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Abstract
We develop fast algorithms and robust software
for convex optimization of two-layer neural net-
works with ReLU activation functions. Our work
leverages a convex reformulation of the standard
weight-decay penalized training problem as a
set of group-`1-regularized data-local models,
where locality is enforced by polyhedral cone con-
straints. In the special case of zero-regularization,
we show that this problem is exactly equiva-
lent to unconstrained optimization of a convex
“gated ReLU” network. For problems with non-
zero regularization, we show that convex gated
ReLU models obtain data-dependent approxima-
tion bounds for the ReLU training problem. To op-
timize the convex reformulations, we develop an
accelerated proximal gradient method and a prac-
tical augmented Lagrangian solver. We show that
these approaches are faster than standard training
heuristics for the non-convex problem, such as
SGD, and outperform commercial interior-point
solvers. Experimentally, we verify our theoretical
results, explore the group-`1 regularization path,
and scale convex optimization for neural networks
to image classification on MNIST and CIFAR-10.

1. Introduction
It is well-known that global optimization of neural networks
is NP-Hard (Blum & Rivest, 1988). Despite the theoretical
difficulty, highly accurate models are trained in practice
using stochastic gradient methods (SGMs) (Bengio, 2012).
Unfortunately, SGMs cannot guarantee convergence to a
local optimum of the non-convex training loss (Ge et al.,
2015) and existing methods rarely certify convergence to a
stationary point of any type (Goodfellow et al., 2016). SGMs
are also sensitive to hyper-parameters; they converge slowly,
to different stationary points (Neyshabur et al., 2017), or
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Figure 1. Convex (solid line) and non-convex (dashed) optimiza-
tion of a two-layer ReLU network for a realizable synthetic classi-
fication problem. We plot only one run of the convex solver since
they are nearly identical and all reach perfect accuracy. In con-
trast, 4/10 runs of SGD on the non-convex problem converge to
sub-optimal stationary points.

even diverge depending on the choice of step-size. Parame-
ters like the random seed complicate replications and can
produce model churn, where networks learned using the
same procedure give different predictions for the same in-
puts (Henderson et al., 2018; Bhojanapalli et al., 2021). See
Figure 1 for an example. For most applications, practitioners
use domain knowledge and costly hyper-parameter search
to cope with these challenges.

In contrast, we propose to optimize shallow models via
convex reformulations of the training objective. Recent
work by Pilanci & Ergen (2020) uses duality theory to
show two-layer neural networks with ReLU activations and
weight decay regularization may be re-expressed as a linear
model with a group-`1 penalty and polyhedral cone con-
straints. Subsequent research extends this model space, de-
riving convex formulations for convolutions (Sahiner et al.,
2021c; Ergen & Pilanci, 2021b; Gupta et al., 2021), vector-
outputs (Sahiner et al., 2021b), batch normalization (Ergen
et al., 2021), generative models (Sahiner et al., 2021a) and
deeper networks (Ergen & Pilanci, 2021a;c). However, ex-
isting work is largely focused on model classes, rather than
leveraging convexification to train neural networks.

This paper develops fast optimization algorithms for two-
layer ReLU models by carefully studying the space of equiv-
alent models. We show that unregularized ReLU networks
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can be trained by decomposing the solution to an uncon-
strained generalized linear model (GLM) onto a difference
of polyhedral cones. With non-zero regularization, the same
unconstrained problem yields a data-dependent approxi-
mation of the optimal solution which differs only in the
norm of the model weights. To fit this GLM, we develop a
proximal-gradient method that combines the convex opti-
mization toolbox with GPU acceleration. We also use this
optimizer as a sub-routine for an augmented Lagrangian
method that quickly and robustly trains ReLU networks via
the (constrained) convex reformulation. Our deterministic
optimizers give both convergence and optimality guarantees.

To summarize, our main contributions are the following:

• A new class of unconstrained convex optimization
problems which are equivalent to training an unregu-
larized ReLU model and approximation guarantees for
the case of non-zero regularization.

• An accelerated proximal-gradient method for this un-
constrained problem that improves the complexity
of computing a global optimum from O(1/ε2) to
O(1/

√
ε) iterations compared to subgradient methods.

• An augmented Lagrangian method for the constrained
convex reformulation which uses our unconstrained
solver as a sub-routine and outperforms commercial
interior-point software such as MOSEK (ApS, 2019).

• Extensive experiments which validate our theoretical
results, carefully explore the properties of our optimiza-
tion methods, and scale convex optimization for ReLU
networks to MNIST and CIFAR-10.

Quality software is key to practical use of our methods. As
such, we also provide scnn, an open-source package for
training neural networks by convex optimization.1

1.1. Related Work
Our work combines ideas from the literature on convex neu-
ral networks, accelerated methods, and constrained solvers.

Convex Neural Networks: There have been repeated at-
tempts to develop convex neural networks. Bengio et al.
(2006) view two-layer neural networks as convex models,
but their work requires the first-layer weights to be fixed.
Similarly, extreme learning machines (Huang et al., 2006)
obtain a convex problem by using a random first-layer; these
models can obtain zero training error for over-parameterized
problems (Woodworth et al., 2020), but do not learn parsi-
monious latent representations as in our approach.

Bach (2017) analyze infinite-width two-layer networks;
these methods are not implementable, but may be viewed
as convex problems. Other research considers the separate

1https://github.com/pilancilab/scnn

problem of neural networks for which the prediction func-
tion is convex (Amos et al., 2017; Sivaprasad et al., 2021).

In concurrent work, Bai et al. (2022) consider training
two-layer ReLU networks via convex reformulations us-
ing ADMM. Their approach requires solving a linear sys-
tem at each iteration, or uses coordinate descent to solve
the ADMM sub-problems. In practice, our solvers scale to
larger datasets and allow for more activation patterns.

Accelerated Proximal Gradient: Beck & Teboulle (2009);
Nesterov (2013) were the first to extend optimal gradient
methods (Nesterov, 1983) to composite problems. Work
since then includes extensions to stochastic (Schmidt et al.,
2011) and non-convex (Li & Lin, 2015) optimization.
See Parikh & Boyd (2014) for a survey of proximal al-
gorithms, including proximal gradient.

Augmented Lagrangian Methods: The convergence the-
ory was initially developed by Rockafellar (Rockafel-
lar, 1976a;b). More recent work includes practical guide-
lines (Birgin & Martı́nez, 2014) and acceleration tech-
niques (Kang et al., 2015). See Bertsekas (2014) for ex-
haustive theoretical developments.

2. Convex Reformulations
Let X ∈ Rn×d be a data matrix and y ∈ Rn the associated
targets. We are interested in two-layer ReLU networks,

hW1,w2(X) =

m∑
i=1

(XW1i)+ w2i,

where W1 ∈ Rm×d, w2 ∈ Rm are the weights of the first
and second layers, m is the number of hidden units, and
(·)+ = max {·, 0} is the ReLU activation. Fitting hW1,w2

by minimizing convex loss L with weight decay (`2) reg-
ularization leads to the optimization problem (NC-ReLU),

min
W1,w2

L
(
hW1,w2(X), y

)
+
λ

2

m∑
i=1

‖W1i‖22 + |w2i|2, (1)

where λ ≥ 0 is the regularization strength. While Problem 1
is non-convex, Pilanci & Ergen (2020) show that there is an
equivalent convex optimization problem with the same opti-
mal value if m ≥ m∗ for some m∗ ≤ n+ 1. Furthermore,
Wang et al. (2021) showed that all optimal solutions to (1)
can be found via the convex problem.

2.1. Sub-Sampled ReLU Convex Programs
The convex reformulation for the NC-ReLU objective is
based on “enumerating” the possible activations of a single
neuron in the hidden layer. The activation patterns a ReLU
neuron (Xw)+ can take for fixed X are described by

DX =
{
D = diag(1(Xu ≥ 0)) : u ∈ Rd

}
,

https://github.com/pilancilab/scnn
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which grows as |DX | ∈ O(r(n/r)r) for r := rank(X)
(Pilanci & Ergen, 2020). For Di ∈ DX , the set of vectors u
which achieve the corresponding activation pattern, meaning
DiXu = (Xu)+, is the following convex cone:

Ki =
{
u ∈ Rd : (2Di − I)Xu � 0

}
.

For any subset D̃ ⊆ DX , we define the sub-sampled convex
optimization problem (C-ReLU):

min
v,w
L
(∑
Di∈D̃

DiX(vi−wi), y
)

+λ
∑
Di∈D̃

‖vi‖2+‖wi‖2

s.t. vi, wi ∈ Ki.
(2)

Pilanci & Ergen (2020) prove NC-ReLU and C-ReLU are
equivalent using linear semi-infinite duality theory (Goberna
& López, 2002). However, this result requires m ≥ m∗ and
the full enumeration of the activations of a neuron: D̃ = DX .
In practice, learning with DX is computationally infeasible
except for special cases where the data are low rank. By
introducing sub-sampled models, we relax the dependencies
on m∗ and DX to simple inclusions involving D̃.

Theorem 2.1. Suppose (W ∗1 , w
∗
2) and (v∗, w∗) are global

minima of the NC-ReLU (12) and C-ReLU (2) problems,
respectively. If the number of hidden units satisfies

m ≥ b :=
∑
Di∈D̃

|{v∗i : v∗i 6= 0} ∪ {w∗i : w∗i 6= 0}| ,

and the optimal activations are in the convex model,

{diag (XW ∗1i ≥ 0 : i ∈ [m])} ⊆ D̃,

then the two problems have same the optimal value.

See Appendix A for proof. The advantages of this theorem
over existing results are (i) the simple and duality-free proof,
and (ii) the dependence on D̃, which we show in Section 5
can be much smaller than DX while still performing com-
parably to NC-ReLU. Theorem 2.1 also reveals that m∗ is
determined by the number of active “neurons” at the optimal
solution of the full C-ReLU problem with D̃ = DX .

2.2. Unconstrained Relaxation: Gated ReLUs
Solving C-ReLU using scalable first-order methods typically
requires projecting on Ki, which is an expensive quadratic
program in the general case. To circumvent this, we consider
the following unconstrained relaxation (C-GReLU):

min
u
L
( ∑
Di∈D̃

DiXui, y
)

+ λ
∑
Di∈D̃

‖ui‖2 . (3)

At first look, this problem is a high-dimensional GLM with
group-`1 regularization. In fact, C-GReLU is the convex re-
formulation of another neural network optimization problem.

ui

vi

wi

Ki

−Ki

Figure 2. An illustration of the Cone Decomposition (CD) proce-
dure: ui is decomposed onto the Minkowski difference Ki −Ki.

Let G ⊂ Rd and consider the model,

hW1,w2
(X) =

∑
gi∈G

φg(X,W1i)w2i,

where φg(X,u) = diag(1(Xg ≥ 0))Xu is a “gated ReLU”
activation function with fixed gate vector g (Fiat et al., 2019).
C-GReLU is equivalent to training this gated ReLU network.

Theorem 2.2. Let gi ∈ Rd such that diag(Xgi ≥ 0) = Di

and G̃ =
{
gi : Di ∈ D̃

}
. Then, C-GReLU is equivalent to

the following gated ReLU problem (NC-GReLU):

min
W1,w2

L
(∑
gi∈G̃

φgi(X,W1i)w2i, y
)
+
λ

2

∑
gi∈G̃

‖W1i‖22+w2
2i. (4)

See Appendix A for proof. We can use Theorem 2.2 to
fit Gated ReLU networks by (much easier) unconstrained
minimization. However, as the next section shows, we can
also leverage C-GReLU to approximate or exactly solve the
original ReLU problem.

3. Equivalence of ReLU and Gated ReLU
This section builds upon our sub-sampled convex re-
formulations to show that the C-ReLU and C-GReLU prob-
lems are equivalent up the norm of their optimal solutions.
As a consequence, we give an approximation algorithm
for ReLU networks that first computes the solution to C-
GReLU and then solves an auxiliary cone decomposition
problem. The cone decomposition can be formulated as a
linear program (LP) or second-order cone program (SOCP),
and admits a closed form when X is full row-rank. Before
presenting these fully-general results, we study the unregu-
larized setting, where we show the approximation is exact.
All proofs are deferred to Appendix B.

Let λ = 0 and consider the C-GReLU problem (3). For
each Di ∈ D̃, we seek to decompose the optimal data-local
models as u∗i = vi − wi ∈ Ki − Ki. If these decomposi-
tions exist, collecting them into (v, w) = {(vi, wi)} gives
a feasible point for the C-ReLU problem with the same
optimal objective value as C-GReLU.The next proposition
gives sufficient conditions on the data for this to happen.
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Proposition 3.1. If X is full row-rank, then Ki −Ki = Rd
for every Di ∈ DX . As a result, the C-ReLU, C-GReLU,
NC-ReLU, and NC-GReLU problems are all equivalent.

Unfortunately, Proposition 3.1 does not extended to n > d;
in Proposition B.2, we give full-rank X for which some Ki
is contained in a subspace of Rd, implying Ki −Ki ⊂ Rd.
We call such cones singular.

Proposition 3.2. Suppose Ki is singular for Di ∈ DX .
Then ∃Dj ∈ DX such that Kj −Kj = Rd and Ki ⊂ Kj .

That is, every singular cone is contained within a non-
singular cone. As a result, we show that these “bad” Ki
can be safely ignored when forming the convex programs.

Theorem 3.3. Let λ = 0. For every training set (X, y),
there exists D̃ ⊆ DX such that the sub-sampled C-GReLU
and C-ReLU problems are both equivalent to the full C-
ReLU problem with D̃ = DX .

Algorithm 1 provides a template for training ReLU net-
works by leveraging cone decompositions and Theorem 3.3.
Note that D̃ is generated by randomly sampling gate vectors
gi ∼ N (0, I). This is sufficient to recover the C-ReLU prob-
lem as Theorem 3.3 implies singular cones, for which the
sampling probability is zero, don’t contribute to the solution.

3.1. Approximating ReLU by Cone Decompositions
We have seen that decomposing u∗i = vi − wi allows us
to map the C-GReLU problem into the C-ReLU problem.
However, triangle inequality shows ‖u∗i ‖2 ≤ ‖vi‖2+‖wi‖2,
meaning the cone decomposition can only increase the norm
of the model (see Figure 2). For λ > 0, this increases the
penalty term in objective (Eq. 2), although the loss L is
unchanged. This section develops cone decomposition algo-
rithms for which we know the “blow-up” of the norm is not
too large. As a result, we obtain approximation guarantees
for solving C-ReLU by solving C-GReLU.

In what follows, K = {w : (2D − I)Xw � 0} denotes a
non-singular cone, X̃ = (2D − I)X , and κ(A) is the ratio
of the largest and smallest non-zero singular values of A.
Our first result gives conditions for the existence of a closed-
form decomposition.

Proposition 3.4. Suppose X is full row-rank. If I =
{i ∈ [n] : 〈x̃i, u〉 < 0}, then for every u ∈ Rd,

u = (u+ w)− w,wherew = −X̃†IX̃Iu,

is a valid decomposition onto K −K satisfying,

‖u+ w‖2 + ‖w‖2 ≤ 2 ‖u‖2 .

In general, we cannot hope for constant approximations
since n� d implies the cones K are very “narrow”.

Algorithm 1 Solving C-ReLU by Cone Decomposition
Input: data (X, y), λ ≥ 0, num. samples p, objective R.
Sample: D̃={diag(1(Xgi ≥ 0)) : gi∼N (0, I), i ∈ [p]}
Solve C-GReLU:
u∗ ∈ arg minu L(

∑
D̃DiXui, y) + λ

∑
D̃ ‖ui‖2

Solve Cone Decomposition:
v̄, w̄ ∈ arg minv,w {R(v, w) : u∗i = vi − wi, i ∈ [p]}

Return: (v̄, w̄)

Proposition 3.5. There does not exist a decomposition u =
v − w, where v, w ∈ K, such that

‖v‖2 + ‖w‖2 ≤ C ‖u‖ ,

holds for an absolute constant C.

When X is not full row-rank, we can solve

CD : min
v,w∈K

{R(v, w) : v − w = u} , (5)

where R : Rd×d 7→ R is some loss function. Taking
R(v, w) = 0 reduces to a linear feasibility problem which
can be handled by off-the-shelf LP solvers. Choosing
R(v, w) = ‖v‖2 + ‖w‖2 yields a second-order cone pro-
gram (SOCP) for which we have the following guarantee.

Proposition 3.6. For every u ∈ Rd, if (v̄, w̄) is a solution
to the cone-decomposition program (5) with R(v, w) =
‖v‖2 + ‖w‖2, then there exists J ⊆ [n] such that

‖v̄‖2 + ‖w̄‖2 ≤
(

1 + 2κ(X̃J )
)
‖u‖2 .

Note that the general setting incurs a penalty of κ(X̃J )
compared to Proposition 3.4. Intuitively, this term measures
the narrowness of K and the difficulty of the decomposition.
Combining Proposition 3.6 with Proposition 3.2 gives our
main approximation result.

Theorem 3.7. Let λ ≥ 0 and let p∗ be the optimal value
of the full C-ReLU problem with training set (X, y). There
exists J ⊆ [n] and sub-sampled C-GReLU problem with
minimizer u∗ and optimal value d∗ satisfying,

d∗ ≤ p∗ ≤ d∗ + 2λκ(X̃J )
∑
Di∈D̃

‖u∗i ‖2 .

As a consequence of Theorem 3.7, Algorithm 1 is guar-
anteed to approximate the C-ReLU problem if R(v, w) =
‖v‖2 + ‖w‖2 and p is sufficiently large. As λ → 0, this
result smoothly recovers Theorem 3.3, implying we can
control the approximation by adjusting the regularization.
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NC-GReLU NC-ReLU

C-GReLU C-ReLU

Sol. Map Sol. Map

Cone
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Figure 3. Summary of equivalences between convex (blue) and
non-convex (red) neural network training problems with gated
ReLU (left) and ReLU (right) activations. The convex programs
C-GReLU and C-ReLU are equivalent to the standard non-convex
training problems NC-GReLU and NC-GReLU and are related to
each other via the cone decomposition procedure.

4. Efficient Global Optimization
We now have two options for convex optimization of ReLU
models: directly tackling the C-ReLU problem or solving C-
GReLU and a cone decomposition program (see Figure 3).
This section develops efficient and scalable methods for
both approaches. For simplicity, we assume L is squared
loss; our results are easily extended to other loss functions.

4.1. Solving the Gated ReLU Problem
Our goal is a fast and reliable method for the C-GReLU prob-
lem even when D̃ is very large. To be practical, it should
benefit from GPU acceleration, provide convergence certifi-
cates, and be “tuning-free”. To be theoretically satisfying, it
should come with complexity guarantees.

Our starting place is the observation that C-GReLU is ex-
actly the classic group lasso with basis expansion,

M(X) = [D1XD2X · · · D|D̃|X].

A naive approach to huge-scale group lasso is the stochas-
tic subgradient method; this approach benefits from auto-
differentiation engines such as PyTorch (Paszke et al., 2019)
and TensorFlow (Abadi et al., 2016) and is simple to code.
However, subgradient methods require decreasing step-sizes
to converge and are extremely slow — they require O(ε−2)
iterations to to compute an ε-optimal point.

Instead, we use the composite structure of the objective as
sum of a convex quadratic f(u) = ‖∑Di∈D̃DiXui − y‖22
and the non-smooth penalty g(u) = λ

∑
Di∈D̃ ‖ui‖2. The

FISTA algorithm (Beck & Teboulle, 2009) is an accelerated
method that treats g exactly using the iteration,

uk+1 = arg min
y

Qyk,ηk(y) + g(y) (6)

yk+1 = uk+1 +
tk − 1

tk+1
(uk+1 − uk) ,

where tk+1 = (1 +
√

1 + 4t2k)/2 and

Quk,ηk(y) = f(uk)+〈∇f(uk), y−uk〉+
1

2ηk
‖y−uk‖22 ,

majorizes f as long as ηk ≤ λmax(M>M)−1. Using the
convergence guarantee for FISTA when f, g are convex
and f is Lipschitz smooth (Duchi & Singer, 2009; Beck &
Teboulle, 2009; Nesterov, 2013) gives the complexity of
global optimization of the NC-GReLU problem.

Theorem 4.1. Let (W ∗1 , w
∗
2) be the minimum-norm global

minimizer of the NC-GReLU problem with gates G. Then,
we can compute an ε-optimal point (W1ε, w2ε) in iterations

T ≤
(
2ε−1λmax

(
M>M

) ∑
Di∈D̃

‖W ∗1iw∗2i‖22
)1/2

.

Proof in Appendix C. Theorem 4.1 can also be expressed di-
rectly in terms of the C-GReLU problem by using a mapping
between minimizers of the convex and non-convex formu-
lations. Data normalization gives λmax

(
M>M

)
≤ d · |D̃|,

which is fully polynomial when rank(X) is constant (see
Appendix C.1). Such a condition holds for convolutional
networks with fixed filter sizes (Pilanci & Ergen, 2020).

4.1.1. DEVELOPING AN EFFICIENT OPTIMIZER

In theory, it is sufficient to run FISTA with small enough
step-size to obtain Theorem 4.1, but this approach works
poorly in practice. Additional enhancements are required
for fast and reliable solvers.

Line-Search: Constant step-sizes converge slowly, so we
use a line-search with the test condition proposed by Beck
& Teboulle (2009):

f(uk+1(ηk)) ≤ Qyk,ηk(uk+1(ηk)). (7)

Computing this condition requires evaluating f(uk+1(ηk)),
but does not need additional gradient evaluations like the
alternative proposed by Nesterov (2013). Simple backtrack-
ing along uk+1 − uk works poorly and does not converge;
instead, we probe the arc of solutions to (6) by reducing the
step-size. As evaluating the proximal operator is slower than
backtracking, it is important to initialize ηk effectively.

Initializing the Step-size: Warm-starting with ηk = ηk−1
can lead to overly-small steps, particularly later in optimiza-
tion. An alternative is forward-tracking as ηk = αηk−1 for
α > 1 (Fridovich-Keil & Recht, 2019). This can partially
adapt to local Lipschitz smoothness of f , but may also lead
to unnecessary evaluations of the proximal operator. Instead,
we check the tightness of (7) before forward-tracking (Liu
et al., 2009). Let lyk(u) = f(yk) + 〈∇f(yk), u− yk〉 and

ωk :=
‖uk − yk−1‖22

2ηk−1
(
f(uk)− lyk−1

(uk)
) , (8)
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to get ηk = ηk−1 + (1− α)ηk−11(ωk ≥ c); c = 1 obtains
forward-tracking, while c� 1 gives a conservative strategy.

Restarts: Resetting (yk, tk)← (uk, 1) in the middle of op-
timization is called restarting. Restarting methods adapt to
strong convexity and can attain a fast linear rate of conver-
gence (Nesterov, 2013; Allen Zhu & Orecchia, 2017). Al-
though C-GReLU is not strongly-convex, restarts can allow
FISTA to adapt to local curvature (Giselsson & Boyd, 2014).
We restart FISTA when 〈uk+1 − uk, uk+1 − yk〉 > 0 —
that is, uk+1 is not a descent step with respect to the proxi-
mal gradient mapping (O’Donoghue & Candès, 2015).

Data Normalization: The proximal step (7) is equivalent
to composition of a gradient update with the group soft-
thresholding operator. Thresholding is highly sensitive to
rounding errors in computation of the gradient and, since er-
rors accumulate in the “memory” yk, it is critical to improve
condition of this computation. Appendix C.1 describes a
simple data transformation which works well in practice.

Combining these elements together gives an efficient algo-
rithm for C-GReLU which we call R-FISTA.

4.2. Tractable Cone Decompositions
Training a ReLU network using Algorithm 1 requires solv-
ing a large-scale LP or SOCP. Empirically, the complexity
of solving these problems with commercial software is sim-
ilar to directly solving C-ReLU (see Table 1). Instead, we
propose an approximate decomposition procedure which
can be solved efficiently using R-FISTA.

Manipulating the cone decomposition v−w = u, v, w ∈ K,
we obtain the equivalent conditions X̃w ≥ (−X̃u)+ and
v = u+w. Given ρ ≥ 0, and b = (−X̃u)+, the regularized
one-sided quadratic

CD-A : min
w

1

2
‖(b− X̃w)+‖22 + ρ ‖w‖2 , (9)

approximates the exact cone-decomposition as follows:

Proposition 4.2. Suppose w̃ is a minimizer of (9) and let
ṽ = u+ w̃. If X is full row-rank, then

‖(X̃w̃)−‖2 + ‖(X̃ṽ)−‖2 ≤
2ρ

σmin(X̃)
.

Furthermore, if ρ > 0, then the norm bound in Proposi-
tion 3.6 also holds for the approximate solution (ṽ, w̃).

Alternatively, suppose X is not full row-rank. As ρk → 0,
every convergent subsequence of (ṽk, w̃k) is a feasible cone
decomposition. Moreover, at least one such sequence exists.

Proof in Appendix C, where we also provide Proposi-
tion C.1, an alternative characterization in terms of sub-
matrices X̃J . Proposition 4.2 shows it is straightforward
to control the quality of the approximation by tuning ρ. In

practice, we find CD-A with ρ ≈ 10−10 yields competitive
performance and is easily solved using R-FISTA.

4.3. Solving the ReLU Problem
The main difficulty in solving C-ReLU is the constraints.
Interior point methods (Nesterov & Nemirovskii, 1994) and
specialized conic solvers (O’Donoghue et al., 2016) can han-
dle Ki, but such methods require second-order information
or repeated linear-system solves and scale poorly in both n
and d. Instead, we develop an augmented Lagrangian (AL)
method that uses R-FISTA as a sub-routine.

Recall Theorem 3.3 established a sub-sampled problem
equivalent to the full C-ReLU problem for which each Ki
is non-singular. These cones have an interior point if and
only if they are non-singular (see Lemma B.1), implying the
sub-sampled problem is strictly feasible and satisfies strong
duality. Letting γ, ζ ∈ R|D̃|×n be estimates of the optimal
Lagrange multipliers, the augmented Lagrangian for (2) is

Lδ(v,w,γ,ζ) :=(δ/2)
∑
Di∈D̃

[
‖(γi/δ−X̃ivi)+‖22

+ ‖(ζi/δ − X̃iwi)+‖22
]

+ F (v, w),

(10)

where F (v, w) is the primal objective and X̃i = (2Di −
I)X . Eq. 10 is a penalty method and can recover an optimal
primal-dual pair from (vk, wk) ∈ arg minLδk(v, w, 0, 0)
as δk →∞ (Nocedal & Wright, 1999). However, choosing
δk is challenging in practice.

Instead, the AL method performs proximal-point iterations
on the dual (Rockafellar, 1976b;a) via the iterations,

(vk+1, wk+1) = arg min
v,w

Lδ(v, w, γk, ζk), (11)

γk+1 = (γk − δX̃ivi)+, ζk+1 = (ζk − δX̃iwi)+.

The dual iterates of the AL method converge as O(1/δ · ε).
See Theorem C.3 for a proof going through proximal-point.

4.3.1. RELIABLE CONSTRAINED OPTIMIZATION

AL methods are typically exterior point solvers: (vk, wk)
will approach the constraint set only as the dual problem is
solved. The complexity of maximizing the dual depends on
the penalty strength, with δ � 1 producing fast convergence.
However, δ also affects the Lipschitz smoothness of Lδ —
large δ increasing the curvature of the (one-sided) quadratic
penalties — and can make solving (11) prohibitively expen-
sive for first-order methods. Thus, we choose δ to balance
convergence on the primal and dual problems.

Choosing the Penalty Strength: it is common to set δ to
aggressively decrease the constraint gap (Conn et al., 2013;
Murtagh & Saunders, 1983),

cgap =
∑
Di∈D̃

‖(X̃ivi)−|22 + ‖(X̃iwi)−‖22.
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Figure 4. Performance profiles comparing (left) R-FISTA and MOSEK for the C-GReLU problem to Adam and SGD for NC-GReLU, and
(right) the AL method and baselines for C-ReLU/NC-ReLU. A problem is solved when (F (xk)− F (x∗)) /F (x∗) ≤ 1, where F (x∗) is
the smallest objective value found by any method. This rule is method-independent as the convex and non-convex problems share the
same optimal objective value. See Appendix D.2 for alternative thresholds. Methods are judged by comparing time to a fixed proportion of
problems solved (see dashed line at 50%). R-FISTA and the AL method solve a higher proportion of problems faster than the baselines.

These rules pre-suppose second-order solvers and lead to
very poor conditioning of Lδ . Instead, we propose a simple
“windowing” heuristic: when solving Eq. 11 for (γ1, ζ1),
take δ to ensure that cgap ∈ [rl, ru]. This condition can be
checked and enforced with minimal overhead by using a
mild convergence criterion initially and helps avoid extreme
behavior. We found [rl, ru] = [0.01, 0.1] works well.

Warm Starts: The contours of Lδ (·, ·, γk+1, ζk+1) typi-
cally change slowly when δ is moderate. In such cases, min-
imizing the augmented Lagrangian can be greatly sped-up
by warm-starting with (vk, wk).

We obtain an efficient and robust AL method by combining
warm-starts, our heuristic for δ, and the R-FISTA sub-solver.

5. Experiments
We now present experiments validating our optimizers. We
show that training neural networks via convex reformula-
tions is faster and more robust than attempting to solve the
non-convex training problem with SGD (Robbins & Monro,
1951) or Adam (Kingma & Ba, 2015). Moreover, the models
learned by convex optimization are consistent and general-
ize as well as Adam/SGD without their failure modes.

5.1. Optimization Performance
Synthetic Classification: Convex-reformulations offer a
stable approach to model training, especially outside of
the over-parameterized setting. To illustrate this, we cre-
ate a realizable problem with X ∼ N (0,Σ) and y =
sign(hW1,w2(X)), where hW1,w2 is a two-layer ReLU net-

Table 1. Approximating the C-ReLU problem with cone decompo-
sitions. We compare the solution to C-GReLU (FISTA) with cone-
decomposition by solving the min-norm program (CD-SOCP),
the approximate cone decomposition (CD-A), and directly solv-
ing C-ReLU using the AL method. Exactly solving CD-SOCP is
costly compared to direct solutions. Although CD-A gives only an
approximate decomposition, it yields similar test performance to
CD-SOCP and is two orders of magnitude faster.

R-FISTA CD-SOCP CD-A AL

Dataset Acc. Time Acc. Time Acc. Time Acc. Time

energy 86.3 0.12 86.3 134.6 86.3 1.56 83.7 5.05
ecoli 71.6 0.07 71.6 149.7 70.1 0.29 70.1 3.38
glass 64.3 0.13 64.3 68.76 64.3 0.57 61.9 3.0
pima 73.2 0.36 73.2 37.68 73.2 4.24 75.8 4.72
oocytes 78.6 0.98 79.1 136.3 78.0 4.68 74.2 81.68

work with m = 100 and random Gaussian weights. We try
to recover this model with ten independent runs of SGD and
compare against our AL method on the C-ReLU problem.
For C-ReLU, D̃ is 100 random arrangements augmented
with all activations generated while solving the non-convex
problem with SGD.2 Figure 1 shows that SGD converges
to sub-optimal stationary points four times, while every run
of the convex solver yields a model with perfect training
accuracy. See Appendix D.1 for additional results.

Large-Scale Comparison: Figure 4 presents two perfor-

2This guarantees the non-convex model is in the model space
of the convex program.
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Figure 5. Effect of sampling activation patterns on test accuracy
for networks trained using the C-ReLU and C-GReLU problems
on the primary-tumor dataset. We consider a grid of regular-
ization parameters and plot median (solid line) and first and third
quartiles (shaded region) over 10 random samplings of D̃, where
|D̃| is limited to 10, 100, or 1000 patterns.

mance profiles (Dolan & Moré, 2002) comparing the opti-
mization performance of R-FISTA and our AL method to
Adam, SGD, and the interior-point solver MOSEK (ApS,
2019). MOSEK solves the convex reformulations, while
Adam and SGD solve the original non-convex problems.
The profiles aggregate performance on 438 problems gen-
erated by considering six regularization parameters for 73
datasets taken from the UCI repository (Dua & Graff, 2017).
We use the default parameters for MOSEK; for Adam and
SGD, we use a batch-size of 10% of the data and take the
best run per-problem over a grid of seven step-sizes and
three different random seeds. See Appendix D.2 for details.

We make the following observations: (i) R-FISTA solves
50% of problems two orders of magnitude faster than Adam
and SGD; (ii) MOSEK scales poorly and frequently runs
out of memory despite being allocated 32GB — 3× more
than the other solvers; (iii) although the ReLU problem
is significantly harder, the AL solver converges faster and
solves 25% more problems than the best baseline.

Cone Decompositions: We compare optimizing the C-
ReLU problem directly using our AL method against Al-
gorithm 1. We try two decomposition methods: CD-SOCP,
which sets R(u, v) = ‖u‖2 + ‖v‖2 and solves the resulting
SOCP, and CD-A, which approximates the cone decom-
position problem by solving Eq. (9). We use MOSEK to
solve the SOCP. Table 1 gives median test accuracy and
time-to-solution for each approach on five UCI datasets.

Table 2. Test accuracies for our convex solvers, random forests
(RF), SVMs with a linear kernel (Linear) and SVMs with an
RBF kernel (RBF) for binary classification on 18 UCI datasets.
C-GReLU and C-ReLU both obtain the best test accuracy on 9
datasets, while the most competitive baseline is best on just 4.

Dataset C-GReLU C-ReLU RF Linear RBF

blood 79.9 80.5 75.8 74.5 77.9
chess-krvkp 99.2 98.6 98.9 97.2 98.4
conn-bench 90.2 85.4 73.2 68.3 85.4
cylinder-bands 76.5 78.4 77.5 71.6 71.6
fertility 80.0 80.0 75.0 75.0 75.0
heart-hung. 86.2 86.2 84.5 84.5 86.2
hill-valley 76.0 68.6 57.9 62.0 70.2
ilpd-liver 72.4 74.1 66.4 71.6 71.6
mammographic 77.6 78.6 80.7 80.7 80.2
monks-1 100 100 95.8 79.2 83.3
musk-1 94.7 95.8 92.6 86.3 95.8
ozone 97.6 97.6 97.4 97.2 97.4
pima 74.5 74.5 76.5 75.2 73.2
planning 69.4 63.9 66.7 66.7 69.4
spambase 93.5 93.6 94.1 92.2 93.6
spectf 87.5 75.0 68.8 68.8 68.8
statlog-german 74.0 77.5 73.5 75.0 75.5
tic-tac-toe 99.0 99.0 99.5 98.4 100

R-FISTA is an order of magnitude faster than AL and two
orders faster CD-SOCP, primarily because SOCPs must be
solved on CPU. CD-A performs comparably to CD-SOCP
and is faster than solving the C-ReLU problem with our
AL method. See Appendix D.3 for experimental details and
additional results, including model norms.

5.2. Model Performance
Sensitivity and Regularization: Figure 5 shows the effects
of sub-sampling activation patterns on the C-ReLU and C-
GReLU problems for the primary-tumor dataset. Sur-
prisingly, we find that the distribution of test-accuracies
is stable across regularization parameters even when the
number of patterns is small. We also observe an inverted-U
shaped bias-variance trade-off as the regularization strength
is increased, with sparse models showing the best general-
ization. This contrasts the double descent phenomena fre-
quently observed with non-convex neural networks (Belkin
et al., 2019; Loog et al., 2020; Nakkiran et al., 2020). See
Appendix E for results on a further nine UCI datasets.

UCI Classification: Table 2 compares the performance of
C-ReLU and C-GReLU with random forests (Breiman,
2001) and SVMs (Boser et al., 1992) for binary classifi-
cation on 18 UCI datsasets. For all methods, we report
test accuracy for the best hyperparameters as selected by
cross-validation. Taken together, C-ReLU and C-GReLU
perform best on 14 problems, showing two-layer neural
networks offer an effective, easy-to-train alternative to com-
mon baselines. Results for additional datasets are given in
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Table 3. Median test accuracies from five restarts on a subset of
the UCI datasets. Results are presented as Gated ReLU / ReLU.
Overall, we find the convex reformulations have comparable gener-
alization to the non-convex networks. Note the catastrophic failure
of SGD on ecoli. See Appendix E.2 for quartiles.

Dataset Convex Adam SGD

magic 86.9 / 85.9 82.9 / 86.9 82.1 / 86.4
statlog-heart 79.6 / 83.3 85.2 / 83.3 83.3 / 79.6
mushroom 100 / 100 97.6 / 100 96.9 / 99.9
vertebral-col. 87.1 / 90.3 90.3 / 90.3 90.3 / 88.7
cardiotocogr. 90.1 / 89.9 85.6 / 36.5 85.2 / 88.9
abalone 63.8 / 66.2 58.7 / 65.3 58.1 / 66.1
annealing 90.6 / 90.6 86.2 / 93.7 86.2 / 88.7
car 89.9 / 87.8 83.8 / 94.8 83.2 / 90.1
bank 89.8 / 89.8 89.9 / 90.8 89.8 / 90.5
breast-cancer 68.4 / 68.4 68.4 / 64.9 70.2 / 68.4
page-blocks 96.8 / 94.0 92.1 / 97.1 92.4 / 96.9
contrac 45.9 / 55.1 53.1 / 54.4 53.4 / 53.7
congressional 63.2 / 63.2 64.4 / 62.1 66.7 / 67.8
spambase 93.4 / 93.3 91.6 / 93.5 91.2 / 93.2
synthetic 97.5 / 98.3 98.3 / 96.7 97.5 / 96.7
musk-1 93.7 / 93.7 93.7 / 96.8 94.7 / 95.8
ringnorm 69.8 / 77.0 77.0 / 77.3 77.2 / 77.4
ecoli 82.1 / 80.6 79.1 / 82.1 4.5 / 80.6
monks-2 69.7 / 69.7 66.7 / 69.7 60.6 / 72.7
hill-valley 62.0 / 65.3 57.0 / 62.8 58.7 / 55.4

Appendix E.1

Non-Convex Solvers: We compare the generalization of C-
ReLU and C-GReLU with that of the non-convex problems
on 20 UCI datasets. For each dataset/problem, we select the
regularization strength using five-fold cross validation. For
NC-ReLU and NC-GReLU, we use Adam and SGD and
tune the step-sizes by cross-validation. See Appendix E.2
for details. Table 2 summarizes the test accuracy results.
We find that our convex programs generalize as well as the
non-convex baselines for a fraction of the training time.

Image Classification: We study the generalization perfor-
mance of the Gated ReLU model for image classification on
the MNIST and CIFAR-10 datasets (LeCun et al., 1998;
Krizhevsky et al., 2009). We compare R-FISTA for C-
GReLU to solving the NC-GReLU problem with SGD,
Adam, and Adagrad (Duchi et al., 2011). We choose the reg-
ularization strength and step sizes for each dataset-method
pair using a train/validation split (see Appendix F). Table 4
shows that R-FISTA scales well to these large-scale experi-
ments, with generalization comparable with the non-convex
solvers. This reflects our theory, which shows that these
methods are fundamentally solving the same problem.

5.3. Additional Experiments
We defer additional experiments to the supplementary ma-
terial due to space constraints. In Appendix D.4, we study
the effects of acceleration, restarts, and line-search on the
performance of the R-FISTA method and conclude that

Table 4. Test accuracy of R-FISTA for the C-GReLU problem
compared to SGMs for NC-GReLU on two image classification
tasks. Models trained using the convex program have comparable
test accuracy to the non-convex formulation on MNIST and are
slightly better on CIFAR-10.

Dataset Convex Adam SGD Adagrad

MNIST 97.6 98.0 97.2 97.5
CIFAR-10 56.4 50.1 54.3 54.2

all three components are key to the efficiency of the op-
timization procedure. Appendix D.5 presents an ablation
study for the step-size initialization procedure in R-FISTA,
which is shown to be robust to the choice of c. Similarly,
Appendix D.6 examines the windowing heuristic for the
penalty strength in our AL method and shows the strategy
is comparable to the best fixed δ found by grid search.

6. Conclusion
We propose optimization algorithms for convex reformula-
tions of two-layer neural networks with ReLU activations.
By studying the problem constraints, we split the space of
ReLU activations into “singular” patterns, which may be
safely ignored, and non-singular patterns. As a result, we
show that ReLU networks can be trained by decomposing
the solution to an unconstrained Gated ReLU training prob-
lem onto a difference of polyhedral cones. Experimentally,
we test our algorithms on more than 70 different datasets,
demonstrating that convex optimization is faster and more
reliable than popular training methods like Adam and SGD.

Many directions are left to future work. Efficiently solving
the cone decomposition problem is key to improving on our
augmented Lagrangian method, but existing conic solvers
rely on CPU computation. We believe developing methods
which can natively leverage GPU acceleration is necessary.
Finally, we hope to extend convex optimization to deeper
networks by layer-wise training, which has been shown to
perform well on ImageNet (Belilovsky et al., 2019).
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Dolan, E. D. and Moré, J. J. Benchmarking optimization
software with performance profiles. Mathematical pro-
gramming, 91(2):201–213, 2002.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Duchi, J. C. and Singer, Y. Efficient online and batch learn-
ing using forward backward splitting. J. Mach. Learn.
Res., 10:2899–2934, 2009.

Duchi, J. C., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
J. Mach. Learn. Res., 12:2121–2159, 2011.

Ergen, T. and Pilanci, M. Global optimality beyond two lay-
ers: Training deep ReLU networks via convex programs.
In Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 2993–3003.
PMLR, 2021a.

Ergen, T. and Pilanci, M. Implicit convex regularizers of
CNN architectures: Convex optimization of two- and
three-layer networks in polynomial time. In International
Conference on Learning Representations: ICLR 2021,
2021b.

Ergen, T. and Pilanci, M. Revealing the structure of deep
neural networks via convex duality. In International Con-
ference on Machine Learning, pp. 3004–3014. PMLR,
2021c.

Ergen, T., Sahiner, A., Ozturkler, B., Pauly, J. M., Mardani,
M., and Pilanci, M. Demystifying batch normalization
in relu networks: Equivalent convex optimization models
and implicit regularization. In International Conference
on Learning Representations, 2021.

Fiat, J., Malach, E., and Shalev-Shwartz, S. Decoupling
gating from linearity. arXiv preprint arXiv:1906.05032,
2019.

Fridovich-Keil, S. and Recht, B. Choosing the step size: Intu-
itive line search algorithms with efficient convergence. In
The 11th Workshop on Optimization for Machine Learn-
ing (OPT 2019), 2019.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points - online stochastic gradient for tensor de-
composition. In Grünwald, P., Hazan, E., and Kale, S.
(eds.), Proceedings of The 28th Conference on Learning
Theory, COLT 2015, Paris, France, July 3-6, 2015, vol-
ume 40 of JMLR Workshop and Conference Proceedings,
pp. 797–842. JMLR.org, 2015.

Giselsson, P. and Boyd, S. P. Monotonicity and restart
in fast gradient methods. In 53rd IEEE Conference on
Decision and Control, CDC 2014, Los Angeles, CA, USA,
December 15-17, 2014, pp. 5058–5063. IEEE, 2014.
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A. Convex Reformulations: Proofs
Lemma A.1. The non-convex problem NC-ReLU (Problem 1) is equivalent to the mixed-integer program,

min
W1,w2

L
( m∑
i=1

(XW1i)+ w2i, y
)

+ λ

m∑
i=1

‖W1i‖2

s.t. w2 ∈ {−1, 1}m .
(12)

Proof. The proof proceeds in two steps: first we transform the objective into an equivalent problem which is invariant to
certain scale re-parameterizations of the network parameters. Then, we use these scale re-parameterizations reduce the two
optimization problems to each-other.

Let p∗ be the optimal value of the non-convex optimization problem and d∗ the optimal value of the mixed-integer program.
The ReLU activation function,

(a)+ = max {a, 0} ,

is positively homogeneous, meaning (a ∗ β)+ = β (a)+ for any scalar β ≥ 0. Defining W ′1i = βiW1i, w
′
2i = w2i/βi,

i ∈ [m], we have

hW1,w2
(X) =

m∑
i=1

(XW1i)+ w2i =

m∑
i=1

(
XW1i

βi
βi

)
+

w2i

=

m∑
i=1

(XW ′1i)+ w
′
2i = h(W ′1, w

′
2),

implying that the loss L(
∑m
i=1 (XW1i)+ w2i, y) is invariant to “scale-shift” re-parameterizations of this form. To extend

the invariance to the full objective function, recall Young’s inequality,

2 〈a, b〉 ≤ a2 + b2,

which yields,

L
(

m∑
i=1

(XW1i)+ w2i, y

)
+
λ

2

m∑
i=1

‖W1i‖2 + |w2i|2 ≥ L
(

m∑
i=1

(XW1i)+ w2i, y

)
+ λ

m∑
i=1

‖W1i‖ |w2i| .

For any choice of parameters W1i, w2i, equality in this expression is achieved with the rescaling

W ′1i = W1i ∗ βi, w′2i = w2i/βi,

where βi =
√

w2i

‖W1i‖2
. As this rescaling does not affect hW1,w2 , it must be that any global minimizer θ∗ = (W ∗1 , w

∗
2) of

Problem 1 achieves the lower-bound in Young’s inequality and,

L
(

m∑
i=1

(XW ∗1i)+ w
∗
2i, y

)
+
λ

2

m∑
i=1

‖W ∗1i‖22 + |w∗2i|2 = L
(

m∑
i=1

(XW ∗1i)+ w
∗
2i, y

)
+ λ

m∑
i=1

‖W ∗1i‖2 |w∗2i| . (13)

The right-hand side of this equation is invariant to scale re-parameterizations of the form W ′1i = βW ∗1i, w
′
2i = w∗2i/β for

β > 0. Taking β = |w2i|, we deduce

p∗ = L
(

m∑
i=1

(XW ′1i)+ w
′
2i, y

)
+ λ

m∑
i=1

‖W ′1i‖2 ≥ d∗.

To show the reverse inequality, observe that every global minimum (W ∗1 , w
∗
2) of Problem 12 is trivially in the domain of the

non-convex ReLU training problem. Using the mapping

(W ′1i, w
′
2i) =

(
W ∗1i√
‖W ∗1i‖2

, w∗2i

√
‖W ∗1i‖2

)
,
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and plugging (W ′1, w
′
2) into Problem 1 shows d∗ ≥ p∗. We have shown p∗ = d∗ and so the problems are formally equivalent

with mappings between the solutions as given above.

Theorem 2.1. Suppose (W ∗1 , w
∗
2) and (v∗, w∗) are global minima of the NC-ReLU (12) and C-ReLU (2) problems,

respectively. If the number of hidden units satisfies

m ≥ b :=
∑
Di∈D̃

|{v∗i : v∗i 6= 0} ∪ {w∗i : w∗i 6= 0}| ,

and the optimal activations are in the convex model,

{diag (XW ∗1i ≥ 0 : i ∈ [m])} ⊆ D̃,

then the two problems have same the optimal value.

Proof. The proof proceeds by showing the equivalence of C-ReLU and the mixed integer problem given in Equation (12)
and the invoking Lemma A.1. Let p∗ be the optimal value of the mixed-integer problem in (12) and d∗ the optimal value of
the convex program in (2). We first show that d∗ ≥ p∗.
Suppose (v∗, w∗) is a global minimizer of Problem 2 and let

{(W ∗1k, w∗2k)} =
⋃

Di∈D̃i

{(v∗i , 1) : v∗i 6= 0} ∪ {(w∗i ,−1) : w∗i 6= 0} ,

where we set W ∗1k = 0, and w∗2k = 0 for all k ∈ [m], k > b. It holds by assumption that b ≤ m and thus (W ∗1 , w
∗
2) is a valid

input for the mixed-integer problem.

Recalling the constraints (2Di−I)Xv∗i ≥ 0, and (2Di−I)Xw∗i ≥ 0, we see thatDiXv
∗
i = (Xv∗i )+,DiXw

∗
i = (Xw∗i )+,

and thus

(XW ∗1k)w2j =


DiXv

∗
i if W ∗1k = v∗i for some i ∈ [b]

−DiXw
∗
i if W ∗1k = w∗i for some i ∈ [b]

0 otherwise.

Using this fact in the optimization objective for the convex program, we find

d∗ = L

 ∑
Di∈D̃

DiX(vi − wi), y

+ λ
∑
Di∈D

‖vi‖2 + ‖wi‖2

= L
(

m∑
k=1

(XW ∗1k)+ w
∗
2k − y

)
+ λ

m∑
k=1

‖W ∗1k‖2

≥ p∗,

as required.

To show the reverse inequality, let (W ∗1 , w
∗
2) be a solution to (12) and consider the set-function

T (j) = {i ∈ [m] : diag (XW ∗1i > 0) = Dj} .

Recalling {diag (XW ∗1i > 0 : i ∈ [m])} ⊆ D̃, by assumption, we define a valid candidate solution as

{(
v∗j , w

∗
j

)}
Dj∈D̃

=

 ∑
i∈T (j)

W ∗1i1(w∗2i = 1),
∑
i∈T (j)

W ∗1i1(w∗2i = −1)


Dj∈D̃
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We start by showing that the neurons indexed by T (j) can be merged without changing the objective of the mixed-
integer problem. In particular, let j ∈ [m] be arbitrary and suppose that there exists l, k ∈ T (j) such that w∗2l = w∗2k =
1. By definition of T , it holds that (XW ∗1l)+ and (XW ∗1k)+ have the same activation pattern. Accordingly, we have
(XW ∗1l)+ + (XW ∗1k)+ = (X(W ∗1l +W ∗1k))+ by definition of the ReLU activation. Thus, merging these two parameter
vectors as Z∗lk = W ∗1l +W ∗1k does not change the prediction of the model in the mixed-integer program.

Now we consider the group `1 penalty term. Triangle inequality implies∥∥∥Z̃∗lk∥∥∥
2
≤ ‖W ∗1l‖2 + ‖W ∗1k‖2 ,

with equality if and only if W ∗1l = 0, W ∗1k = 0, or the vectors are collinear. Suppose that equality does not hold. Then the
penalty term could be reduced setting W ∗1l = Zlk and W ∗1k = 0 while leaving the squared-loss term unchanged. But, this
contradicts global optimality of W ∗1 , w

∗
2 . Thus, it must be that W ∗1l = 0, W ∗1k = 0, or the vectors are collinear. In each

case, we have that the merged vector Z̃∗lk also attains the optimal value p∗. Clearly a symmetric argument holds in the case
w2k = w2l = −1.

Arguing by induction if necessary, we deduce that the vectors v∗, w∗ given by the solution mapping also attain p∗. Recalling
that DjXv

∗
j = (Xvj)+ and DjXw

∗
j = (Xwj)+ by choice of T (j) and definition of Dj gives

p∗ = L

 P∑
i=j

DjX(v∗j − w∗j )− y

+ λ

P∑
j=1

∥∥v∗j∥∥2 +
∥∥w∗j∥∥2

≥ d∗,

where v∗j , w
∗
j are feasible. This completes the proof.

Theorem 2.2. Let gi ∈ Rd such that diag(Xgi ≥ 0) = Di and G̃ =
{
gi : Di ∈ D̃

}
. Then, C-GReLU is equivalent to the

following gated ReLU problem (NC-GReLU):

min
W1,w2

L
(∑
gi∈G̃

φgi(X,W1i)w2i, y
)

+
λ

2

∑
gi∈G̃

‖W1i‖22 + w2
2i. (4)

Proof. The proof proceeds similarly to the proof Lemma A.1.

Let p∗ be the optimal value of the Problem 4 and let d∗ be the optimal value of the C-GReLU problem (3). For each zi ∈ Z̃
and any v ∈ Rd, we have the following equality by construction:

φzi(X, v) = (Xzi > 0) ◦Xv = DiXv.

Accordingly, the non-convex optimization problem (4) can be written as

min
W1,w2

L
( ∑
Di∈D̃

DiXW1iw2i, y
)

+
λ

2

∑
zi∈Z̃

‖W1i‖22 + w2
2i, (14)

which makes the connection to C-GReLU clear. Applying Young’s inequality gives,

L
( ∑
Di∈D̃

DiXW1iw2i, y
)

+
λ

2

∑
zi∈Z̃

‖W1i‖22 + w2
2i ≥ L

( ∑
Di∈D̃

DiXW1iw2i, y
)

+ λ
∑
zi∈Z̃

‖W1i‖2 |w2i|

For any choice of parameters W1i, w2i, equality in this expression is achieved with the rescaling

W ′1i = W1i ∗ βi, w′2i = w2i/βi,
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where βi =
√

w2i

‖W1i‖2
. As this rescaling does not affect DiXW1i w2i for each i, it must be that any global minimizer

θ∗ = {W ∗1i, w∗2i} of Problem 4 achieves the lower-bound in Young’s inequality. Defining v′i = W1i ∗ w2i, we have shown

p∗ = L
( ∑
Di∈D̃

DiXW1iw2i, y
)

+ λ
∑
zi∈Z̃

‖W1i‖2 |w2i|

= L
( ∑
Di∈D̃

DiXv
′
i, y
)

+ λ
∑
zi∈Z̃

‖v′i‖2 ≥ d∗,

where we have used absolute homogeneity of the norm.

To obtain the reverse inequality, let v∗ be a global minimizer of C-GReLU and define W ′1i =
v∗i√
‖v∗i ‖2

, w′2i =
√
‖v∗i ‖2 for

all i to obtain

d∗ = L
( ∑
Di∈D̃

DiXvi, y
)

+ λ
∑
Di∈D̃

‖vi‖2

= L
( ∑
Di∈D̃

DiXW
′
1iw
′
2i, y

)
+
λ

2

∑
zi∈Z̃

‖W ′1i‖
2
2 + |w′2i|

2 ≥ p∗,

which completes the proof.

Proposition A.2. Problem 3 is equivalent to following unconstrained relaxation of the ReLU training problem’s convex
reformulation (Problem 2):

min
v,w

1

2
L

 ∑
Di∈D̃

DiX(vi − wi), y

+ λ
∑
Di∈D̃

‖vi‖2 + ‖wi‖2

s.t. (2Di − In)Xvi � 0, (2Di − In)Xwi � 0,

(15)

Proof. Suppose that (v∗, w∗) is an optimal solution (15). Defining r∗ = v∗ − w∗, it holds by the triangle inequality that

‖r∗i ‖2 ≤ ‖v∗i ‖2 + ‖w∗i ‖2 ,

for each i ∈ [P ]. Since replacing v∗i − w∗i with r∗i does not change the model prediction

ŷ =
∑
Di∈D̃

DiX(vi − wi),

we have shown that (r∗, 0) defines an equivalent model with the same or smaller objective value. Accordingly, any solution
to (15) must have v∗i = 0 or w∗i = 0. Equivalence of the two problems follows immediately.

A.1. Extension to Multi-class Classification
Now we extend our sub-sampled C-ReLU and C-GReLU formulations to vector-valued problems, such as occur in multi-class
classification. Our starting place is the following vector-output variant of the NC-ReLU problem

min
W1,W2

L
( m∑
i=1

(XW1i)+W
>
2i , Y

)
+
λ

2

m∑
i=1

‖W1i‖22 + ‖W2i‖21 , (16)

where now labels Y ∈ Rn×C . We note that the main difference between this formulation and Equation (1) is that each row
of X now maps to a vector rather than a single scalar, and the use of `1-squared regularization on the second-layer weights.
We now present a similar result to Lemma A.1 for this particular problem.



Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions

Lemma A.3. The non-convex problem (16) is equivalent to the following program,

min
{Wk

1 ,w
k
2}Ck=1

L
( m∑
i=1

(XW1i)+W
>
2i , Y

)
+ λ

m∑
i=1

‖W1i‖2

s.t. ‖W2i‖1 = 1 ∀i ∈ [m]

(17)

Proof. Follow from the proof of Lemma A.1 (Appendix A), i.e. apply Young’s inequality to achieve

p∗ = min
W1,W2

L
( m∑
i=1

(XW1i)+W
>
2i , Y

)
+
λ

2

m∑
i=1

‖W1i‖22+‖W2i‖21 = min
W1,W2

L
( m∑
i=1

(XW1i)+W
>
2i , Y

)
+λ

m∑
i=1

‖W1i‖2 ‖W2i‖1

Then, this is clearly equivalent to

min
W1,W2

L
( m∑
i=1

(XW1i)+W
>
2i , Y

)
+ λ

m∑
i=1

‖W1i‖2

s.t. ‖W2i‖1 = 1 ∀i ∈ [m]

We can form the one-vs-all convex reformulation as follows:

min
{vk,wk}Ck=1

L
( C∑
k=1

∑
Di∈D̃

DiX(vki −wki )e>k , Y
)

+λ

C∑
k=1

∑
Di∈D̃

∥∥vki ∥∥2+
∥∥wki ∥∥2

s.t. (2Di − In)Xvki � 0, (2Di − In)Xwki � 0,

(18)

where ek is the kth standard basis vector.

Then, we have the following analog of Theorem 2.1 for the vector-output case:

Theorem A.4. Suppose (W ∗1W
∗
2 ) and {

(
vk∗, wk∗

)
}Ck=1 are global minimizers of Problems 17 and Problem 18, respectively.

If the number of hidden units satisfies

m∗ ≥ b :=

C∑
k=1

∑
Di∈D̃

∣∣{vk∗i : vk∗i 6= 0
}
∪
{
wk∗i : wk∗i 6= 0

}∣∣ ,
and the optimal activations are in the convex model,

{diag (XW ∗1i > 0 : i ∈ [m])} ⊆ D̃,

then the two problems have same the optimal value.

Proof. We follow from the proof of Theorem 2.1. Let p∗ be the optimal value of (17) and d∗ be the optimal value of (18).

First, suppose {
(
vk∗, wk∗

)
}Ck=1 is a global minimizer of Problem 18. Then, let

(
W ∗1(i,k),W

∗
2(i,k)

)
=
⋃
Di∈D̃

C⋃
k=1

{
(vk∗i , ek) : vk∗i 6= 0

}
∪
{

(wk∗i ,−ek) : wk∗i 6= 0)
}

where we set W ∗1(i,k) = 0 and W ∗2(i,k) = 0 for non-assigned neurons. It holds by assumption that b ≤ m and thus this is a
valid input for (17). Further, we have, due to the constraints,

(XW ∗1(i,k))+W
∗>
2(i,k) =


DiXv

k∗
i e
>
k if W ∗1(i,k) = vk∗i

DiXw
k∗
i e
>
k if W ∗1(i,k) = wk∗i

0 o.w.
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Inserting to the objective for the convex program,

d∗ = L
( C∑
k=1

∑
Di∈D̃

DiX(vk∗i −wk∗i )e>k , Y
)

+λ

C∑
k=1

∑
Di∈D̃

∥∥vk∗i ∥∥2+
∥∥wk∗i ∥∥2 (19)

= L
(∑

(i,k)

(XW ∗1(i,k))+W
∗>
2(i,k), Y

)
+λ
∑
(i,k)

∥∥∥W ∗1(i,k)∥∥∥
2

(20)

≥ p∗ (21)

Now, we seek to find the other direction, i.e. show p∗ ≥ d∗ and show a mapping. Let (W ∗1i,W
∗
2i) be a solution to (17).

Defining, as in Theorem 2.1,
T (j) = {i ∈ [m] : diag (XW ∗1i > 0) = Dj} .

Recalling {diag (XW ∗1i > 0 : i ∈ [m])} ⊆ D̃, by assumption, we define a valid candidate solution as

{{(
vk∗j , w

k∗
j

)}
k∈[C]

}
Dj∈D̃

=


 ∑
i∈T (j)

W ∗1iw
k∗
2i 1(W k∗

2i ≥ 0)


k∈[C]

,

− ∑
i∈T (j)

W ∗1iw
k∗
2i 1(W k∗

2i < 0)


k∈[C]


Dj∈D̃

Then, by the same co-linearity arguments as in Theorem 2.1, we have

p∗ = L
( m∑
i=1

(XW ∗1i)+W
∗>
2i , Y

)
+ λ

m∑
i=1

‖W ∗1i‖2

= L
( m∑
i=1

C∑
k=1

(XW ∗1i)+W
k∗
2i e
>
k , Y

)
+ λ

m∑
i=1

‖W ∗1i‖2
C∑
k=1

|W k∗
2i |

= L
( m∑
i=1

C∑
k=1

(XW ∗1i)+W
k∗
2i e
>
k , Y

)
+ λ

m∑
i=1

C∑
k=1

‖W ∗1i‖2 |W k∗
2i |

= L
( ∑
Dj∈D̃

C∑
k=1

DjX(vk∗j − wk∗j )e>k , Y
)

+ λ
∑
Dj∈D̃

C∑
k=1

∥∥vk∗j ∥∥2 +
∥∥wk∗j ∥∥2

≥ d∗

Thus, the vector-output NC-ReLU training problem (16) is equivalent to the one-vs-all C-ReLU problem (18) if the
conditions of Theorem A.4 are satisfied. Further, taking D̃ = DX and applying Theorem A.4 yields

m∗ =

C∑
k=1

∑
Di∈DX

∣∣{vk∗i : vk∗i 6= 0
}
∪
{
wk∗i : wk∗i 6= 0

}∣∣ .
It follows that global optimization of the vector-output NC-ReLU problem requiresm ≥ m∗ neurons, wherem∗ ≤ C(n+1).

The gated ReLU analogs to vector-output ReLU architectures can be formulated in the same fashion.
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B. Equivalence of ReLU and Gated ReLU: Proofs
First we give a simple lemma that will be useful when characterizing the span of Ki −Ki.
Lemma B.1. The cone Ki has a non-empty interior if and only if Ki −Ki = Rd.

Proof. Let x ∈ aff(Ki). Then x =
∑m
j=1 αjyj , yj ∈ Ki. Let j ∈ [m]. If αj ≥ 0, then αjyj ∈ Ki since Ki is a cone.

Otherwise, αjyj ∈ −Ki. Either way, we have αjyj ∈ Ki −Ki.
Observe that Ki − Ki is a convex cone since Ki is a convex cone. Thus, α1y1 + α2y2 ∈ Ki − Ki. Induction on j ∈ [m]
now implies x ∈ Ki −Ki and thus aff(Ki) ⊆ Ki −Ki. Now suppose x ∈ Ki −Ki so that x = y1 − y2, where y1, y2 ∈ Ki.
It is trivial to deduce x ∈ aff(Ki); we conclude that aff(Ki) = Ki −Ki.
Since 0 ∈ aff(Ki), this set is a linear subspace of Rd. If Ki has an interior point, then aff(Ki) = Rd and we must
have aff(Ki) = Ki − Ki = Rd. On the other hand, if Ki does not have an interior point, then aff(Ki) ⊂ Rd and
aff(Ki) = Ki −Ki ⊂ Rd must hold; we have shown the reverse implication by the contrapositive.

Now we show that Ki has an interior point when X is full row-rank. The proof proceeds by studying a relative interior point
of Ki.
Proposition 3.1. If X is full row-rank, then Ki − Ki = Rd for every Di ∈ DX . As a result, the C-ReLU, C-GReLU,
NC-ReLU, and NC-GReLU problems are all equivalent.

Proof. Let w̄ ∈ relint(Ki), which exists since the relative interior of a non-empty convex set is non-empty (Bertsekas, 2009).
Assume that the inequality,

(2Di − I)Xw̄ � 0,

is tight for at least one index j ∈ [n]; let XI be the submatrix of X formed by the rows of X for which the inequality is tight.
Define D̃ = (2Di− I). Since X is full row-rank, the rows of XI are linearly independent. Let xk be an arbitrary row of XI
(noting xk 6= 0 by linear independence) and define zk to be the component of xk which is orthogonal to the remaining rows
of XI . Clearly such a vector exists since the rows of XI are linearly independent. Define w′ = w̄ + [D̃i]kkzk to obtain

[D̃i]kkx
>
k w
′ = [D̃i]kkx

>
k w̄ + ‖zk‖22 = ‖zk‖22 > 0,

and, for j 6= k,
[D̃i]jjx

>
j w
′ = [D̃i]jjx

>
j w̄ + [D̃i]jj [Di]kkx

>
j zk ≥ 0,

since xj and zk are orthogonal. This contradicts w̄ ∈ relint(Ki) and we deduce that (2Di − I)Xw̄ � 0. Lemma B.1 now
implies that Ki −Ki = Rd.

Let u∗ be an optimal solution to the C-GReLU problem with D̃ = DX . Since the Minkowski difference Ki − Ki spans
Rd for every Di ∈ DX , we can find vi, wi such that u∗i = vi − ui. Moreover, we can always reparameterize the optimal
solution to the C-ReLU problem as ui = v∗i −w∗i . A simple reduction argument now shows the two problems are equivalent.
Applying theorems 2.1 and 2.2 extends the equivalence to NC-ReLU and NC-GReLU.

The main difficulty extending Proposition 3.1 to general, full-rank X is showing that none of the cone-constraints are tight
at w̄. Unfortunately, the following shows that these difficulties cannot be resolved.

Proposition B.2. There exists a full-rank data matrix X and activation pattern Di ∈ DX such that Ki is contained in a
linear subspace of Rd.

Proof. Let d = 3, n = 4 and take

X =


1 0 0
0 1 0
−1 −1 0
0 0 1.


It is easy to see that X is full-rank, although it does not have full row-rank since x1, x2, x3 are collinear. The cone Ki =
{w : Xw � 0}, which corresponds to positive activations for each example, has the following alternative representation:

Ki = {α ∗ e3 : α ≥ 0} .
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Clearly Ki is contained in a subspace of dimension one. Thus, we cannot hope for Ki to have full affine dimension in this
more general setting.

B.1. Singular Cones are Contained in Non-Singular Cones
Considering the counter-example in Proposition B.2, we find the “bad” Ki is contained within the subspace S spanned by e3.
By construction, every w ∈ Ki is orthogonal to x1, x2, and x3, meaning these examples don’t contribute to the constraints
on Ki once it is restricted to S. Intuitively, changing the activation associated with x1, x2, or x3 can only lead to cones
which contain Ki. For example, consider K′i = {w : 〈x3, w〉 ≤ 0} , X−3w � 0, which is equal to the non-negative orthant,
R3

+. We immediately observe Ki ⊂ K′i and we may replace the degenerate cone with the alternative, full-dimensional K2.
The rest of this section formalizes these observations.

Definition B.3. Let X̃ ∈ Rm×d and consider a cone K =
{
w : X̃w � 0

}
such that aff(K) = S ⊂ Rd. We call an index

set I ⊆ [m] minimal for S if

KI =
{
w : X̃Iw � 0

}
⊆ S

and, for any j ∈ I,
KI\j 6⊆ S.

That is, removing any half-space constraint indexed by I ensures KI is not contained in S.

Note that there may be many minimal index sets for a singular cone and these sets may have varying cardinalities. However,
each minimal index set shares a key property: every row x̃i indexed by such I must be orthogonal to S .

Lemma B.4. Let X̃ ∈ Rm×d such that the coneK =
{
w : X̃w � 0

}
is singular. Let S = aff(K) be the smallest containing

subspace and I a minimal index set for S. Then, 〈x̃i, s〉 = 0 for all i ∈ I and s ∈ S.

Proof. Suppose 〈x̃i, w〉 6= 0 for some i ∈ I and w ∈ K. Since w ∈ K, X̃w � 0 and it must be that 〈x̃i, w〉 > 0. Let
z ∈ S⊥ be arbitrary and define w′ = z + αw, α > 0. By taking α to be sufficiently large, we obtain

〈x̃i, w′〉 = 〈x̃i, z〉+ α 〈x̃i, w〉 > 0,

Since w′ 6∈ S ⊇ K, we must have
X̃I\iw

′ 6� 0 =⇒ X̃I\iz 6� 0,

where we have used Xw � 0. Moreover, this holds for all z ∈ S⊥, which implies that KI\i ⊆ S and I cannot be minimal
for S. We conclude 〈x̃i, w〉 = 0 for all i ∈ I and w ∈ K by contradiction.

Since S is the affine hull of K, we have for every s ∈ S and i ∈ I the following:

〈x̃i, s〉 =

〈
x̃i,

k∑
j=1

αjyj

〉
=

k∑
j=1

αj 〈x̃i, yj〉 = 0,

since yj ∈ K.

Similarly, if any constraint is tight at a relative interior point, then that constraint must be orthogonal to the cone.

Lemma B.5. Let X̃ ∈ Rm×d, K =
{
w : X̃w � 0

}
, and w̄ be a relative interior point of K. If 〈x̃j , w̄〉 = 0 for any j ∈ [m],

then x̃j is orthogonal to K.

Proof. Suppose 〈x̃j , w̄〉 = 0 for some j ∈ [m]. If there exists w ∈ K such that 〈x̃j , w̄〉 > 0, then 〈x̃j , w̄ + w〉 > 0 and
w̄ + w ∈ K, which contradicts the assumption w̄ is a relative interior point. Since every w ∈ K satisfies 〈x̃j , w〉 ≥ 0, we
conclude 〈x̃j , w〉 = 0 for all such w.

Lemma B.4 is key to our analysis because it implies that the half-space constraints which force K to lie in a subspace don’t
“cut into” that subspace. In particular, it means that we can choose to enforce membership inHxi orH−xi without changing
the inclusion. We show now that there exists a choice of signed half-spaces for which the intersection is non-singular.
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Lemma B.6. Let x1, . . . xm be a collection of vectors in Rd and X ∈ Rm×d the matrix formed by stacking these vectors.
Then there exists a diagonal matrix D̃, where D̃jj ∈ {−1, 1}, such that

aff(
{
w : D̃Xw � 0

}
) = Rd.

Proof. We proceed by induction. Let D̃11 = 1 and K1 = Hx1
:= {w : 〈x1, w〉 ≥ 0}. Clearly aff(K1) = Rd since it is a

half-space.

Now, let t < m and assume that aff(Kt) = Rd. Consider

At+1 := Kt ∩Hxt+1
.

If S := aff(At+1) = Rd, then the inductive hypothesis holds at Kt+1 = At+1 and we can choose D̃t+1,t+1 = 1. Otherwise,

xt+1 must be part of a minimal index set I ⊆ [t + 1] such that
{
w : D̃IXIw � 0

}
⊆ S. Lemma B.4 now implies that

xt+1 is orthogonal to S. Let w ∈ Kt ∩ S⊥ (which is non-empty by the inductive hypothesis) and observe that

〈w, xt+1〉 < 0,

must hold, otherwise w ∈ At+1. We deduce 〈w, xt+1〉 ≤ 0 for every w ∈ Kt and thus

Kt ∩H−xt+1
= Kt,

which is full-dimensional by the inductive hypothesis. Taking Kt+1 = Kt and Dt+1,t+1 = −1 completes the case.

The desired result follows by induction.

We now use Lemma B.6 to show that every singular cone is contained in a non-singular cone.

Proposition 3.2. Suppose Ki is singular for Di ∈ DX . Then ∃Dj ∈ DX such that Kj −Kj = Rd and Ki ⊂ Kj .

Proof. For simplicity, we drop the index i and work with K = {w : (2D − I)Xw � 0}. To ease the notation, we also write
D̃ = (2D− I) and X̃ = D̃X . Let S = aff(K) be the smallest subspace containing K, O be the set of all indices j such that
xj is orthogonal to S, and U = [n] \ O. Lemma B.6 implies that there exists an alternative activation pattern D̃′ such that,

D̃′U = D̃U , and if K′ =
{
w : D̃′Xw � 0

}
, then

K′O :=
{
w : D̃′OXOw � 0

}
satisfies aff (K′O) = Rd.

Since the vectors indexed by O are orthogonal to S, they are also orthogonal to every w ∈ K, implying K ⊂ K′. In other
words, the change of activation signs preserves inclusion of K.

Let us show that K′ contains an interior point. Let w̄ be a relative interior point of K and suppose that 〈x̃j , w̄〉 = 0 for some
j ∈ U . Lemma B.5 implies x̃j is orthogonal to K. But, then j ∈ O, which is a contradiction. We conclude X̃U w̄ � 0.

Let ȳ be an interior point of K′O, which exists because aff(K′O) = Rd. The point z̄ = ȳ + αw̄, α > 0 satisfies

D̃′OXO z̄ = D̃′OXOȳ � 0,

since w̄ is orthogonal to the rows of XO. Similarly, by taking α to be sufficiently large, we have

D̃′UXU z̄ � 0.

We have shown that z̄ is an interior point of K′ and Lemma B.1 now implies K′ −K′ = Rd.

Theorem 3.3. Let λ = 0. For every training set (X, y), there exists D̃ ⊆ DX such that the sub-sampled C-GReLU and
C-ReLU problems are both equivalent to the full C-ReLU problem with D̃ = DX .
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Proof. Let u∗ be a solution to the full C-GReLU problem and p∗ the optimal value. For every Di ∈ DX , we either have
Ki −Ki = Rd, or not. If the former condition holds, take r∗i = u∗i . Otherwise, invoke Proposition 3.2 to obtain Dj ∈ DX
such that Ki ⊂ Kj and Kj −Kj = Rd. By the construction in the proof of Proposition 3.2, if [Dj ]kk 6= [Di]kk, then xk is
orthogonal to Ki and we deduce

DjXu
∗
i = DiXu

∗
i .

We may therefore merge the two neurons as r∗j = u∗j + u∗i and update D̃′ = D̃ \Di without changing the (optimal) value of
the C-GReLU program. In this way, we obtain a sub-sampled C-GReLU problem with activation patterns D̃, for which

p∗ = L
( ∑
Di∈DX

DiXu
∗
i , y

)

= L

 ∑
Di∈D̃

DiXr
∗
i , y

 .

Since Ki −Ki = Rd for every Di ∈ D̃, we may decompose r∗i = v′i − w′i, such that v′i, w
′
i ∈ Ki. In this way, we obtain a

feasible input (v′, w′) to C-ReLU such that

p∗ = L

 ∑
Di∈D̃

DiXr
∗
i , y


= L

 ∑
Di∈D̃

DiXv
′
i − w′i, y


≥ min

v,w

[
L
( ∑
Di∈DX

DiX (vi − wi) , y
)

: vi, wi ∈ Ki
]

:= d∗,

To establish the reverse inequality, let (v∗, w∗) be a solution to the full C-ReLU problem and repeat the neuron-merging
process described above to obtain a sub-sampled C-ReLU problem with identical objective value and activation patterns D̃.
For every Di ∈ D̃, let u′i = r∗i − s∗i (where r∗i and s∗i are the weights obtained from after merging neurons) to obtain

p∗ = L
( ∑
Di∈DX

DiXu
′
i, y

)

≥ min
u
L
( ∑
Di∈DX

DiXu
′
i, y

)

= min
u
L

 ∑
Di∈D̃

DiXu
′
i, y

 := d∗.

We conclude that the two sub-sampled optimization problems are equivalent and achieve the same global minimum as the
full C-ReLU problem.

B.2. Approximating ReLU by Cone Decomposition: Proofs
Proposition 3.4. Suppose X is full row-rank. If I = {i ∈ [n] : 〈x̃i, u〉 < 0}, then for every u ∈ Rd,

u = (u+ w)− w,wherew = −X̃†IX̃Iu,

is a valid decomposition onto K −K satisfying,

‖u+ w‖2 + ‖w‖2 ≤ 2 ‖u‖2 .
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Proof. Let’s show that the decomposition is valid. Setting v = u+ w, we obtain v − w = u by construction. For notational
ease, let J = [n] \ I. It holds that

X̃Iw = −X̃IX̃†IX̃Iu = −X̃Iu > 0.

Moreover, since X is full row-rank and J ∩ I = ∅, we have

X̃X̃† = X̃X̃>
(
X̃X̃>

)−1
= I,

which implies that X̃J X̃
†
I = 0. We deduce

X̃Jw = −X̃J X̃†IX̃Iu = 0.

Moreover, we also have
X̃Iv = X̃Iu− X̃Iu = 0,

and
X̃J v = X̃J u+ 0 ≥ 0,

by definition of J . We conclude w, v ∈ K.

To show the approximation result, start from

‖w‖2 =
∥∥∥X̃†IX̃Iu∥∥∥

2

≤
∥∥∥X̃†IX̃I∥∥∥

2
‖u‖2

= ‖u‖2 .

Triangle inequality now gives,

‖v‖2 =
∥∥∥u− X̃†IX̃Iu∥∥∥

2

≤
∥∥∥(I − X̃†IX̃I)

∥∥∥
2
‖u‖2

= ‖u‖2 ,

and summing these two inequalities gives the result.

Proposition 3.5. There does not exist a decomposition u = v − w, where v, w ∈ K, such that

‖v‖2 + ‖w‖2 ≤ C ‖u‖ ,

holds for an absolute constant C.

Proof. Consider the data matrix

X =

[
1 α
−1 α

]
(22)

The cone corresponding to positive activations for both examples is K =
{
x ∈ Rd : x2 ≥ −x1/α, x2 ≥ x1/α

}
. Consider

decomposing the vector u = [2, 0] onto K−K. Clearly u 6∈ K; by inspection, we see that the minimum norm decomposition
is given by v = [1, 1/α], and w = [−1, 1/α]. Taking α→ 0, we find ‖v‖2 = ‖w‖2 →∞.

Proposition 3.6. For every u ∈ Rd, if (v̄, w̄) is a solution to the cone-decomposition program (5) with R(v, w) =
‖v‖2 + ‖w‖2, then there exists J ⊆ [n] such that

‖v̄‖2 + ‖w̄‖2 ≤
(

1 + 2κ(X̃J )
)
‖u‖2 .
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Proof. First, we re-parameterize the problem: u = v − w implies u+ w = v, giving the equivalent program

min
w∈K
‖w‖2 + ‖u+ w‖22 . (23)

In order to character the solution, we re-write the constraints into a single system of linear inequalities as follows:

F =
{
w : X̃w � 0, X̃w � −X̃u

}
=
{
w : X̃w � 0, X̃w � b

}
,

where we have introduced b = −X̃u. It is possible to combine these inequalities by taking the element-wise maximum as
follows:

F =
{
w : X̃w � max (0, b)

}
=
{
w : X̃w � (b)+

}
.

Let w̄ ∈ F be a optimal point for the reparameterized program. Relaxing the objective using triangle inequality gives,

‖w̄‖2 + ‖u+ w̄‖2 = min
w∈F
‖w‖2 + ‖u+ w‖2

≤ min
w∈F

2 ‖w‖2 + ‖u‖2 .

Let w′ be a solution to the relaxation. The KKT conditions imply there exists a submatrix X̃J for which the inequality
constraints are tight:

X̃Jw
′ = (bJ )+ .

The set of vectors satisfying this equality is
{[
X̃J

]†
(bJ )+ + z : z ∈ null(XJ )

}
. Choosing z 6= 0 can only increase the

value of the objective, from which we deduce w′ =
[
X̃J

]†
(bJ )+. We obtain

‖w̄‖2 + ‖v̄‖2 ≤ 2 ‖w′‖2 + ‖u‖2
= 2

∥∥∥∥[X̃J ]† (bJ )+

∥∥∥∥+ ‖u‖2

≤ 2

σmin(X̃J )

∥∥(bJ )+
∥∥
2

+ ‖u‖2

≤ 2

σmin(X̃J )
‖bJ ‖2 + ‖u‖2

=
2

σmin(X̃J )

∥∥∥X̃J u∥∥∥
2

+ ‖u‖2

≤
(

1 + 2
σmax(X̃J )

σmin(X̃J )

)
‖u‖2 .

Theorem 3.7. Let λ ≥ 0 and let p∗ be the optimal value of the full C-ReLU problem with training set (X, y). There exists
J ⊆ [n] and sub-sampled C-GReLU problem with minimizer u∗ and optimal value d∗ satisfying,

d∗ ≤ p∗ ≤ d∗ + 2λκ(X̃J )
∑
Di∈D̃

‖u∗i ‖2 .

Proof. The proof is straightforward given our existing results. Let u∗ be the solution to the full (potentially regularized)
C-GReLU problem. For every Di ∈ DX , we either have Ki −Ki = Rd, or not. If the former condition holds, take r∗i = u∗i .
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Otherwise, invoke Proposition 3.2 to obtain Dj ∈ DX such that Ki ⊂ Kj and Kj −Kj = Rd. By the construction in the
proof of Proposition 3.2, if [Dj ]kk 6= [Di]kk, then xk is orthogonal to Ki and we deduce

DjXu
∗
i = DiXu

∗
i .

We may therefore merge the two neurons as r∗j = u∗j + u∗i and update D̃′ = D̃ \Di without changing the loss component
of the C-GReLU program. Furthermore, since

∥∥r∗j∥∥ ≤ ∥∥u∗j∥∥2 + ‖u∗i ‖2, merging these neurons can only decrease the
regularization term. 3 In this way, we obtain a sub-sampled C-GReLU problem with activation patterns D̃ and optimal value
d∗.

Let (v∗, u∗) be the optimal solution to full C-ReLU problem. Applying Proposition 3.6 for each Di ∈ D̃ gives decomposi-
tions u∗i = v′i − u′i such that

d∗ = L
( ∑
Di∈D̃

DiXu
∗
i , y
)

+ λ
∑
Di∈D̃

‖u∗i ‖2

≤ L
( ∑
Di∈D̃

DiXv
∗
i − w∗i , y

)
+ λ

∑
Di∈D̃

‖v∗i − w∗i ‖2

≤ L
( ∑
Di∈D̃

DiXv
∗
i − w∗i , y

)
+ λ

∑
Di∈D̃

‖v∗i ‖2 + ‖w∗i ‖2

= p∗

≤ L
( ∑
Di∈D̃

DiXv
′
i − w′i, y

)
+ λ

∑
Di∈D̃

‖v′i‖2 + ‖w′i‖2

= L
( ∑
Di∈D̃

DiXu
∗
i , y
)

+ λ
∑
Di∈D̃

‖v′i‖2 + ‖w′i‖2

≤ L
( ∑
Di∈D̃

DiXu
∗
i , y
)

+ λ
∑
Di∈D̃

‖u∗i ‖2 + λ
∑
Di∈D̃

2
σmax(X̃J )

σmin(X̃J )
‖u∗i ‖2

= p∗ + λ
∑
Di∈D̃

2
σmax(X̃J )

σmin(X̃J )
‖u∗i ‖2 .

We have abused notation here and omitted the dependence on i in X̃J = (2Di − I)XJi
. However, observe that 2Di − I

is orthonormal so that σmax(X̃I) = σmax(XI) and σmin(X̃I) = σmin(XI) for all I. Maximizing over I ⊆ [n] now gives a
fixed subset J for which the claimed bound holds.

3In fact, we know that one of u∗
j , u

∗
i is zero or they are collinear
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C. Efficient Global Optimization: Proofs
Theorem 4.1. Let (W ∗1 , w

∗
2) be the minimum-norm global minimizer of the NC-GReLU problem with gates G. Then, we

can compute an ε-optimal point (W1ε, w2ε) in iterations

T ≤
(
2ε−1λmax

(
M>M

) ∑
Di∈D̃

‖W ∗1iw∗2i‖22
)1/2

.

Proof. Applying the solution mapping from the proof of Theorem 2.2 (see Appendix A) we find that taking

v′i = W1i ∗ w2i,

for each Di ∈ D yields a global minimizer of C-ReLU. Now we apply the iteration complexity of FISTA (Beck & Teboulle,
2009, Theorem 4.4) to obtain an ε-optimal solution in

T ≤

(
2λmax

(
M>M

)∑
Di∈D̃ ‖v′i‖

2
2

)1/2
ε1/2

=

(
2λmax

(
M>M

)∑
Di∈D̃ ‖W ∗1iw∗2i‖

2
2

)1/2
ε1/2

,

iterations. Note that we have used the fact that λmax(M>M) is the Lipschitz smoothness constant of the squared-error loss.

Proposition 4.2. Suppose w̃ is a minimizer of (9) and let ṽ = u+ w̃. If X is full row-rank, then

‖(X̃w̃)−‖2 + ‖(X̃ṽ)−‖2 ≤
2ρ

σmin(X̃)
.

Furthermore, if ρ > 0, then the norm bound in Proposition 3.6 also holds for the approximate solution (ṽ, w̃).

Alternatively, suppose X is not full row-rank. As ρk → 0, every convergent subsequence of (ṽk, w̃k) is a feasible cone
decomposition. Moreover, at least one such sequence exists.

Proof. First-order optimality conditions for w̃ imply

−X̃>
(
b− X̃w̃

)
+
∈ ρ · ∂ ‖w̃‖2 .

Noting that every vector in ∂ ‖w̃‖2 has norm at most 1, we deduce∥∥∥∥X̃> (b− X̃w̃)
+

∥∥∥∥
2

≤ ρ

=⇒
∥∥∥∥(b− X̃w̃)

+

∥∥∥∥
2

≤ ρ

σmin(X̃)

⇐⇒
∥∥∥∥(max

{
−X̃u, 0

}
− X̃w̃

)
+

∥∥∥∥
2

≤ ρ

σmin(X̃)
.

since X̃ is full row-rank and by definition of b. Using the fact that only positive elements contribute to the norm, we obtain
the following two inequalities: ∥∥∥∥(X̃w̃)−

∥∥∥∥
2

≤ ρ

σmin(X̃)∥∥∥∥(X̃(u+ w̃)
)
−

∥∥∥∥
2

≤ ρ

σmin(X̃)
,
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Recalling ṽ = u+ w̃ and summing gives the first result.

If ρ > 0, then it is easy to observe (i.e. by arguing via contradiction) that w̃ must have smaller norm than any w′ in a feasible
decomposition (v′, w′). Thus, it must also have smaller norm than w̄ from the SOCP cone decomposition:

‖w̃‖2 ≤ ‖w̄‖2 .

Since the proof of Proposition 3.6 relies on controlling only the norm of w̄, the conclusion of that theorem also applies to
(ṽ, w̃).

Finally, suppose X is not full row-rank. For ρ > 0, Equation (9) is equivalent to solving

CD-A : min
w
g(w, ρ) :=

1

2
‖(b− X̃w)+‖22 + ρP (w) s.t. ‖w‖2 ≤ ‖w̄‖2 , (24)

where w̄ is the norm of the minimum-norm (with respect to w only) solution to the cone decomposition problem. This is a
minimization problem with compact constraint set; since g is continuous in both w and ρ, we may apply Berge’s maximum
theorem (Ausubel & Deneckere, 1993) to obtain find

g∗(ρ) = min
w
{g(w, ρ) : ‖w‖2 ≤ ‖w̄‖2} ,

is continuous. Since the cone decomposition is realizable at ρ = 0, g∗(0) = 0 and any sequence ρk converging to 0 satisfies
limk g

∗(λk) = 0.

Let w̃k be the sequence of minimizers associated with ρk. Since w̃k is bounded, it has at least one convergent subsequence.
Let w̃0 be the associated limit point. Since g is continuous in w and ρ, we find

g(w0, 0) = lim
k
g(w̃k, ρk) = lim

k
g∗(ρk) = 0,

which shows that w̃0 is a feasible decomposition. This completes the proof.

Proposition C.1. Suppose w̃ is a minimizer of (9) and let ṽ = u+ w̃. There exists J ⊆ [n] such that

‖(X̃w̃)−‖2 + ‖(X̃ṽ)−‖2 ≤
2ρ

σmin(X̃J )
,

where σmin(X̃calJ) is the minimum (possibly zero) singular value of the sub-matrix X̃J .

Proof. First-order optimality conditions for w̃ imply

−X̃>
(
b− X̃w̃

)
+
∈ ρ · ∂ ‖w̃‖2 .

Let J = {i ∈ [n] : bi − 〈x̃i, w̃〉 > 0} and define B be a diagonal matrix such that Bjj = 1 if j ∈ J and 0 otherwise. In
this notation, the optimality conditions can be written as

−X̃>B
(
b− X̃w̃

)
∈ ρ · ∂ ‖w̃‖2

⇐⇒ −(BX̃>)
(
b− X̃w̃

)
∈ ρ · ∂ ‖w̃‖2 .

Noting that every vector in ∂ ‖w̃‖2 has norm at most 1, we deduce∥∥∥(BX̃)>
(
b− X̃w̃

)∥∥∥
2
≤ ρ

⇐⇒
∥∥∥∥X̃>J (b− X̃w̃)J

∥∥∥∥
2

≤ ρ

=⇒
∥∥∥∥(b− X̃w̃)J

∥∥∥∥
2

≤ ρ

σmin(X̃J )
.

Recalling the definition of J and proceeding as in the proof of Proposition 4.2 gives the desired result.
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Remark C.2. The bound given in Proposition C.1 may be vacuous when X̃J is not full row-rank since it concerns the
minimum singular value, rather than the minimum non-zero singular value. In this respect, it is unlike the other results given
so which have relied on the minimum non-zero singular value. However, it is worth reporting since this bound may be
non-vacuous even when X̃ is not full row-rank and only the asymptotic result in Proposition 4.2 applies.

Theorem C.3. Let (γ∗, ζ∗) be the minimum-norm maximizer of the Lagrange dual of Problem 2. Assume δ > 0 is fixed and
at each iteration Equation (11) is carried out exactly. Then, the AL method computes an ε-optimal estimate (γε, ζε) in

T ≤ ‖γ
∗‖22 + ‖ζ∗‖22

δε
,

Proof. Let d be the Lagrange dual function associated the Problem 2. We will show that the desired iteration complexity
follows from standard results in the optimization literature.

Firstly, it is well-known that if the primal objective is a proper, closed, convex function, then one iteration of the AL method
with penalty strength δ > 0 is equivalent to the following proximal-point step on the dual problem:

(γk+1, ζk+1) = arg max
γ≥0,ζ≥0

{
d(γ, ζ)− 1

2δ

[
‖γ − γk‖2 ‖ζ − ζk‖2

]}
.

See Bertsekas (1997, Section 5.4.6) for a proof of this fact.

Invoking Güler (1991, Theorem 2.1) implies that the AL method attains the following convergence rate for the dual
parameters:

d(γ∗, ζ∗)− d(γk, ζk) ≤ ‖γ
∗ − γ0‖22 + ‖ζ∗ − γ0‖22

δk
. (25)

Choosing γ0 = ζ0 = 0 and re-arranging this equation gives the desired iteration complexity.

C.1. Data Normalization
Recall that the proximal gradient update has the form,

uk+1 = arg min
x

{
f(uk) + 〈∇f(uk), x− uk〉+

1

2ηk
‖x− uk‖22 + g(x)

}
= arg min

x

{
1

2ηk
‖x− (uk − ηk∇f(uk))‖22 + g(x)

}
.

Taking g(x) to be the group `1 penalty, we have

uk+1 = arg min
x

 1

2ηk
‖x− (uk − ηk∇f(uk))‖22 + λ

∑
g∈G
‖xg‖2

 ,

where G is the set of group indices. Letting u+ = uk − ηk∇f(uk), the update takes the form (see, e.g. Sra et al. (2012,
Section 2.3)),

[uk+1]g =

(
1− λ∥∥u+g ∥∥2

)
+

u+g ,

which establishes our claim that the proximal step (7) is a thresholding operator.

Thresholding operators are sensitive to rounding and other forms of numerical error. Indeed, it is not hard to see that using a
perturbed gradient ∇̂f(uk) = ∇f(uk) + ε can lead to groups dropping out of the model (or staying in the model) when
they should remain non-zero. Thus, it is important to reduce numerical error as much as possible by improving the condition
of other operations, like computing∇f(uk). We can use data normalization to partially achieve this goal.

In the remainder of this section, we restrict ourselves to the C-GReLU problem with squared loss,

min
v

1

2

∥∥∥∥∥∥
∑
Di∈D̃

DiXvi − y

∥∥∥∥∥∥
2

2

+ λ
∑
Di∈D̃

‖vi‖2 .
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The Hessian of the smooth component of this problem is ∇2f(v) = M>M , where M is the “expanded” data matrix
M =

[
D1X D2X . . .D|D̃|X

]
. Let h ∈ Rd, hi = ‖X·,i‖2 and H = diag(h). That is, H is a diagonal matrix with the

column-norms of X along the diagonal. Finally, define the column-normalized version of X to be N = H−1X .

It is not hard to see that the diagonal elements of N>N are 1 by construction. Applying a trace bound, we have

λmax(N>N) ≤ trace
(
N>N

)
= d. (26)

Now, consider the normalized version of the expanded data matrix, Ñ = [D1N D2N . . .]. Recalling each Di is a diagonal
matrix whose elements are either 0 or 1, we have

N>D>i DiN = N>DiN
> � N>N,

for each Di ∈ D̃ and the diagonal elements of this matrix are bounded by 1. We conclude that

λmax(Ñ>Ñ) ≤ trace
(
Ñ>Ñ

)
≤ d · |D̃|.

This establishes the claim in Section 4.1.1 that data normalization can be used to upper-bound the maximum eigenvalues of
the Hessian.

Moving on to computation of the gradient, note that the Hessian Ñ>Ñ will be low-rank as long as |D̃| ∗d > n. In fact, this is
nearly always the case since we typically choose D̃ to be as large as possible. Thus, although the condition number of∇2f(v)
is not well-defined, it is possible to reduce the maximum expansion entailed by the Hessian via column normalization.
Observing∇f(v) = ∇2f(v)v − Ñ>y, we may expect conditioning of the gradient computation to improve. Finally, since
the C-GReLU is a linear model, transforming the weights as v′i = H−1vi after optimization can be used to project the model
back into the original data space, ensuring that data normalization has no effects outside of optimization.
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Figure 6. Expanded version of Figure 1 showing the square of the training gradient norm and test accuracy in addition to training objective
and training accuracy, as reported in the main paper. Every run of SGD clearly converges to an approximate stationary point before
terminating. The “bumps” in gradient norm for the AL method are caused by the dual updates, which increase the norm of the minim-norm
subgradient of the augmented Lagrangian (Lδ) with respect to the primal parameters.

D. Additional Experiments and Experimental Details
Now we provide additional experimental results which were omitted from the main paper due to space constraints. We also
give all necessary details to replicate our experiments.

D.1. Synthetic Classification
In this section, we provide additional details and results for the synthetic classification problem shown in Figure 1.

Experimental Details: As mentioned in the main text, we generate the dataset by sampling X ∼ N (0,Σ) and then taking
y = sign(hW1,w2

(X)), where hW1,w2
is a two-layer ReLU network with m = 100 and random Gaussian weights. We

create 250 training examples and 250 test examples with d = 50 in this fashion. The covariance matrix Σ is generated by
sampling a random orthonormal matrix of eigenvectors and d− 2 eigenvalues from the interval [1, 10]. We then append
10 and 1 to this list and form Σ from the diagonalization; this guarantees that the condition number of Σ is exactly 10.
Before optimization, we unitize the columns of the feature matrix (see Appendix C.1) to be consistent without our other
experiments.

For the non-convex optimization problem, we use the standard PyTorch initialization and a step-size of 10. This step-size
gave the fastest convergence out of a grid of {20, 10, 5, 1, 0.5, 0.1, 0.01}. The mini-batch size is 25 examples (10% of the
dataset) and the maximum number of epochs is 1000. We consider SGD to have converged when the gradient norm (as
computed by PyTorch) is less than 10−3. We change the global seed at each of the ten different runs, which ensures that both
the initialization and mini-batch order/composition are different. For our AL method, we randomly sample 100 “diversity”
arrangements, which we augmented will activation patterns generated by SGD while optimizing the non-convex model.
Unlike SGD, the randomness in 10 runs of the AL method is due only to (i) sampling of the diversity set and (ii) the sign
patterns from the SGD run. Note that we are careful to use exactly the same runs of SGD as described above when using
the active set method to compute D̃. We use the standard parameters as given in Appendix G for the remainder of the AL
method’s settings.

Additional Results: Figure 6 shows the convergence behavior of our AL and SGD.As in the main paper, we omit all runs of
the AL method but one because they are nearly identical. One run of SGD diverges, while nine runs converge to stationary
points as measured by the convergence criterion. Of these, four converge to local minima with sub-optimal objective values;
these models also do not have 100% accuracy on the training set despite the problem being realizable. These sub-optimal
local minimal also give worse test accuracy than the model found by the AL method.

D.2. Large-Scale Comparison
This section gives concrete experimental details for the large-scale comparison of optimization performance presented in
Figure 4. We also present the same experimental results with different thresholds for success.

D.2.1. EXPERIMENTAL DETAILS

We first provide details required to reproduce Figure 4.
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Data: We generate the performance profile using 73 datasets taken from the UCI machine learning repository and six
individual regularization parameters for each dataset. See Appendix H for details. This created a set of 438 optimization
problems on which we tested the optimization algorithms. Post-optimization, we omit all problems for which a degenerate
solution (ie. all weights are zero) is optimal.

Models: We generated D̃ for the C-ReLU and C-GReLU problems by sampling 5000 and 2500 generating vectors from
zi ∼ N (0, I), respectively, and then computing Di = diag(Xzi > 0). The zero matrix was removed and duplicate patterns
were filtered out. The convex formulations were extended to multi-class classification problems as described in Appendix A.1.
To ensure the convex and non-convex problems have the same optimal values, we use the vector-out formulation of the
NC-ReLU problem given in Equation (16).

We use the exact same activation patterns for NC-GReLU and C-ReLU. We approximately match the NC-GReLU and
C-ReLU model spaces by choosing

m =
∑
Di∈D̃

|{v∗i : v∗i 6= 0} ∪ {w∗i : w∗i 6= 0}| .

Recall from Theorem 2.1 that this choice ensures the model space for C-ReLU is a strict subset of that for NC-ReLU. Thus,
our results can only favor the non-convex formulations.

Optimizers: For models with gated ReLU activations, we compare R-FISTA with default parameters (see Appendix G) to
Adam, SGD, and MOSEK.

We use a mini-batch size of n
10 for Adam and SGD and perform a grid-search over the following set of step-sizes:

η ∈ {10, 5, 1, 0.5, 0.1, 0.01, 0.001} .

For each optimization problem, we choose the step-size which gives the smallest final training objective. We also use a
decay schedule that halves the step-size every 100 epochs; experimentally, this “step” schedule worked much better than
classical schedules of the form ηk = η0 ∗ t−r, r > 0.5. To control for stochasticity, Adam and SGD are run with three
independent random seeds and only the best execution is reported. MOSEK is run with the default configuration using
CVXPY as an interface (Diamond & Boyd, 2016; Agrawal et al., 2018); we only use MOSEK on the convex reformulation.

The same experimental procedure is used for Adam and SGD on models with ReLU activations, We use our AL method with
standard parameters (Appendix G) to solve the convex reformulation and MOSEK is again used with standard parameters to
solve the convex reformulation.

Hardware and Timing: R-FISTA, our AL method, Adam, and SGD are run on GPU compute nodes with one GeForce
RTX 2080Ti graphics card, two AMD 7502P CPUs, and 8 GB of RAM. Note that the GPUs themselves have 11 GB of GPU
RAM.MOSEK cannot be run on GPUs, so instead these experiments are executed on CPU nodes with 32 GB of RAM and 4
AMD EPYC 7502 CPUs, each of which have 32 cores. In practice, we observed extremely small variance when timing
identical runs. As such, we do not average times over multiple runs.

Determining Successes: We use the (sub)-optimality gap F (xk) − F (x∗) to determine if optimization is successful. In
particular, the relative optimality gap can be checked as

∆k :=
F (xk)− F (x∗)

F (x∗)
≤ rgap,

for some threshold rgap. Figure 4 reports results for rgap = 1. For fairness, we provide figures generated from the same
experimental data with different choices of rgap in the next sub-section. Finally, runs which exceed their available memory
and crash are considered failures, as are problems which take more than 15 minutes. In practice, this is only applicable for
MOSEK, which scales poorly in both memory and time.

D.2.2. ADDITIONAL RESULTS

Alternative Success Thresholds: Choosing the threshold for the relative optimality gap ∆k is subjective and can potentially
favor some methods over others. In this section, we show that alternative values of rgap preserve the ordering of methods
from Figure 4. In particular, tightening the threshold shows that our convex solvers are not only faster than the non-convex
baselines, but also solve the optimization problems to greater accuracy.



Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions

10−2 10−1 100 101 102 103

Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p.
of

P
ro

bl
em

s
S

ol
ve

d

Gated ReLU Activations

10−3 10−1 101 103

Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0
ReLU Activations

R-FISTA (Ours) Adam SGD MOSEK AL (Ours)

Figure 7. Alternative version of Figure 4 with success threshold set to be rgap = 0.5. Recall that a problem is considered solved when
(F (xk)− F (x∗)) /F (x∗) ≤ rgap, where F (x∗) is the smallest objective value found by any method. We find that tightening the success
threshold (as compared to Figure 4) only improves the performance of our convex solvers relative to Adam and SGD.
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Figure 8. Alternative version of Figure 4 with success threshold set to be rgap = 0.1. Performance of all optimization methods decreases
at this threshold, with the notable exception of MOSEK for the C-GReLU problem. However, the relative ordering of R-FISTA, AL,
Adam, and SGD remains unchanged. In other words, our optimizers applied to the convex reformulations still out-perform the non-convex
baselines.
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Table 5. Approximating the C-ReLU problem with cone decompositions. We compare the solution to C-GReLU (FISTA) with cone-
decomposition by solving the min-norm program (CD-SOCP), the approximate cone decomposition (CD-A), and directly solving C-ReLU
using the AL method. We report the norm of each model to demonstrate the “blow-up” effect of the cone decomposition.

R-FISTA CD-SOCP CD-A AL

Dataset Acc. Time Norm Acc. Time Norm Acc. Time Norm Acc. Time Norm

breast-cancer 68.4 0.84 1.06×102 68.4 12.14 3.73×103 68.4 3.18 4.76×103 66.7 6.17 5.84×101

congressional 64.4 0.89 4.20×101 64.4 80.69 1.90×103 97.3 5.26 3.5×103 69.0 18.32 3.48×101

sonar 87.8 0.45 2.25×101 90.2 23.13 1.28×102 64.4 1.09 1.83×102 87.8 4.34 2.33×101

credit 82.6 0.44 7.32×101 83.3 63.46 3.97×103 84.1 5.1 4.76×103 84.1 6.46 5.11×101

cylinder 75.5 1.18 9.64×101 77.5 79.78 2.09×103 75.5 2.68 2.61×103 75.5 15.18 1.11×102

ecoli 71.6 0.07 1.73×101 71.6 149.7 5.82×102 70.1 0.36 1.13×102 70.1 3.38 1.68×101

energy-y1 86.3 0.12 2.90×101 86.3 134.55 2.34×103 86.3 2.01 1.34×103 83.7 5.05 2.89×101

glass 64.3 0.13 2.00×101 64.3 68.76 4.05×102 64.3 0.69 2.31×102 61.9 3.0 1.72×101

cleveland 51.7 0.13 1.97×101 51.7 109.4 2.52×102 51.7 0.6 2.18×102 50.0 1.82 1.77×101

hungarian 86.2 0.88 8.01×101 86.2 17.15 2.75×103 86.2 4.09 3.59×103 84.5 7.01 5.09×101

heart-va 35.0 0.16 2.44×101 37.5 67.11 4.79×102 37.5 0.9 4.73×102 37.5 1.86 1.58×101

hepatitis 80.6 1.06 2.96×101 80.6 10.57 2.63×102 80.6 1.97 3.4×102 74.2 8.56 5.53×101

horse-colic 85.0 1.0 5.79×101 86.7 29.42 9.45×102 86.7 4.54 1.36×103 90.0 9.75 8.92×101

ionosphere 90.0 1.15 4.74×101 90.0 44.12 1.51×103 90.0 5.76 2.05×103 90.0 15.91 6.42×101

mammograph 78.1 0.24 4.13×101 78.1 33.17 8.11×103 78.1 5.18 3.02×103 79.2 5.14 3.70×101

monks-2 60.6 1.95 1.02×102 60.6 5.81 7.36×103 57.6 6.61 9.43×103 45.5 18.31 8.13×101

monks-3 87.5 1.6 5.59×101 87.5 3.89 3.44×103 87.5 6.49 4.49×103 95.8 31.84 8.60×101

oocytes 78.6 0.98 1.14×102 79.1 136.3 1.19×104 78.0 5.67 1.3×104 74.2 81.68 8.54×101

parkinsons 92.3 1.9 4.70×101 92.3 16.03 1.06×103 92.3 4.84 1.45×103 89.7 19.04 6.69×101

pima 73.2 0.36 7.88×101 73.2 37.68 8.09×103 73.2 5.07 7.45×103 75.8 4.72 4.03×101

planning 63.9 1.33 8.94×101 63.9 10.54 2.16×103 63.9 3.07 3.05×103 58.3 9.74 1.09×102

seeds 95.2 0.25 1.91×101 95.2 26.71 4.83×102 95.2 1.99 4.17×102 95.2 5.16 1.82×101

australian 64.5 0.69 1.58×102 63.8 55.59 1.06×104 64.5 5.46 1.21×104 65.2 4.8 2.74×101

statlog-heart 81.5 0.81 6.76×101 81.5 15.57 1.48×103 81.5 2.5 2.02×103 85.2 7.36 6.11×101

teaching 40.0 0.24 3.71×101 40.0 12.18 1.10×103 40.0 1.75 1.14×103 33.3 2.05 2.21×101

tic-tac-toe 97.9 0.45 1.70×102 97.9 60.36 6.86×103 97.9 4.38 7.6×103 93.7 14.25 1.57×102

vertebral-col. 88.7 0.68 7.41×101 88.7 9.64 7.76×103 88.7 5.54 6.73×103 90.3 8.23 4.74×101

wine 100 0.25 1.87×101 100 32.05 1.97×102 100 0.95 2.42×102 100 3.67 1.78×101

Figures 7 and 8 present the same experimental results as in Figure 4 with rgap = 0.5 and rgap = 0.1, respectively. They
should be compared against the threshold value of rgap = 1 used in the main paper. These figures show that the relative
performance of each optimization method remains unchanged as the threshold is decreased, with the notable exception of
MOSEK. This is because MOSEK uses a highly accurate, but slow, interior point method.

D.3. Cone Decompositions
Now we provide details and additional results for the cone-decomposition experiments given in Table 1.

Experimental Details: We selected 23 datasets from the UCI repository and fixed the regularization parameter at λ = 0.01.
Note that this parameter is not necessary optimal for each dataset; the purpose of these experiments is to study the effects of
using cone-decompositions to approximate the C-ReLU solution with a G-ReLU solution, rather than to obtain optimal test
accuracies. We randomly sampled 1000 activation patterns for the C-ReLU and C-GReLU models, removing duplicates and
the zero pattern as necessary. Note that we report the median results from five individual runs with re-sampled activation
patterns to control for variance in the procedure.

For multi-class datasets, the convex formulations were extended as described in Appendix A.1. We used the standard
parameters for R-FISTA and the AL method as given in Appendix G, while the min-norm decomposition programs (CD-
SOCP) was solved with MOSEK using the default parameters. For CD-A, we set λ = 10−10 and Equation (9) with R-FISTA
using the default parameters. We terminate the optimization procedure when the min-norm subgradient has squared-norm
less than or equal to 10−10. R-FISTA and the AL method were run on GPU compute nodes with one GeForce RTX 2080Ti
graphics card, and four AMD 7502P CPUs, and 32 GB of RAM. The cone decompositions were solved on identical nodes
with four AMD 7502P CPUs with 32 GB of RAM.
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Additional Results: Table 5 provides the full set of results on all 23 datasets. It also includes the final group norms of the
models, calculated as ∑

Di∈D̃

‖u∗i ‖2 ,

for the C-GReLU model and ∑
Di∈D̃

‖v∗i ‖2 + ‖w∗i ‖2 ,

for the C-ReLU models. This allows us to quantify the “blow-up” in the model norm from decomposing u∗i onto Ki −Ki.
In practice, we find that CD-SOCP leads to very large increases in the model norm compared to the FISTA/AL solutions,
while CD-A has a less severe effect. However, the increased norms do not appear to affect the test accuracy of the final
models. Indeed, CD-SOCP and CD-A perform as well as the solution to the C-GReLU problem given by R-FISTA and are
comparable to the AL method’s solution. The major downside of exact the cone-decomposition method is the huge increase
in time necessary to solve for the decomposition. This is largely because MOSEK is restricted to running on CPU.

D.4. The Role of Acceleration and other Algorithmic Components
This section studies the effects of different algorithmic components on the optimization performance of R-FISTA for the
C-GReLU problem. By systematically removing restarts, acceleration, and line-search, we illustrate the importance of these
enhancements to the speed and robustness of the optimization procedure.

Figure 9 shows a performance profile comparing R-FISTA, the FISTA algorithm without restarts (FISTA), proximal gradient
descent with the line-search described in Section 4.1.1 (PGD-LS), and proximal gradient descent (PGD) with a fixed
step-size. We use the same problem set as for Figure 4: 438 individual training problems generated by considering six
regularization parameters for 73 datasets taken from the UCI dataset repository. See Appendix H for more details. Note that
we do not include problems for which the regularization parameter is overly large and a degenerate model (ie. all zeros) is
optimal. A problem is considered solved the minimum norm subgradient has norm less than or equal to 10−3; in practice,
we check an identical condition on the gradient norm squared. The C-GReLU model is formed by sampling 5000 activation
patterns.

The x-axis shows the number of passes through that dataset that each method performs. This quantity is equivalent to the
iteration counter for PGD; for the remaining methods it also includes the number of function evaluations due to back-tracking
on the line-search condition. For R-FISTA, FISTA, and PGD-LS, we use the step-size initialization strategy described in the
main paper (see Appendix D.5 for experiments studying this rule) with the standard parameters given in Appendix G. For
each problem, we use the best fixed step-size for PGD out of the grid {10, 1, 0.1, 0.01}.
We make the following observations: (i) R-FISTA requires about three-fourths as many data passes as FISTA to solve 80%
of problems, which suggests restarts allow greater adaptivity to problem structure; (ii) acceleration is critical to solving
problems quickly and PGD-LS performs poorly compared to both R-FISTA and FISTA; (iii) PGD is very slow despite using
about 4× more compute than the other methods.

We also report convergence behavior on two randomly selected datasets to illustrate the fine-grained performance of each
method. Figures 10 and 11 show the convergence of R-FISTA, FISTA, PGD-LS, and PGD with respect to objective value and
subgradient norm (squared) for the twonorm and heart-cleveland datasets. Results for are shown for the smallest
regularization parameter considered and the largest for which the model was not degenerate. We omit step-sizes for which
PGD diverged.

D.5. Step-size Update Rules
Now we perform an ablation study on the step-size initialization rule proposed by Liu et al. (2009) and discussed in
Section 4.1.1. Throughout this section, we refer to this initialization strategy as quadratic-bound (QB). We compare QB
against warm starting as ηk = ηk−1 (WS), and forward tracking (FT). As in the previous section, we use a performance
profile to summarize results for solving the C-GReLU problem on the same 438 problems as in Figure 4. We use the same
backtracking parameter β = 0.8 for QB, WS, and FT, while we use a forward-tracking parameter of α = 1.25 for QB
and FT. Note that these are the standard parameters discussed in Appendix G. We use the standard settings for all other
parameters of R-FISTA. We sample 5000 random activation patterns just as in the previous section.

Empirically, we find (see Figure 12) that the QB initialization strategy is surprisingly resilient to the choice of threshold
parameter, c. Indeed, QB with any c ∈ {10, 5, 2} is more efficient than FT or WS. Surprisingly, FT and WS have similar
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Figure 9. Performance profile comparing R-FISTA, FISTA without restarts, proximal gradient descent with line-search (PGD-LS) and
proximal gradient descent with a fixed step-size (PGD) for solving C-GReLU on 73 datasets from the UCI repository. For PGD, we report
results for the best step-size chosen by grid-search individually for each problem. R-FISTA solves a higher proportion of problems in
fewer passes through the dataset.
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Figure 10. Convergence comparison for R-FISTA, FISTA without restarts (FISTA), proximal gradient descent with line-search (PGD-LS)
and proximal gradient descent (PGD) with several fixed step-sizes (reported in parenthesis) on the twonorm dataset. PGD stalls while
the accelerated methods converge very quickly to an approximate stationary point.

Figure 11. Convergence comparison for R-FISTA, FISTA without restarts (FISTA), proximal gradient descent with line-search (PGD-LS)
and proximal gradient descent (PGD) with several fixed step-sizes (reported in parenthesis) on the heart-cleveland dataset. The
performance of R-FISTA and FISTA is identical when λ = 2.5× 10−3. In contrast, restarting allows R-FISTA to converge in around half
as many iterations as FISTA for the smoother problem with λ = 1× 10−5.
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Figure 12. Performance profile comparing R-FISTA, FISTA with different step-size initialization rules. We compare checking the quadratic
bound for tightness (QB) with a variety of choices for the threshold parameter c against warm starting as ηk = ηk−1 (WS), and forward
tracking (FT). As before, we generate the profile by solving the C-GReLU problem on 73 datasets from the UCI repository. QB is robust
to the choice of c and outperforms both WS and FT. WS and FT have similar performance despite very different behavior.

performance despite their substantially different convergence behavior (see Figures 13 and 14). This is primarily because we
measure progress in total data passes, which includes the unnecessary backtracking performed by R-FISTA with the FT
update.

D.6. The Windowing Heuristic
Recall that the key hyper-parameter for our AL method is the penalty strength, denoted δ. Here we verify the effectiveness
of the windowing heuristic for selecting δ as proposed in Section 4.3.1. Experimentally, the rule performs nearly as well
as the best fixed value of δ across a wide range of datasets and avoids the catastrophic failures which can occur when δ is
miss-specified.

We initialize our AL method with δ0 ∈
{

1, 10, 102, 103, 104
}

and compare tuning δ using the windowing heuristic against
keeping δ fixed throughout optimization. All other parameters are identical and constant for the two approaches (see
Appendix G for specifics). To evaluate speed and robustness, we use another performance profile on the 438 problems
generated from the UCI datasets as detailed in Appendix H. In this case, a problem is considered “solved” when the
minimum-norm subgradient of the augmented Lagrangian is smaller than 10−3 and the norm of the constraint gaps is also
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Figure 13. Convergence comparison for R-FISTA with different step-size initialization rules on the glass dataset. We compare warm-
starting (WS) and forward-tracking (FT) against the initialization proposed by Liu et al. (2009) (QB) for several fixed thresholds (reported
in parentheses). QB has similar convergence performance to FT without requiring as many passes through the training set and is resilient
to the choice of threshold.
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Figure 14. Convergence comparison for R-FISTA with different step-size initialization rules on the flags dataset. See Figure 13 for
additional details.
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Figure 15. Performance profile comparing our AL method with (solid lines with markers) and without (dashed lines) the windowing
heuristic for setting the penalty strength. We consider a wide range of initial δ values and generate the profile by solving the C-ReLU
problem on 73 datasets from the UCI repository with 6 different regularization parameters for each dataset. The windowing heuristic
performs nearly as well as the best fixed δ and without a noticeable computational overhead. In contrast, extreme values of δ can cause the
“fixed” approach to fail on approximately 40% of problems.
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Figure 16. Convergence comparison for our AL method with with and without the windowing heuristic on the monks-2 dataset. We
show two extreme values of δ (shown in parentheses) to illustrate failure models the AL method without our heuristic. Roughly, each
“bump” in the subgradient norm (squared) of Lδ corresponds to one prox-point iteration on the dual parameters (i.e. an AL update).
Observe that when δ is small, R-FISTA solves sub-problem (11) quickly, but the AL method cannot find a feasible solution without an
extreme number of dual updates. In contrast, R-FISTA never solves (11) to the first-order tolerance (10−6) when δ is very large. In this
case, dual updates are triggered only by a limit on the number of R-FISTA iterations for solving the sub-problem. See Appendix G. The
windowing heuristic corrects both failure modes.

less than 10−3. This isn’t equivalent to terminating when the Lagrangian function is approximately stationary, but we found
the rule to work well in practice. We use 500 randomly sampled activation patterns for the C-ReLU model.

Figure 15 plots the result, with dotted lines for the AL method with fixed δ and solid lines with markers for methods using
the windowing heuristic. Empirically, the windowing heuristic is nearly effective as the best fixed δ and avoids the complete
failure of AL methods with fixed, poorly specified penalty parameters (e.g. δ = 1 or δ = 104). Moreover, this is achieved at
almost no overhead in terms of total data passes required for convergence. Finally, we observe that fixing δ = 103 works
very well across all problems; this is likely because the problems are carefully normalized before optimization to ensure
they are on the same scale. Specifically, the columns of the data matrix for each problem are unitized (Appendix C.1), and
the augmented Lagrangian Lδ is normalized by n ∗ k, where k is the number of classes.

We also provide convergence plots on two randomly selected datasets to better illustrate the failures modes of the
AL method with miss-specified penalty strength. Figures 16 and 17 and show detailed results for the monks-2 and
ilpd-indian-liver datasets. When δ is too small, the AL method easily solves subproblem (11), but struggles to
make progress on the constraint gaps. Intuitively, the step-size for the dual proximal-point algorithm is too small and a very
large number of iterations is required to make progress on the dual problem. Conversely, the augmented Lagrangian Lδ is
poorly conditioned when δ is overly large and R-FISTA struggles to solve the primal sub-problem to the necessary tolerance.
The windowing heuristic corrects for both pathologies by ensuring the initial constraint gap is in a “normal” regime that
balances penalizing constraint violations and conditioning of the subproblem. This behavior is particularly noticeable for
monks-2, where the windowing heuristic adjusts δ to shrink the constraint gap (δ = 1) or relax the optimization problem
(δ = 104).
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Figure 17. Convergence comparison for our AL method with with and without the windowing heuristic on the ilpd-indian-liver
dataset. Penalty parameters δ are reported in parenthesis.

E. Sensitivity and Regularization
This section presents additional ablations studying the sensitivity of the C-ReLU and C-GReLU problems to the selection of
the sub-sampled activation patterns, D̃, and the regularization strength, λ.

Experimental Details: We randomly select 10 datasets from our set of 73 filtered UCI datasets (see Appendix H). For each
dataset, we considered thirty individual regularization parameters on log-scale grid over the interval [1× 10−6, 1]. To form
the convex formulations, we computed D̃ by sampling 10, 100, or 1000 generating vectors from N (0, I). We repeated the
sampling procedure with 10 different random seeds, giving a final total of 60 (30 C-ReLU and 30 C-GReLU) optimization
problems for each dataset. These problems were then solved using R-FISTA and our AL method with the default parameters
(see Appendix G).

Additional Results: Figures 18 and 19 present results for the C-GReLU and C-ReLU problems, respectively. Similar to
Figure 5, a U-shaped bias-variance trade-off is visible as the regularization strength is increased. This trend is especially
noticeable for the monks-3 and statlog-heart datasets. Variance introduced by sampling D̃ is only significant for
heart-va.

E.1. UCI Classification
This section gives experimental details and additional results for the experiments evaluating generalization performance of
the convex reformulations.

Experimental Details: We selected 37 binary classification datasets from our filtered collection of 73 datasets; see
Appendix H for details how the 73 datasets were obtained.

We used the default parameters for each of the convex solvers as described in Appendix G, except that a tighter convergence
tolerance of 10−7 was used for terminating our methods. R-FISTA was limited to 2000 iterations. For the gated ReLU
problems (both C-GReLU and NC-GReLU) we sampled the same set of 5000 activation patterns for both the convex
reformulation and the original non-convex model. We used 2500 activation patterns for the C-ReLU problem.

For each dataset-method pair, we performed five-fold cross validation on the training set to se-
lect hyper-parameters. We considered two hyper-parameters for our methods: regularization strength,
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Figure 18. Effect of sampling activation patterns on test accuracy for neural networks trained using the C-GReLU problem on nine
different UCI datasets. We consider a grid of regularization parameters and plot median (solid line) and first and third quartiles (shaded
region) over 10 random samplings of D̃, where |D̃| is limited to 10, 100, or 1000 patterns.
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Figure 19. Effect of sampling activation patterns on test accuracy for neural networks trained using the C-ReLU problem on nine different
UCI datasets. See Figure 18 for details.
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Table 6. Additional results comparing our convex solvers against random forests (RF), SVMs with a linear kernel (Linear) and SVMs with
an RBF kernel (RBF). We report test accuracies on a further 19 UCI datasets. Combined, C-GReLU and C-ReLU obtain the best test
accuracy on 10 datasets. Out of the baselines considered, RBF SVMs are the most competitive with our approach, attaining or tying for
best accuracy on 9 datasets.

Dataset C-GReLU C-ReLU RF SVM RBF

breast-cancer 73.7 70.2 75.4 68.4 68.4
congressional 66.7 65.5 65.5 67.8 67.8
credit-approval 84.1 84.1 85.5 85.5 84.8
echocardiogram 80.8 76.9 88.5 84.6 84.6
haberman-survival 67.2 75.4 70.5 70.5 70.5
hepatitis 80.6 80.6 83.9 77.4 77.4
horse-colic 88.3 86.7 93.3 90.0 93.3
ionosphere 90.0 91.4 91.4 85.7 97.1
molec-biol 76.2 81.0 76.2 81.0 66.7
monks-2 69.7 69.7 54.5 57.6 69.7
monks-3 95.8 95.8 95.8 87.5 91.7
musk-2 99.7 99.8 97.3 95.1 99.6
parkinsons 97.4 97.4 84.6 89.7 100
pittsburg 80.0 75.0 75.0 80.0 80.0
ringnorm 97.4 83.0 95.1 76.9 98.2
spect 46.7 40.0 53.3 66.7 66.7
statlog-austr. 65.9 66.7 62.3 65.2 65.2
statlog-heart 81.5 85.2 83.3 81.5 81.5
twonorm 97.6 97.7 97.2 97.4 97.4
vertebral-col. 91.9 91.9 87.1 91.9 90.3

and the proportion of examples active in each local model (ie. the number of non-zeros in
each Di matrix). For regularization strength, we optimized over a logarithmic grid with values{
1× 10−8, 3.59× 10−8, 1.29× 10−7, 4.64× 10−7, 1.67× 10−6, 5.99× 10−6, 2.15× 10−5, 7.74× 10−5, 2.78× 10−4, 1.0× 10−3

}
. For the proportion of active examples, we considered (1) setting the bias term for each neuron to enforce 50% of examples
to be active or (2) setting the bias to 0 and allowing the proportion to be random.

For the baselines, we used the implementations available from the scikit-learn package. We optimized each ran-
dom forest classifier with respect to the depth of the random trees in the ensemble ({2, 4, 10, 25, 50}) and over the
number of trees in the ensemble ({5, 10, 100, 1000}). We used the standard soft-margin SVM with and chose regu-
larization parameter from the range

{
1.× 10−5, 1.× 10−4, 1.× 10−3, 1.× 10−2, 1.× 10−1, 1

}
for linear SVMs and{

1× 10−5, 1.78× 10−4, 3.16× 10−3, 5.62× 10−2, 1
}

for SVMs with an RBF kernel. For RBF SVMs, the RBF band-
width was optimized over the grid

{
1× 10−4, 1.58× 10−3, 2.51× 10−2, 3.98× 10−1, 6.31, 100.0

}
. To obtain final test

accuracies, we re-trained each method on the full training set. For our methods, we report the best test accuracy out of five
random restarts.

Additional Results: Table 6 reports test results for 19 of the 37 datasets, while Table 2 in the main paper presents results
for the remaining 18 datasets. Overall, we find that two-layer neural networks trained using our convex solvers generally
perform better than the baseline methods.

E.2. Non-Convex Solvers
This section gives experimental details and additional results for experiments comparing the generalization performance of
our convex reformulations to neural networks trained by optimizing the non-convex loss with stochastic gradient methods.

Experimental Details: We selected 20 datasets randomly from our filtered collection of 73 datasets; see Appendix H for
details how the 73 datasets were obtained.

We used the default parameters for each of the convex solvers as described in Appendix G. R-FISTA was limited to 2000
iterations, while SGD and Adam were limited to 2000 epochs. For SGD and Adam, considered step-sizes from the following
grid: {10, 5, 1, 0.5, 0.1, 0.01, 0.001}. We used a “step” decrease schedule for the step-sizes, dividing them by 2 every 100
epochs, which we found to work much better than the classical Robbins-Monro schedule (Robbins & Monro, 1951). We
considered the following grid of ten regularization parameters: {1× 10−6, 2.78× 10−6, 7.74× 10−6, 2.15× 10−5, 5.99×
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Table 7. Test accuracies for convex and non-convex formulations of the Gated ReLU training problem on a subset of 20 datasets selected
from the UCI dataset repository Results are shown as median (first-quartile/third-quartile) for each method.

Dataset C-GReLU NC-GReLU (Adam) NC-GReLU (SGD)

magic 86.9 (86.8/87.0) 82.9 (82.9/83.1) 82.1 (82.1/82.2)
statlog-heart 79.6 (79.6/79.6) 85.2 (83.3/85.2) 83.3 (83.3/83.3)
mushroom 100.0 (100/100) 97.6 (97.6/97.9) 96.9 (96.9/96.9)
vertebral-column 87.1 (83.9/87.1) 90.3 (90.3/91.9) 90.3 (90.3/90.3)
cardiotocography 90.1 (89.9/90.4) 85.6 (85.6/85.9) 85.2 (85.2/85.4)
abalone 63.8 (63.7/64.1) 58.7 (58.6/58.7) 58.1 (58.1/58.1)
annealing 90.6 (90.6/91.2) 86.2 (86.2/86.8) 86.2 (85.5/86.2)
car 89.9 (89.9/90.1) 83.8 (83.8/84.1) 83.2 (82.9/83.2)
bank 89.8 (89.7/89.9) 89.9 (89.9/90.0) 89.8 (89.8/90.0)
breast-cancer 68.4 (68.4/68.4) 68.4 (68.4/70.2) 70.2 (70.2/70.2)
page-blocks 96.8 (96.8/96.9) 92.1 (92.0/92.1) 92.4 (92.3/92.4)
contrac 45.9 (45.6/46.3) 53.1 (53.1/53.1) 53.4 (53.1/53.7)
congressional-voting 63.2 (63.2/63.2) 64.4 (64.4/64.4) 66.7 (66.7/66.7)
spambase 93.4 (93.2/93.4) 91.6 (91.6/91.6) 91.2 (91.2/91.3)
synthetic-control 97.5 (97.5/97.5) 98.3 (98.3/98.3) 97.5 (97.5/98.3)
musk-1 93.7 (91.6/93.7) 93.7 (93.7/93.7) 94.7 (92.6/94.7)
ringnorm 69.8 (69.5/69.9) 77.0 (77.0/77.0) 77.2 (77.1/77.2)
ecoli 82.1 (82.1/82.1) 79.1 (79.1/80.6) 4.5 (3.0/43.3)
monks-2 69.7 (66.7/69.7) 66.7 (66.7/66.7) 60.6 (57.6/63.6)
hill-valley 62.0 (59.5/66.1) 57.0 (55.4/57.9) 58.7 (58.7/59.5)

10−5, 1.67 × 10−4, 4.64 × 10−4, 1.29 × 10−33.59 × 10−2, 1.0 × 10−2}. For each method-dataset pair, we performed
five-fold cross validation on the training set and selected the best step-size and regularization parameter according to the
cross-validated test accuracy.

For the gated ReLU problems (both C-GReLU and NC-GReLU) we sampled the same set of 5000 activation patterns for
both the convex reformulation and the original non-convex model. We used 2500 activation patterns for the C-ReLU problem.
To ensure a similar model space, we computed at the number of active neurons (e.g. vi 6= 0 or wi 6= 0) at convergence for
C-ReLU and then used this as the number of hidden units for NC − ReLU problems. Note that we extend our convex
reformulations to multi-class problems using the results in Appendix A.1. Similarly, we use the vector-output variant of the
NC-ReLU problem (Eq. 16) for multi-class problems.

After selecting hyper-parameters, we obtain the final test accuracies by re-training on the full training set and testing on a
held-out test set. To control for noise in the sampling of gate vectors in the Gated ReLU problems and C-ReLU, we repeat
this final testing procedure five times with different random seeds.

Additional Results: Tables 7 and 8 report median test accuracies as well as first and third quartiles for the convex and
non-convex formulations with gated ReLU and ReLU activations, respectively. Note that these results are identical to those
the provided in the main paper (Table 3) but for the inclusion of variance/distribution information in the form of quartiles.

F. Image Classification
Experimental Details: The MNIST and CIFAR-10 datasets are high-dimensional, with (n, d) = (60000, 784) and
(50000, 3072), respectively. As such, we require a large number of neurons for both problems, for which we use m = 5000
and m = 4000 neurons respectively. Both datasets are normalized column-wise, and squared loss is used as the objective.
Activation patterns are generated by sampling ui from a distribution that samples a 3× 3 patch uniformly from the image,
then sampling values for that patch from a standard Gaussian distribution, with all other values set to zero. This technique is
used for both convex and non-convex architectures. We use the extensions of the C-GReLU and NC-ReLU to multi-class
problems as given in Appendix A.1.

For the NC-GReLU experiments, for all optimizers, we consider a learning rate of 1.0, 0.1, 0.01. We use a momentum
parameter of 0.9 for SGD. To improve convergence, the step size was decayed by a factor of 2 every 200 epochs, and the
networks were trained for a maximum of 1000 epochs. We use a batch size of 10% of the training data. For the C-GReLU
experiments, no R-FISTA optimizer parameters are tuned–we fix the initial step size to 0.1, with quadratic backtracking
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Table 8. Test accuracies for convex and non-convex formulations of the ReLU training problem on a subset of 20 datasets selected from
the UCI dataset repository Results are shown as median (first-quartile/third-quartile) for each method.

Dataset C-ReLU NC-ReLU (Adam) NC-ReLU (SGD)

magic 85.9 (85.8/85.9) 86.9 (86.9/86.9) 86.4 (86.3/86.4)
statlog-heart 83.3 (81.5/83.3) 83.3 (83.3/83.3) 79.6 (79.6/79.6)
mushroom 100.0 (100/100) 100.0 (100/100) 99.9 (99.9/99.9)
vertebral-column 90.3 (88.7/90.3) 90.3 (90.3/90.3) 88.7 (88.7/88.7)
cardiotocography 89.9 (89.9/89.9) 36.5 (22.8/36.5) 88.9 (88.9/88.9)
abalone 66.2 (66.1/66.3) 65.3 (64.9/65.4) 66.1 (66.1/66.1)
annealing 90.6 (89.9/90.6) 93.7 (93.7/93.7) 88.7 (88.1/88.7)
car 87.8 (87.8/87.8) 94.8 (94.8/94.8) 90.1 (90.1/90.1)
bank 89.8 (89.7/89.9) 90.8 (90.8/90.9) 90.5 (90.5/90.5)
breast-cancer 68.4 (66.7/68.4) 64.9 (64.9/64.9) 68.4 (68.4/68.4)
page-blocks 94.0 (94.0/94.0) 97.1 (97.1/97.1) 96.9 (96.9/96.9)
contrac 55.1 (54.1/55.4) 54.4 (54.1/54.4) 53.7 (53.7/53.7)
congressional-voting 63.2 (63.2/65.5) 62.1 (62.1/62.1) 67.8 (67.8/67.8)
spambase 93.3 (93.2/93.4) 93.5 (93.5/93.5) 93.2 (93.2/93.2)
synthetic-control 98.3 (97.5/98.3) 96.7 (96.7/96.7) 96.7 (96.7/96.7)
musk-1 93.7 (93.7/93.7) 96.8 (96.8/96.8) 95.8 (95.8/95.8)
ringnorm 77.0 (76.8/77.0) 77.3 (77.3/77.4) 77.4 (77.3/77.5)
ecoli 80.6 (80.6/80.6) 82.1 (82.1/82.1) 80.6 (80.6/80.6)
monks-2 69.7 (69.7/72.7) 69.7 (66.7/69.7) 72.7 (72.7/75.8)
hill-valley 65.3 (64.5/65.3) 62.8 (62.8/62.8) 55.4 (55.4/55.4)

with β = 0.8, and forward-tracking with α = 1.2 and c = 5. For all methods, we consider regularization parameters
λ ∈ [10−3, 10−4, 10−5, 10−6, 10−7], and choose the one with the best accuracy on the validation set, which is cho-
sen to be a random subset of 20% of the training data. All models are trained with an NVIDIA Titan X GPU with 12GB RAM.

For G-ReLU, a value of λ = 10−7 was chosen for MNIST and λ = 10−6 for CIFAR-10. For SGD, values
of (η, λ) = (1.0, 10−7) were chosen for MNIST and (η, λ) = (1.0, 10−5) for CIFAR-10. For Adam, values of
(η, λ) = (0.01, 10−6) were chosen for MNIST and (η, λ) = (0.01, 10−4) for CIFAR-10. For Adagrad, values of
(η, λ) = (0.01, 10−7) were chosen for MNIST and (η, λ) = (0.01, 10−5) for CIFAR-10.

G. Default Optimization Parameters
In this section, we report the standard parameter settings for our optimizers. We use these parameters in all experiments
unless explicitly stated otherwise. Note that data normalization (Appendix C.1) is applied in all experiments for both the
convex and non-convex training problems.

G.1. R-FISTA
We set the backtracking parameter to β = 0.8 and the forward-tracking parameter to α = 1.25. For the step-size
initialization strategy, we set the threshold to be c = 5.0. We set the first step-size to be η0 = 1.0. The restart strategy
detailed in Section 4.1.1 is always used unless it is explicitly stated otherwise. Finally, we consider the optimizer to have
(approximately) converged when the minimum-norm subgradient has `2-norm less than or equal to 10−3. In practice we
check the equivalent condition on the squared gradient norm with the threshold 10−6. We always initialize the model weights
as vi = 0 for each Di ∈ D̃.

G.2. AL Method
We set the initial penalty parameter to be δ = 100 and use the windowing heuristic with ru = 10−2 and rl = 10−3. The
dual parameters are initialization at 0, as are the primal parameters. Note that we always warm-start the optimization of the
augmented Lagrangian at the solution to the previous iteration’s optimization problem. The convergence tolerance when
checking for satisfaction of the windowing heuristic is set to be tol = 10−3/2. If the constraint gap is larger than ru, we
increase δ as δ ← 2 ∗ δ and repeat the procedure. If cgap < rl, we set δ ← δ/2 and also change the convergence to be
tol← tol/2.
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The convergence tolerance for minimization of the augmented Lagrangian once the window heuristic is satisfied is
tol = 10−3. We consider the AL method to have approximately converged when cgap ≤ 10−3 and the minimum norm
subgradient of the augmented Lagrangian (with respect to the primal parameters) is also less than 10−3.

To solve Equation (11), we use R-FISTA with the standard configuration as outlined in the previous section. We enforce
a maximum of 1000 iterations for the sub-solver, meaning that we execute a step of the AL method after at most 1000
iterations of R-FISTA regardless of the termination tolerances. In general, we permit as many “outer” iterations of the AL
method as needed since these do not require gradient computations, but limit the overall optimization procedure to 10000
iterations of R-FISTA.

H. UCI Datasets
We use the binary and multi-class classification datasets from the UCI machine learning repository (Dua & Graff, 2017) as
pre-processed by Delgado et al. (2014). Note that we do not use the same training/validation/test procedure as Delgado et al.
(2014), since this is known to have test-set leakage. We applied the following selection rules to decide which datasets to
retain for our experiments:

• at least 150 examples and 5 features;

• no more than 50000 examples and 10 classes;

• no duplicated datasets with different targets or features.

This left the following 73 datasets from the original collection of 121: abalone, adult, annealing,
bank, breast-cancer, breast-cancer-wisc-diag, car, cardiotocography-3clases,
chess-krvkp, congressional-voting, conn-bench-sonar-mines-rocks, contrac,
credit-approval, cylinder-bands, dermatology, ecoli, energy-y1, flags, glass,
heart-cleveland, heart-hungarian, heart-va, hepatitis, hill-valley, horse-colic,
ilpd-indian-liver, image-segmentation, ionosphere, led-display, low-res-spect,
magic, mammographic, molec-biol-splice, monks-2, monks-3, mushroom, musk-1, musk-2,
nursery, oocytes merluccius nucleus 4d, oocytes trisopterus nucleus 2f, optical, ozone,
page-blocks, parkinsons, pendigits, pima, planning, primary-tumor, ringnorm, seeds,
semeion, spambase, statlog-australian-credit, statlog-german-credit, statlog-heart,
statlog-image, statlog-landsat, statlog-vehicle, steel-plates, synthetic-control,
teaching, thyroid, tic-tac-toe, twonorm, vertebral-column-2clases, wall-following,
waveform, waveform-noise, wine, wine-quality-red, wine-quality-white, yeast

Optimization Performance: For our experiments evaluating optimization performance, we considered all 73 datasets and
generated 6 ∗ 73 = 438 optimization problems by considering the following grid of regularization parameters:

λ ∈
{

1× 10−5, 6.31× 10−5, 3.98× 10−4, 2.51× 10−3, 1.58× 10−2, 1.0× 10−1
}

We did a single train/test split for each dataset and report optimization metrics on the training set only. The test was used for
heuristic “sanity checks” of the final models.

Model Performance: For our experiments evaluating generalization or test performance of different models, we randomly
selected a subset of the filtered UCI datasets. We report the regularization parameters considered for each experiment in the
appropriate section.


