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Abstract

In constrained reinforcement learning (RL), a
learning agent seeks to not only optimize the over-
all reward but also satisfy the additional safety,
diversity, or budget constraints. Consequently,
existing constrained RL solutions require sev-
eral new algorithmic ingredients that are notably
different from standard RL. On the other hand,
reward-free RL is independently developed in the
unconstrained literature, which learns the transi-
tion dynamics without using the reward informa-
tion, and thus naturally capable of addressing RL
with multiple objectives under the common dy-
namics. This paper bridges reward-free RL and
constrained RL. Particularly, we propose a simple
meta-algorithm such that given any reward-free
RL oracle, the approachability and constrained
RL problems can be directly solved with negligi-
ble overheads in sample complexity. Utilizing the
existing reward-free RL solvers, our framework
provides sharp sample complexity results for con-
strained RL in the tabular MDP setting, matching
the best existing results up to a factor of horizon
dependence; our framework directly extends to a
setting of tabular two-player Markov games, and
gives a new result for constrained RL with linear
function approximation.

1. Introduction
In a wide range of modern reinforcement learning (RL)
applications, it is not sufficient for the learning agents to
only maximize a scalar reward. More importantly, they
must satisfy various constraints. For instance, such con-
straints can be the physical limit of power consumption or
torque in motors for robotics tasks (Tessler et al., 2019);
the budget for computation and the frequency of actions
for real-time strategy games (Vinyals et al., 2019); and the
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requirement for safety, fuel efficiency and human comfort
for autonomous drive (Le et al., 2019). In addition, con-
straints are also crucial in tasks such as dynamic pricing
with limited supply (Besbes & Zeevi, 2009; Babaioff et al.,
2015), scheduling of resources on a computer cluster (Mao
et al., 2016), imitation learning (Syed & Schapire, 2007;
Ziebart et al., 2008; Sun et al., 2019), as well as RL with
fairness (Jabbari et al., 2017).

These huge demand in practice gives rise to a subfield—
constrained RL, which focuses on designing efficient algo-
rithms to find near-optimal policies for RL problems under
linear or general convex constraints. Most constrained RL
works directly combine the existing techniques such as value
iteration and optimism from unconstrained literature, with
new techniques specifically designed to deal with linear con-
straints (Efroni et al., 2020; Ding et al., 2021; Qiu et al.,
2020) or general convex constraints (Brantley et al., 2020;
Yu et al., 2021). The end product is a single new complex
algorithm which is tasked to solve all the challenges of learn-
ing dynamics, exploration, planning as well as constraints
satisfaction simultaneously. Thus, these algorithms need
to be re-analyzed from scratch, and it is highly nontrivial
to translate the progress in the unconstrained RL to the
constrained setting.

On the other hand, reward-free RL—proposed in Jin et al.
(2020a)—is a framework for the unconstrained setting,
which learns the transition dynamics without using the re-
ward. The framework has two phases: in the exploration
phase, the agent first collects trajectories from a Markov
decision process (MDP) and learns the dynamics without a
pre-specified reward function. After exploration, the agent
is tasked with computing near-optimal policies under the
MDP for a collection of given reward functions. This frame-
work is particularly suitable when there are multiple reward
functions of interest, and has been developed recently to
attack various settings including tabular MDPs (Jin et al.,
2020a; Zhang et al., 2020), linear MDPs (Wang et al., 2020;
Zanette et al., 2020), and tabular Markov games (Liu et al.,
2020).

Contribution. In this paper, we propose a simple ap-
proach to solve constrained RL problems by bridging the
reward-free RL literature and constrained RL literature. Our
approach isolates the challenges of constraint satisfaction,



and leaves the remaining RL challenges such as learning dy-
namics and exploration to reward-free RL. This allows us to
design a new algorithm which purely focuses on addressing
the constraints. Formally, we design a meta-algorithm for
RL problems with general convex constraints. Our meta-
algorithm takes a reward-free RL solver, and can be used
to directly solve the approachability problem, as well as
the constrained MDP problems using very small amount of
samples in addition to what is required for reward-free RL.

Our framework enables direct translation of any progress
in reward-free RL to constrained RL. Leveraging recent
advances in reward-free RL, our meta-algorithm directly
implies sample-efficient guarantees of constrained RL in
the settings of tabular MDP, linear MDP, as well as tabular
two-player Markov games. In particular,

• Tabular setting: Our work achieves sample complex-
ity of Õ(min{d, S}H4SA/ϵ2) for all three tasks of
reward-free RL for Vector-valued MDPs (VMDP), ap-
proachability, and RL with general convex constraints.
Here d is the dimension of VMDP or the number of
constraints, S,A are the number of states and actions,
H is the horizon, and ϵ is the error tolerance. It matches
the best existing results up to a factor of H .

• Linear setting: Our work provides new sample com-
plexity of Õ(d3linH6/ϵ2) for all three tasks above for
linear MDPs. To our best knowledge, this result is the
first sample-efficient result for approachability and also
constrained RL with general convex constraints in the
linear function approximation setting.

• Two-player setting: Our work extends to the setting of
tabular two-player vector-valued Markov games and
achieves low regret of α(T ) = O(ϵ/2 +

√
H2ι/T ) at

the cost of thisO(ϵ) bias in regret as well as additional
samples for preprocessing.

1.1. Related work

In this section, we review the related works on three tasks
studied in this paper—reward-free RL, approachability, and
constrained RL.

Reward-free RL. Reward-free exploration has been for-
malized by Jin et al. (2020a) for the tabular setting. Fur-
thermore, Jin et al. (2020a) proposed an algorithm which

1The presented sample complexities are all under the L2 nor-
malization conditions as studied in this paper. We comment that
the results of (Wu et al., 2020; Brantley et al., 2020; Yu et al., 2021)
are originally presented under L1/L∞ normalization conditions.
While the results in (Wu et al., 2020) can be directly adapted to
our setting as stated in the table, the other two results (Brantley
et al., 2020; Yu et al., 2021) will be no better than the displayed
results after adaptation.

has sample complexity Õ(poly(H)S2A/ϵ2) outputting ϵ-
optimal policy for arbitrary number of reward functions.
More recently, Zhang et al. (2020); Liu et al. (2020) pro-
pose algorithm VI-Zero with sharp sample complexity of
Õ(poly(H) log(N)SA/ϵ2) capable of handling N fixed re-
ward functions. Wang et al. (2020); Zanette et al. (2020)
further provide reward-free learning results in the setting
of linear function approximation, in particular, Wang et al.
(2020) guarantees to find the near-optimal policies for an ar-
bitrary number of (linear) reward functions within a sample
complexity of Õ(poly(H)d3lin/ϵ

2). All results mentioned
above are for scalar-valued MDPs. For the vector-valued
MDPs (VMDPs), very recent work of Wu et al. (2020)
designs a reward-free algorithm with sample complexity
guarantee Õ(poly(H)min{d, S}SA/ϵ2) in the tabular set-
ting. Compared to Wu et al. (2020), our reward-free algo-
rithms for VMDP is adapted from the VI-Zero algorithm
presented in Liu et al. (2020); While achieving the same
sample complexity, it allows arbitrary planning algorithms
in the planning phase.

Approachability and Constrained RL Approachabil-
ity and Constrained RL are two related tasks involv-
ing constraints. Inspired by Blackwell approachabil-
ity (Blackwell et al., 1956), recent work of Miryoosefi
et al. (2019) introduces approachability task for VMDPs.
However, the proposed algorithm does not have poly-
nomial sample complexity guarantees. More recently,
Yu et al. (2021) gave a new algorithm for approachabil-
ity for both VMDPs and vector-valued Markov games
(VMGs). Yu et al. (2021) provides regret bounds for the
proposed algorithm resulting in sample complexity guar-
antees of Õ(poly(H)min{d, S}SA/ϵ2) for approachabil-
ity in VMDPs and Õ(poly(H)min{d, S}SAB/ϵ2) for ap-
proachability in VMGs.

Sample-efficient exploration in constrained reinforcement
learning has been recently studied in a recent line of work
by Brantley et al. (2020); Qiu et al. (2020); Efroni et al.
(2020); Ding et al. (2021); Singh et al. (2020). All these
works are also limited to linear constraints except Brant-
ley et al. (2020) which extends their approach to gen-
eral convex constraints achieving sample complexity of
Õ(poly(H)d2S2A/ϵ2) . However, Brantley et al. (2020)
requires solving a large-scale convex optimization sub-
problem. The best result for constrained RL with general
convex constraints can be achieved by the approachability-
based algorithm in Yu et al. (2021) obtaining sample com-
plexity of Õ(poly(H)min{d, S}SA/ϵ2). Technically, our
meta-algorithm is based on the Fenchel’s duality, which is
similar to Yu et al. (2021). In contrast, Yu et al. (2021) does
not use reward-free RL, and is thus different from our re-
sults in terms of algorithmic approaches. Consequently, Yu
et al. (2021) does not reveal the deep connections between



Table 1: Sample complexity for algorithms to solve reward-free RL for VMDP (Definition 2.1), approachability (Definition
2.3) and CMDP with general convex constraints (Definition 2.4).1

Algorithm Reward-free Approachability CMDP

Tabular

Wu et al. (2020) Õ(min{d, S}H4SA/ϵ2) - -

Brantley et al. (2020) - - Õ(d2H3S2A/ϵ2)

Yu et al. (2021) - Õ(min{d, S}H3SA/ϵ2) Õ(min{d, S}H3SA/ϵ2)

This work Õ(min{d, S}H4SA/ϵ2) Õ(min{d, S}H4SA/ϵ2) Õ(min{d, S}H4SA/ϵ2)

Linear This work Õ(d3linH6/ϵ2) Õ(d3linH6/ϵ2) Õ(d3linH6/ϵ2)

reward-free RL and constrained RL, which is one of the
main contribution of this paper. In addition, Yu et al. (2021)
does not address the function approximation setting.

Finally, we note that among all results mentioned above,
only Ding et al. (2021) has considered models beyond tab-
ular setting in the context of constrained RL. The model
studied in Ding et al. (2021) is known as linear mixture
MDPs which is different and incomparable to the linear
MDP models considered in this paper. We further comment
that Ding et al. (2021) can only handle linear constraints for
CMDP, while our results is capable of solving CMDPs with
general convex constraints.

2. Preliminaries and problem setup
We consider an episodic vector-valued Markov decision
process (VMDP) specified by a tupleM = (S,A, H,P, r),
where S is the state space, A is the action space, H is the
length of each episode, P = {Ph}Hh=1 is the collection of
unknown transition probabilities with Ph(s

′ | s, a) equal
to the probability of transiting to s′ after taking action a in
state s at the hth step, and r = {rh : S × A → B(1)}Hh=1

is a collection of unknown d-dimensional return functions,
where B(r) is the d-dimensional Euclidean ball of radius r
centered at the origin.

Interaction protocol. In each episode, agent starts at
a fixed initial state s1. Then, at each step h ∈ [H], the
agent observes the current state sh, takes action ah, receives
stochastic sample of the return vector rh(sh, ah), and it
causes the environment to transit to sh+1 ∼ Ph(· | sh, ah).
We assume that stochastic samples of the return function are
also in B(1), almost surely.

Policy and value function. A policy π of an agent is
a collection of H functions {πh : S → ∆(A)}Hh=1 that
map states to distribution over actions. The agent following
policy π, picks action ah ∼ πh(sh) at the hth step. We
denote Vπ

h : S → B(H) as the value function at step h for

policy π, defined as

Vπ
h(s) := Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s

]
.

Similarly, we denote Qπ
h : S ×A → B(H) as the Q-value

function at step h for policy π, where

Qπ
h(s, a) := Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s, ah = a

]
.

Scalarized MDP. For a VMDPM and θ ∈ B(1), we de-
fine scalar-valued MDP Mθ = (S,A, H,P, rθ), where
rθ = {⟨θ, rh⟩ : S × A → [−1, 1]}Hh=1. We denote
V π
h (·;θ) : S → [−H,H] as the scalarized value function at

step h for policy π, defined as

V π
h (s;θ) := Eπ

[
H∑

h′=h

⟨θ, rh′(sh′ , ah′)⟩ | sh = s

]
= ⟨θ,Vπ

h(s)⟩.

Similarly, we denote Qπ
h(·;θ) : S × A → [−H,H] as the

scalarized Q-value function at step h for policy π, where

Qπ
h(s, a;θ) := Eπ

[
H∑

h′=h

⟨θ, rh′(sh′ , ah′)⟩ | sh, ah = s, a

]
= ⟨θ,Qπ

h(s, a)⟩.

For a fixed θ ∈ Rd, there exists an optimal policy π⋆
θ,

maximizing value for all states (Puterman, 2014); i.e.,
V

π⋆
θ

h (s;θ) = supπ V
π
h (s;θ) for all s ∈ S and h ∈ [H]. We

abbreviate V π⋆
θ (·;θ) and Qπ⋆

θ (·;θ) as V ⋆(·;θ) and Q⋆(·;θ)
respectively.

2.1. Reward-free exploration (RFE) for VMDPs

The task of reward-free exploration (formalized by Jin et al.
(2020a) for tabular MDPs) considers the scenario in which
the agents interacts with the environment without guidance
of reward information. Later, the reward information is



revealed and the agents is required to compute the near-
optimal policy. In this section, we describe its counterpart
for VMDPs 1. Formally, it consists of two phases:

Exploration phase. In the exploration phase, agent ex-
plores the unknown environment without observing any
information regarding the return function. Namely, at
each episode the agent executes policies to collect sam-
ples. The policies can depend on dynamic observations
{skh, akh}(k,h)∈[K]×[H] in the past episodes, but not the re-
turn vectors.

Planning phase. In the planning phase, the agent no
longer interacts with the environment; however, stochas-
tic samples of the d-dimensional return function for
the collected episodes is revealed to the agent, i.e.
{rkh}(k,h)∈[K]×[H]. Based on the episodes collected during
the exploration phase, the agent outputs the near-optimal
policies ofMθ given an arbitrary number of vectors θ ∈
B(1).
Definition 2.1 (Reward-free algorithm for VMDPs). For
any ϵ, δ > 0, after collecting mRFE(ϵ, δ) episodes during
the exploration phase, with probability at least 1 − δ, the
algorithm satisfies

∀θ ∈ B(1) : V ⋆
1 (s1;θ)− V πθ

1 (s1;θ) ≤ ϵ, (1)

where πθ is the output of the planning phase for vector θ as
input. The function mRFE determines the sample complexity
of the RFE algorithm.
Remark 2.2. Standard reward-free setup concerns MDPs
with scalar reward, and requires the algorithm to find the
near-optimal policies for N different prespecified reward
functions in the planning phase, where the sample complex-
ity typically scales with logN . This type of results can
be adapted into a guarantee in the form of (1) for VMDP
by ϵ-covering of θ over B(1) and a modified concentration
arguments (see the proofs of Theorem 4.1 and Theorem 6.4
for more details).

2.2. Approachability for VMDPs

In this section we provide the description for the approacha-
bility task for VMPDs introduced by Miryoosefi et al. (2019).
Given a vector-valued Markov decision process and a con-
vex target set C, the goal is to learn a policy whose expected
cumulative return vector lies in the target set (akin to Black-
well approachability in single-turn games, Blackwell et al.
1956). We consider the agnostic version of this task which is
more general since it doesn’t need to assume that such policy
exists; instead, the agent learns to minimize the Euclidean
distance between expected return of the learned policy and
the target set.

1RFE for VMDPs is also called preference-free exploration
problem in Wu et al. (2020)

Definition 2.3 (Approachability algorithm for VMDPs). For
any ϵ, δ > 0, after collecting mAPP(ϵ, δ) episodes, with
probability at least 1− δ, the algorithm satisfies

dist(Vπout

1 (s1), C) ≤ min
π

dist(Vπ
1 (s1), C) + ϵ, (2)

where πout is the output of the algorithm and dist(x, C)
is the Euclidean distance between point x and set C. The
function mAPP determines the sample complexity of the
algorithm.

2.3. Constrained MDP (CMDP) with general convex
constraints

In this section we describe constrained Markov decision
processes (CMDPs) introduced by Altman (1999). The
goal of this setting is to minimize cost while satisfying
some linear constraints over consumption of d resources
(resources are akin to r in our case). Although, the original
definition only allows for linear constraints, we consider
the more general case of arbitrary convex constraints. More
formally, consider a VMDPM, a cost function c = {ch :
S ×A → [−1, 1]}Hh=1, and a convex constraint set C. The
agent goal is to compete against the following benchmark:

min
π

Cπ
1 (s1) s.t. Vπ

1 (s1) ∈ C,

where Cπ
h = Eπ

[∑H
h′=h ch′(sh′ , ah′) | sh = s

]
.

Definition 2.4 (Algorithm for CMDP). For any ϵ, δ > 0,
after collecting mCMDP(ϵ, δ) episodes, with probability at
least 1− δ, the algorithm satisfiesCπout

1 (s1)− min
π:Vπ

1 (s1)∈C
Cπ

1 (s1) ≤ ϵ

dist
(
Vπout

1 (s1), C
)
≤ ϵ,

(3)

where πout is the output of the algorithm. The function
mCMDP determines the sample complexity of the algorithm.

As also mentioned in the prior works (Miryoosefi et al.,
2019; Yu et al., 2021), we formally show in the follow-
ing theorem that approachability task (Definition 2.3) can
be considered more general compared to CMDP (Defini-
tion 2.4); Namely, given any algorithm for the former we
can obtain an algorithm for the latter by incurring only extra
logarithmic factor and a negligible overhead. The idea is to
incorporate cost into the constraint set C and perform an (ap-
proximate) binary search over the minimum attainable cost.
The reduction and the proof can be found in Appendix A.

Theorem 2.5. Given any approachability algorithm (Defini-
tion 2.3) with sample complexity m(d+1)

APP in dimension d+1,
we can design an algorithm for CMDP (Definition 2.4) with
sample complexity m

(d)
CMDP in dimension d, satisfying

m
(d)
CMDP(ϵ, δ) ≤ Õ

(
m

(d+1)
APP

(
ϵ
6 ,

ϵδ
12H

)
+ H2 log[dH/ϵδ]

ϵ2

)
.



3. Meta-algorithm for VMDPs
In this section, equipped with preliminaries discussed in
Section 2, we are ready to introduce our main algorithmic
framework for VMDPs bridging reward-free RL and ap-
proachability.

Before introducing the algorithm, we explain the intuition
behind it. By Fenchel’s duality (similar to Yu et al. 2021),
one can show that

min
π

dist(Vπ
1 (s1), C)

= min
π

max
θ∈B(1)

[
⟨θ,Vπ

1 (s1)⟩ −max
x′∈C
⟨θ,x′⟩

]
.

It satisfies the minimax conditions since it’s concave in θ
and convex in π (by allowing mixture policies); therefore,
minimax theorem (Neumann, 1928) implies that we can
equivalently solve

max
θ∈B(1)

min
π

[
⟨θ,Vπ

1 (s1)⟩ −max
x′∈C
⟨θ,x′⟩

]
.

This max-min form allows us to use general technique of
Freund & Schapire (1999) for solving a max-min by re-
peatedly playing a no-regret online learning algorithm as
the max-player against best-response for the min-player. In
particular, for a fixed θ, minimizing over π is equivalent
to finding optimal policy for scalarized MDP M−θ. To
achieve this, we can utilize a reward-free oracle as in Defini-
tion 2.1. On the other hand for θ-player we are able to use
online gradient descent (Zinkevich, 2003). By combining
ideas above, we obtain Algorithm 1.
Theorem 3.1. There exists an absolute constant c, such that
for any choice of RFE algorithm (Definition 2.1) and for
any ϵ ∈ (0, H] and δ ∈ (0, 1], if we choose

T ≥ c
(
H2ι/ϵ2),

K ≥ mRFE(ϵ/2, δ/2),

ηt =
√

1/(H2t),

where ι = log(d/δ); then, with probability at least 1 − δ,
Algorithm 1 outputs an ϵ-optimal policy for the approach-
ability (Equation 2). Therefore, we have mAPP(ϵ, δ) ≤
O(mRFE(ϵ/2, δ/2) +H2ι/ϵ2).

Theorem 3.1 shows that given any reward-free algorithm,
Algorithm 1 can solve the approachability task with negli-
gible overhead. The proof for Theorem 3.1 is provided in
Appendix B. Equipped with this theorem, since we have
already shown the connection between approachability and
constrained RL in Theorem 2.5, any results for RFE can be
directly translated to results for constrained RL.

4. Tabular VMDPs
In this section, we consider tabular VMDPs; namely, we
assume that |S| ≤ S and |A| ≤ A. Utilizing prior work

on tabular setting, we describe our choice of reward-free
algorithm.

In the exploration phase, we use VI-Zero proposed by (Liu
et al., 2020). It can be seen as UCB-VI (Azar et al., 2017)
with zero reward. Intuitively, the value function computed
in the algorithm measures the level of uncertainty and in-
centivizes the greedy policy to visit underexplored states.
The output of VI-Zero is P̂out, which is an estimation of the
transition dynamics.

In the planning phase, given θ ∈ B(1) we can use
any planning algorithm (e.g., value iteration) for M̂θ =
(S,A, H, P̂out, ⟨θ, r̂⟩) where r̂ is empirical estimate of r
using collected samples {rkh}.

The following theorem state theoretical guarantees for tabu-
lar VMDPs. Proof of Theorem 4.1 and more details can be
found in Appendix C.
Theorem 4.1. For tabular VMDP, we have a reward-
free algorithm (Definiton 2.1) with mRFE(ϵ, δ) ≤
O(min{d, S}H4SAι/ϵ2 + H3S2Aι2/ϵ), an algorithm
for approachability (Definition 2.3) with mAPP(ϵ, δ) ≤
O(min{d, S}H4SAι/ϵ2 + H3S2Aι2/ϵ) , and an algo-
rithm for CMDP (Definition 2.4) with mCMDP(ϵ, δ) ≤
O(min{d, S}H4SAι2/ϵ2 +H3S2Aι3/ϵ).

The reward-free algorithm with stated sample complexity
in Theorem 4.1 is the VI-Zero algorithm (Algorithm 5 in
Appendix C). Its sample complexity result is obtained by
adapting the results in Liu et al. (2020) for scalar-valued
MDPs to the settings of VMDPs in this paper. The algo-
rithms for approachability and CMDP is based on pluging
in VI-Zero into our meta algorithms, and the corresponding
sample complexity results are obtained by applying Theo-
rem 2.5 and our main result—Theorem 3.1.

Theorem 4.1 shows that the sample complexity of all
three tasks are connected—the leading terms are all
Õ(min{d, S}H4SA/ϵ2) which differ by only logarith-
mic factors. In particular, our sample complexity for the
reward-free exploration (Definition 2.1) in the tabular setting
matches the best result in Wu et al. (2020). It further shows
that we can easily design a sample-efficient for approacha-
bility (Definition 2.3) and CMDP with general convex con-
straints (Definition 2.4) in the tabular setting, with sample
complexity matching the best result in Yu et al. (2021) up
to a single factor of H . 2 Therefore, our framework while
being modular and enabling direct translation of reward-free
RL to constrained RL, achieves sharp sample complexity
guarantees. We comment that due to reward-free nature
of our approach unlike Yu et al. (2021), we can no longer
provide regret guarantees.

2This H factor difference is due the Bernstein-type bonus used
in Yu et al. (2021), which can not be adapted to the reward-free
setting.



Algorithm 1 Meta-algorithm for VMDPs

1: Input: Reward-Free Algorithm RFE for VMDPs (as in Definiton 2.1), Target Set C
2: Hyperparameters: learning rate ηt

3: Initialize: run exploration phase of RFE for K episodes
4: Set: θ1 ∈ B(1)
5: for t = 1, 2, . . . , T do
6: Obtain near optimal policy forM−θt :

πt ← output of planning phase of RFE for preference vector −θt

7: Estimate Vπt

1 (s1) using one episode:

Run πt for one episode and let v̂t be the sum of vectorial returns

8: Apply online gradient ascent update for utility function ut(θ) = ⟨θ, v̂t⟩ −maxx∈C⟨θ,x⟩:

θt+1 ← ΓB(1)[θ
t + ηt(v̂t − argmaxx∈C⟨θt,x⟩)]

where ΓB(1) is the projection into Euclidean unit ball
9: end for

10: Let πout be uniform mixture of {π1, . . . , πT }
11: Return πout

5. Linear function approximation: Linear
VMDPs

In this section we consider the setting of linear function
approximation and allow S and A to be infinitely large. We
assume that agent has access to a feature map ϕ : S ×
A → Rdlin and the return function and transitions are linear
functions of the feature map. We formally define the linear
VMDPs in Assumption 5.1 which adapts the definition of
linear MDPs (Jin et al., 2020b) for VMDPS; namely, they
coincide for the case of d = 1.

Assumption 5.1 (Linear VMDP). A VMDP M =
(S,A, H,P, r) is said to be a linear with a feature map
ϕ : S ×A → Rdlin , if for any h ∈ [H]:

1. There exists dlin unknown (signed) measures µh =

{µ(1)
h , . . . , µ

(dlin)
h } over S such that for any (s, a) ∈

S ×A we have Ph(· | s, a) = ⟨µ(·),ϕ(s, a)⟩.

2. There exists an unknown matrix Wh ∈ Rd×dlin such
that for any (s, a) ∈ S × A we have rh(s, a) =
Whϕ(s, a).

Similar to Jin et al. (2020b), we assume that ∥ϕ(s, a)∥ ≤ 1
for all (s, a) ∈ S × A, ∥µh(S)∥ ≤

√
dlin for all h ∈ [H],

and ∥Wh∥ ≤
√
dlin for all h ∈ [H].

Wang et al. (2020) has recently proposed a sample-efficient
algorithm for reward-free exploration in linear MDPs. Uti-
lizing that algorithm and tailoring it for our setting, we can

obtain the following theoretical guarantee. The algorithm
and the proof can be found in Appendix D.
Theorem 5.2. For linear VMDPs (Assumption 5.1), we have
a reward-free algorithm (Definiton 2.1) with mRFE(ϵ, δ) ≤
O(d3linH6ι2/ϵ2), an approachability algorithm (Defini-
tion 2.3) with mAPP(ϵ, δ) ≤ O(d3linH6ι2/ϵ2) and an al-
gorithm for CMDP (Definition 2.4) with mCMDP(ϵ, δ) ≤
O(d3linH6ι3/ϵ2).

The reward-free algorithm with stated sample complexity
in Theorem 5.2 is the Algorithm 6 in Appendix D. it is a
modified version of the reward-free algorithm introduced
by Wang et al. (2020). Its sample complexity result is again
obtained by adapting the results in Wang et al. (2020) for
scalar-valued MDPs to the settings of VMDPs in this pa-
per. The algorithms for approachability and CMDP is based
on plugging in this reward-free algorithm into our meta
algorithms, and the corresponding sample complexity re-
sults are obtained by applying Theorem 2.5 and our main
result—Theorem 3.1.

Theorem 5.2 provides a new sample complexity result
of Õ(d3linH6/ϵ2) for the reward-free exploration (Defini-
tion 2.1) in the linear setting (Assumption 5.1). It further
provides a new sample complexity result of Õ(d3linH6/ϵ2)
for both approachability (Definition 2.3) and CMDP (Defini-
tion 2.4) in the linear setting (Assumption 5.1). To best our
knowledge, this is the first sample-efficient result for con-
strained RL problems with linear function approximation
and general convex constraints.



6. Vector-valued Markov games
6.1. Model and preliminaries

Similar to Section 2, we consider an episodic vector-
valued Markov game (VMG) specified by a tuple G =
(S,A,B, H,P, r), where A and B are the action spaces
for the min-player and max-player, respectively. The d-
dimensional return function r and the transition probabil-
ities P, now depend on the current state and the action of
both players.

Interaction protocol. In each episode, we start at a fixed
initial state s1. Then, at each step h ∈ [H], both players
observe the current state sh, take their own actions ah ∈ A
and bh ∈ B simultaneously, observe stochastic sample of
the return vector rh(sh, ah, bh) along with their opponent’s
action, and it causes the environment to transit to sh+1 ∼
Ph(· | sh, ah, bh). We assume that stochastic samples of the
return function are also in B(1), almost surely.

Policy and value function. A policy µ of the min-player
is a collection of H functions {µh : S → ∆(A)}Hh=1. Simi-
larly, a policy ν of the max-player is a collection of H func-
tions {νh : S → ∆(B)}Hh=1. If the players are following µ
and ν, we have ah ∼ µ(·|s) and bh ∼ ν(·|s) at the hth step.
We use Vµ,ν

h : S → B(H) and Qµ,ν
h : S ×A×B → B(H)

to denote the value function and Q-value function at step h
under policies µ and ν.

Scalarized markov game and Nash equilibrium. For
a VMG G and θ ∈ B(1), we define scalar-valued Markov
game Gθ = (S,A, H,P, rθ), where rθ = {⟨θ, rh⟩ : S ×
A×B → [−1, 1]}Hh=1. We use V µ,ν

h (·;θ) and Qµ,ν
h (·, ·, ·;θ)

to denote value function and Q-value function of Gθ , respec-
tively. Note that we have V µ,ν

h (s;θ) = ⟨θ,Vµ,ν
h (s)⟩ and

Qµ,ν
h (s, a, b;θ) = ⟨θ,Qµ,ν

h (s, a, b)⟩.

For any policy of the min-player µ, there exists
a best-response policy ν†(µ) of the max-player; i.e.
V

µ,ν†(µ)
h (s;θ) = maxν V

µ,ν
h (s;θ) for all (s, h) ∈ S× [H].

We use V µ,† to denote V µ,ν†(µ). Similarly, we can de-
fine µ†(ν) and V †,ν . We further know (Filar & Vrieze,
2012) that there exist policies (µ⋆, ν⋆), known as Nash equi-
librium, satisfying the following equation for all (s, h) ∈
S × [H]:

min
µ

max
ν

V µ,ν
h (s;θ)

= V µ⋆,†
h (s;θ) = V µ⋆,ν⋆

h (s;θ) = V †,ν⋆

h (s;θ)

= max
ν

min
µ

V µ,ν(s;θ)

In words, it means that no player can gain anything by
changing her own policy. We abbreviate V µ⋆,ν⋆

h and Qµ⋆,ν⋆

h

as V ⋆
h and Q⋆

h.

6.1.1. REWARD-FREE EXPLORATION (RFE) FOR VMGS

Similar to Section 2.1, we can define RFE algorithm for
VMGs. Similarly, it consists of two phases. In the explo-
ration phase, it explores the environment without guidance
of return function. Later, in the planning phase, given any
θ ∈ B(1), it requires to output near optimal Nash equilib-
rium for Gθ.

Definition 6.1 (RFE algorithm for VMGs). For any ϵ, δ > 0,
after collecting mRFE(ϵ, δ) episodes during the exploration
phase, with probability at least 1− δ, the algorithm for all
θ ∈ B(1), satisfies

V µθ,†
1 (s1;θ)− V †,νθ

1 (s1;θ) ≤ ϵ

where (µθ, νθ) is the output of the planning phase for vec-
tor θ as input. The function mRFE determines the sample
complexity of the RFE algorithm.

6.1.2. BLACKWELL APPROACHABILITY FOR VMGS

We assume we are given a VMG G and a target set C. The
goal of the min-player is for the return vector to lie in the set
C while max-player wants the opposite. For the two-player
vector-valued games it can be easily shown that the minimax
theorem does no longer hold (see Section 2.1 of Abernethy
et al. 2011). Namely, if for every policy of the max-player
we have a response such that the return is in the set, we
cannot hope to find a single policy for the min-player so that
for every policy of the max-player the return vector lie in the
set. However, approaching the set on average is possible.

Definition 6.2 (Blackwell approachability). We say the
min-player is approaching the target C with rate α(T ), if for
arbitrary sequence of max-player polices ν1, . . . , νT , we
have

dist( 1
T

∑T
t=1 V

µt,νt

1 (s1), C) ≤ β + α(T ),

where β = maxν minµ dist(V
µ,ν
1 (s1), C).

6.2. Meta-algorithm for VMGs

Similar to Section 3, we introduce our main algorithmic
framework for VMGs bridging reward-free algorithm and
Blackwell approachability in VMGs. The pseudo-code is
displayed in Algorithm 2 and the theoretical guarantees
are provided in Theorem 6.3. The proof can be found in
Appendix E.

Theorem 6.3. For any choice of RFE algorithm (Defi-
nition 6.1) and for any ϵ ∈ (0, H] and δ ∈ (0, 1], if
we choose K = mRFE(ϵ/2, δ/2) and ηt =

√
1/H2t ;

then, with probability at least 1 − δ, the min-player in
Algorithm 2, satisfies Definition 6.2 with rate α(T ) =
O(ϵ/2 +

√
H2ι/T ) where ι = log(d/δ). Therefore to

obtain ϵ-optimality, the total sample complexity scales with
O(mRFE(ϵ/2, δ/2) +H2ι/ϵ2).



Algorithm 2 Meta-algorithm for VMGs

1: Input: Reward-Free Algorithm RFE for VMG (as in Definition 6.1), Target Set C
2: Hyperparameters: learning rate ηt

3: Initialize: run exploration phase of RFE for K episodes
4: Set: θ1 ∈ B(1)
5: for t = 1, 2, . . . , T do
6: Obtain near optimal Nash equilibrium for Gθt :

(µt, ωt)← output of planning phase of RFE for the vector θt as input

7: Play µt for one episode:

Play µt against max-player playing arbitrary policy νt for one episode
and let v̂t be the sum of vectorial returns

8: Apply online gradient ascent update for utility function ut(θ) = ⟨θ, v̂t⟩ −maxx∈C⟨θ,x⟩:

θt+1 ← ΓB(1)[θ
t + ηt(v̂t − argmaxx∈C⟨θt,x⟩)]

where ΓB(1) is the projection into Euclidean unit ball
9: end for

6.3. Tabular VMGs

In this section, we consider tabular VMDPs; namely, we
assume that |S| ≤ S, |A| ≤ A, and |B| ≤ B. Similar to
Section 4, by utilizing VI-Zero (Liu et al., 2020) we can
have the following theoretical guarantees. The algorithm
and the proof can be found in Appendix E.

Theorem 6.4. There exists a reward-free algorithm for tab-
ular VMGs and a right choice of hyperparameters that sat-
isfies Definition 6.1 with sample complexity mRFE(ϵ, δ) ≤
O(min{d, S}H4SABι/ϵ2 + H3S2ABι2/ϵ), where ι =
log[dSABH/(ϵδ)].

The theorem provides a new sample complexity result of
Õ(min{d, S}H4SABι/ϵ2) for reward-free exploration in
VMGs (Definition 6.1). It immediately follows from The-
orem 6.4 and Theorem 6.3 that we can achieve total sam-
ple complexity of Õ(min{d, S}H4SABι/ϵ2) for Black-
well approachability in VMGs (Definition 6.2). Our rate
for α(T ) scales with Õ(

√
poly(H)/T ) while the results

in (Yu et al., 2021) has the rate of α(T ) scaling with
Õ(

√
poly(H)min{d, S}SA/T ). However, we require ini-

tial phase of self-play for K = O(mRFE) episodes which is
not needed by Yu et al. (2021).

7. Conclusion
This paper provides a meta algorithm that takes a reward-
free RL solver, and convert it to an algorithm for solving
constrained RL problems. Our framework enables the di-

rect translation of any progress in reward-free RL to con-
strained RL setting. Utilizing existing reward-free solvers,
our framework provides sharp sample complexity results
for constrained RL in tabular setting (matching best existing
results up to factor of horizon dependence), new results for
the linear function approximation setting. Our framework
further extends to tabular two-player vector-valued Markov
games for solving Blackwell approachability problem.
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A. Proof for Section 2
In this section we provide proofs and missing details for Section 2.

A.1. Proof of Theorem 2.5

Consider the following algorithm which is performing an approximate version of binary search on the optimal cost. We use
⊕ to denote vector concatenation.

Algorithm 3 Solving Constrained RL Using Approachability

1: Input: approachability algorithm APP
2: Hyperparameters: ϵ′ > 0
3: Initialize: L← 0 and R← H
4: Define the augmented VMDP model

rh(s, a) = rh(s, a)⊕ ch(s, a) ∀h ∈ [H]
M = {S,A, H,P, r}

5: for iteration t = 1, 2, . . . , T do
6: Set mid = (R+ L)/2
7: Define the target set for approachability

Ct = {x⊕ y | x ∈ C, y ≤ mid}

8: πt ← output of APP algorithm for the modelM with target set Ct using KAPP episodes.

9: vt ← estimate V
πt

1 (s1) using Kest episodes, where V is the value function forM.
10: if dist(vt, C) ≤ ϵ′ then
11: R← mid
12: else
13: L← mid
14: end if
15: end for
16: Return πT

Theorem A.1. For any choice of approachability algorithm (as in Definiton 2.3) and for any ϵ, δ > 0, if we choose

T = O
[
log(H/ϵ)

]
, KAPP = mAPP(ϵ, ϵδ/(2H)), Kest = O

[H2 log(dH/ϵδ)

ϵ2
]
, ϵ′ = O(ϵ)

then, with probability at least 1− δ, Algorithm 3 satisfiesCπT

1 (s1)− min
π:Vπ

1 (s1)∈C
Cπ

1 (s1) ≤ O(ϵ),

dist
(
VπT

1 (s1), C
)
≤ O(ϵ).

Proof of Theorem A.1. By definition 2.3, Lemma F.1, and union bound; with probability at least 1 − δ, we have for all
t ∈ [T ]

∥vt −V
πt

1 (s1)∥ ≤ ϵ,

dist(V
πt

1 (s1), C) ≤ min
π

dist(V
π

1 (s1), C) + ϵ.
(4)

We use Lt, Rt, and midt to denote values of L, R, and mid during tth iteration. By choice of T we have

RT − LT ≤ ϵ. (5)

Define c∗ = minπ:Vπ
1 (s1)∈C C

π
1 (s1) and let π∗ = argminπ:Vπ

1 (s1)∈C C
π
1 (s1). Let’s consider these cases



• Case mid ≥ c∗: It’s easy to see that minπ dist(V
π

1 (s1), C) = 0, therefore by second inequality in Equation 4 we have

dist(V
πt

1 (s1), C) ≤ ϵ.

Since distance function is 1-Lipschitz with respect to Euclidean norm, by first inequality in Equation 4, we have

dist(vt, C) ≤ ϵ+ ϵ = 2ϵ

• Case mid ≤ c∗ − 3ϵ: It’s easy to see that minπ dist(V
π

1 (s1), C) ≥ 3ϵ, therefore by definition of minimum we have

dist(V
πt

1 (s1), C) ≥ 3ϵ.

Since distance function is 1-Lipschitz with respect to Euclidean norm, by first inequality in Equation 4, we have

dist(vt, C) ≥ 3ϵ− ϵ = 2ϵ.

What we showed above implies that if we set ϵ′ = 2ϵ, in all iterations t ∈ [T ] we have

Lt ≤ c∗, Rt ≥ c∗ − 3ϵ.

Combining with Equation 5, we get
c∗ − 4ϵ ≤ LT ≤ midT ≤ RT ≤ c∗ + ϵ

Therefore we have,
max{CπT

1 (s1)−midT ,dist
(
VπT

1 (s1), C
)
}

≤ dist(V
πT

1 (s1), C)
≤ min

π
dist(V

π

1 (s1), C) + ϵ

≤ dist(V
π∗

1 (s1), C) + ϵ

≤ max{c∗ −midT , 0}+ ϵ

≤ c∗ − (c∗ − 4ϵ) + ϵ = 5ϵ

It implies {
dist

(
VπT

1 (s1), C
)
≤ 5ϵ

CπT

1 (s1) ≤ 5ϵ+midT ≤ c∗ + 6ϵ

Rescaling ϵ to ϵ/6 completes the proof.

Proof of Theorem 2.5. Using Theorem A.1 the claim follows immediately: total sample complexity of Algorithm 3 is

T (KAPP +Kest) ≤ log(1/ϵ) · O
(
mAPP(ϵ, ϵδ/H) +

H2 log[d/ϵδ]

ϵ2

)
.

B. Proof for Section 3
In this section we provide proofs and missing details for Section 3.

B.1. Fenchel duality

Consider a convex and closed function f : dom(f)→ R. We define the dual function f∗, called Fenchel conjugate, as

f∗(θ) = max
x∈dom(f)

[
⟨θ,x⟩ − f(x)

]
.



If function f is 1-Lipschitz and dom(f) = B(H); then, the conjugate function f∗ is H-Lipschitz with dom(f∗) = B(1)
(Corollary 13.3.3 in Rockafellar 2015). Therefore, Fenchel daulity implies

f(x) = max
θ∈B(1)

[
⟨θ,x⟩ − f∗(θ)

]
.

In particular, for closed, convex, and 1-Lipschitz function f defined as{
f : B(H)→ R
f(x) = dist(x, C)

we have
f∗(θ) = max

x∈C
⟨θ,x⟩.

It’s easy to verify that ∂f∗(θ) = argmaxx∈C⟨θ,x⟩ is a subgradient of f∗ at θ. Fenchel duality implies that

dist(x, C) = max
θ∈B(1)

[
⟨θ,x⟩ −max

x′∈C
⟨θ,x′⟩

]
. (6)

B.2. Online Convex Optimization (OCO)

We will be using the guarantee of online gradient ascent algorithm (Zinkevich, 2003) in the proof. Therefore, we briefly
review the framework of online convex optimization. We can imagine an online game between the leaner and the environment:
The learner is given a decision set Θ; at time t = 1, 2, . . . , T , the leaner makes a decision θt ∈ Θ, the environment reveals a
concave utility function ut : Θ→ R, and the learner gains utility ut(θt). The learner’s goal is to minimize regret defined as

RegretT ≜ max
θ∈Θ

[ T∑
t=1

ut(θ)
]
−
[ T∑
t=1

ut(θt)
]
.

An OCO algorithm is no-regret if RegretT = o(T ), meaning its average utility approaches to best in hindsight. The online
gradient ascent (OGA) is an example of such algorithm (Algorithm 4). In Theorem B.1 we formally state the theoretical
guarantee of this algorithm.

Algorithm 4 Online gradient ascent (OGA)

1: input: projection operator ΓΘ where ΓΘ(θ) = argminθ∈Θ∥θ − θ′∥
2: init: θ1 arbitrarily
3: parameters: step size ηt
4: for t = 1 to T do
5: observe concave utility function ut : Θ→ R
6: θt+1 = ΓΘ

(
θt + ηt∂u

t(θt)
)
{where ∂ut(θt) is a subgradient of ut at θt}

7: end for

Theorem B.1 (Zinkevich 2003). Assume that for any θ,θ′ ∈ Θ we have ∥θ − θ′∥ ≤ D and u1, . . . , uT are concave and
G-Lipschitz. By setting ηt =

D
G
√
t
, Algorithm 4 satisfies

RegretT ≤ O(DG
√
T ).

B.3. Proof of Theorem 3.1

We use the following choice for parameters:

K ≥ mRFE(ϵ/2, δ/2), T ≥ c · (H2ι/ϵ2). (7)

We denote vt := Vπt

1 (s1) and start with the following lemma.



Lemma B.2. Define the event E0 to be:{
∥ 1
T

∑T
t=1 v

t − v̂t∥ ≤ O(
√

H2ι/T ),

V∗
1(s1;−θt) ≤ Vπt

1 (s1;−θt) + ϵ/2 ∀t ∈ [T ].

where ι = log(d/δ). We have P(E0) ≥ 1− δ.

Proof of Lemma B.2. We show that each claim holds with probability at least 1− δ/2; applying a union bound completes
the proof.

First claim. Let Ft be the filtration capturing all the randomness in the algorithm before iteration t. We have E[v̂t | Ft] =
vt and we also know that ∥v̂t∥ ≤ H almost surely. By applying Lemma F.1, with probability at least 1− δ we have

∥ 1
T

T∑
t=1

vt − v̂t∥ ≤ O(
√

H2 log[d/δ]/T ),

which completes the proof.

Second claim. Choice of parameters in Equation 7 along with Definition 2.1 immediately implies that with probability at
least 1− δ/2 we have

V∗
1(s1;−θt) ≤ Vπt

1 (s1;−θt) + ϵ/2 ∀t ∈ [T ].

Note that in Algorithm 1, πt is the output of the planning phase of the RFE algorithm for the vector −θt as input.

The following lemma states that if α = minπ dist(V
π
1 (s1), C) ≥ 0 is the closest achievable distance to target set C, then

any halfspace containing C is reachable up to error α.

Lemma B.3. For any θ ∈ B(1), we have

min
x∈C
⟨θ,x⟩ ≤ min

π
dist(Vπ

1 (s1), C) +V∗
1(s1;θ).

Proof of Lemma B.3. Let π = argminπ dist(V
π
1 (s1), C) and define v = Vπ

1 (s1). Let ṽ = ΓC(v) be the orthogonal
projection of v into C. We have

V∗
1(s1;θ) ≥ Vπ

1 (s1;θ)

= ⟨θ,v⟩
= ⟨θ,v − ṽ⟩+ ⟨θ, ṽ⟩
≥ −∥v − ṽ∥+min

x∈C
⟨θ,x⟩

≥ −min
π

dist(Vπ
1 (s1), C) + min

x∈C
⟨θ,x⟩

Now we are ready to proceed with proof of Theorem 3.1.



Proof of Theorem 3.1. With probability at least 1− δ event E0 holds and we have

dist(Vπout

1 (s1), C) = dist
( 1

T

T∑
t=1

vt, C
)

(i)
= max

θ∈B(1)

[
⟨θ, 1

T

T∑
t=1

vt)⟩ −max
x∈C
⟨θ,x⟩

]
= max

θ∈B(1)

[ 1
T

T∑
t=1

(
⟨θ, v̂t⟩ −max

x∈C
⟨θ,x⟩) + ⟨θ, 1

T

T∑
t=1

vt − v̂t⟩
]

(ii)

≤ max
θ∈B(1)

[ 1
T

T∑
t=1

(
⟨θ, v̂t⟩ −max

x∈C
⟨θ,x⟩)

]
+O(

√
H2ι/T )

(iii)

≤ 1

T

T∑
t=1

(
⟨θt, v̂t⟩ −max

x∈C
⟨θt,x⟩) +O(

√
H2/T ) +O(

√
H2ι/T )

(iv)

≤ min
π

dist(Vπ
1 (s1), C) +

1

T

T∑
t=1

(
⟨θt, v̂t⟩+V∗

1(s1;−θt)
)
+O(

√
H2ι/T )

(v)

≤ min
π

dist(Vπ
1 (s1), C) + ϵ/2 +

1

T

T∑
t=1

(
⟨θt, v̂t⟩+Vπt

1 (s1;−θt)
)
+O(

√
H2ι/T )

= min
π

dist(Vπ
1 (s1), C) + ϵ/2 +

1

T

T∑
t=1

⟨θt, v̂t − vt⟩+O(
√
H2ι/T )

(vi)

≤ min
π

dist(Vπ
1 (s1), C) + ϵ/2 +O(

√
H2ι/T )

(vii)

≤ min
π

dist(Vπ
1 (s1), C) + ϵ

where (i) is by Equation 6, (ii) is by first inequality in event E0 together with Cauchy-Schwarz, (iii) is by guarantee of
OGA in Theorem B.1, (iv) is by Lemma B.3, (v) is by second inequality in event E0, (vi) is by first inequality in event E0

together with Cauchy-Schwarz, and finally (vii) is by setting T ≥ c
(
H2ι/ϵ2

)
for large enough constant c, completing the

proof.

C. Proof for Section 4
In this section we provide proofs and missing details for Section 4.

C.1. Reward-free Algorithm for Tabular VMDPs

In the exploration phase, we use VI-Zero (Liu et al., 2020) with modified choice of hyperparameters. The pseudocode
is displayed in Algorithm 5. Intuitively, the value function Q̃h(s, a) computed in the algorithm measures the level of
uncertainty that agent may suffer if it takes action a at state s in step h. It incentivize the greedy policy to visit underexplored
states improving our empirical estimate P̂.

In the planning phase, given θ ∈ B(1) as input we can use any planning algorithm (such as value iteration) for M̂θ =

(S,A, H, P̂out, ⟨θ, r̂⟩) where r̂ is empirical estimate of r using collected samples {rkh}.

C.2. Proof of Theorem 4.1

In this section, we prove Theorem C.1 which implies the first claim in Theorem 4.1. Second and third claims in Theorem 4.1
immediately follow due to Theorem 3.1 and Theorem 2.5.

Let P̂k and r̂k be our empirical estimates of the transition and the return vectors at the beginning of the kth episode
in Algorithm 5 and define M̂k = (S,A, H, P̂k, r̂k). We use Nk

h (s, a) to denote the number of times we have visited



Algorithm 5 VI-Zero: Exploration Phase

1: Hyperparameters: Bonus βt.
2: Initialize: for all (s, a, h) ∈ S ×A× [H]: Q̃h(s, a)← H and Nh(s, a)← 0,
3: for all (s, a, h, s′) ∈ S ×A× [H]× S: Nh(s, a, s

′)← 0,
4: ∆← 0.
5: for episode k = 1, 2, . . . ,K do
6: for step h = H,H − 1, . . . , 1 do
7: for state-action pair (s, a) ∈ S ×A do
8: t← Nh(s, a).
9: if t > 0 then

10: Q̃h(s, a)← min{[P̂hṼh+1](s, a) + βt, H}.
11: end if
12: end for
13: for state s ∈ S do
14: Ṽh(s)← maxa∈A Q̃h(s, a) and πh(s)← argmaxa∈A Q̃h(s, a)
15: end for
16: end for
17: if Ṽ (s1) ≤ ∆ then
18: ∆← Ṽ (s1) and P̂out ← P̂h

19: end if
20: for step h = 1, 2, . . . ,H do
21: Take action ah ← πh(sh) and observe next state sh+1

22: Update Nh(sh, ah)← Nh(sh, ah) + 1 and Nh(sh, ah, sh+1)← Nh(sh, ah, sh+1) + 1

23: P̂h(· | sh, ah)← Nh(sh, ah, ·)/Nh(sh, ah)
24: end for
25: end for
26: Return P̂out

state-action (s, a) in step h before kth episode in Algorithm 5. We use superscript k to denote variable corresponding to
episode k; in particular, (sk1 , a

k
1 , . . . , s

k
H , akH) is the trajectory we have visited in the kth episode.

For any θ ∈ B(1), let M̂k
θ be the scalarized MDP using vector θ (defined in Section 2). We use V̂ k(·;θ), Q̂k(·, ·;θ), and

π̂k
θ = π̂k(·;θ) to denote the optimal value function, optimal Q-value function, and optimal policy of M̂k

θ respectively.
Therefore, we have

Q̂k
h(s, a;θ) = [P̂k

hV̂
k
h+1](s, a;θ) + r̂kh(s, a;θ),

V̂ k
h (s;θ) = max

a∈A
Q̂k

h(s, a;θ),

π̂k
h(s;θ) = argmax

a∈A
Q̂k

h(s, a;θ).

(8)

Theorem C.1. There exist absolute constants cβ and cK , such that for any ϵ ∈ (0, H], δ ∈ (0, 1], if we choose bonus
βt = cβ

(√
min{d, S}H2ι/t + H2Sι/t

)
where ι = log[dSAKH/δ], and run the exploration phase (Algorithm 5) for

K ≥ cK
(
min{d, S}H4SAι′/ϵ2 +H3S2A(ι′)2/ϵ

)
episodes where ι′ = log[dSAH/(ϵδ)], then with probability at least

1− δ, the algorithm satisfies
∀θ ∈ B(1) : V ⋆

1 (s1;θ)− V πθ
1 (s1;θ) ≤ ϵ,

where πθ is the output of the any planning algorithm (e.g., value iteration) for the MDP M̂out
θ . Therefore, we have

mRFE(ϵ, δ) ≤ O
(min{d, S}H4SAι′

ϵ2
+

H3S2A(ι′)2

ϵ

)
.

The bonus for episode k can be written as

βk
h(s, a) = cβ

(√ min{d, S}H2ι

max{Nk
h (s, a), 1}

+
H2Sι

max{Nk
h (s, a), 1}

)
, (9)



where ι = log[dSAKH/δ] and cβ is some large absolute constant.

We begin with the following lemma showing that the value function for a fixed π and also the optimal value function is
H-Lipschitz with respect to θ.

Lemma C.2. For all (s, h) ∈ S × [H], for all policies π, and for any two vectors θ,θ′ ∈ B(1), we have

|V ⋆
h (s;θ)− V ⋆

h (s;θ
′)| ≤ (H − h+ 1)∥θ − θ′∥

|V π
h (s;θ)− V π

h (s;θ′)| ≤ (H − h+ 1)∥θ − θ′∥

Proof of Lemma C.2. We prove each claim separately.

First claim. We prove the lemma by backward induction on h. For h = H + 1 we have V ⋆
h (s;θ) = V ⋆

h (s;θ
′) = 0 and

the inequality holds. Now assume that |V ⋆
h+1(s;θ) − V ⋆

h+1(s;θ
′)| ≤ (H − h)∥θ − θ′∥ holds, we want to show that the

claim also holds for h. We have

|V ⋆
h (s;θ)− V ⋆

h (s;θ
′)| = |max

a∈A
Q⋆

h(s, a;θ)−max
a′∈A

Q⋆(s, a′;θ′)|

≤ max
a∈A
|Q⋆

h(s, a;θ)−Q⋆
h(s, a;θ

′)|

= max
a∈A
|⟨θ − θ′, rh(s, a)⟩+

∑
s′∈S

P(s′ | s, a)(V ⋆
h+1(s

′;θ)− V ⋆
h+1(s

′;θ′))

≤ max
a∈A
||⟨θ − θ′, rh(s, a)⟩|+max

a∈A
|
∑
s′∈S

P(s′ | s, a)(V ⋆
h+1(s

′;θ)− V ⋆
h+1(s

′;θ′))|

≤ ∥θ − θ′∥+ (H − h)∥θ − θ′∥
= (H − h+ 1)∥θ − θ′∥.

It completes the proof of the lemma.

Second claim. The second claim is much easier to prove, since we have

|V π
h (s;θ)− V π

h (s;θ′)| =
∣∣∣Eπ

[ H∑
h′=1

⟨θ − θ′, rh(s
′
h, a

′
h)⟩

]∣∣∣
≤ Eπ

[ H∑
h′=1

|⟨θ − θ′, rh(s
′
h, a

′
h)⟩|

]
≤ Eπ

[ H∑
h′=1

∥θ − θ′∥
]

= (H − h+ 1)∥θ − θ′∥

where the first inequality uses Jensen, and second inequality uses Cauchy-Schwarz.

Lemma C.3. Let c be some large absolute constant such that 2c+ 12c2 ≤ cβ . Define event E1 to be: for all (s, a, s′, h) ∈
S ×A× S × [H], k ∈ [K], and θ ∈ B(1),

|[(P̂k
h − Ph)V

⋆
h+1](s, a;θ)| ≤ c

√
min{d,S}H2ι

max{Nk
h (s,a),1} ,

|(r̂kh − rh)(s, a;θ)| ≤ c
√

ι
max{Nk

h (s,a),1} ,

|(P̂k
h − Ph)(s

′ | s, a)| ≤ c
(√

P̂k
h(s

′|s,a)ι
max{Nk

h (s,a),1} + ι
max{Nk

h (s,a),1}

)
,

(10)

where ι = log[dSAKH/δ]. We have P(E1) ≥ 1− δ.

Proof of Lemma C.3. The proof is by applying concentration and covering arguments together with union bounds. The
following shows that each claim holds with probability at least 1 − δ; rescaling δ to δ/3 and applying a union bound
completes the proof.



First claim: For a fixed (s, a, k, h,θ) ∈ S ×A× [K]× [H]×B(1), using Azuma-Hoeffding inequality, with probability
at least 1− δ′ we have

|[(P̂k
h − Ph)V

⋆
h+1](s, a;θ)| ≤ O

(√H2 log(1/δ′)

Nk
h (s, a)

)
.

Now consider an ϵ′-covering Bϵ′ for the unit Euclidean ball B(1) with log |Bϵ′ | ≤ O(d log(1/ϵ′)). For any θ ∈ B(1), there
exists θ′ ∈ Bϵ′ satisfying ∥θ − θ∥ ≤ ϵ′. The concentration inequality above along with a union bound implies that with
probability at least 1− δ for any (s, a, k, h,θ′) ∈ S ×A× [K]× [H]× Bϵ′ we have

|[(P̂k
h − Ph)V

⋆
h+1](s, a;θ

′)| ≤ O
(√ dH2

Nk
h (s, a)

log(
SAKH

ϵ′δ
)
)
.

Now consider an arbitrary (s, a, k, h,θ) ∈ S ×A× [K]× [H]× B(1). Let θ′ ∈ Bϵ′ be such that ∥θ − θ′∥ ≤ ϵ′; we have

|[(P̂k
h − Ph)V

⋆
h+1](s, a;θ)|

(i)

≤ |[P̂k
h(V

⋆
h+1(·;θ)− V ⋆

h+1(·;θ′))](s, a)]|+ |[(P̂k
h − Ph)V

⋆
h+1](s, a;θ

′)|
+ |[Ph(V

⋆
h+1(·;θ′)− V ⋆

h+1(·;θ))](s, a)]|
(ii)

≤ 2H∥θ − θ′∥+O
(√ dH2

Nk
h (s, a)

log(
SAKH

ϵ′δ
)
)

≤ 2Hϵ′ +O
(√ dH2

Nk
h (s, a)

log(
SAKH

ϵ′δ
)
)
,

where (i) is by adding and subtracting the term [(P̂k
h − Ph)V

⋆
h+1](s, a;θ

′) along with triangle inequality, and (ii) is by
Lemma C.2. Setting ϵ′ = 1

HNk
h (s,a)

≥ 1
HK results in

[(P̂k
h − Ph)V

⋆
h+1](s, a;θ)| ≤ O

(√ dH2

Nk
h (s, a)

log(
SAKH

δ
)
)
.

On the other hand, consider an ϵ′-cover Vϵ′ for the ℓ∞ ball of radius H in dimension S, i.e. {v ∈ RS | ∥v∥∞ ≤ H}. For a
fixed (s, a, k, h,v) ∈ S ×A× [K]× [H]×Vϵ′ , using Azuma-Hoeffding inequality, with probability at least 1− δ′ we have

|[(P̂k
h − Ph)v](s, a)| ≤ O

(√H2 log(1/δ′)

Nk
h (s, a)

)
.

Note that |Vϵ′ | ≤ (3H/ϵ′)d, therefore by putting δ′ = δ/(SAKH|Vϵ′ |) we get for all (s, a, k, h,v) ∈ S×A×[K]×[H]×Vϵ′

|[(P̂k
h − Ph)v](s, a)| ≤ O

(√SH2 log(SAKH/(ϵ′δ))

Nk
h (s, a)

)
.

Now consider an arbitrary (s, a, k, h,θ) ∈ S×A× [K]× [H]×B(1), and let v ∈ Vϵ′ be such that ∥V ⋆
h+1(·;θ)− v∥∞ ≤ ϵ′.

We have
|[(P̂k

h − Ph)V
⋆
h+1](s, a;θ)| ≤ |[P̂k

h(V
⋆
h+1(·;θ)− v)](s, a)|+ |[(P̂k

h − Ph)v](s, a)|
+ |[Ph(V

⋆
h+1(·;θ)− v)](s, a)|

≤ 2ϵ′ +O
(√SH2 log(SAKH/(ϵ′δ))

Nk
h (s, a)

)
.

Setting ϵ′ = 1
Nk

h (s,a)
≥ 1

K results in

|[(P̂k
h − Ph)V

⋆
h+1](s, a;θ)| ≤ O

(√ SH2

Nk
h (s, a)

log(
SAKH

δ
)
)

The two bounds together complete the proof for the first claim.



Second claim: We have ∥rkh∥ ≤ 1 almost surely and E[rkh | Fk
h ] = rh(s

k
h, a

k
h). For a fixed (s, a, k, h) ∈ S×A×[K]×[H],

applying Lemma F.1 implies that with probability at least 1− δ′ we have

∥(r̂kh − rh)(s, a)∥ ≤ O
(√ log(d/δ′)

Nk
h (s, a)

)
.

Setting δ′ = δ/(SAKH) and applying a union bound, for all (s, a, k, h) ∈ S ×A× [K]× [H], we have

∥(r̂kh − rh)(s, a)∥ ≤ O
(√ log(dSAKH/δ)

Nk
h (s, a)

)
.

Now consider an arbitrary (s, a, k, h,θ) ∈ S ×A× [K]× [H]× B(1), we have (by Cauchy-Schwarz)

|(r̂kh − rh)(s, a;θ)| = |⟨θ, (r̂kh − rh)(s, a)|
≤ ∥θ∥∥(r̂kh − rh)(s, a)∥

≤ O
(√ log(dSAKH/δ)

Nk
h (s, a)

)
,

completing proof of this claim.

Third claim: For a fixed (s, a, s′, k, h) ∈ S ×A× S × [K]× [H], using empirical Bernstein inequality, with probability
at least 1− δ′ we have

|(P̂k
h − Ph)(s

′ | s, a)| ≤ O
(√ P̂k

h(s
′ | s, a) log(1/δ′)
Nk

h (s, a)
+

log(1/δ′)

Nk
h (s, a)

)
Applying a union bound and setting δ′ = δ/S2AKH completes the proof.

The following lemma shows that the optimal value functions of M̂k
θ are close to the optimal value functions ofMθ and

their difference is controlled by Q̃ and Ṽ computed in Algorithm 5.
Lemma C.4. Suppose event E1 holds (defined in Lemma C.3); then, for all (s, a, k, h,θ) ∈ S ×A× [K]× [H]×B(1) we
have

|Q̂k
h(s, a;θ)−Q⋆

h(s, a;θ)| ≤ Q̃k
h(s, a),

|V̂ k
h (s;θ)− V ⋆

h (s;θ)| ≤ Ṽ k
h (s).

(11)

Proof of Lemma C.4. We prove the lemma by backward induction on h. For h = H + 1 the claim holds trivially. Now
suppose that the claim is true for (h+ 1)th step, we want to show that the claim is also true for hth step. For the Q-value
function we have

|Q̂k
h(s, a;θ)−Q⋆

h(s, a;θ)|

≤ min
{
|[(P̂k

h − Ph)V
⋆
h+1](s, a;θ)|+ |(r̂kh − rh)(s, a;θ)|︸ ︷︷ ︸

(T1)

+ |[P̂k
h(V̂

k
h+1 − V ⋆

h+1)](s, a;θ)|︸ ︷︷ ︸
(T2)

, H
}

(i)

≤ min
{
βk
h(s, a) + [P̂k

hṼ
k
h+1](s, a), H

}
(ii)
= Q̃k

h(s, a),

where (i) follows from T1 ≤ βk
h(s, a) (event E1) and T2 ≤ [P̂k

hṼ
k
h+1](s, a) (induction hypothesis), and (ii) is due to

definition of Q̃k
h in Algorithm 5. Now for the value function we have

|V̂ k
h (s;θ)− V ⋆

h (s;θ)|

= |max
a∈A

Q̂k
h(s, a;θ)−max

a′∈A
Q̂⋆(s, a′;θ)|

≤ max
a∈A
|Q̂k

h(s, a;θ)− Q̂⋆(s, a;θ)|

≤ max
a∈A

Q̃k
h(s, a) = Ṽ k

h (s),



which completes the induction step and consequently the proof.

Now we are ready to introduce the main lemma that shows value of π̂k
θ under the true model is close to its value under

empirical model. The difference is controlled by Q̃ and Ṽ computed in Algorithm 5.

Lemma C.5. Suppose event E1 holds (defined in Lemma C.3); then, for all (s, a, k, h,θ) ∈ S ×A× [K]× [H]×B(1) we
have

|Q̂k
h(s, a;θ)−Q

π̂k
θ

h (s, a;θ)| ≤ αhQ̃
k
h(s, a),

|V̂ k
h (s;θ)− V

π̂k
θ

h (s;θ)| ≤ αhṼ
k
h (s),

(12)

where αH+1 = 1 and αh = [(1 + 1
H )αh+1 +

1
H ]; we have 1 ≤ αh ≤ 5 for h ∈ [H].

Proof of Lemma C.5. We prove the claim by backward induction on h. For h = H + 1 the claim trivially holds. Now
suppose that the claim is true for step h+ 1 and we want to show that it also holds for step h.

|Q̂k
h(s, a;θ)−Q

π̂k
θ

h (s, a;θ)|

≤ min
{
|[(P̂k

h − Ph)(V
π̂k
θ

h+1 − V ⋆
h+1)](s, a;θ)|︸ ︷︷ ︸

(T1)

+ |[(P̂k
h − Ph)V

⋆
h+1](s, a;θ)|+ |(r̂kh − rh)(s, a;θ)|︸ ︷︷ ︸

(T2)

+ |[P̂k
h(V̂

k
h+1 − V

π̂k
θ

h+1)](s, a;θ)|︸ ︷︷ ︸
(T3)

, H
}

(13)

For the term (T3), by applying induction hypothesis we have

(T3) ≤ αh+1[P̂k
hṼ

k
h+1](s, a). (14)

Using event E1, for the term (T2) we have

(T2) ≤ 2c

√
min{d, S}H2ι

max{Nk
h (s, a), 1}

. (15)

It only remains to bound the term (T1); we have

(T1) ≤
∑
s′∈S
|P̂k

h(s
′ | s, a)− Ph(s

′ | s, a)||(V π̂k
θ

h+1 − V ⋆
h+1)(s

′)|

≤
∑
s′∈S
|P̂k

h(s
′ | s, a)− Ph(s

′ | s, a)|
[
|(V π̂k

θ

h+1 − V̂ k
h+1)(s

′)|+ |(V̂ k
h+1 − V ⋆

h+1)(s
′)|
]

(i)

≤
∑
s′∈S
|P̂k

h(s
′ | s, a)− Ph(s

′ | s, a)|(αh+1 + 1)Ṽ k
h+1(s

′)

(ii)

≤
∑
s′∈S

[
c(

√
P̂k
h(s

′ | s, a)ι
max{Nk

h (s, a), 1}
+

ι

max{Nk
h (s, a), 1}

)
]
(αh+1 + 1)Ṽ k

h+1(s
′)

(iii)

≤
∑
s′∈S

[ P̂k
h(s

′ | s, a)
H

+
c2Hι+ cι

max{Nk
h (s, a), 1}

]
(αh+1 + 1)Ṽ k

h+1(s
′)

≤ αh+1 + 1

H
[P̂k

hṼ
k
h+1](s, a) + 2c2(αh+1 + 1)

H2Sι

max{Nk
h (s, a), 1}

,

(16)



where (i) is due Lemma C.4 along with induction hypothesis, (ii) is due to event E1, and (iii) is by AM-GM. Plugging
equation 14, 15, and 16 back in 13, we get

|Q̂k
h(s, a;θ)−Q

π̂k
θ

h (s, a;θ)|

≤ min
{
[(1 +

1

H
)αh+1 +

1

h
][P̂k

hṼ
k
h+1](s, a) + 2c

√
min{d, S}H2ι

max{Nk
h (s, a)+, 1}

+ 2c2(αh+1 + 1)
H2Sι

max{Nk
h (s, a), 1}

, H
}

(i)

≤ min
{
[(1 +

1

H
)αh+1 +

1

h
][P̂k

hṼ
k
h+1](s, a) + βk

h(s, a), H
}

(ii)

≤ αh min{[P̂k
hṼ

k
h+1](s, a) + βk

h(s, a), H}
(iii)
= αhQ̃

k
h(s, a),

(17)

where (i) is by the definition of the bonus βk
h (we have 2c + 12c2 ≤ C and (αh+1 + 1) ≤ 6), (ii) is by the definition

of αh (note that 1 ≤ αh), and (iii) is by the definition of Q̃k
h in Algorihtm 5. The inequality for value function follows

immediately since we have

|V̂ k
h (s;θ)− V

π̂k
θ

h (s;θ)|

= |[Dπ̂k
θ
Q̂

π̂k
θ

h ](s;θ)− [Dπ̂k
θ
Qk

h](s;θ)|

≤ αh[Dπ̂k
θ
Q̃k

h](s)

≤ αh max
a∈A

Q̃k
h(s, a)

= αhṼ
k
h (s).

It completes the induction step and consequently the proof of the lemma.

Theorem C.6 (Similar to guarantee for UCB-VI from Azar et al. 2017). For any δ ∈ (0, 1], if we choose βk
t in Algorithm 5

as in Equation 9; then, with probability at least 1− δ, we have

K∑
k=1

Ṽ k
1 (s1) ≤ O(

√
min{d, S}H4SAKι+H3S2Aι2).

Proof of Theorem C.6. For a fixed k, by definition of Ṽ we have

Ṽ k
1 (s1) ≤

H∑
h=1

(
βk
h(s

k
h, a

k
h) + ζkh

)
,

where ζkh = [P̂k
hṼ

k
h+1](s

k
h, a

k
h)− Ṽ k

h+1(s
k
h+1). Summing over k gives us,

K∑
k=1

Ṽ k
1 (s1) ≤

K∑
k=1

H∑
h=1

βk
h(s

k
h, a

k
h)︸ ︷︷ ︸

(T1)

+

K∑
k=1

H∑
h=1

ζkh︸ ︷︷ ︸
(T2)

.



Now we bound each term separately. For the term (T1), using standard pigeonhole argument, we have

(T1) = C
[ K∑
k=1

H∑
h=1

√
min{d, S}H2ι

Nk
h (s

k
h, a

k
h)

+

K∑
k=1

H∑
h=1

H2Sι

Nk
h (s

k
h, a

k
h)

]

= C
[√

min{d, S}H2ι
∑
h,s,a

NK
h (s,a)∑
i=1

√
1

i
+H2Sι

∑
h,s,a

NK
h (s,a)∑
i=1

1

i

]
≤ C ′

[√
min{d, S}H2ι

∑
h,s,a

√
NK

h (s, a) +H2Sι
∑
h,s,a

log(KH)
]

≤ C ′
[√

min{d, S}H2ι
√
HSA

√
KH +H3S2Aι2

]
≤ O(

√
min{d, S}H4SAKι+H3S2Aι2).

For the second term, note that ζkh forms a martingale difference sequence; therefore, by Azuma-Hoeffding’s inequality, with
probability at least 1− δ, we have

(T2) ≤ O(H
√
(KH) log(1/δ)) = O(

√
H3K log(1/δ)),

resulting in a lower order term and completing the proof.

Proof of Theorem C.1. By Algorithm 5, we have out = argmink∈[K] Ṽ
k
1 (s1), resulting in Ṽ out

1 (s1) ≤ 1
K

∑K
k=1 Ṽ

k
1 (s1).

Therefore, with probability at least 1− 2δ, for any vector θ ∈ B(1) we have

V ⋆
1 (s1;θ)− V

π̂out
θ

1 (s1;θ) ≤ |V ⋆
1 (s1;θ)− V̂ out

1 (s1;θ)|+ |V̂ out
1 (s1;θ)− V

π̂out
θ

1 (s1;θ)|
(i)

≤ (1 + α1)Ṽ
out
1 (s1)

≤ 6Ṽ out
1 (s1)

≤ 6

K

K∑
k=1

Ṽ k
1 (s1)

(ii)

≤ O(
√
min{d, S}H4SAι/K +H3S2Aι2/K)

(iii)

≤ ϵ,

where (i) is due to Lemma C.4 and Lemma C.5, (ii) is due to Theorem C.6, and (iii) is due to K ≥
cK(min{d, S}H4SAι′/ϵ2 +H3S2A(ι′)2/ϵ) with a sufficiently large constant cK . Rescaling δ completes the proof.

D. Proof for Section 5
In this section we provide proofs and missing details for Section 5.

D.1. Reward-free algorithm for linear VMDPs

We use slightly modified version of the reward-free algorithm introduced by Wang et al. (2020). The exploration phase and
planning phase are displayed in Algorithm 6 and 7, respectively.

D.2. Proof of Theorem 5.2

In this section, we prove Theorem D.1 which implies the first claim in Theorem 5.2. Second and third claims in Theorem 5.2
immediately follow due to Theorem 3.1 and Theorem 2.5.

Theorem D.1. There exist absolute constants cβ and cK , such that for any ϵ ∈ (0, H] and δ ∈ (0, 1], if we choose
bonus coefficient β = cβ · dlinH

√
ι with ι = log[dlindKH/δ], and run the exploration algorithm (Algorithm 6) for



Algorithm 6 Reward-Free RL for Linear VMDPs: Exploration Phase

1: Hyperparameters: Bonus coefficient β.
2: for episode k = 1, 2, . . . ,K do
3: for step h = H,H − 1, . . . , 1 do
4: Λ̃k

h =
∑k−1

i=1 ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤ + I

5: ũk
h(·, ·)← min{β ·

√
ϕ(·, ·)⊤(Λ̃k

h)
−1ϕ(·, ·), H}

6: Define r̃kh(·, ·)← ũk
h(·, ·)/H

7: w̃k
h ← (Λ̃k

h)
−1

∑k−1
i=1 ϕ(sih, a

i
k)Ṽ

k
h+1(s

i
h+1)

8: Q̃k
h(·, ·)← min{(w̃k

h)
⊤ϕ(·, ·) + r̃kh(·, ·) + ũk

h(·, ·), H}
9: Ṽ k

h (·) = maxa∈A Q̃k
h(·, a) and π̃k

h(·)← argmaxa∈A Q̃k
h(·, a)

10: end for
11: Observe initial state sk1 ← s1
12: for step h = 1, 2, . . . ,H do
13: Take action akh ← π̃k

h(s
k
h) and observe next state skh+1

14: end for
15: end for
16: Return D ← {(skh, akh)}(h,k)∈[H]×[K]

Algorithm 7 Reward-Free RL for Linear VMDPs: Planning Phase

1: Hyperparameters: Bonus coefficient β.
2: Input: Dataset D = {(skh, akh)}(k,h)∈[K]×[H], vector θ ∈ B(1)

samples of return function {rkh}(k,h)∈[K]×[H]

3: for step h = H,H − 1, . . . , 1 do
4: Λ̂h =

∑K
i=1 ϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤ + I

5: ûh(·, ·)← min{β ·
√
ϕ(·, ·)⊤(Λ̂h)−1ϕ(·, ·), H}

6: ŵh ← (Λ̂h)
−1

∑K
i=1 ϕ(s

i
h, a

i
h)[V̂h+1(s

i
h+1) + θ⊤rih]

7: Q̂h(·, ·)← min{(ŵh)
⊤ϕ(·, ·) + ûh(·, ·), H}

8: V̂h(·) = maxa∈A Q̂h(·, a) and π̂h(·)← argmaxa∈A Q̂h(·, a)
9: end for

10: Return πθ = {π̂h}Hh=1



K ≥ cK [d3linH
6(ι′)2/ϵ2] episodes where ι′ = log[dlindH/(ϵδ)], then with probability at least 1− δ, for any θ ∈ B(1), the

output of the planning phase satisfies:

V ⋆
1 (s1;θ)− V πθ

1 (s1;θ) ≤ ϵ,

where πθ is the output of the planning algorithm (Algorithm 7) given θ as input. Therefore, in this case we have

mRFE(ϵ, δ) ≤ O
(
d3linH

6(ι′)2/ϵ2
)
.

In this section, we denote ϕk
h := ϕ(skh, a

k
h) for (k, h) ∈ [K]× [H]. For a scalar reward function r′ : S ×A → [−1, 1] and a

policy π, we use V π
h (· | r′) and Qπ

h(·, · | r′) to denote the value function and Q-value function for the MDP (S,A, H,P, r′).
Similarly we define the optimal value function and Q-value function denoted by V ⋆

h (· | r′) and Q⋆
h(· | r′).

The bonus coefficient is defined to be

β = cβ · dlinH
√
ι (18)

where ι = log[dlindHK/δ].

We start with the following concentration lemma.

Lemma D.2. Suppose Assumption 5.1 holds. Let c be some large absolute constant. Define event E2 to be: for all
(k, h,θ) ∈ [K]× [H]× B(1),

∥∥∥∑k−1
i=1 ϕi

h

(
Ṽ k
h+1(s

i
h+1)− [PhṼ

k
h+1](s

i
h, a

i
h)
)∥∥∥

(Λ̃k
h)

−1
≤ c ·H

√
d2linι,∥∥∥∑K

i=1 ϕ
i
h

(
V̂h+1(s

i
h+1)− [PhV̂h+1](s

i
h, a

i
h)
)∥∥∥

(Λ̂h)−1
≤ c ·H

√
d2linι,∥∥∥∑K

i=1 ϕ
i
h

(
θ⊤(r̂h − rh)(s

i
h, a

i
h)
)∥∥∥

(Λ̂h)−1
≤ c ·

√
dlinι,

|
∑K

k=1

∑H
h=1[PhṼ

k
h+1](s

k
h, a

k
h)− Ṽ k

h+1(s
k
h)| ≤ c ·H2

√
Kι,

(19)

where ι = log[dlindHK/δ]. We have P(E2) ≥ 1− δ.

Proof of Lemma D.2. The first three inequalities follow from the standard concentration inequalities of the self-normalized
process, a covering argument over the value functions or θ, and union bound. We refer readers to the proofs of Lemma
B.3 in Jin et al. (2020b) or Lemma A.1 in Wang et al. (2020) for details. The last inequality follows immediately from
Azuma-Hoeffding’s inequality since for a fixed h, {[PhṼ

k
h+1](s

k
h, a

k
h)− Ṽ k

h+1(s
k
h)}k∈[K] is a martingale difference sequence

bounded by H .

The following lemma shows that Ṽ k
1 (defined in Algorithm 6) is optimistic with respect to reward function r̃k. In addition, it

shows its sum over k can be controlled by Õ(
√
d3linH

4K).

Lemma D.3. Suppose Assumption 5.1 and event E2 (defined in Lemma D.2) hold; we have

V ⋆
1 (s1 | r̃k) ≤ Ṽ k

1 (s1) ∀k ∈ [K]

k∑
k=1

Ṽ k
1 (s1) ≤ O

(√
d3linH

4Kι2
)

Proof of Lemma D.3. Let wk
h =

∫
Ṽ k
h+1(s

′)dµh(s
′); by Assumption 5.1, we have

∥wk
h∥ ≤ H∥µh(S)∥ ≤ H

√
dlin

[PhṼ
k
h+1](s, a) = ϕ(s, a)⊤wk

h ∀(s, a) ∈ S ×A
(20)



For all k, h, s, a ∈ [K]× [H]× S ×A, we have

ϕ(s, a)⊤w̃k
h − [PhṼ

k
h+1](s, a)

= ϕ(s, a)⊤[w̃k
h −wk

h]

= ϕ(s, a)⊤(Λ̃k
h)

−1
( k−1∑

i=1

ϕi
hṼ

k
h+1(s

i
h+1)− Λ̃k

hw
k
h

)
= ϕ(s, a)⊤(Λ̃k

h)
−1

( k−1∑
i=1

ϕi
hṼ

k
h+1(s

i
h+1)−

k−1∑
i=1

ϕi
h(ϕ

i
h)

⊤wk
h −wk

h

)
.

Note that (ϕi
h)

⊤wk
h = [PhṼ

k
h+1](s

i
h, a

i
h). Therefore, we have

|ϕ(s, a)⊤w̃k
h − [PhṼ

k
h+1](s, a)|

=
∣∣∣ϕ(s, a)⊤(Λ̃k

h)
−1

[ k−1∑
i=1

ϕi
h

(
Ṽ k
h+1(s

i
h+1)− [PhṼ

k
h+1](s

i
h, a

i
h)
)
−wk

h

]∣∣∣
≤

∣∣∣ϕ(s, a)⊤(Λ̃k
h)

−1
[ k−1∑

i=1

ϕi
h

(
Ṽ k
h+1(s

i
h+1)− [PhṼ

k
h+1](s

i
h, a

i
h)
)]∣∣∣+ |ϕ(s, a)⊤(Λ̃k

h)
−1wk

h|

≤
∥∥∥k−1∑
i=1

ϕi
h

(
Ṽ k
h+1(s

i
h+1)− [PhṼ

k
h+1](s

i
h, a

i
h)
)∥∥∥

(Λ̃k
h)

−1
· ∥ϕ(s, a)∥(Λ̃k

h)
−1 + ∥wk

h∥(Λ̃k
h)

−1 · ∥ϕ(s, a)∥(Λ̃k
h)

−1 .

Note that ∥wk
h∥(Λ̃k

h)
−1 ≤ ∥wk

h∥ ≤ H
√
dlin since Λ̃k

h ⪰ I . By event E2 we have∥∥∥∑k−1
i=1 ϕi

h

(
Ṽ k
h+1(s

i
h+1)− [PhṼ

k
h+1](s

i
h, a

i
h)
)∥∥∥

(Λ̃k
h)

−1
≤ c ·H

√
d2linι. Plugging back, results in

|ϕ(s, a)⊤w̃k
h − [PhṼ

k
h+1](s, a)|

≤ (H
√
dlin + c ·H

√
d2linι)∥ϕ(s, a)∥(Λ̃k

h)
−1

≤ (cβ ·H
√
d2linι)∥ϕ(s, a)∥(Λ̃k

h)
−1

= β∥ϕ(s, a)∥(Λ̃k
h)

−1

(21)

Now we are ready to complete the proof:

First claim: we prove the claim
V ⋆
h (s | r̃k) ≤ Ṽ k

h (s) ∀s ∈ S,
by backward induction on h. For h = H + 1 the claim is trivial since both LHS and RHS are zero. Now suppose that we
have

V ⋆
h+1(s | r̃k) ≤ Ṽ k

h+1(s) ∀s ∈ S.
Then, for all s ∈ S we have

V ⋆
h (s | r̃k) = max

a∈A
Q⋆

h(s | r̃k)

= max
a∈A
{min{r̃kh(s, a) + [PhV

⋆
h+1](s, a | r̃k), H}}

≤ max
a∈A
{min{r̃kh(s, a) + [PhṼ

k
h+1](s, a), H}}

≤ max
a∈A
{min{r̃kh(s, a) + ϕ(s, a)⊤w̃k

h + β∥ϕ(s, a)∥(Λ̃k
h)

−1 , H}}

≤ max
a∈A

Q̃k
h(s, a) = Ṽ k

h (s),

where the first inequality is due to induction hypothesis and the second inequality is due to Equation 21. It proves the
induction step and completes the induction.



Second claim: Let
ζkh = [PhṼ

k
h+1](s

k
h, a

k
h)− Ṽ k

h+1(s
k
h) ∀(k, h) ∈ [K]× [H]

we have
K∑

k=1

Ṽ k
1 (sk1) ≤

K∑
k=1

(
(r̃k1 + uk

1)(s
k
1 , a

k
1) + (ϕk

1)
⊤w̃k

1

)
=

K∑
k=1

(
(1 + 1/H)β · ∥ϕ(s, a)∥(Λ̃k

1 )
−1 + (ϕk

1)
⊤w̃k

1

)
≤

K∑
k=1

(
(2 + 1/H)β · ∥ϕ(s, a)∥(Λ̃k

1 )
−1 + [P1Ṽ

k
2 ][sk1 , a

k
1 ]
)

≤
K∑

k=1

(
Ṽ k
2 (sk2) + (2 + 1/H)β · ∥ϕ(s, a)∥(Λ̃k

1 )
−1 + ζk1

)
By repeatedly applying the same argument we get

K∑
k=1

Ṽ k
1 (sk1) ≤ (2 + 1/H)β

K∑
k=1

H∑
h=1

∥ϕ(s, a)∥(Λ̃k
h)

−1︸ ︷︷ ︸
(T1)

+
K∑

k=1

H∑
h=1

ζkh︸ ︷︷ ︸
(T2)

.

For the term (T1) we have

T1 =

K∑
k=1

H∑
h=1

∥ϕ(s, a)∥(Λ̃k
1 )

−1

(i)

≤

√√√√KH

K∑
k=1

H∑
h=1

(ϕk
h)

⊤(Λ̃k
h)(ϕ

k
h)

(ii)

≤
√
KH(2dlinH log(K)),

where (i) uses Cauchy-Schwarz, and (ii) uses Lemma D.2 in Jin et al. (2020b) that implies
∑K

k=1

∑H
h=1(ϕ

k
h)

⊤(Λ̃k
h)(ϕ

k
h) ≤

2dlinH log(K).

For the term (T2), by the third inequality in event E2, we have

T2 ≤ c ·H2
√
Kι.

Plugging back in the original equation gives us

K∑
k=1

Ṽ k
1 (sk1)

≤ (2 + 1/H)β ·
√
KH(2dlinH log(K)) + c ·H2

√
Kι

≤ c′
√
d3linH

4Kι2,

for some absolute constant c′, which completes the proof of the lemma.

Lemma D.4. Suppose Assumption 5.1 and event E2 (defined in Lemma D.2) hold; Let û = {ûh}Hh=1 (as defined in Line 5
of Algorithm 7), we have

V ⋆
1 (s1 | û/H) ≤ O

(√
d3linH

4ι2/K
)

Proof of Lemma D.4. Note that Λ̂h ⪰ Λ̃k
h for all k ∈ [K]. Therefore for all h ∈ [H] and (s, a) ∈ S ×A, we have

ûh(s, a)/H ≤ ũk
h(s, a)/H = r̃kh(s, a)



Using Lemma D.3 we have

KV ⋆
1 (s1 | û/H) ≤

K∑
k=1

V ∗
1 (s1 | r̃k)

≤
K∑

k=1

Ṽ k
1 (s1)

≤ O
(√

d3linH
4Kι2

)
.

Dividing both sides by K completes the proof.

Lemma D.5. Suppose Assumption 5.1 and event E2 (defined in Lemma D.2) hold. For all (s, a, h,θ) ∈ S×A× [H]×B(1)
we have

Q∗
h(s, a;θ) ≤ Q̂h(s, a) ≤ θ⊤rh(s, a) + [PhV̂h+1](s, a) + 2ûh(s, a).

Proof of Lemma D.5. First note that by Assumption 5.1, we have rh(s, a) = Whϕ(s, a). Define

wh =

∫
V̂h+1(s

′)dµh(s
′) + θ⊤Wh.

By Assumption 5.1, we have

∥wh∥ ≤ ∥
∫

V̂h+1(s
′)dµh(s

′)∥+ ∥θ⊤Wh∥

≤ H∥µh(S)∥+ ∥θ∥∥Wh∥

≤ H ·
√
dlin +

√
dlin ≤ 2H

√
dlin.

Therefore we have
∥wh∥ ≤ 2H ·

√
dlin

[PhV̂h+1](s, a) + θ⊤rh(s, a) = ϕ(s, a)⊤wh ∀(s, a) ∈ S ×A
(22)

Now using similar argument in Lemma D.3, for all (s, a, h,θ) ∈ S ×A× [H]× B(1) we can have∣∣ϕ(s, a)⊤ŵh − [PhV̂h+1](s, a)− θ⊤rh(s, a)
∣∣

≤
∥∥∥ K∑
i=1

ϕi
h

(
V̂h+1(s

i
h+1)− [PhV̂h+1](s

i
h, a

i
h)
)∥∥∥

(Λ̂h)−1︸ ︷︷ ︸
(T1)

·∥ϕ(s, a)∥(Λ̂h)−1

+
∥∥∥ K∑
i=1

ϕi
h

(
θ⊤(r̂h − rh)(s

i
h, a

i
h)
)∥∥∥

(Λ̂h)−1︸ ︷︷ ︸
(T2)

·∥ϕ(s, a)∥(Λ̂h)−1

+ ∥wk
h∥(Λ̂h)−1︸ ︷︷ ︸
(T3)

·∥ϕ(s, a)∥(Λ̂h)−1

Note that (T3) = ∥wh∥(Λ̂h)−1 ≤ ∥wh∥ ≤ 2H
√
dlin since Λ̂h ⪰ I . The other two terms (T1) and (T2) are both

upper-bounded by c ·H
√

d2linι due to event E2. Plugging back results in∣∣ϕ(s, a)⊤ŵh − [PhV̂h+1](s, a)− θ⊤rh(s, a)
∣∣

≤
[
2H

√
dlin + 2cH

√
d2linι

]
∥ϕ(s, a)∥(Λ̂h)−1

≤ [cβ ·H
√

d2linι]∥ϕ(s, a)∥(Λ̂h)−1

= β∥ϕ(s, a)∥(Λ̂h)−1 .

(23)



Now we are ready to complete the proof of the lemma. For all (s, a, h,θ) ≤ S ×A× [H]× B(1), we have

Q̂h(s, a) = min{ϕ(s, a)⊤ŵh + ûh(s, a), H}

≤ min{[PhV̂h+1](s, a) + θ⊤rh(s, a) + 2β∥ϕ(s, a)∥(Λ̂h)−1 , H}

≤ [PhV̂h+1](s, a) + θ⊤rh(s, a) + 2min{β∥ϕ(s, a)∥(Λ̂h)−1 , H}

= [PhV̂h+1](s, a) + θ⊤rh(s, a) + 2ûh(s, a),

where the first inequality uses Equation 23. It completes the proof for one side of the inequality in Lemma D.5. For the
other side we prove the claim by backward induction on h. For h = H + 1 we the claim is trivial. Now suppose that

Q∗
h+1(s, a;θ) ≤ Q̂h+1(s, a),

we want to prove the claim for h. We have

Q∗
h(s, a;θ) = min{θ⊤rh(s, a) + [PhV

∗
h+1](s, a;θ), H}

(i)

≤ min{θ⊤rh(s, a) + [PhV̂h+1](s, a;θ), H}
(ii)

≤ min{ϕ(s, a)⊤ŵh + β∥ϕ(s, a)∥(Λ̂h)−1 , H}

≤ min{ϕ(s, a)⊤ŵh +min{β∥ϕ(s, a)∥(Λ̂h)−1 , H}, H}

= min{ϕ(s, a)⊤ŵh + ûh(s, a), H} = Q̂h(s, a),

where (i) uses induction hypothesis, and (ii) uses Equation 23. It completes the proof of the lemma.

Proof of Theorem D.1. With probability at least 1− δ, event E2 holds and we have

V̂1(s1)− V π̂
1 (s1;θ)

= Q̂1(s1, π̂1(s1))−Qπ̂
1 (s1, π̂1(s1);θ)

(i)

≤
(
[P1V̂2](s1, π̂1(s1)) + θ⊤r1(s1, π̂1(s1)) + 2û1(s1, π̂1(s1))

)
−
(
θ⊤r1(s1, π̂1(s1)) + [P1V

π̂
2 ](s1, π̂1(s1);θ)

)
= 2û1(s1, π̂1(s1)) +

(
[P1V̂2](s1, π̂1(s1))− [P1V

π̂
2 ](s1, π̂1(s1);θ)

)
= 2û1(s1, π̂1(s1)) + Es2∼π̂[V̂2(s2)− V π̂

2 (s2;θ)]

= . . .

= 2Eπ̂[
H∑

h=1

ûh(sh, ah)]

= 2V π̂
1 (s1 | û),

(24)

where (i) is uses Lemma D.5. Therefore we have

V ⋆
1 (s1;θ)− V π̂

1 (s1;θ)

(i)

≤ V̂1(s1)− V π̂
1 (s1;θ)

(ii)

≤ 2V π̂
1 (s1 | û)

(iii)

≤ 2V ⋆
1 (s1 | û)

= 2H · V ⋆
1 (s1 | û/H)

(iv)

≤ O
(√

d3linH
6ι2/K

)
(v)

≤ ϵ,



where (i) uses Lemma D.5, (ii) uses Equation 24, (iii) uses definition of optimal value function, (iv) uses Lemma D.4, and
(v) is due to K ≥ cK [d3linH

6(ι′)2/ϵ2] with a sufficiently large constant cK ; It completes the proof.

E. Proof for Section 6
In this section we provide proofs and missing details for Section 6.

E.1. Proof of Theorem 6.3

Define vt = V µt,νt

1 (s1) and note that E[v̂t] = vt.

Lemma E.1. Define even E3 to be:{
∥ 1
T

∑T
t=1 v

t − v̂t∥ ≤ O(
√

dH2ι/T ),

V µt,νt

1 (s1;θ
t)− V ⋆

1 (s1;θ
t) ≤ ϵ/2 ∀t ∈ [T ].

where ι = log(d/δ). We have P(E0) ≥ 1− δ.

Proof of Lemma E.1. We prove each claim holds with probability at least 1 − δ/2; applying union bound completes the
proof.

First claim. Let Ft be the filtration capturing all the randomness in the algorithm before iteration t. We have E[v̂t | Ft] =
vt and we also know that ∥v̂t∥ ≤ H almost surely. By applying Lemma F.1, with probability at least 1− δ we have

∥ 1
T

T∑
t=1

vt − v̂t∥ ≤ O(
√

H2 log[d/δ]/T ),

which completes the proof.

Second claim. We have K ≥ mRFE(ϵ/2, δ/2), therefore by probability at least 1− δ/2 (Definition 6.1) we have

V µt,†
1 (s1;θ

t)− V †,ωt

1 (s1;θ
t) ≤ ϵ/2,

Since (µt, ωt) is the output of the planning phase. By definition of V ⋆, V ·,†, and V †,·, we further know that

V ⋆
1 (s1;θ

t) = max
ν

V †,ν
1 (s1;θ

t) ≥ V †,ωt

1 (s1;θ
t)

V µt,†
1 (s1;θ

t) = max
ν

V µt,ν
1 (s1;θ

t) ≥ V µt,νt

1 (s1;θ
t)

Combining the three equations gives us,

V µt,νt

1 (s1;θ
t)− V ⋆

1 (s1;θ
t) ≤ V µt,†

1 (s1;θ
t)− V †,ωt

1 (s1;θ
t) ≤ ϵ/2,

and completes the proof.

Lemma E.2. For any θ ∈ B(1), we have

V ∗
1 (s1;θ) ≤ max

x∈C
⟨θ,x⟩+max

ν
min
µ

dist(Vµ,ν
1 (s1), C)

Proof of Lemma E.2. Let α = maxν minµ dist(V
µ,ν
1 (s1), C); therefore, for every max-player policy ν there exist a min-



player policy µ(ν) such that dist(Vµ(ν),ν
1 (s1), C) ≤ α. Let ΓC be the (Euclidean) projection operator into C. We have

V ∗
1 (s1;θ) = V µ⋆,ν∗

1 (s1;θ)

≤ V
µ(ν∗),ν∗

1 (s1;θ)

= ⟨θ,Vµ(ν∗),ν∗

1 (s1)⟩

= ⟨θ,Vµ(ν∗),ν∗

1 (s1)− ΓC

[
V

µ(ν∗),ν∗

1 (s1)
]
⟩+ ⟨θ,ΓC

[
V

µ(ν∗),ν∗

1 (s1)
]
⟩

≤ ∥θ∥dist(Vµ(ν∗),ν∗

1 (s1), C) + max
x∈C
⟨θ,x⟩

≤ α+max
x∈C
⟨θ,x⟩,

Recalling that α = maxν minµ dist(V
µ,ν
1 (s1), C) completes the proof.

Proof of Theorem 6.3. With probability at least 1− δ, event E3 (as in Definition E.1) holds and we have

dist(
1

T

T∑
t=1

Vµt,νt

1 (s1), C) = dist
( 1

T

T∑
t=1

vt, C
)

(i)
= max

θ∈B(1)

[
⟨θ, 1

T

T∑
t=1

vt)⟩ −max
x∈C
⟨θ,x⟩

]
= max

θ∈B(1)

[ 1
T

T∑
t=1

(
⟨θ, v̂t⟩ −max

x∈C
⟨θ,x⟩) + ⟨θ, 1

T

T∑
t=1

vt − v̂t⟩
]

(ii)

≤ max
θ∈B(1)

[ 1
T

T∑
t=1

(
⟨θ, v̂t⟩ −max

x∈C
⟨θ,x⟩)

]
+O(

√
dH2ι/T )

(iii)

≤ 1

T

T∑
t=1

(
⟨θt, v̂t⟩ −max

x∈C
⟨θt,x⟩) +O(

√
H2/T ) +O(

√
dH2ι/T )

(iv)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) +

1

T

T∑
t=1

(
⟨θt, v̂t⟩ −V∗

1(s1;θ
t)
)
+O(

√
dH2ι/T )

(v)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ϵ/2 +

1

T

T∑
t=1

(
⟨θt, v̂t⟩ −Vµt,νt

1 (s1;θ
t)
)
+O(

√
dH2ι/T )

= max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ϵ/2 +

1

T

T∑
t=1

⟨θt, v̂t − vt⟩+O(
√
dH2ι/T )

(vi)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ϵ/2 +O(

√
dH2ι/T )

(vii)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ϵ

where (i) is by Equation 6, (ii) is by first inequality in event E3 together with Cauchy-Schwarz, (iii) is by guarantee of
OGA in Theorem B.1, (iv) is by Lemma E.2, (v) is by second inequality in event E3, (vi) is by first inequality in event E3

together with Cauchy-Schwarz, and finally (vii) is by setting T ≥ c
(
dH2ι/ϵ2

)
for large enough constant c, completing the

proof.

E.2. Proof of Theorem 6.4

E.2.1. ALGORITHM

Exploration phase. Similar to Algorithm 5, we use VI-Zero proposed by Liu et al. (2020) with different choice of
hyperparameters. The pseudo-code is provided in Algorithm 8.



Planning phase. In the planning phase, given θ ∈ B(1) as input we can use any planning algorithm for Ĝθ =

(S,A,B, H, P̂out, ⟨θ, r̂⟩) where r̂ is empirical estimate of r using collected samples {rkh}. One such algorithm could
be Nash value iteration (e.g. see Algorithm 5 in Liu et al. 2020) that computes Nash equilibrium policy for a known model.

Algorithm 8 VI-Zero for VMGs: Exploration Phase

1: Hyperparameters: Bonus βt.
2: Initialize: for all (s, a, b, h) ∈ S ×A× B × [H]: Q̃h(s, a, b)← H and Nh(s, a, b)← 0,
3: for all (s, a, b, h, s′) ∈ S ×A× B × [H]× S: Nh(s, a, b, s

′)← 0,
4: ∆← 0.
5: for episode k = 1, 2, . . . ,K do
6: for step h = H,H − 1, . . . , 1 do
7: for state-action pair (s, a, b) ∈ S ×A× B do
8: t← Nh(s, a, b).
9: if t > 0 then

10: Q̃h(s, a, b)← min{[P̂hṼh+1](s, a, b) + βt, H}.
11: end if
12: end for
13: for state s ∈ S do
14: Ṽh(s)← max(a,b)∈A×B Q̃h(s, a, b) and πh(s)← argmax(a,b)∈A×B Q̃h(s, a, b)
15: end for
16: end for
17: if Ṽ (s1) ≤ ∆ then
18: ∆← Ṽ (s1) and P̂out ← P̂h

19: end if
20: for step h = 1, 2, . . . ,H do
21: Take action (ah, bh)← πh(sh) and observe next state sh+1

22: Update Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1
23: Update Nh(sh, ah, bh, sh+1)← Nh(sh, ah, bh, sh+1) + 1

24: P̂h(· | sh, ah, bh)← Nh(sh, ah, bh, ·)/Nh(sh, ah, bh)
25: end for
26: end for
27: Return P̂out

E.2.2. PROOF OF THEOREM 6.4

Proof is almost identical to proof of Theorem ?? provided in Appendix C; therefore, we only provide the statement for the
main lemmas without proof.

Let P̂k and r̂k be our empirical estimates of the transition and the return vectors at the beginning of the kth episode in
Algorithm 8 and define Ĝk = (S,A,B, H, P̂k, r̂k). We use Nk

h (s, a, b) to denote the number of times we have visited
state-action (s, a, b) in step h before kth episode in Algorithm 8. We use superscript k to denote variable corresponding to
episode k; in particular, (sk1 , a

k
1 , b

k
1 , . . . , s

k
H , akH , bkH) is the trajectory we have visited in the kth episode.

For any θ ∈ B(1), let Ĝkθ be the scalarized VMG using vector θ (defined in Section 6). We use V̂ k(·;θ), Q̂k(·, ·, ·;θ), and
(µ̂k

θ, ν̂
k
θ) = (µ̂k(·;θ), ν̂k(·;θ)) to denote the optimal value function, optimal Q-value function, and Nash equilibrium policy

of Ĝkθ respectively. Therefore, we have

Q̂k
h(s, a, b;θ) = [P̂k

hV̂
k
h+1](s, a, b;θ) + r̂kh(s, a, b;θ),

V̂ k
h (s;θ) = min

µ
max

ν
[Dµ×νQ̂

k
h](s;θ),

V̂ k
h (s;θ) = [Dµ̂k

θ×ν̂k
θ
Q̂k

h](s;θ).

(25)

Theorem E.3 (restatement of Theorem 6.4). There exist absolute constants cβ and cK , such that for any ϵ ∈ (0, H], δ ∈
(0, 1], if we choose bonus βt = cβ

(√
min{d, S}H2ι/t+H2Sι/t

)
where ι = log[dSABKH/δ], and run the exploration



phase (Algorithm 8) for K ≥ cK
(
min{d, S}H4SABι′/ϵ2 +H3S2AB(ι′)2/ϵ

)
episodes where ι′ = log[dSABH/(ϵδ)],

then with probability at least 1− δ, the algorithm satisfies for all θ ∈ B(1)

V µθ,†
1 (s1;θ)− V †,νθ

1 (s1;θ) = [V µθ,†
1 (s1;θ)− V ⋆

1 (s1;θ)] + [V ⋆
1 (s1;θ)− V †,νθ

1 (s1;θ)] ≤ ϵ,

where (µθ, νθ) is the output of any planning algorithm (e.g., Nash value iteration) for the Markov game Ĝoutθ . Therefore, we
have

mRFE(ϵ, δ) ≤ O
(min{d, S}H4SABι′

ϵ2
+

H3S2AB(ι′)2

ϵ

)
.

The bonus for episode k can be written as

βk
h(s, a, b) = cβ

(√ min{d, S}H2ι

max{Nk
h (s, a, b), 1}

+
H2Sι

max{Nk
h (s, a, b), 1}

)
, (26)

where ι = log[dSABKH/δ] and cβ is some large absolute constant.

We start with the concentration lemma similar to Lemma C.3.

Lemma E.4. Let c be some large absolute constant. Define event E4 to be: for all (s, a, b, s′, h) ∈ S ×A× B × S × [H],
k ∈ [K], and θ ∈ B(1),

|[(P̂k
h − Ph)V

⋆
h+1](s, a, b;θ)| ≤ c

√
min{d,S}H2ι

max{Nk
h (s,a,b),1} ,

|(r̂kh − rh)(s, a, b;θ)| ≤ c
√

ι
max{Nk

h (s,a,b),1} ,

|(P̂k
h − Ph)(s

′ | s, a, b)| ≤ c
(√

P̂k
h(s

′|s,a,b)ι
max{Nk

h (s,a,b),1} + ι
max{Nk

h (s,a,b),1}

)
,

(27)

where ι = log[dSABKH/δ]. We have P(E4) ≥ 1− δ.

Similar to Lemma C.4, the following lemma shows that the optimal value functions of Ĝkθ are close to the optimal value
functions of Gθ and their difference is controlled by Q̃ and Ṽ computed in Algorithm 8.

Lemma E.5. Suppose event E4 holds (defined in Lemma E.4); then, for all (s, a, b, k, h,θ) ∈ S×A×B× [K]× [H]×B(1)
we have

|Q̂k
h(s, a, b;θ)−Q⋆

h(s, a, b;θ)| ≤ Q̃k
h(s, a, b),

|V̂ k
h (s;θ)− V ⋆

h (s;θ)| ≤ Ṽ k
h (s).

(28)

Similar to Lemma C.5, now we are ready to introduce the main lemma that shows value of π̂k
θ under the true model is close

to its value under empirical model. The difference is controlled by Q̃ and Ṽ computed in Algorithm 8.

Lemma E.6. Suppose event E4 holds (defined in Lemma E.4); then, for all (s, a, b, k, h,θ) ∈ S×A×B× [K]× [H]×B(1)
we have

|Q̂k
h(s, a, b;θ)−Q

†,ν̂k
θ

h (s, a, b;θ)| ≤ αhQ̃
k
h(s, a, b),

|V̂ k
h (s;θ)− V

†,ν̂k
θ

h (s;θ)| ≤ αhṼ
k
h (s),

(29)

and
|Q̂k

h(s, a, b;θ)−Q
µ̂k
θ,†

h (s, a, b;θ)| ≤ αhQ̃
k
h(s, a, b),

|V̂ k
h (s;θ)− V

µ̂k
θ,†

h (s;θ)| ≤ αhṼ
k
h (s),

(30)

where αH+1 = 1 and αh = [(1 + 1
H )αh+1 +

1
H ]; we have 1 ≤ αh ≤ 5 for h ∈ [H].

Similar to Lemma C.6, we can bound the uncertainty using the following lemma.

Theorem E.7. For any δ ∈ (0, 1], if we choose βk
t in Algorithm 8 as in Equation 26; then, with probability at least 1− δ,

we have
K∑

k=1

Ṽ k
1 (s1) ≤ O(

√
min{d, S}H4SABKι+H3S2ABι2).



Proof of Theorem E.3 (restatement of Theorem 6.4). By Algorithm 8, we have out = argmink∈[K] Ṽ
k
1 (s1), resulting in

Ṽ out
1 (s1) ≤ 1

K

∑K
k=1 Ṽ

k
1 (s1). Therefore, with probability at least 1− 2δ, for any vector θ ∈ B(1) we have

V
µ̂out
θ ,†

1 (s1;θ)− V
†,ν̂out

θ
1 (s1;θ) ≤ |V

µ̂out
θ ,†

1 (s1;θ)− V̂ out
1 (s1;θ)|+ |V̂ out

1 (s1;θ)− V
†,ν̂out

θ
1 (s1;θ)|

(i)

≤ 2α1Ṽ
out
1 (s1)

≤ 10Ṽ out
1 (s1)

≤ 10

K

K∑
k=1

Ṽ k
1 (s1)

(ii)

≤ O(
√
min{d, S}H4SABι/K +H3S2ABι2/K)

(iii)

≤ ϵ,

where (i) is due to Lemma E.6, (ii) is due to Theorem E.7, and (iii) is due to K ≥ cK(min{d, S}H4SABι′/ϵ2 +
H3S2AB(ι′)2/ϵ) with a sufficiently large constant cK . Rescaling δ completes the proof.

F. Auxiliary tools
Lemma F.1 (Hoeffding type inequality for norm-subGaussian, Corollary 7 in Jin et al. 2019). Let {Xt}t∈[T ] be a d-
dimensional vector-valued random variable. Consider filtration {Ft}t∈[T ] and define Et[·] = E[· | Ft]. If ∥Xt∥ ≤ R almost
surely, then it holds with probability at least 1− δ,

∥
T∑

t=1

Xt − Et−1[Xt]∥ ≤ O(R
√

T log[d/δ]).


