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Abstract

Transformer-based models have proven success-
ful in information retrieval problems, which seek
to identify relevant documents for a given query.
There are two broad flavours of such models:
cross-attention (CA) models, which learn a joint
query-document embedding, and dual-encoder
(DE) models, which learn separate embeddings
for the query and the document. Empirically, CA
models are often more accurate, which has moti-
vated several works that seek to bridge this per-
formance gap. However, a fundamental question
remains less explored: does this gap reflect a lim-
itation in DE models’ capacity, or training proce-
dure? In this paper, we study this question, with
three contributions. First, we establish theoreti-
cally that with a sufficiently large encoder size,
DE models can capture a broad class of scores
without cross-attention. Second, we show that
on real-world problems, the gap between CA and
DE models may be due to the latter overfitting
to the training set. To mitigate this, we propose
a distillation strategy that focuses on preserving
the ordering amongst documents, and confirm its
efficacy on neural re-ranking benchmarks.

1. Transformer-Based Neural Ranking

Information retrieval (Mitra & Craswell, 2018) is the clas-
sic problem of identifying relevant documents for a given
query. Typically, such retrieval is performed in a two-step
manner (Matveeva et al., 2006): one uses an initial model to
efficiently retrieve a candidate set of documents for a query,
and then uses a second model to re-rank these candidates.
The retrieval stage is generally implemented by a model
with low inference cost, for which candidate generation
is tractable; if this candidate set is reasonably small, it is
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feasible to use more complex models for re-ranking.

Transformer-based models such as BERT (Devlin et al.,
2019) have proven successful in both the retrieval and re-
ranking stages. Such neural ranking models have two
flavours: dual-encoder (DE) modelss (Lee et al., 2019;
Chang et al., 2020; Karpukhin et al., 2020) which learn sep-
arate (factorised) embeddings for the query and document;
and cross-attention (CA) models (Nogueira & Cho, 2019;
Dai & Callan, 2019; Yilmaz et al., 2019), which learn a joint
embedding for the query and document. Only DE models
are applicable for retrieval, as they admit efficient nearest
neighbour search (Guo et al., 2020; Johnson et al., 2021) to
identify candidate documents. Both CA and DE models are
applicable for re-ranking; however, empirically, CA models
perform better (Hofstitter et al., 2020a).

Does the re-ranking performance gap between CA and DE
models reflect a limitation in DE models’ inherent capacity,
or in their training procedure? While several works have ex-
plored means of improving DE models — e.g., by changing'
the scoring layer (Khattab & Zaharia, 2020; MacAvaney
et al., 2020; Hofstitter et al., 2020b), and by distilling pre-
dictions from a CA model (Lu et al., 2020; Izacard & Grave,
2020; Hofstétter et al., 2020a) — the root cause of the gap
between CA and DE models remains elusive. This is not
purely of conceptual interest: enabling usage of DE mod-
els for re-ranking is desirable, as they afford more efficient
inference owing to their ability to pre-compute document
embeddings (Khattab & Zaharia, 2020).

In this paper, we study this question with the aim of shedding
light on the fundamental differences between CA and DE
models. We further give a simple yet effective distillation
strategy to improve the latter. Our contributions are:

(i) we establish theoretically that with a sufficiently large
embedding dimension (and mild assumptions), any con-
tinuous ground-truth scores can be modelled by generic
DE models (Proposition 3.1), and in particular by suf-
ficiently deep transformer-based DE models (Proposi-
tion 3.2). Thus, in principle, there is no fundamental
restriction in using DE versus CA models for re-ranking.

"Unless otherwise stated, we use “DE” to mean a dual-encoder
with dot-product scoring per (2).
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Figure 1. Comparison of cross-attention (CA) and dot-product based dual-encoder (DE) models on the MSMARCO-Passage re-ranking
task. Using 6-layer BERT models with varying embedding size (Turc et al., 2019), we report the train and dev set MRR @10 averaged
over three independent trials. For sufficiently large embedding dimension, the DE model closely matches the performance of the CA on
the training set; however, there is a sizable gap in the fest set performance. This points to the poorer DE model performance being largely
an issue of generalisation, rather than model capacity. Suitable distillation (DIST) from the CA model manages to prevent such overfitting
— potentially by worsening the training performance — and largely bridges the gap between the two models. See §3.2 for details on the

experimental setup, and §4 for details on our distillation strategy.

(i) we show empirically (Figure 1) that on real-world prob-
lems, CA and DE models can achieve similar training
performance, but DE models may do worse on test data
due to overfitting (§3.2). Thus, DE models may suffer
due to poorer generalisation ability rather than capacity.

(iii) to mitigate the above, we propose a distillation strategy
focussing on mimicking the teacher’s ordering amongst
documents (§4). This includes a generalisation of the
recent margin MSE loss (Hofstitter et al., 2020a) (§4.2),
and justifies the utility of softmax cross-entropy based
distillation for re-ranking (Proposition 4.1, §4.3). We
confirm the efficacy of this strategy on the re-reranking
benchmarks MSMARCO-Passage (Nguyen et al., 2016)
and Natural Questions (Kwiatkowski et al., 2019).

The above seeks to give conceptual insight into the nature
of DE versus CA models for re-ranking, and suggests there
is merit in further seeking ways to reducing the overfitting
of DE models. In particular, the empirical Figure 1, and
the theoretical Proposition 3.1, provide evidence against
the hypothesis that DE models underperform on re-ranking
because they are fundamentally restricted in capacity com-
pared to CA models. Section 4 presents one means of im-
proving DE models via distillation, offering a new M3SE
loss (4) that practitioners may add to their toolbox.

2. Background and Notation

We begin by formalising the retrieval problem, and the two
flavours of transformer-based models for the same.

2.1. Query to Document Retrieval

Suppose we have query space Q and document space D. For
a given query g € Q, the goal of information retrieval is to
identify a set of relevant documents D,¢1(¢) € D (Mitra

& Craswell, 2018). This is typically achieved by learning
a scorer s: Q x D — R that predicts the relevance of a
query and document, and simply selecting the top-k highest
scoring documents for a given query. Typically, this scorer
is itself implemented in two phases (Matveeva et al., 2006;
Nogueira & Cho, 2019; Chang et al., 2020). In the retrieval
phase, one identifies an initial candidate set of documents
via an initial scorer s,e. In the re-ranking phase, one re-
scores only these candidate documents via a distinct scorer
Syrk to obtain Dy (g). We may thus regard s: Q x D — R
as a composition of both s,¢¢ and sy

To learn a scorer, fix some parameterised class § =
{s(-,;0): @ x D — R | § € ©}. Suppose we have super-
vision {(qn, d,,, y»)}N_,, where for each query ¢,, we have
a list of K associated documents d,, = (dni)ge(x] € DF
with ground-truth relevance labels y,, = (ynk)ke[K] €
{0,1}X. Typically, K < |D| since it is rarely feasible to
collect relevance labels for all documents. For any given
0 € O, lets,(0) = (5(qn,dnk; 0))ke(x) € R™ denote the
vector of model scores on the provided documents. One
may then learn a scorer s via minimising

© 3 tynsa®)

n€[N]

R(0) =

for loss £: RE x RE — R, such as the mean square error
gmse()’na Sn(e)) = Z (ynk - Snk(e))Qa
kE[K]

and the softmax cross-entropy (assuming for simplicity
1"y = 1): for temperature 7 > 0,

gce(yrusn(e)) = - Z Ynk * Ingnk(e)
ke[K]
N exp(77 1 s,1(0))
2 wrelr) exp(T sk (0))

(D

DPnk (6)
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To instantiate either objective, one missing ingredient is the
precise parameterisation of 8. We now describe one possible
parameterisation, given by a transformer model.

2.2. Cross-Attention and Dual-Encoder Transformers

Transformers (Vaswani et al., 2017) are sequence-to-
sequence models with good empirical performance on lan-
guage tasks. Suppose we have a sequence (z1,...,2r)
of L tokens (e.g., words in a language), with X =
(x1,X2,...,%x1) € RP*E being a corresponding sequence
of token embeddings (e.g., word embeddings). A trans-
former encoder T: RP*L — RP*L maps this to another
sequence of embeddings via a composition of attention and
feedforward layers, with BERT (Devlin et al., 2019) being
a canonical instantiation.

Transformer encoders can readily score relevance of a pair
(¢,d) € Q x D of tokenised queries and documents: one
may pass their concatenation through a transformer encoder
T. The resulting embedding may be pooled (e.g., with a
[CLS] token (Devlin et al., 2019)) to yield

5(q,d) = w ' pool(T(concat(q,d)))

for weights w € RP. Such cross-attention (CA) models
apply attention layers on the queries and documents jointly,
which intuitively allow for rich interactions.

A distinct strategy is to separately embed queries and docu-
ments (e.g., via BERT encoders), and score them with their
dot-product (Lee et al., 2019; Chang et al., 2020; Karpukhin
et al., 2020; Zhan et al., 2020; Ma et al., 2021; Xiong et al.,
2021; Luan et al., 2021; Qu et al., 2021; Zhan et al., 2021a):

s(¢,d) = pool(T(q)) " pool(T(d)). 2)

Such dual-encoder (DE) models have received recent inter-
est in a range of language problems (Reimers & Gurevych,
2019; Gillick et al., 2019; Karpukhin et al., 2020). In part,
this is owing to the fact that DE models can have signifi-
cantly lower inference cost compared to CA models (owing
to the ability to index document embeddings), which makes
them appealing for both the retrieval and re-ranking stages.
Indeed, DE models are widely used for retrieval, owing
to their amenability to fast approximate nearest neighbour
search (Guo et al., 2020; Johnson et al., 2021). Unfortu-
nately, for re-ranking, one typically observes a large gap
between DE and CA performance (see §3.2).

2.3. Knowledge Distillation

One strategy to bridge the performance gap between CA
and DE models is distillation (Ba & Caruana, 2014,
Hinton et al., 2015). Suppose we have supervision
{(qn,dn, tn, yn)}N_,, where t,, € RE are the scores from
a “teacher” (e.g., CA) model. Then, we may minimise

Raist () = % ZHE[N] £(t,,,s,(0)), noting that we use the
teacher supervision t,, rather than “one-hot” labels y,,; one
may also combine the teacher and one-hot labels.

Two canonical instantiations of distillation are logit match-
ing (Ba & Caruana, 2014), which uses the the mean
square error {ise(ty, s, (0)) between the teacher and stu-
dent scores, and probability matching (Hinton et al., 2015),
which uses the softmax cross-entropy between their softmax
probabilities, i.e., £(t,,s,) = lee(PL*", s, ) where

te]fuch - eXp(Til i tnk)
e Dwerr) eXP(T T b))

for temperature 7 > 0. Empirically, distillation at least
partially bridges the chasm between CA and DE perfor-
mance (Lu et al., 2020; Izacard & Grave, 2020; Yang & Seo,
2020; Hofstitter et al., 2020a; Miech et al., 2021).

3. The Capacity of Dual-Encoder Models

We show that while DE models have sufficient capacity to
represent complex score functions, in practice they may
overfit and thus perform poorly on test data.

3.1. How Expressive are Dual-Encoders in Theory?

Our core aim is to understand the reasons behind the re-
ranking performance gap between DE and CA models. A
natural starting point concerns the capacity difference of
these models: are DE models fundamentally unable of cap-
turing certain query-document relevance scores?

To get a handle on this question, we begin by asking: how
well can DE models approximate a given score function
s§*: Q x D — R? For our purposes, the DE family com-
prises any model of the form s(q, d) = z(q) "w(d), where
z: Q — RP and w: D — RP are (arbitrarily powerful)
query- and document embedding functions. Under mild
assumptions on D, we may show that DE models with suffi-
ciently large embeddings can model a broad class of s*.

Proposition 3.1. Suppose D is a compact metric space, and
s*(q,"): D — R is continuous Vq € Q. Then, Ve > 0, 3
Z4, Wq of at most countably infinite dimension such that

(Vg€ Q,d e D)|s*(¢g,d) — z;rwd| <e.

The proof (Appendix A) employs Mercer’s theorem for
kernel methods. Note that by symmetry, one can swap the
roles of Q and D above. Further, the assumption that D is a
compact metric space is mild: one may, e.g., identify each
d € D with a normalised Euclidean embedding.

We make a few remarks here. First, Proposition 3.1 em-
phatically does not intend to suggest a practical algorithm,
as z4, w, may be infinite-dimensional. Rather, its aim is
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to establish the theoretical capacity of DE models, which
will prove useful in explaining certain empirical phenomena
(cf. Figure 1). We shall return to this issue in §3.2.

Further, the above does not restrict the function class used
to represent z or w. Restricting these to transformers, we
may appeal to their universal approximation power (Yun
et al., 2020): a sufficiently deep transformer encoder can ap-
proximate any continuous 7': RP*E — RPXL to arbitrary
precision. Now suppose we represent queries Q C RP*E
as embeddings of sequences of L tokenised elements, with
afixed [CLS] token at the first position. Then, any contin-
uous z: Q — RP can be approximated by reading the first
token embedding of a suitable transformer 7'.

Proposition 3.2. Fix some compact Q C RP*L. For
any continuous z: Q — RP and ¢ > 0, 3 a trans-
former encoder T: RP*E — RP*L with [ ||2(Q) —

T(Q).[3dQ < ¢.

The above suggests that DE models have “high capacity”,
in the sense of there existing a suitable model configura-
tion that can mimic an arbitrary (query, document) score
relationship. This is not simply a consequence of such
models having many parameters: it is also that the way
these parameters are used — i.e., the factorised score in
Equation 2 — is sufficiently powerful. To further illus-
trate this point, consider a model that produces scores
via wy pool(T(q)) + wy pool(T(d)) for learned weights
wi,ws. Such a model can have a large number of param-
eters, but will be unable to model scores that involve any
interaction between the queries and documents.

Remark. Luan et al. (2021) similarly analysed the expres-
sive power of DE models, but through a slightly different
lens: they formalised the expressiveness of DE score func-
tions based on random projections. This elegant analysis
sheds light on one possible failure mode of DE models,
i.e., scoring the relevance of queries and overly long docu-
ments. By contrast, we consider the representation power
of transformer-based DE models; further, we now identify a
distinct reason for the gap between DE and CA performance.

3.2. How Expressive are Dual-Encoders in Practice?

The previous section suggests that DE models ought to be
sufficiently expressive as to model a broad class of scores.
However, this is at odds with the wealth of empirical results
suggesting a non-trivial performance gap between DE and
CA models (Lu et al., 2020; Izacard & Grave, 2020; Hof-
stitter et al., 2020a; Miech et al., 2021). To reconcile this,
note that it is a distinct question as to whether it is feasible
to learn a good DE model from a finite number of samples,
and with a capacity restriction on the function class (e.g., a
fixed embedding dimension and transformer depth).

To study this, we perform an experiment on the benchmark

MSMARCO-Passage dataset (Nguyen et al., 2016), which
concerns query to passage retrieval; we defer a detailed
discussion of this dataset and our training protocol to §5.
We focus on the re-ranking setting, wherein both the CA
and DE models operate on the outputs of a BM25 retrieval
model (Robertson & Zaragoza, 2009). We train a series of
BERT-based CA and DE models on the (“small”) triplets
training set, employing 6-layer BERT models from Turc
et al. (2019) with varying embedding size. For each model,
we compute the mean reciprocal rank (MRR)@ 10 (Radev
et al., 2002) on the provided train and dev set. (We shall
refer to the “dev” set as the “test” set for simplicity.)

Figure 1 compares the train and test MRR@ 10 for cross-
attention (CA) and dual-encoder (DE) models; see Table 5
(Appendix) for a numeric summary. With increased embed-
ding dimension, the DE model closely matches the perfor-
mance of the CA on the training set. This aligns with §3.1,
which suggests deep transformer-based DE models ought to
model any ground truth scores. However, there is a sizable
gap on the test set. This points to the DE models suffer-
ing from poorer generalisation, rather than capacity. See
Appendix C.1 for results with 2-layer BERT models.

3.3. What Causes the Generalisation Gap?

We now attempt to further understand the cause for the
DE model’s generalisation gap. We perform a more fine-
grained inspection of the CA versus DE model predictions
by studying the predicted scores for positive and negative
pairs. More precisely, for each query ¢ in the dev set, we
consider the distribution of scores for positive and negative
(query, document) pairs (g, d*) and (g, d™). (Similar trends
hold on the training set; see Figure 6 in the Appendix). For
visual clarity, we apply a constant offset to each model’s
scores to ensure they are mean zero; this accounts for the
baseline shift of DE over CA model scores (cf. Figure 7).

Figure 2 shows that both CA and DE models possess clear
modes for the positive and negative pairs. However, the
CA model does not “waste” its capacity by unnecessarily
modelling fine-grained distinctions amongst negative pairs;
rather, it collapses most negatives to a small range of scores,
and focusses instead on clearly separating the positives and
negatives. By contrast, the DE model has a greater overlap
in the positive and negative scores, implying the model
has more difficulty making distinctions between these pairs.
From the right plot, the DE model has smaller normalised
margins (s(q,d%) — s(q,d™))/p between the positive and
negative pairs, where p is the maximal score range.

The DE score distribution for negatives may be understood
as follows: when updating a DE model for a given (g, d)
pair, the factorised nature of the model implies a non-trivial
influence on the scores for all other pairs (¢,d’) and (¢’, d)
sharing either the query or document. Consequently, it is
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Figure 2. Comparison of CA (left) and DE (middle) model predictions on the MSMARCO-passage dev set. The CA model more
confidently distinguishes positives from negatives, with a pronounced peak in scores for the latter. For visual clarity, the scores are
translated to have mean zero; see Figure 7 for an uncentered plot. We further see that the normalised margins of the DE model are
distinctly smaller than CA (right); this may be mitigated with suitable distillation (DIST).
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Figure 3. Evolution of scores for a sample of (query, doc) pairs
under the CA and DE models across training steps. For a fixed
query, we consider its 5 associated positive documents, and 5
negative documents having high token overlap with the positives.
Across training steps, the CA model smoothly decreases (increases)
the negative (positive) scores. However, the DE score evolution
is far noisier, particularly for the negative documents. Intuitively,
due to the factorised nature of the model, each update on a pair
(g, d) non-trivially influences the scores for related pairs (g, d’).

harder for the model to make fine-grained distinctions. This
can be verified qualitatively; the DE model often makes er-
rors on pairs with only superficial relevance (Appendix C.4).

Quantitatively, we illustrate this point as follows. We pick a
single query g from the MSMARCO training set, and a set of
10 documents comprising 5 positive documents associated
with ¢, and 5 negative documents which have high token
overlap with the positives. In Figure 3, we plot the evolution
of scores across training steps for each (g, d) pair under
the CA and DE models. While the CA model smoothly
decreases (increase) the negative (positive) scores, the DE
models’ updates are far noisier, particularly for the negative
documents. Per the intuition above, updating based on a
positive pair (¢, d") can inadvertently increase the score for
a negative pair (g, d ™), particularly when d~ has superficial
similarity to d*. The DE model thus has to repeatedly
counteract these effects, resulting in a diffuse final score

distribution. (See Appendix C.5 for additional plots.)

3.4. How Can We Mitigate the Generalisation Gap?

Having identified the overfitting problem plaguing DE mod-
els, one may naturally ask how to mitigate this. One natural
option is to apply standard regularisation strategies, such as
dropout; however, our experiments reveal these to be largely
ineffective in mitigating DE overfitting (see Appendix 5.2).

The literature has identified two promising alternatives. The
first is to modify the scoring function used to compute the
DE model score based on the query and document embed-
dings; i.e., replace (2) with s(q,d) = score(T(q),T(d))
for suitable score (e.g., MacAvaney et al., 2020; Khattab
& Zaharia, 2020; Luan et al., 2021; Santhanam et al., 2021).
Such strategies have proven effective, but introduce over-
head over dot-product scoring. The second strategy is to
distill the predictions of the CA model into the DE model.
By itself, this does not require changing the dot-product
scoring in (2). We now study this strategy more closely.

4. Improving Dual-Encoders via Distillation

We now study CA to DE distillation schemes for re-ranking.

4.1. (Why) Does Distillation Mitigate DE Overfitting?

Several works have explored distillation from a CA “teacher”
to a DE “student” (Hofstitter et al., 2020a; Yang & Seo,
2020; Miech et al., 2021), and convincingly demonstrated
gains over a DE model trained on one-hot labels. The suc-
cess of distillation is intuitive: smoothing the targets based
on an accurate teacher ought to improve the DE models’
scores compared to one-hot training.

Recall, however, that we saw in §3 that DE models’ un-
derperformance for re-ranking can be a manifestation of
a generalisation gap (Figure 1), which in turn is a conse-
quence of DE models having poorer separation of positive
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and negative pairs (Figure 2), and making noisier updates
(Figure 3). These issues are not directly considered in the
above works; conceptually, it is thus not clear whether dis-
tillation specifically addresses any of these limitations.

We now propose a new loss to more directly address this,
and discuss how it relates to the above proposals.

4.2. Improving DE Margins via the Multi-Margin MSE

To design a suitable distillation loss for DE models, we will
focus on the margin issue identified in Figure 2: standard DE
models can produce overlapping distributions for positive
and negative pairs. Intuitively, then, one simple strategy to
address this is to encourage the DE student to match the CA
teacher’s (large) margin between positives and negatives.

To proceed, suppose each sample is the form (¢,d,y,t),
where for query ¢ and documents d € D, we have ground-
truth relevance labels y € {0,1}% and “teacher” scores
t € RX (e.g., the outputs of a CA model). Let P, N denote
the set of positive and negative documents, with PU N =
[K]. To fit scores s € R¥ for a “student” model (e.g., a DE
model), one must define a suitable loss (t,s). As a first
attempt to encode the above intuition, consider

=33 ((ti—ty) -

i€P jeN

-5 ()

mmse t s

While intuitive, (3) demands matching all documents’ mar-
gins exactly. This may be an ineffective use of model capac-
ity: for re-ranking, it suffices to ensure a separation between
the positive and negative documents, thus overcoming the
overlapping scores in Figure 2. To rectify this, suppose that
the negative documents are sorted in descending order of
the teacher scores t € R¥. Consider now:

=3 (i —t5) = (i =52 )* + D s .C)

i€P JEN

Zn)f&se (tv S)

where j* € N is the index of the negative document with
highest teacher score. This multi-margin MSE (M3SE) loss
only matches the margins for the highest scoring negative j*;
for all other negatives j # j*, we simply encourage them
to have lower score than j*. We shall subsequently confirm
(§5) that this loss results in a better margin distribution, and
consequently achieves good re-ranking performance.

4.3. Relating the M3SE to Existing Losses

We now relate Equation (4) to existing distillation losses.

Margin MSE. Suppose K = 2, so that each query has a sin-
gle associated positive and negative document, with teacher
and student scores t = (t1,t2), s = (s1,52). Then, (4)
reduces to the margin MSE (Hofstitter et al., 2020a):

Emmse(t S) ((tl - t2) (51 - 52))2- (5)

Equation (5) is similar to the logit matching or mean square
error 10ss £ise(t,8) = ||t —s||2 = (t1 — 51)% + (t2 — 52)2,
but with a key difference: rather than match raw scores,
one matches margins. This is important in settings where
the range of scores for teacher and student are not com-
mensurate, as we empirially observe with the baseline shift
between CA and DE model scores, per §3.2 and Figure 7
(Appendix).

The M3SE loss can be seen as an extension of (5) to the case
of K > 2. This setting is intuitively desirable for re-ranking:
by leveraging the teacher scores for multiple documents, we
can more directly control their scores under the DE student.

Softmax cross-entropy. The connection to the margin
MSE provides a useful foothold to relate the M3SE loss to
the softmax cross-entropy . (t,s) (1). This classical loss
has been employed to improve DE models in, e.g., Lu et al.
(2020); Yang & Seo (2020); Miech et al. (2021). In fact,
we now show that the softmax cross-entropy is a smooth
approximation to the margin MSE (5) in a precise sense.

Proposition 4.1. Fix any teacher and student scores t,s €
R2. Let lso(t,s;7) denote the softmax cross-entropy
loss (1) with temperature T > 0, and lynse the margin
MSE loss (5). Then, for temperature scaled sigmoid func-

tiono(z;7) = (1 +exp(—7~1-2))"Y, and any i € {1,2},
lco(t,8;7) = KLpin(o(t1 — t2;7) || o(s1 — s2; 7))
. 0 1 9
TEY_{}OO T2 aisizsce(tvs;T) =3 afsiﬁmmse(t@).

We make a few remarks. First, /.. swaps the square loss for
a binary KL divergence KLy, in (5). Second, the softmax
and margin MSE loss derivatives with respect to the student
logits converge in the high temperature limit. Thus, the
softmax cross-entropy is a smooth approximation to the
margin MSE in a precise sense. Intuitively, this is plausible,
as both losses are invariant to translations in the scores.

Third, our argument is subtly different from Hinton et al.
(2015), which establishes convergence of the softmax and
logit matching derivatives. The latter only holds under the
assumption that the teacher and student logits are centered
for each query; this assumption typically does not hold for
CA and DE models, per §3.2 and Figure 7 (Appendix). By
contrast, Proposition 4.1 makes no such assumption.

Finally, while Proposition 4.1 assumes K = 2, the soft-
max cross-entropy is readily applicable when K > 2. In
this setting, we may contrast its behaviour to the M?SE
loss (4): in the high temperature regime, the former ap-
proaches max;j- [s; — Si+]4, where k™ is the highest scor-
ing document (either positive or negative) under the teacher.
This seeks to match the teacher’s highest scoring document,
but unlike (4), does not explicitly mimic its margin.

RankDistil. Equation (4) can be related to the recent
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RankDistil framework (Reddi et al., 2021). Here, the goal
is to design distillation losses to match the teacher and stu-
dent label ranking, particularly for the top-k elements. A
canonical instantiation is binary RankDistil (RankDistil-B),
Crankn (t,8) = 2o ie p(ti —5:)* +22 ;v [55 — 0] %, for con-
stant threshold 79 € R. The relation between this loss and
(4) is analogous to that between logit matching and margin
MSE: (4) matches margins rather than raw scores.

4.4. Discussion and Extensions
We make two further comments on our use of distillation.

Distillation for retrieval phase. Our focus thus far has
been on bridging the gap between the CA and DE models
for re-ranking. However, the losses presented above are
equally applicable during the retrieval phase, and are com-
plementary to recent proposals for improving the retrieval
performance of dual-encoder models, including using suit-
able hard negative mining (Xiong et al., 2021; Zhan et al.,
2021a; Qu et al., 2021; Ren et al., 2021), and quantisa-
tion (Zhan et al., 2021b).

Beyond distillation? We have explored distillation to im-
prove DE model performance, but per §3.4, there are several
other options include changing the scoring function (Khat-
tab & Zaharia, 2020), and adding hard negatives (Qu et al.,
2021). Conceptually, these approaches are complementary
(cf. Appendix C.6). Practically, it is of interest to understand
which specific combination of these techniques is the most
performant. However, our focus is not in advancing the
state-of-the-art, and so we defer this study for future work.

5. Experimental Results

We now demonstrate the empirical viability of the proposed
distillation scheme in §4. In particular, we show that this
scheme helps reduce the gap between CA and DE models
by mitigating the overfitting issue identified in §3.2.

5.1. Experimental setup

Datasets. We present results on MSMARCO-
Passage (Nguyen et al., 2016) and Natural Questions
(NQ) (Kwiatkowski et al., 2019). For MSMARCO, we
report results on the standard dev set, and the TREC
DL19 test set (Craswell et al., 2020). MSMARCO
comprises (query, passage) records and their relevance
labels from a human rater; for each query, the passages
are retrieved from a BM25 model. The canonical training
set comprises triplets of a query, and a single positive
and negative passage. NQ comprises user questions and
Wikipedia passages potentially containing their answers;
we use a processed version from Karpukhin et al. (2020)
(cf. Appendix B).

Models. We use transformer encoders initialised with the
standard pre-trained BERT model checkpoints. Follow-
ing Hofstitter et al. (2020a), we use BERT-Base for the
CA model, and a 6-layer BERT model (Turc et al., 2019)
with embedding size 768 for all DE models. For the DE
models, we tie the query and document encoder parame-
ters. For distillation, we use the CA model as the “teacher”
and the DE model as the “student”. On MSMARCO, for
ease of comparison, we use the “T1” CA model annotations
from Hofstitter et al. (2020a), which achieves similar re-
re-ranking performance as our independently trained CA
model. See Appendix B for further training details.

Metrics. We report the MRR@ 10 and nDCG@ 10 for all
methods. Note that we are primarily interested in re-ranking
tasks, wherein the test set comprises documents retrieved
by a BM25 baseline, and our models re-rank these can-
didates. For MSMARCO, we additionally consider full
retrieval performance obtained by scoring all (8.8M) pas-
sages, but reiterate that maximising performance on this
metric requires additional negative mining.

Baselines. We consider methods that leverage either the
observed (“one-hot”) training labels on the triplet data, or
the predictions from the cross-attention (“‘teacher””) model
on the triplet data. For the former, we employ softmax cross-
entropy against the using a cross-attention and dual-encoder
model. For the latter, we employ the logit MSE loss (Ba &
Caruana, 2014), margin MSE loss (Hofstitter et al., 2020a),
and the binary version of RankDistil (RankDistil-B) (Reddi
et al., 2021). These are compared against the proposed
M3SE (Equation 4), and the softmax cross-entropy (Equa-
tion 1). The latter methods handle of an arbitrary number of
documents K in the supervision (i.e., they are not restricted
to triplet data). We thus aggregate the triplet data by query,
and retain the top-20 passages with highest teacher model
score. We study the sensitivity to K in Appendix D.3.

Scope of results. Before proceeding, we emphasise the
aim and scope of our results. First, per §4.4, our primary
goal is to explore the feasibility of bridging the gap be-
tween CA and DE models for re-ranking. This is distinct
from the more common use of DE models in the literature
for retrieval (Chang et al., 2020; Xiong et al., 2021; Zhan
et al., 2021a); recall that CA models are not applicable for
this setting. While we do not make special effort to incor-
porate tricks from the retrieval literature (e.g., using hard
negatives), our proposed distillation techniques can improve
performance for this stage as well; see Appendix E.2.

Second, our focus is in advancing their conceptual under-
standing of DE models for re-ranking, rather than the state-
of-the-art. Methods achieving the latter involve ideas such
as careful selection of hard negatives (Ren et al., 2021), and
scoring functions beyond the dot-product (Santhanam et al.,
2021); each of these is potentially complementary to our
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MSMARCO re-rank TREC DL19 re-rank NQ re-rank

Model MRR nDCG MRR nDCG MRR nDCG
One-hot models

BM25 (Robertson & Zaragoza, 2009)  0.1947  0.241% 0.689"  0.5017 — —

ANCE (Xiong et al., 2021) — — — 06777 — —

Cross-attention BERT (12-layer) 0.370 0.430 0.829 0.749 0.746 0.673

Dual-encoder BERT (6-layer) 0.310  0.360 0.834 0.677 0.676  0.601
Distilled dual-encoders

MSE (Hofstitter et al., 2020a) 0.289  0.343 0.781 0.693 0.659 0.591

Margin MSE (Hofstitter et al., 2020a)  0.334  0.392 0.867¢ 0.718 0.673 0.594

RankDistil-B (Reddi et al., 2021) 0.249  0.301 0.852 0.708 0.649 0.561

Softmax CE (Equation 1) 0.346  0.405 0.846 0.726° 0.682  0.607

M3SE (Equation 4) 0.349  0.406 0.852 0.714 0.699 0.625

Table 1. Summary of MRR@10 and nDCG@ 10 on MSMARCO Passage and Natural Questions (NQ). We compare cross-attention,
dual-encoder (DE), and distilled dual-encoder BERT models. We highlight the best performing DE-based model. Distilling the DE model

with our proposed techniques consistently improves performance. Results marked T are quoted from the corresponding reference, and “—

2

are not available from the reference. ¢ See Appendix E.3 for analysis of potential label noise influencing the results.

use of different distillation losses (see Appendix C.6).

5.2. Results and Discussion
We discuss salient findings from the results in Table 1.

Baseline performance. Comparing the performance of CA
and DE models in Table 1, we make two initial observations.
First, there is a sizable performance gap between the models
when using one-hot labels. Second, in line with Hofstitter
et al. (2020a), naive logit matching via the MSE underper-
forms, due to the vastly different scales of the two models;
this is however assuaged by the margin MSE loss.

Efficacy of distillation. Both M?SE and the softmax cross-
entropy significantly outperform existing losses on the MS-
MARCO and NQ re-reranking tasks, and shrinks the gap
between the DE and CA models. On the TREC DL19 test
set, our proposed methods appear to fall short of the margin
MSE MRR@10; a closer inspection of the apparent loss
cases (Appendix E.3) reveals these are unanimously the
results of false negatives in the provided labels.

Why does distillation help? Figure 1 shows that M3SE dis-
tillation nearly closes the gap between CA and DE models.
We now attempt to evince why this strategy helps. First, Fig-
ure 2 (right) shows that softmax cross-entropy distillation
makes the DE scores better behaved: it shifts the margins of
the DE model to be closer to the the CA model.

Second, observe that the test gains comes with some sacri-
fice of training MRR for the highest embedding size. This
is consistent with observations in the classical distillation
literature (Cho & Hariharan, 2019). Figure 5 (Appendix)
further shows the learning curve on the MSMARCO train

and test set, which demonstrates a consistent gap in test set
performance as training progresses. Distillation yields a
training MRR that closely matches that of the DE model
for the first 100K training steps; subsequently, however, the
training MRR of the distilled model saturates, while that of
the one-hot model keeps increasing. Intuitively, distillation
prevents fitting to noisy samples beyond this point.

Beyond dot-product DE models. We have thus far fo-
cussed on standard dot-product based scoring for the DE
models, per (2). It is of interest as to what impact more
complex scoring functions, per §3.4, have on final model
performance. To study this, we consider the ColBERT
model (Khattab & Zaharia, 2020), which computes the aver-
age of the maximum query-document token similarities.

Consistent with Khattab & Zaharia (2020), using this model
with one-hot labels by itself improves performance signif-
icantly over the dot-product (see Table 2). When further
combined with distillation, the performance exceeds that of
the CA teacher, reaching an MRR@ 10 of 0.376 for MS-
MARCO re-ranking under the softmax cross-entropy loss.
(Full results in Appendix, Table 7.) This further highlights
that factorised representations need not imply a loss in per-
formance, provided they are suitably trained.

Do we need a CA teacher? The results thus far have re-
lied on predictions provided by a CA teacher; however,
one may naturally ask whether a suitable DE teacher can
act in its place. We thus consider distilling from two DE
teachers: one using the standard dot-product, and another
using the ColBERT scoring function. Table 2 shows that on
MSMARCO, distilling from a ColBERT teacher suffices to
significantly improve over regular one-hot training; indeed,
for a dot-product DE student, we match the performance of
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Scoring function

Teacher Dot ColBERT
One-hot 0.310 0.356
Dot 0.316  0.351
ColBERT 0.334 0.368
CA 0.334 0.376

Table 2. MRR@10 of various distilled DE models on MSMARCO
Passage re-ranking. We consider different teachers, and standard
dot-product and ColBERT based DE models. Remarkably, we find
that even when using a ColBERT teacher, we can significantly
improve performance over training on one-hot labels.

distilling from a CA teacher. This illustrates that one can
partly bridge the gap between DE and CA models without
any access to a CA model in the training pipeline.

Effect of alternate regularisation strategies. Distillation
provides one means of preventing the DE model from over-
fitting to the training set. One may of course conceive of
other plausible strategies, such as:

e increasing the dropout rate in the final layer of the trans-
former. Our main experiments employ 10% dropout
following prior work, which improves performance con-
siderably over having no dropout; it is thus of interest
whether there are benefits to further increasing this.

e performing token dropout at the input layer. Intuitively,
such corruption prevents the model from overly relying
on individual tokens, thus improving generalization.

e adding a masked language model (Devlin et al., 2019)
loss. Adding such a self-supervised objective to training
can plausibly improve the model’s robustness.

e modifying the base loss from square or log-loss to the
focal loss (Lin et al., 2017), which has proven effective
in vision tasks involving high class-imbalance. In our
setting, there are typically only a handful of relevant
documents, but several millions of irrelevant documents.

Table 3 summarises results for each of these strategies on
MSMARCO. Here, we focus on their effect on the standard
(one-hot) training of a DE model on triplet data. Unfortu-
nately, none of these strategies significantly improve the
generalization performance of the baseline model. Thus,
mitigating the overfitting observed in Figure 1 requires more
effort than appealing to standard classification strategies.

Effect of label smoothing. A special case of distillation
is label smoothing (Szegedy et al., 2016), which can be
understood as using a teacher that predicts the uniform dis-
tribution over all labels, and combining the result with the
one-hot label. Specifically, this involves mixing the one-
hot labels with a uniform distribution over all labels, with
the mixing controlled by weight o € [0,1); & = 0 cor-
responds to standard one-hot training. Label smoothing

Strategy Train MRR@10 Test MRR@10
Baseline DE 0.619 0.310
Increased embedding dropout  0.588 0.299
Token dropout 0.572 0.291
Masked language loss 0.548 0.299
Focal loss 0.546 0.307

Table 3. Results of various regularisation strategies on MS-
MARCO Passage dev set. For all rows, we use a DE model trained
on the triplet data.

has also proven effective as a means of preventing harmful
overfitting, and thus improving generalisation (Miiller et al.,
2019; Lukasik et al., 2020) in classification settings.

We studied the effect of varying degrees of label smoothing
for DE models on MSMARCO, using the softmax CE loss
on triplet data. We use a 6-layer BERT model as before; for
computational ease, we report results after 300, 000 steps
of training, at which point all models see stable test error.
Table 4 reveals that, surprisingly, smoothing has a minimal
effect on test performance, even at high smoothing levels.
This is despite smoothing reducing the training performance
at higher values, which is expected given its equivalence to
injecting symmetric label noise to each sample.

Smoothing @ Train MRR@10 Test MRR@10
0.0 0.394 0.308
0.1 0.460 0.297
0.2 0.455 0.296
0.3 0.453 0.292
0.9 0.382 0.292
0.99 0.305 0.278

Table 4. Effect of label smoothing on DE models, on the re-ranking
task for the MSMARCO-Passage dataset. For all models, we use
the softmax CE loss on triplet data.

Additional results. In the Appendix, we present several
additional results and ablations, including results in the
retrieval as opposed to re-ranking setting (Appendix E.2).

6. Conclusion and Future Work

Given the empirical observation that DE models underper-
form CA models for re-reranking, we have sought to un-
derstand why this is the case. Our results provide evidence
against the hypothesis that this is because DE models are
fundamentally restricted in capacity compared to CA mod-
els, and point instead to the issue being one of generalisation.
Several avenues for future work remain open, e.g., studying
the efficacy of the proposed losses when combined with
recent advances for retrieval (Xiong et al., 2021).
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A. Proofs

Proof of Proposition 3.1. For any q € Q, let us write s = s(g,-): D — R. Pick a reproducing kernel Hilbert space H
over D with associated inner-product (-, -)5¢. Suppose further J has associated kernel k: D x D — R that is continuous,
and universal (Micchelli et al., 2006). Then, J{ is dense in the space of continuous functions (Sriperumbudur et al., 2011).
Recall that by assumption s, is continuous. Consequently, each s, can be approximated to arbitrary precision (with respect
to the £ metric) by some s € H. Since s € I, by the reproducing property of an RKHS,

(Vd € D) s*(q,d) = (s, ka)ac,
where in an abuse of notation k4 = k(d, -) € H. Observe that we may interpret s, as an “embedding” for the query ¢, and
kq a “weight vector” for the document d.

It may appear at this stage that we are done; however, each of sj and k4 may be uncountably infinite dimensional objects,
and the inner product in J{ may not be the standard dot-product. Nonetheless, under the stated assumptions (in particular,
compactness of D), we may appeal to a Mercer representation of the kernel, following Steinwart & Christmann (2008,
Theorem 4.51). In particular, we may construct a Mercer feature map ®: D — {5 for H, such that

(Vh € 3) (Han)yZy € L) h(d) =Y ap - B (d).
n=1
Further, the inner product between any h1, he € H with “Mercer coefficients” (a,,)5 1, (b, )22, is expressible as

(h1,ho)ac = an - by,
n=1

i.e., a familiar dot-product. In our context, write the Mercer coefficients for s} as (24, )52 1, and for kg as (way )52, . Thus,
we may write

* T
<Sq, kd>g{ = Zq Wq,
where the vectors z,, wq have at most countably infinite dimension.

O

Proof of Proposition 3.2. Any continuous z: RP*L — RP can be trivially associated with z: RP*L — RP*L where
each column z,; = z. Such a mapping preserves continuity. By Yun et al. (2020, Theorem 2), we may thus find a
transformer encoder T: RP*E — RP*L such that [, |z(Q) — T(Q)||3dQ < €. Consequently, we must also have
Jo 12(Q):1 — T(Q).1]|3 dQ < € almost surely, which by definition implies [}, |z(Q) — T(Q).1[|3dQ < €. O

Proof of Proposition 4.1. For temperature 7 > 0, simple algebra reveals (1) to be

exp(t71 - t,) exp(t! - 5)
‘gscc t, = — .
o 96;2} exp(771 - t1) + exp(T71 - £2) o exp(T71-s1) +exp(r—!-s2)
1 -1
= Z =) '1og(1—|—ez"r '(52751))
zr =1 (ta—t
z€{i1}1+e (t2=11)
T Z oz (tr —t2);7) -log(o(z - (s1 = 52); 7))
ze{£1}

This is equivalent to KLy, (0(t1 — to;7) || 0(s1 — $2; 7)), i.e., swapping out the square loss for the KL divergence in (5).
In fact, one can make a stronger connection: observe that

) el6,5) = 2 (51— 32) — (12~ 12))

s1
9 lce(t,8) = — E o(z-(ty —ta);7) - —6 log(o(z - (81— s2);7)
0s1 0s1

ze{£1}
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Figure 4. Comparison of BERT-based cross-attention (CA) and dual-encoder (DE) models on the MSMARCO-Passage re-ranking task.
For varying embedding dimension of an underlying 2-layer BERT model, we report the train and dev set MRR@10. We see the same

trend as in Figure 1: for sufficiently large embedding dimension, the DE model closely matches the performance of the CA on the training
set; however, there is a sizable gap in the fest set performance.
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as T — +00, where the last line follows from the Taylor series approximation

1 1 =z
- 4 Z 40922
1+exp(—2z) 2 * 4 +0(z)

asz — 0. O

B. Experiment hyperparameters

For all models, at the output layer we apply dropout at rate 0.1 and layer normalisation. We use a sequence length of 30 for
queries, and 200 for passages. We optimise all methods for a maximum of 3 x 10° steps using Adam with weight decay,
with a batch size of 128 and a learning rate of 2.8 x 107° (i.e., a 4x scaling of the choices in Hofstitter et al. (2020a)).
Following Hofstitter et al. (2020a), we perform early stopping based on the nDCG@ 10 metric.

For the Natural Questions dataset, we use the processed version used in (Karpukhin et al., 2020), that contains questions,
positive passages with a correct answer to each question, and a corpus of all Wikipedia passages. To train DE, CA, and
multi-negative DIST models, we use 19 BM-25 hard-negative passages for each question along with a positive passage.
For single-negative DIST models we use a single BM-25 negative from the same collection. To calculate MRR @10 and
nDCG @ 10 metrics, we use the queries in the dev set with 200 passages containing positives, 100 BM-25 hard-negatives and
up to 100 random negatives.

C. Additional experiments: CA versus DE models
C.1. CA versus DE models: effect of base architecture

Figure 4 presents an an analogue of Figure 1, but using instead a 2-layer BERT model. As before, we initialise using
the pre-trained models developed in Turc et al. (2019). The same general trends hold: for sufficiently large embedding
dimension, the DE model closely matches the performance of the CA on the training set; however, there is a sizable gap in
the fest set performance. Table 5 presents a numeric summary of the train and test performance for CA and DE models,
under different choices of base BERT-model architecture (in terms of number of layers, as well as the final embedding
dimension).
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MRR@10 train MRR@10 test
Model CA DE CA DE

small-bert-2-128  0.356  0.292 0.309 0.221
small-bert-2-256  0.358 0.302 0.322 0.253
small-bert-2-512  0.398 0.374 0.335 0.268
small-bert-2-768  0.429  0.406 0.334 0.281

small-bert-6-128  0.385 0.317 0.334 0.249
small-bert-6-256  0.427  0.407 0.350 0.282
small-bert-6-512  0.493  0.491 0.360 0.293
small-bert-6-768  0.522  0.518 0.364 0.310

bert-base 0.658 0.635 0.368 0.309

Table 5. Comparison of cross-attention (CA) and dot-product based dual-encoder (DE) models on the MSMARCO-Passage re-ranking
task. Notably, for sufficiently large embedding dimension, the DE model closely matches the performance of the CA on the training set;
however, there is a sizable gap on the fest set. This points to the poorer DE model performance being largely an issue of generalisation,
rather than capacity.

C.2. CA versus DE models: evolution of train and test performance

The above results summarise the results at the completion of training. For a finer-grained understanding of how performance
evolves during training, Figure 5 presents the learning curves for CA, DE, and distilled DE (DIST) models on the train and
test set. Here, we use the small-bert-6-768 architecture for all models. We observe that the CA and DE models initially
have a non-trivial gap in performance, but this shrinks over time; this further points to the initialisation of the CA models
being more favourable for generalisation. Note also that beyond a certain point, both models continually improve their
training performance, but are completely neutral in terms of fest performance. Interestingly, distillation largely tracks the
DE model performance, but then worsens on the training set while improving on the test set. This suggests that distillation
helps explore a better part of the search space.

C.3. CA versus DE models: comparison of score distributions

Figure 6 compares the score distributions for the CA and DE models on the training set. We observe the same general trends
as the test set (Figure 2). Figure 7 further presents the test score distributions without zero-centering. We see that the DE
model exhibits a strong baseline shift, wherein the scores are of the order of ~ 700.

Figure 8 studies the score distributions for the CA and DE models after varying numbers of training steps. At initialisation,
as expected, both models have essentially overlapping distributions for the positives and negatives. However, here too,
we observe that the DE model scores operate on a much wider range than the DE model. The middle row continues this
study by looking at behaviour after 10, 000 steps of training, which is a small fraction of the 300, 000 steps used for training
of all models. Here, we start to observe a clearer separation between the positive and negative scores for both models.
Interestingly, the CA model already sees a sharp peak on the negatives, unlike the DE model. The bottom row shows the test
set score distributions of the final trained models, to complement Figure 2 from the body. We see the same general trend as
the training set: the CA model is seen to more confidently distinguish positives from negatives, and operate at a narrower
range of scores.

C.4. CA versus DE models: qualitative analysis

Table 6 provides a sample of (query, passage) pairs from MSMARCO-Passage dev set, where there is a large discrepancy
between the CA and DE model scores. Specifically, we consider pairs that the CA model scores low, but the DE model
scores high. Interestingly, these pairs typically involve strong token overlap between the query and passage — indicating a
certain degree of topicality — but are fact genuine negative pairs. This reflects that the DE model may be unable to capture
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Figure 5. Learning curve for CA, DE, and DIST models on the MSMARCO-Passage train and test set. Here, we use the small-bert-6-768
architecture. Distillation is seen to saturate training performance beyond a certain point, while still resulting in a solution with better
generalisation on the test set.
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Figure 6. Comparison of CA and DE model predictions on the MSMARCO-Passage train set. We observe the same general trends as the
test set (Figure 2). For visual clarity, the scores are translated to have mean zero.
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Figure 7. Comparison of CA and DE model predictions on the MSMARCO-Passage test set. Here, we do not center the scores to have
mean zero. We see that the DE model scores possess a strong baseline shift over the model scores.

certain fine-grained distinctions.

C.5. Evolution of scores

We supplement Figure 3 with plots further illustrating the differing nature of CA and DE models. Unless otherwise specified,
these plots use the query “causes and treatment of whiteheads on face”.

Low token-overlap documents. Figure 9 presents results when we consider 5 negative documents with the lowest average
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Figure 8. Comparison of CA, DE and distilled DE (DIST) model scores on the MSMARCO-Passage dev set at initialisation (top row),
after 10, 000 steps of training (middle row), and at the completion of 300, 000 steps of training (bottom row). At initialisation, all models
have overlapping score distributions, but the CA model operates at a much tighter range. After a few steps of training, the CA model
already sees a peaky score distribution on the negative, while the DE model has a diffuse distribution. The distilled model however
manages to overcome this, and produce a sharper distribution than even CA.

token overlap to the positives. Observe here that both model updates for the negatives are even smoother than the high-
overlap case. However, the DE model is still considerably noisier compared to the CA model, again reflecting its difficulty
in isolating score updates to a single pair.

Negative documents. Figure 10 presents results when we consider 5 negative documents which are randomly sampled from
the set of top-1000 BM25 retrieved documents. Intuitively, these are harder than random documents, and some of these may
indeed be false negatives. As a result, we observe that even the CA model has far noisier updates to its scores. Nonetheless,
we again observe that the DE model scores evolve more inconsistently.

Different choice of query. The results thus far have considered the same query. Figure 11 illustrates results for 5 other
queries, with largely the same trends as above.

False negatives. Figure 12 illustrates results for a different choice of query (“foot pain common causes”.), wherein
the 5 negative documents are in fact largely false negatives. We now see an exacerbation of the trend in Figure 10, with the
CA model having difficulty in smoothly reducing the scores.
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Figure 9. Evolution of scores for a sample of (query, doc) pairs under the CA and DE models across training steps. For a fixed query, we
consider its 5 associated positive documents, and 5 negative documents having /ow token overlap with the positives.
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Figure 10. Evolution of scores for a sample of (query, doc) pairs under the CA and DE models across training steps. For a fixed query, we
consider its 5 associated positive documents, and 5 negative documents randomly sampled from the set of top-1000 BM25 documents.
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Figure 11. Evolution of scores for a sample of (query, doc) pairs under the CA and DE models across training steps. For each query from a
set of 5 queries, we consider its 5 associated positive documents, and 5 negative documents sampled from the top-1000 BM25 documents.
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Figure 12. Evolution of scores for a sample of (query, doc) pairs under the CA and DE models across training steps. For a fixed query, we
consider its 5 associated positive documents, and 5 negative documents sampled from the set of top-1000 BM25 documents. Here, the 5
negatives are mostly false negatives.
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Query Passage

effects of yeast on body The Side Effects of Chemotherapy on the Body. Chemotherapy drugs are powerful
enough to kill rapidly growing cancer cells, but they also can harm perfectly
healthy cells, causing side effects throughout the body.

age not to take off shoes at airline secu- Airline Identification Requirements. Airlines do not typically require identification
rity from passengers under the age of 18, but there are exceptions. Children under the
age of 2 may ride on a parent’s lap without purchasing a ticket, but the airline will
require identification, such as a birth certificate, to prove the child’s date of birth

actress who plays alice on the magicians Then portrayed as the animated Alice’s real life counterpart by actress Mia
Wasikowska as a more mature, grown up Alice in Disney’s 2010 semi-sequel, live
action/CGI film Alice and Wonderland Directed by Tim Burton. In the Broadway
musical version, she will be played by Taylor Louderman . . .

can you absorb metals from plants Answer 1: Photosynthesis is the ability of plants to absorb the energy of light, and
convert it into energy for the plant. To do this, plants have pigment molecules
which absorb the energy of light very well. The pigment responsible for most light-
harvesting by plants is chlorophyll, a green pigment.The green color indicates
that it is absorbing all the non-green light— the blues ( 425-450 nm), the reds and
yellows (600-700 nm).he pigment responsible for most light-harvesting by plants
ischlor...

Table 6. Sample of (query, passage) pairs from MSMARCO-Passage dev set with largest discrepancy between the CA and DE model
scores. In most of these cases, the passage is not relevant to the query; however, there is a high degree of token overlap between the two,
indicating superficial similarity.

C.6. Results with ColBERT scorer

Table 7 presents results using the ColBERT scorer. We find that with distillation using the softmax CE loss ((1)), we can
exceed the performance of the cross-attention teacher model for the re-ranking task. This further indicates the viability of
dual-encoder models for neural ranking.

MSMARCO rerank TREC DL19
MRR@10 nDCG@10 MRR@10 nDCG@10

Baselines: one-hot

Cross-attention BERT 0.370 0.430 0.829 0.749

Dual-encoder ColBERT 0.356 0.416 0.839 0.703
Distilled ColBERT: prior work

MSE (Hofstitter et al., 2020a) 0.365T 0.428" — —

Margin-MSE (Hofstitter et al., 2020a)  0.370% 0.4317 0.8627 0.738"
Distilled ColBERT: this work

M3SE 0.371 0.430 0.875 0.726

Softmax CE 0.376 0.437 0.835 0.737

Table 7. Results on MSMARCO Passage dev set with ColBERT model.
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Figure 13. M3SE distillation model margins on the MSMARCO-Passage test set. Compared to the DE model trained with one-hot labels,
the distilled model is seen to more confidently distinguish positives from negatives, evidenced by the margin distribution having more
mass on larger values.

Model Supervision Loss MRR@10 nDCG@10
Cross-attention  One-hot Softmax CE  0.370 0.430
Dual-encoder One-hot Softmax CE  0.249 0.299
Dual-encoder Teacher MSE 0.180 0.232
Teacher Margin MSE  0.251 0.299
Teacher KL 0.273 0.321
Teacher M3SE 0.261 0.308

Table 8. Re-ranking results on MSMARCO-Passage dev set, using a small-bert-6-128 model.

D. Additional experiments: impact of distillation
D.1. Impact of distillation: effect on score distributions

We have previously seen in Figure 8 that our proposed M>SE distillation strategy can improve the distribution of scores for
positives and negatives. Figure 13 shows the impact that such distillation has on the margins between positive and negatives,
compared to standard training on one-hot labels. The distilled model is seen to more confidently distinguish positives from
negatives, as evidenced by the margin distribution having more mass on larger values.

D.2. Impact of distillation: effect of student model architecture

The preceding distillation results have all employed a small-bert-6-768 model. It is of interest how sensitive the results are to
this choice. To study this, we report in Table 8 the re-ranking results on MSMARCO-Passage when using a small-bert-6-128
model. We observe largely consistent trends as before: distillation using our proposed losses can close the gap between CA
and DE model performance. Table 9 repeats this for a small-bert-2-768 model.

D.3. Impact of distillation: effect of number of documents in supervision

The results reported in the body employed a total of 20 documents per query for the softmax CE and M3SE methods. As
this involves significantly more information than the triplet data used, e.g., in training the margin MSE loss, it is of interest
to tease apart how much of the gains from the method come from this increased supervision, versus the loss itself. Table 10
studies the effect of varying the number of documents. We see that there are diminishing returns beyond a certain point:
using 100 documents yields qualitatively similar performance to using 20 documents. At the same time, there is a marked
difference in performance when using 2 documents versus 10.
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Model Supervision Loss MRR@10 nDCG@10
Cross-attention  One-hot Softmax CE  0.370 0.430
Dual-encoder One-hot Softmax CE  0.281 0.331
Dual-encoder Teacher MSE 0.259 0.313
Teacher Margin MSE  0.313 0.368
Teacher KL 0.311 0.370
Teacher M3SE 0.286 0.337

Table 9. Re-ranking results on MSMARCO-Passage dev set, using a small-bert-2-768 model.

# of documents Loss MRR@10 nDCG@10

2 Softmax CE  0.327 0.386
M?3SE 0.323 0.379

10 Softmax CE  0.333 0.391
M3SE 0.326 0.382

20 Softmax CE  0.338 0.396
M?3SE 0.349 0.406

100 Softmax CE  0.334 0.393
M3SE 0.325 0.381

Table 10. Sensitivity analysis of distillation losses to number of documents per sample.

E. Additional experiments: assorted
E.1. Impact of negative mining on re-ranking performance

We consider the value of adding additional negatives during DE model training. Following Karpukhin et al. (2020); Qu
et al. (2021), we consider the use of within-batch (also referred to as in-batch) and uniform negatives. For the latter, in each
training minibatch, we draw a sample of B,;,,; documents drawn uniformly at random from the entire set of documents; each
such document is treated as a negative document in the loss. For the former, from each training minibatch {(¢;, d;,y;)}2 ;,
we compute the set of all observed documents Do = UZ | UK | {d;;.}. For each sample (g, d;, y;), we then use each
element in Dy, — Ule{dik} as a negative document in the loss.

Table 11 summarises the results for the MSMARCO re-ranking task. We find that adding these negatives has a small
gain for the one-hot model performance. However, for the distilled objectives, there is limited gain (and sometimes even
a degradation) in performance. More study of this issue is warranted, but one hypothesis is that the re-ranking task is
inherently concerned with ranking the outputs of a BM25 model. These outputs are precisely used to construct the training
data used for distillation. It is thus possible that adding additional negatives — which are unlikely to appear as candidates
for re-ranking — do not bring significantly useful information.

‘We emphasise here also that the results reported are for the re-ranking, as opposed to retrieval task. For the latter, adding
within-batch and uniform negatives is intuitively and empirically valuable, as noted in Karpukhin et al. (2020); Qu et al.
(2021). For example, in training the one-hot DE model on the triplet data, the retrieval MRR@10 is 0.281. When
adding within-batch and uniform negatives, this increases to 0.314. Given that the re-ranking MRR @ 10 remains relatively
unchanged (0.312 versus 0.310), this is further indication of the re-ranking and retrieval objectives not being perfectly
aligned.
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Supervision Loss MRR@10
One-hot Softmax CE 0.310

+ negative mining  0.312
Teacher Margin MSE 0.334

+ negative mining  0.335
Teacher M3SE 0.349

+ negative mining  0.324
Teacher KL 0.346

+ negative mining  0.342

Table 11. Results of negative mining for DE models, on MSMARCO passage re-ranking task.

E.2. Full retrieval performance

Thus far, we have focussed on the re-ranking performance of all models, wherein the predictions from a BM25 retriever are
provided as input. This allows for the comparison of DE and CA models on an equal footing. One may however naturally
wonder how the proposed methods fare in the retrieval phase, wherein the models score all possible passages. Table 12
summarises the results in this setting on MSMARCO. We again see that the proposed distillation techniques offer strong
gains over standard one-hot training of the DE model, as well as existing distillation techniques. Note that the poor retrieval
performance of the MSE loss is a result of the model strongly overfitting to the teacher scores on the provided documents.

It is also of interest to analyse the generalization gap issue discussed in Section 3.2 in relation to dual encoder retrievers.
Note that it is not possible to compare the retrieval performance of CA and DE models directly, since CA models do not
support efficient nearest neighbor search. We therefore analyze the train-test gap for DE models during retrieval. We used a
DE model trained on MSMARCO, employing uniformly sampled negatives, akin to the ANCE method (Xiong et al., 2021).
Here, the test MRR @ 10 when performing full retrieval is 0.314, while the train MRR @10 is 0.364. This illustrates that the
DE retrievers too can have a significant generalization gap.

Recent works such as Qu et al. (2021), Ruiyang Ren & Wen (2021), Keshav Santhanam (2022) propose elegant hard-negative
mining schemes to significantly improve the performance of DE models for retrieval. Furthermore, Ni et al. (2021) shows
that using larger models can also boost the generalization of dual-encoder retrievers. Exploring these is of interest, though
we re-iterate that our primary goal is not on advancing the state-of-the-art for the MSMARCO dataset.

E.3. Analysis of TREC DL19 predictions

Table 1 suggests a notable gap in performance for our proposed RankDistil variant and the margin MSE loss (Hofstétter
et al., 2020a). Here, we take a closer look at the loss cases for our method. The TREC DL19 data comprises a total of 43
queries, each with between ~ 100 to 500 rated passages. Of these queries, the MRR @ 10 of the DE models trained with
margin MSE and softmax CE agree on 10. On the queries with disagreement, 6 cases favour margin MSE, and 4 cases
favour M3SE.

For the 6 queries where M3SE ostensibly underperforms, we inspect the top-5 scoring passages for both margin MSE and
softmax CE in Table 13 and 14. The cells shaded blue correspond to passages rated positive. Several other passages are
however seen to be equally valid answers to the source query. Indeed, we submit that in all cases, the predictions from
RankDistil are of at least the same quality as the margin MSE.
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Model MRR nDCG

Baselines: one-hot
BM25 (Robertson & Zaragoza, 2009)  0.194"  0.2411

ANCE (Xiong et al., 2021) 0.3307 —

Cross-attention BERT (12-layer) N/A N/A

Dual-encoder BERT (6-layer) 0.281 0.331
Distilled dual-encoder: prior work

MSE (Hofstitter et al., 2020a) 0.000*  0.000*

Margin MSE (Hofstitter et al., 2020a) 0.319  0.375

RankDistil-B (Reddi et al., 2021) 0.000*  0.000*
Distilled dual-encoder: this work

M3SE (4) 0.337 0.394

Softmax CE (1) 0.334  0.392

Table 12. Summary of full retrieval MRR @10 and nDCG @ 10 for all methods on MSMARCO Passage. We compare cross-attention,
dual-encoder, and distilled dual-encoder BERT models. We highlight the best performing DE based model. Distilling the dual-encoder
with our proposed techniques significantly improves performance over one-hot training and existing distillation techniques. Results
marked T are quoted from the corresponding reference, “N/A” are not applicable (e.g., the cross-attention model is not feasible to apply
for retrieval), and “— are not available from the reference. * See text for discussion.
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Query

Top scoring passages

Margin MSE

M3SE

who is robert gray

Who is Henry Gray? Henry Gray
is an African-American blues piano
player and singer. He has been
play...

Robert Gray was the Democratic can-
didate for governor of Mississippi in
the 2015 elections. Gray won. . .

Kenneth Gray (I) Kenneth Gray is
an actor, known for Love, Lies and
Murder (1991), Retribution (1987. ..
Kenneth Gray (I) Actor. Ken-
neth Gray is an actor, known for
Love, Lies and Murder (1991),
Retributio. . .

Robert Grey (born 21 April 1951 in
Marefield, Leicestershire) is an En-
glish musician best known as t. . .

Robert Grey (born 21 April 1951 in
Marefield, Leicestershire) is an En-
glish musician best known as t. . .

Who is Henry Gray? Henry Gray
is an African-American blues piano
player and singer. He has been
play...

Robert Gray was the Democratic can-
didate for governor of Mississippi in
the 2015 elections. Gray won. . .

Robert Gray. A surprise came on
the Democratic side in the race for
Mississippi Governor. Robert Gra. . .

William Thomas Gray. Billy Gray
was born on January 13, 1938 in Los
Angeles, California, USA as Will. . .

define visceral?

Definition of visceral. 1 : feltin or as
if in the internal organs of the body :
deep a visceral co. . .

Definition of Visceral. Visceral: Re-
ferring to the viscera, the internal or-
gans of the body, specifi. . .

Definition of visceral. 1 1 : felt in
or as if in the internal organs of the
body : deep a visceral. . .

Definition of Visceral. Visceral: Re-
ferring to the viscera, the internal or-
gans of the body, specifi. . .
Definition of visceral. 1 1 : felt in
or as if in the internal organs of the
body : deep a visceral. . .

Definition of Visceral. Visceral: Re-
ferring to the viscera, the internal or-
gans of the body, specifi. . .

Definition of Visceral. Visceral: Re-
ferring to the viscera, the internal or-
gans of the body, specifi. . .

Medical Definition of Visceral. Vis-
ceral: Referring to the viscera, the
internal organs of the body,. . .

Definition of visceral. 1 : feltin or as
if in the internal organs of the body :
deep a visceral co. . .

Define visceral: felt in or as if in the
internal organs of the body : deep;
not intellectual : inst. . .

what is the daily
life of thai people

T he following concepts are part of
Thai everyday life: or JAI YEN is
more a way . ..

The following concepts are part of
Thai everyday life: or JAI YEN is
more a way o. ..

The population of Thailand is ap-
proximately 67.5 million people,
with an annual growth rate of
about. . .

For the rapcore band, see Every Day
Life. Everyday life or Daily life or
Routine life is a phrase us. . .
Everyday life. Everyday life, daily
life or routine life comprises the
ways in which people typicall. ..

The Daily Life of a Thai Monk The
Sangha World in Thailand consists of
about 200,000 monks and 85,00. ..
An important thing in everyday life
is SANUK. Thai people love to have
fun together. SANUK can repre. . .

T he following concepts are part of
Thai everyday life: or JAI YEN is
more a way . ..

The following concepts are part of
Thai everyday life: or JAI YEN is
more a way o. . .

The population of Thailand is ap-
proximately 67.5 million people,
with an annual growth rate of
about. . .

Table 13. Comparison of top-5 scoring passages for margin MSE and softmax CE on TREC DL19 test set. The cells shaded blue
correspond to passages rated positive. Several other passages are however seen to be equally valid answers to the source query.
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Query

Top scoring passages

Margin MSE

M3SE

what are the three

The Three Percenters, formed in late
2008, are a loosely organized move-
ment centered around an obscu. . .

111% Club Merchandise & 111% Logo
Gear. The Three Percenters Club of-
ficial merchandise is designed a. . .

Rhodes has written supportively of
the Three Percenters, while at least
two participants carried the. . .

Try to understand that being a Three
Percenter (Threeper, 3%, 3 Percenter,
etc) is more of an idea t. . .
But this still doesnt answer the ques-
tion. So how do you know if you are
a Three Percenter? Try t. ..

Try to understand that being a Three
Percenter (Threeper, 3%, 3 Percenter,
etc) is more of an idea t. . .

But this still doesnt answer the ques-
tion. So how do you know if you are
a Three Percenter? Try t. ..

So let me see if I can help. In fact,
let me provide you with well over 50
ways to tell whether or n. . .

The Three Percenters, formed in late
2008, are a loosely organized move-
ment centered around an obscu. . .
111% Club Merchandise & I11% Logo
Gear. The Three Percenters Club of-
ficial merchandise is designed a. . .

percenters?

how are some
sharks warm
blooded

Most sharks are cold-blooded. Some,
like the Mako and the Great white
shark, are partially warmblood. . .
Most sharks are cold-blooded. Some,
like the Mako and the Great white
shark, are partially warmblood. . .

Are White Sharks warm-blooded or
cold-blooded? White sharks are part
of the fish family, so they mus. ..

Great white sharks are some of the
only warm blooded sharks. This al-
lows them to swim in colder wate. . .
These sharks can raise their temper-

ature about the temperature of the
water; they need to have oc. . .

Most sharks are cold-blooded. Some,
like the Mako and the Great white
shark, are partially warmblood. . .
Most sharks are cold-blooded. Some,
like the Mako and the Great white
shark, are partially warmblood. . .

Are White Sharks warm-blooded or
cold-blooded? White sharks are part
of the fish family, so they mus. . .

Great white sharks are some of the
only warm blooded sharks. This al-
lows them to swim in colder wate. . .
The Salmon Shark is one of
the warmest of the warm-bodied
sharks. Measurements of its epaxial
(upper. . .

what are the so-
cial determinants
of health

The social determinants of health are
the circumstances in which people
are born, grow up, live, wor. . .

Social determinants of health reflect
the social factors and physical condi-
tions of the environment . . .

The social determinants of health are
linked to the economic and social
conditions and their distrib. . .

Social determinants of health are con-
ditions in the environments in which
people are born, live, lea. . .

Determinants of health are factors

that contribute to a person’s current
state of health. These fact. ..

Social determinants of health reflect
the social factors and physical condi-
tions of the environment . . .

Social determinants of health are eco-
nomic and social conditions that in-
fluence the health of people. . .

Social determinants of health are con-
ditions in the environments in which
people are born, live, lea. . .

Back to Top. Social determinants of
health are conditions in the environ-
ments in which people are bo. ..

The social determinants of health are

the circumstances in which people
are born, grow up, live, wor. . .

Table 14. Comparison of top-5 scoring passages for margin MSE and softmax CE on TREC DL19 test set. The cells shaded blue
correspond to passages rated positive. Several other passages are however seen to be equally valid answers to the source query.



