we also run OCT, FlowOCT, BenderOCT and GOSDT on collected classification
datasets. For FlowOCT, BenderOCT and GOSDT, we convert original datasets to binary ones using equivalent-conversion
described in Section D.1. None of these methods is able to learn an optimal tree on any of 16 classification datasets, so the
results are not displayed.

D.3. Results on regression tasks

We also compare our algorithm with ORT (Bertsimas & Dunn, 2019) on 11 regression datasets. To our best knowledge,
ORT is the one of the most effective framework reported in the literature for solving optimal decision trees on regression
tasks. The results are displayed in Table 7. Quant-BnB successfully solves trees of depth 2 in less than 10 seconds on
datasets with thousands of instances, and computes trees of depth 3 in a reasonable time for most cases. In contrast, ORT
cannot optimally solve any example in 4 hours. The experiment again confirms the advantage of Quant-BnB for solving
shallow decision trees on relatively large-scale datasets. The scalability and versatility of our proposed method contribute to
the wide applications of optimal decision trees.

Name (n,p) depth=2 depth=3
Quant-BnB ORT Quant-BnB ORT

carbon (8576,5) 0.7 (20%) 729 (423%)
casp (36584,9) 4.2 (14%) 7609 (12%)
concrete (824,8) <0.1 (1.2%) 125 (33%)
energy (15788,28) 14 (9.6%) - (7.6%)
fish (726,6) <0.1 (4.5%) 34 (36%)
gas (29386,10) 1.5 (1358%) 421 (510%)
grid (8000,12) 1.2 (9.3%) 1293 (31%)
news (31715,59) 349 (22%) - (29%)
qsar (436,8) <0.1 (5.1%) 30 (32%)
query1 (8000,3) <0.1 (38%) 34 (73%)
query2 (159874,4) 9.8 (97%) 2896 OoM

Table 7. Comparison of Quant-BnB against ORT. For each dataset, the number of observations and the number of features are provided.
Each entry denotes running time in seconds. - refers to time out (4h), OoM refers to out of memory (25GB). Since ORT times out in all
cases, we display the relative differences (LO − LQ)/LQ as a percentage instead, where LO and LQ are the training errors of ORT and
Quant-BnB, respectively.


