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Abstract
Recently, methods have been proposed that ex-
ploit the invariance of prediction models with re-
spect to changing environments to infer subsets
of the causal parents of a response variable. If
the environments influence only few of the un-
derlying mechanisms, the subset identified by in-
variant causal prediction (ICP), for example, may
be small, or even empty. We introduce the con-
cept of minimal invariance and propose invariant
ancestry search (IAS). In its population version,
IAS outputs a set which contains only ancestors
of the response and is a superset of the output of
ICP. When applied to data, corresponding guaran-
tees hold asymptotically if the underlying test for
invariance has asymptotic level and power. We
develop scalable algorithms and perform experi-
ments on simulated and real data.

1. Introduction
Causal reasoning addresses the challenge of understanding
why systems behave the way they do and what happens
if we actively intervene. Such mechanistic understanding
is inherent to human cognition, and developing statistical
methodology that learns and utilizes causal relations is a
key step in improving both narrow and broad AI (Jordan,
2019; Pearl, 2018). Several approaches exist for learning
causal structures from observational data. Approaches such
as the PC-algorithm (Spirtes et al., 2000) or greedy equiva-
lence search (Chickering, 2002) learn (Markov equivalent)
graphical representations of the causal structure (Lauritzen,
1996). Other approaches learn the graphical structure under
additional assumptions, such as non-Gaussianity (Shimizu
et al., 2006) or non-linearity (Hoyer et al., 2009; Peters et al.,
2014). Zheng et al. (2018) convert the problem into a contin-
uous optimization problem, at the expense of identifiability
guarantees.
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Invariant causal prediction (ICP) (Peters et al., 2016; Heinze-
Deml et al., 2018; Pfister et al., 2019; Gamella & Heinze-
Deml, 2020; Martinet et al., 2021) assumes that data are sam-
pled from heterogeneous environments (which can be dis-
crete, categorical or continuous), and identifies direct causes
of a target Y , also known as causal parents of Y . Learning
ancestors (or parents) of a response Y yields understanding
of anticipated changes when intervening in the system. It is
a less ambitious task than learning the complete graph but
may allow for methods that come with weaker assumptions
and stronger guarantees. More concretely, for predictors
X1, . . . , Xd, ICP searches for subsets S ⊆ {1, . . . , d} that
are invariant; a set XS of predictors is called invariant if it
renders Y independent of the environment, conditional on
XS . ICP then outputs the intersection of all invariant pre-
dictor sets SICP := ∩S invariantS. Peters et al. (2016) show
that if invariance is tested empirically from data at level α,
the resulting intersection ŜICP is a subset of direct causes
of Y with probability at least 1− α.1

In many cases, however, the set learned by ICP forms a strict
subset of all direct causes or may even be empty. This is
because disjoint sets of predictors can be invariant, yielding
an empty intersection, which may happen both for finite
samples as well as in the population setting. In this work,
we introduce and characterize minimally invariant sets of
predictors, that is, invariant sets S for which no proper
subset is invariant. We propose to consider the union SIAS of
all minimally invariant sets, where IAS stands for invariant
ancestry search. We prove that SIAS is a subset of causal
ancestors of Y , invariant, non-empty and contains SICP.
Learning causal ancestors of a response may be desirable
for several reasons: e.g., they are the variables that may have
an influence on the response variable when intervened on. In
addition, because IAS yields an invariant set, it can be used
to construct predictions that are stable across environments
(e.g., Rojas-Carulla et al., 2018; Christiansen et al., 2022).

In practice, we estimate minimally invariant sets using a test
for invariance. If such a test has asymptotic power against
some of the non-invariant sets (specified in Section 5.2), we
show that, asymptotically, the probability of ŜIAS being a

1Rojas-Carulla et al. (2018); Magliacane et al. (2018); Arjovsky
et al. (2019); Christiansen et al. (2022) propose techniques that
consider similar invariance statements with a focus on distribution
generalization instead of causal discovery.
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subset of the ancestors is at least 1− α. This puts stronger
assumptions on the invariance test than ICP (which does
not require any power) in return for discovering a larger
set of causal ancestors. We prove that our approach retains
the ancestral guarantee if we test minimal invariance only
among subsets up to a certain size. This yields a compu-
tational speed-up compared to testing minimal invariance
in all subsets, but comes at the cost of potentially finding
fewer causal ancestors.

The remainder of this work is organized as follows. In
Section 2 we review relevant background material, and we
introduce the concept of minimal invariance in Section 3.
Section 4 contains an oracle algorithm for finding minimally
invariant sets (and a closed-form expression of SICP) and
Section 5 presents theoretical guarantees when testing
minimal invariance from data. In Section 6 we evaluate
our method in several simulation studies as well as a
real-world data set on gene perturbations. Code is provided
at https://github.com/PhillipMogensen/
InvariantAncestrySearch.

2. Preliminaries
2.1. Structural Causal Models and Graphs

We consider a setting where data are sampled from a struc-
tural causal model (SCM) (Pearl, 2009; Bongers et al., 2021)

Zj := fj(PAj , ϵj),

for some functions fj , parent sets PAj and noise distribu-
tions ϵj . Following (Peters et al., 2016; Heinze-Deml et al.,
2018), we consider an SCM over variables Z := (E,X, Y )
whereE is an exogenous environment variable (i.e., PAE =
∅), Y is a response variable and X = (X1, . . . , Xd) is a col-
lection of predictors of Y . We denote by P the family of all
possible distributions induced by an SCM over (E,X, Y )
of the above form.

For a collection of nodes j ∈ [d] := {1, . . . , d} and their
parent sets PAj , we define a directed graph G with nodes
[d] and edges j′ → j for all j′ ∈ PAj . We denote by CHj ,
ANj and DEj the children, ancestors and descendants of a
variable j, respectively, neither containing j. A graph G is
called a directed acyclic graph (DAG) if it does not contain
any directed cycles. See Pearl (2009) for more details and
the definition of d-separation.

Throughout the remainder of this work, we make the fol-
lowing assumptions about causal sufficiency and exogeneity
of E (Section 7 describes how these assumptions can be
relaxed).
Assumption 2.1. Data are sampled from an SCM over
nodes (E,X, Y ), such that the corresponding graph is a
DAG, the distribution is faithful with respect to this DAG,
and the environments are exogenous, i.e., PAE = ∅.
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Figure 1. Two structures where SICP ⊊ PAY . (left) SICP =
∅. (right) SICP = {1}. In both, our method outputs SIAS =
{1, 2, 3}.

2.2. Invariant Causal Prediction

Invariant causal prediction (ICP), introduced by Peters et al.
(2016), exploits the existence of heterogeneity in the data,
here encoded by an environment variableE, to learn a subset
of causal parents of a response variable Y . A subset of
predictors S ⊆ [d] is invariant if Y ⊥⊥ E | S, and we define
I := {S ⊆ [d] | S invariant} to be the set of all invariant
sets. We denote the corresponding hypothesis that S is
invariant by

HI
0,S : S ∈ I.

Formally, HI
0,S corresponds to a subset of distributions in

P , and we denote by HI
A,S := P \ HI

0,S the alternative
hypothesis to HI

0,S . Peters et al. (2016) define the oracle
output

SICP :=
⋂

S:HI
0,S true

S (1)

(with SICP = ∅ if no sets are invariant) and prove SICP ⊆
PAY . If provided with a test for the hypotheses HI

0,S , we
can test all sets S ⊆ [d] for invariance and take the intersec-
tion over all accepted sets: ŜICP :=

⋂
S:HI

0,S not rejected S; If

the invariance test has level α, ŜICP ⊆ PAY with probabil-
ity at least 1− α.

However, even for the oracle output in Equation (1), there
are many graphs for which SICP is a strict subset of PAY .
For example, in Figure 1 (left), since both {1, 2} and {3} are
invariant, SICP ⊆ {1, 2} ∩ {3} = ∅. This does not violate
SICP ⊆ PAY , but is non-informative. Similarly, in Figure 1
(right), SICP = {1}, as all invariant sets contain {1}. Here,
SICP contains some information, but is not able to recover
the full parental set. In neither of these two cases, SICP

is an invariant set. If the environments are such that each
parent of Y is either affected by the environment directly or
is a parent of an affected node, then SICP = PAY (Peters
et al., 2016, proof of Theorem 3). The shortcomings of ICP
thus relate to settings where the environments act on too few
variables or on uninformative ones.

For large d, it has been suggested to apply ICP to the
variables in the Markov boundary (Pearl, 2014), MBY =
PAY ∪CHY ∪PA(CHY ) (we denote the oracle output by
SMB
ICP). As PAY ⊆ MBY , it still holds that SMB

ICP is a sub-

https://github.com/PhillipMogensen/InvariantAncestrySearch
https://github.com/PhillipMogensen/InvariantAncestrySearch
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set of the causal parents of the response.2 However, the
procedure must still be applied to 2|MBY | sets, which is
only feasible if the Markov boundary is sufficiently small.
In practice, the Markov boundary can, for example, be es-
timated using Lasso regression or gradient boosting tech-
niques (Tibshirani, 1996; Meinshausen & Bühlmann, 2006;
Friedman, 2001).

3. Minimal Invariance and Ancestry
We now introduce the concept of minimally invariant sets,
which are invariant sets that do not have any invariant sub-
sets. We propose to consider SIAS, the oracle outcome of
invariant ancestry search, defined as the union of all mini-
mally invariant sets. We will see that SIAS is an invariant
set, it consists only of ancestors of Y , and it contains SICP

as a subset.

Definition 3.1. Let S ⊆ [d]. We say that S is minimally
invariant if and only if

S ∈ I and ∀S′ ⊊ S : S′ ̸∈ I;

that is, S is invariant and no subset of S is invariant. We
defineMI := {S | S minimally invariant}.

The concept of minimal invariance is closely related to the
concept of minimal d-separators (Tian et al., 1998). This
connection allows us to state several properties of minimal
invariance. For example, an invariant set is minimally in-
variant if and only if it is non-invariant as soon as one of its
elements is removed.

Proposition 3.2. Let S ⊆ [d]. Then S ∈MI if and only if
S ∈ I and for all j ∈ S, it holds that S \ {j} ̸∈ I.

The proof follows directly from (Tian et al., 1998, Corollary
2). We can therefore decide whether a given invariant set S
is minimally invariant using O(|S|) checks for invariance,
rather thanO(2|S|) (as suggested by Definition 3.1). We use
this insight in Section 5.1, when we construct a statistical
test for whether or not a set is minimally invariant.

To formally define the oracle outcome of IAS, we denote
the hypothesis that a set S is minimally invariant by

HMI
0,S : S ∈MI

(and the alternative hypothesis, S /∈ MI, by HMI
A,S ) and

define the quantity of interest

SIAS :=
⋃

S:HMI
0,S true

S (2)

2In fact, SMB
ICP is always at least as informative as ICP. E.g.,

there exist graphs in which SICP = ∅ and SMB
ICP ̸= ∅, see Figure 1

(left). There are no possible structures for which SMB
ICP ⊊ SICP, as

both search for invariant sets over all sets of parents of Y .

with the convention that a union over the empty set is the
empty set.

The following proposition states that SIAS is a subset of the
ancestors of the response Y . Similarly to PAY , variables in
ANY are causes of Y in that for each ancestor there is a di-
rected causal path to Y . Thus, generically, when intervened,
these variables have a causal effect on the response.

Proposition 3.3. It holds that SIAS ⊆ ANY .

The proof follows directly from (Tian et al., 1998, Theo-
rem 2); see also (Acid & De Campos, 2013, Proposition 2).
The setup in these papers is more general than what we con-
sider here; we therefore provide direct proofs for Proposi-
tions 3.2 and 3.3 in Appendix A, which may provide further
intuition for the results.

Finally, we show that the oracle output of IAS contains that
of ICP and, contrary to ICP, it is always an invariant set.

Proposition 3.4. Assume that E ̸∈ PAY . It holds that

(i) SIAS ∈ I and
(ii) SICP ⊆ SIAS, with equality if and only if SICP ∈ I.

4. Oracle Algorithms
When provided with an oracle that tells us whether a set is
invariant or not, how can we efficiently compute SICP and
SIAS? Here, we assume that the oracle is given by a DAG,
see Assumption 2.1. A direct application of Equations (1)
and (2) would require checking a number of sets that grows
exponentially in the number of nodes. For SICP, we have
the following characterization.3

Proposition 4.1. If E ̸∈ PAY , then SICP =
PAY ∩ (CHE ∪PA(ANY ∩CHE)).

This allows us to efficiently read off SICP from the DAG,
(e.g., it can naively be done in O((d+ 2)2.373 log(d+ 2))
time, where the exponent 2.373 comes from matrix multipli-
cation). For SIAS, to the best of our knowledge, there is no
closed form expression that has a similarly simple structure.

Instead, for IAS, we exploit the recent development of ef-
ficient algorithms for computing all minimal d-separators
(for two given sets of nodes) in a given DAG (see, e.g., Tian
et al., 1998; van der Zander et al., 2019). A set S is called
a minimal d-separator of E and Y if it d-separates E and
Y given S and no strict subset of S satisfies this property.
These algorithms are often motivated by determining mini-
mal adjustment sets (e.g., Pearl, 2009) that can be used to
compute the total causal effect between two nodes, for ex-
ample. If the underlying distribution is Markov and faithful
with respect to the DAG, then a set S is minimally invariant
if and only if it is a minimal d-separator for E and Y . We

3To the best of our knowledge, this characterization is novel.
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can therefore use the same algorithms to find minimally
invariant sets; van der Zander et al. (2019) provide an algo-
rithm (based on work by Takata (2010)) for finding minimal
d-separators with polynomial delay time. Applied to our
case, this means that while there may be exponentially many
minimally invariant sets,4 when listing all such sets it takes
at most polynomial time until the next set or the message
that there are nor further sets is output. In practice, on ran-
dom graphs, we found this to work well (see Section 6.1).
But since SIAS is the union of all minimally invariant sets,
even faster algorithms may be available; to the best of our
knowledge, it is an open question whether finding SIAS is
an NP-hard problem (see Appendix B for details).

We provide a function for listing all minimally invariant
sets in our python code; it uses an implementation of the
above mentioned algorithm, provided in the R (R Core
Team, 2021) package dagitty (Textor et al., 2016). In
Section 6.1, we study the properties of the oracle set SIAS.
When applied to 500 randomly sampled, dense graphs
with d = 15 predictor nodes and five interventions, the
dagitty implementation had a median speedup of a fac-
tor of roughly 17, compared to a brute-force search (over
the ancestors of Y ). The highest speedup achieved was by a
factor of more than 1,900.

The above mentioned literature can be used only for ora-
cle algorithms, where the graph is given. In the following
sections, we discuss how to test the hypothesis of minimal
invariance from data.

5. Invariant Ancestry Search
5.1. Testing a Single Set for Minimal Invariance

Usually, we neither observe a full SCM nor its graphical
structure. Instead, we observe data from an SCM, which we
want to use to decide whether a set is inMI, such that we
make the correct decision with high probability. We now
show that a set S can be tested for minimal invariance with
asymptotic level and power if given a test for invariance that
has asymptotic level and power.

Assume that Dn = (Xi, Ei, Yi)
n
i=1 are observations (which

may or may not be independent) of (X,E, Y ) and let ϕMI
n :

powerset([d])×Dn×(0, 1)→ {0, 1} be a decision rule that
transforms (S,Dn, α) into a decision ϕMI

n (S,Dn, α) about
whether the hypothesisHMI

0,S should be rejected (ϕMI
n = 1)

at significance threshold α, or not (ϕMI
n = 0). To ease

notation, we suppress the dependence on Dn and α when
the statements are unambiguous.

A test ψn for the hypothesis H0 has pointwise asymptotic

4This is the case if there are d/2 (disjoint) directed paths be-
tween E and Y , with each path containing two X-nodes, for
example (e.g., van der Zander et al., 2019).

level if

∀α ∈ (0, 1) : sup
P∈H0

lim
n→∞

P(ψn = 1) ≤ α (3)

and pointwise asymptotic power if

∀α ∈ (0, 1) : inf
P∈HA

lim
n→∞

P(ψn = 1) = 1. (4)

If the limit and the supremum (resp. infimum) in Equa-
tion (3) (resp. Equation (4)) can be interchanged, we say
that ψn has uniform asymptotic level (resp. power).

Tests for invariance have been examined in the literature. Pe-
ters et al. (2016) propose two simple methods for testing for
invariance in linear Gaussian SCMs when the environments
are discrete, although the methods proposed extend directly
to other regression scenarios. Pfister et al. (2019) propose
resampling-based tests for sequential data from linear Gaus-
sian SCMs. Furthermore, any valid test for conditional
independence between Y and E given a set of predictors S
can be used to test for invariance. Although for continuous
X , there exists no general conditional independence test that
has both level and non-trivial power (Shah & Peters, 2020),
it is possible to impose restrictions on the data-generating
process that ensure the existence of non-trivial tests (e.g.,
Fukumizu et al., 2008; Zhang et al., 2011; Berrett et al.,
2020; Shah & Peters, 2020; Thams et al., 2021). Heinze-
Deml et al. (2018) provide an overview and a comparison
of several conditional independence tests in the context of
invariance.

To test whether a set S ⊆ [d] is minimally invariant, we
define the decision rule

ϕMI
n (S) :=

{
1 if ϕn(S) = 1 or min

j∈S
ϕn(S \ {j}) = 0,

0 otherwise,
(5)

where ϕMI
n (∅) := ϕn(∅). Here, ϕn is a test for the hy-

pothesis HI
0,S , e.g., one of the tests mentioned above. This

decision rule rejects HMI
0,S either if HI

0,S is rejected by ϕn
or if there exists j ∈ S such that HI

0,S\{j} is not rejected.
If ϕn has pointwise (resp. uniform) asymptotic level and
power, then ϕMI

n has pointwise (resp. uniform) asymptotic
level and pointwise (resp. uniform) asymptotic power of at
least 1− α.
Theorem 5.1. Let ϕMI

n be defined as in Equation (5) and
let S ⊆ [d]. Assume that the decision rule ϕn has pointwise
asymptotic level and power for S and for all S \ {j}, j ∈ S.
Then, ϕMI

n has pointwise asymptotic level and pointwise
asymptotic power of at least 1− α, i.e.,

inf
P∈HMI

A,S

lim
n→∞

P(ϕMI
n (S) = 1) ≥ 1− α.

If ϕn has uniform asymptotic level and power, then ϕMI
n

has uniform asymptotic level and uniform asymptotic power
of at least 1− α.
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Due to Proposition 3.3, a test for HMI
0,S is implicitly a test

for S ⊆ ANY , and can thus be used to infer whether in-
tervening on S will have a potential causal effect on Y .
However, rejecting HMI

0,S is not evidence for S ̸⊆ AN; it is
evidence for S ̸∈ MI.

5.2. Learning SIAS from Data

We now consider the task of estimating the set SIAS from
data. If we are given a test for invariance that has asymp-
totic level and power and if we correct for multiple testing
appropriately, we can estimate SIAS by ŜIAS, which, asymp-
totically, is a subset of ANY with large probability.
Theorem 5.2. Assume that the decision rule ϕn has point-
wise asymptotic level for all minimally invariant sets and
pointwise asymptotic power for all S ⊆ [d] such that S is
not a superset of a minimally invariant set. Define C := 2d

and let Î :=
{
S ⊆ [d] | ϕn(S, αC−1) = 0)

}
be the set

of all sets for which the hypothesis of invariance is not
rejected and define M̂I :=

{
S ∈ Î | ∀S′ ⊊ S : S′ ̸∈ Î

}
and ŜIAS :=

⋃
S∈M̂I S. It then holds that

lim
n→∞

P(ŜIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜIAS = SIAS)

≥ 1− α.

A generic algorithm for implementing ŜIAS is given in Ap-
pendix D.
Remark 5.3. Consider a decision rule ϕn that just (correctly)
rejects the empty set (e.g., because the p-value is just below
the threshold α), indicating that the effect of the environ-
ments is weak. It is likely that there are other sets S′ ̸∈ I,
which the test may not have sufficient power against and are
(falsely) accepted as invariant. If one of such sets contains
non-ancestors of Y , this yields a violation of ŜIAS ⊆ ANY .
To guard against this, testing S = ∅ can be done at a lower
significance level, α0 < α. This modified IAS approach is
conservative and may return ŜIAS = ∅ if the environments
do not have a strong impact on Y , but it retains the guarantee
limn→∞ P(ŜIAS ⊆ ANY ) ≥ 1− α of Theorem 5.2.

The multiple testing correction performed in Theorem 5.2 is
strictly conservative because we only need to correct for the
number of minimally invariant sets, and there does not exist
2d minimally invariant sets. Indeed, the statement of The-
orem 5.2 remains valid for C = C ′ if the underlying DAG
has at most C ′ minimally invariant sets. We hypothesize
that a DAG can contain at most 3⌈d/3⌉ minimally invariant
sets and therefore propose using C = 3⌈d/3⌉ in practice.
If this hypothesis is true, Theorem 5.2 remains valid (for
any DAG), using C = 3⌈d/3⌉ (see Appendix C for a more
detailed discussion).

Alternatively, as shown in the following section, we can
restrict the search for minimally invariant sets to a prede-

termined size. This requires milder correction factors and
comes with computational benefits.

5.3. Invariant Ancestry Search in Large Systems

We now develop a variation of Theorem 5.2, which allows
us to search for ancestors of Y in large graphs, at the cost
of only identifying minimally invariant sets up to some a
priori determined size.

Similarly to ICP (see Section 2.2), one could restrict IAS to
the variables in MBY but the output may be smaller than
SIAS; in particular, there are only non-parental ancestors
in MBY if these are parents to both a parent a child of Y
(For instance, in the graph E → X1 → . . . → Xd → Y ,
SIAS = {1, . . . , d} but restricting IAS to MBY would yield
the set {d}.) Thus, we do not expect such an approach to be
particularly fruitful in learning ancestors.

Here, we propose an alternative approach and define

Sm
IAS :=

⋃
S:S∈MI and |S|≤m

S (6)

as the union of minimally invariant sets that are no larger
than m ≤ d. For computing Sm

IAS, one only needs to check
invariance of the

∑m
i=0

(
d
i

)
sets that are no larger than m.

Sm
IAS itself, however, can be larger than m: in the graph

above Equation (6), S1
IAS = {1, . . . , d}. The following

proposition characterizes properties of Sm
IAS.

Proposition 5.4. Let m < d and let mmin and mmax be
the size of a smallest and a largest minimally invariant set,
respectively. The following statements are true:

(i) Sm
IAS ⊆ ANY .

(ii) If m ≥ mmax, then Sm
IAS = SIAS.

(iii) If m ≥ mmin and E ̸∈ PAY , then Sm
IAS ∈ I.

(iv) If m ≥ mmin and E ̸∈ PAY , then SICP ⊆ Sm
IAS with

equality if and only if SICP ∈ I.

If m < mmin and SICP ̸= ∅, then SICP ⊆ Sm
IAS does not

hold. However, we show in Section 6.1 using simulations
that Sm

IAS is larger than SICP in many sparse graphs, even
for m = 1, when few nodes are intervened on.

In addition to the computational speedup offered by consid-
ering Sm

IAS instead of SIAS, the set SIAS can be estimated
from data using a smaller correction factor than the one
employed in Theorem 5.2. This has the benefit that in
practice, smaller sample sizes may be needed to detect non-
invariance.

Theorem 5.5. Let m ≤ d and define C(m) :=
∑m

i=0

(
d
i

)
.

Assume that the decision rule ϕn has pointwise asymp-
totic level for all minimally invariant sets of size at most
m and pointwise power for all sets of size at most m
that are not supersets of a minimally invariant set. Let
Îm :=

{
S ⊆ [d] | ϕn(S, αC(m)−1) = 0 and |S| ≤ m

}
,
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be the set of all sets of size at most m for which
the hypothesis of invariance is not rejected and define
M̂Im :=

{
S ∈ Îm | ∀S′ ⊊ S : S′ ̸∈ Îm

}
and Ŝm

IAS :=⋃
S∈M̂Im S. It then holds that

lim
n→∞

P(Ŝm
IAS ⊆ ANY ) ≥ lim

n→∞
P(Ŝm

IAS = Sm
IAS)

≥ 1− α.

The method proposed in Theorem 5.5 outputs a non-empty
set if there exists a non-empty set of size at most m, for
which the hypothesis of invariance cannot be rejected. In a
sparse graph, it is likely that many small sets are minimally
invariant, whereas if the graph is dense, it may be that all
invariant sets are larger than m, such that Sm

IAS = ∅. In
dense graphs however, many other approaches may fail too;
for example, it is also likely that the size of the Markov
boundary is so large that applying ICP on MBY is not
feasible.

6. Experiments
We apply the methods developed in this paper in a
population-case experiment using oracle knowledge (Sec-
tion 6.1), a synthetic experiment using finite sample tests
(Section 6.2), and a real-world data set from a gene pertur-
bation experiment (Section 6.3). In Sections 6.1 and 6.2
we consider a setting with two environments: an observa-
tional environment (E = 0) and an intervention environ-
ment (E = 1), and examine how the strength and number
of interventions affect the performance of IAS.

6.1. Oracle IAS in Random Graphs

For the oracle setting, we know that SIAS ⊆ ANY (Propo-
sition 3.3) and SICP ⊆ SIAS (Proposition 3.4). We first
verify that the inclusion SICP ⊆ SIAS is often strict in
low-dimensional settings when there are few interventions.
Second, we show that the set Sm

IAS is often strictly larger
than the set SMB

ICP in large, sparse graphs with few interven-
tions.

In principle, for a given number of covariates, one can enu-
merate all DAGs and, for each DAG, compare SICP and
SIAS. However, because the space of DAGs grows super-
exponentially in the number of nodes (Chickering, 2002),
this is infeasible. Instead, we sample graphs from the space
of all DAGs that satisfy Assumption 2.1 and Y ∈ DEE (see
Appendix E.1 for details).

In the low-dimensional setting (d ≤ 20), we compute SICP

and SIAS, whereas in the larger graphs (d ≥ 100), we com-
pute SMB

ICP and the reduced set Sm
IAS for m ∈ {1, 2} when

d = 100 and for m = 1 when d = 1,000. Because there
is no guarantee that IAS outputs a superset of ICP when
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Figure 2. Low-dimensional oracle experiment, see Section 6.1. In
all cases, as predicted by theory, SICP is contained in SIAS. For
many graphs, SIAS is strictly larger than SICP. On average, this
effect is more expressed when there are fewer intervened nodes.
Pn refers to the distribution used to sample graphs and every point
in the figure is based on 50,000 independently sampled graphs; d
denotes the number of covariates X . Empirical confidence bands
are plotted around each line, but are very narrow.

searching only up to sets of some size lower than d, we com-
pare the size of the sets output by either method. For the
low-dimensional setting, we consider both sparse and dense
graphs, but for larger dimensions, we only consider sparse
graphs. In the sparse setting, the DAGs are constructed such
that there is an expected number of d + 1 edges between
the d+ 1 nodes X and Y ; in the dense setting, the expected
number of edges equals 0.75 · d(d+ 1)/2.

The results of the simulations are displayed in Figures 2
and 3. In the low-dimensional setting, SIAS is a strict su-
perset of SICP for many graphs. This effect is the more
pronounced, the larger the d and the fewer nodes are inter-
vened on, see Figure 2. In fact, when there are interventions
on all predictors, we know that SIAS = SICP = PAY (Pe-
ters et al., 2016, Theorem 2), and thus the probability that
SICP ⊊ SIAS is exactly zero. For the larger graphs, we find
that the set Sm

IAS is, on average, larger than SMB
ICP, in partic-

ular when d = 1,000 or when m = 2, see Figure 3. In the
setting with d = 100 and m = 1, the two sets are roughly
the same size, when 10% of the predictors are intervened
on. The set SMB

ICP becomes larger than S1
IAS after roughly

15% of the predictors nodes are intervened on (not shown).
For both d = 100 and d = 1,000, the average size of the
Markov boundary of Y was found to be approximately 3.5.

6.2. Simulated Linear Gaussian SCMs

In this experiment, we show through simulation that IAS
finds more ancestors than ICP in a finite sample setting when
applied to linear Gaussian SCMs. To compare the outputs
of IAS and ICP, we use the Jaccard similarity between ŜIAS

(Ŝ1
IAS when d is large) and ANY , and between ŜICP (ŜM̂B

ICP
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Figure 3. High-dimensional oracle experiment with sparse graphs,
see Section 6.1. The average size of the set Sm

IAS is larger than the
average size of the set SMB

ICP, both when using IAS to search for
sets up to sizes m = 1 and m = 2. Except for the choice of d, the
setup is the same as in Figure 2.

when d is large5) and ANY .6

We sample data from sparse linear Gaussian models with
i.i.d. noise terms in two scenarios, d = 6 and d = 100. In
both cases, coefficients for the linear assignments are drawn
randomly. We consider two environments; one observa-
tional and one interventional; in the interventional environ-
ment, we apply do-interventions of strength one to children
ofE, i.e., we fix the value of a child ofE to be one. We stan-
dardize the data along the causal order, to prevent variance
accumulation along the causal order (Reisach et al., 2021).
Throughout the section, we consider a significance level of
α = 5%. For a detailed description of the simulations, see
Appendix E.2.

To test for invariance, we employ the test used in Peters et al.
(2016): We calculate a p-value for the hypothesis of invari-
ance of S by first linearly regressing Y onto XS (ignoring
E), and second testing whether the mean and variance of the
prediction residuals is equal across environments. For de-
tails, see Peters et al. (2016, Section 3.2.1). Schultheiss et al.
(2021) also consider the task of estimating ancestors but
since their method is uninformative for Gaussian data and
does not consider environments, it is not directly applicable
here.

In Theorem 5.2, we assume asymptotic power of our invari-
ance test. When d = 6, we test hypotheses with a correction
factor C = 3⌈6/3⌉ = 9, as suggested in Appendix C, in an
attempt to reduce false positive findings. In Appendix E.3,
we repeat the experiment of this section with C = 26 and
find almost identical results. We hypothesize, that the ef-
fects of a reduced C is more pronounced at larger d. When

5M̂B is a Lasso regression estimate of MBY containing at
most 10 variables

6The Jaccard similarity between two sets A and B is defined
as J(A,B) := |A ∩B|/|A ∪B|, with J(∅, ∅) = 0. The Jaccard
similarity equals one if the two sets are equal, zero if they are
disjoint and takes a value in (0, 1) otherwise.

d = 100, we test hypotheses with the correction factor C(1)
of Theorem 5.5. In both cases, we test the hypothesis of
invariance of the empty set at level α0 = 10−6 (cf. Re-
mark 5.3). In Appendix E.4, we investigate the effects on
the quantities P(ŜIAS ⊆ ANY ) and P(Ŝ1

IAS ⊆ ANY ) when
varying α0, confirming that choosing α0 too high can lead
to a reduced probability of ŜIAS being a subset of ancestors.

In Figure 4 the results of the simulations are displayed.
In SCMs where the oracle versions SIAS and SICP are not
equal, ŜIAS achieved, on average, a higher Jaccard similarity
to ANY than ŜICP. This effect is less pronounced when d =
100. We believe that the difference in Jaccard similarities
is more pronounced when using larger values of m. When
SIAS = SICP, the two procedures achieve roughly the same
Jaccard similarities to ANY , as expected. When the number
of observations is one hundred, IAS generally fails to find
any ancestors and outputs the empty set (see Figure 7),
indicating that the we do not have power to reject the empty
set when there are few observations. This is partly by design;
we test the empty set for invariance at reduced level α0 in
order to protect against making false positive findings when
the environment has a weak effect on Y . However, even
without testing the empty set at a reduced level, IAS has
to correct for making multiple comparisons, contrary to
ICP, thus lowering the marginal significance level each set
is tested at. When computing the jaccard similarities with
either α0 = α or α0 = 10−12, the results were similar (not
shown). We repeated the experiments with d = 6 with a
weaker influence of the environment (do-interventions of
strength 0.5 instead of 1) and found comparable results,
with slightly less power in that the empty set is found more
often, see Appendix E.5.

We compare our method with a variant, called IASest. graph,
where we first estimate (e.g., using methods proposed by
Mooij et al. 2020 or Squires et al. 2020) a member graph
of the Markov equivalence class (‘I-MEC’) and apply the
oracle algorithm from Section 4 (by reading of d-separations
in that graph) to estimateMI . In general, however, such an
approach comes with additional assumptions; furthermore,
even in the linear setup considered here, its empirical perfor-
mance for large graphs is worse than the proposed method
IAS, see Appendix E.7.

6.3. IAS in High Dimensional Genetic Data

We evaluate our approach in a data set on gene expression
in yeast (Kemmeren et al., 2014). The data contain full-
genome mRNA expressions of d = 6,170 genes and consists
of nobs = 160 unperturbed observations (E = 0) and nint =
1,479 intervened-upon observations (E = 1); each of the
latter observations correspond to the deletion of a single
(known) gene. For each response gene geneY ∈ [d], we
apply the procedure from Section 5.3 with m = 1 to search
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Figure 4. Comparison between the finite sample output of IAS
and ICP and ANY on simulated data, see Section 6.2. The plots
show the Jaccard similarities between ANY and either ŜIAS (Ŝ1

IAS

when d = 100) in red or ŜICP (ŜM̂B
ICP when d = 100) in blue and

ANY . When SICP ̸= SIAS (left column), ŜIAS is more similar to
ANY than ŜICP. The procedures are roughly equally similar to
ANY when SICP = SIAS (right column). Graphs represented in
each boxplot: 42 (top left), 58 (top right), 40 (bottom left) and 60
(bottom right).

for ancestors.

We first test for invariance of the empty set, i.e., whether the
distribution of geneY differs between the observational and
interventional environment. We test this at a conservative
level α0 = 10−12 in order to protect against a high false
positive rate (see Remark 5.3). For 3,631 out of 6,170
response genes, the empty set is invariant, and we disregard
them as response genes.

For each response gene, for which the empty set is not in-
variant, we apply our procedure. More specifically, when
testing whether geneX is an ancestor of geneY , we ex-
clude any observation in which either geneX or geneY

was intervened on. We then test whether the empty set is
still rejected, at level α0 = 10−12, and whether geneX

is invariant at level α = 0.25. Since a set {geneX} is
deemed minimally invariant if the p-value exceeds α, set-
ting α large is conservative for the task of finding ancestors.
Indeed, when estimating Ŝm

IAS, one can test the sets of size
m at a higher level α1 > α. This is conservative, because
falsely rejecting a minimally invariant set of size m does
not break the inclusion Ŝm

IAS ⊆ ANY . However, if one has
little power against the non-invariant sets of size m, testing
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Figure 5. True positive rates and number of gene pairs found in
the experiment in Section 6.3. On the x-axis, we change α0, the
threshold for invariance of the empty set. When α0 is small, we
only search for pairs if the environment has a very significant effect
on Y . For smaller α0, fewer pairs are found to be invariant (blue
line), but those found, are more likely to be true positives (red line).
This supports the claim that the lower α0 is, the more conservative
our approach is.

at level α1 can protect against false positives.7

We use the held-out data point, where geneX is intervened
on, to determine as ground truth, whether geneX is indeed
an ancestor of geneY . We define geneX as a true ancestor
of geneY if the value of geneY when geneX is inter-
vened on, lies in the qTP = 1% tails of the observational
distribution of geneY .

We find 23 invariant pairs (geneX ,geneY ); of these, 7 are
true positives. In comparison, Peters et al. (2016) applies
ICP to the same data, and with the same definition of true
positives. They predict 8 pairs, of which 6 are true posi-
tives. This difference is in coherence with the motivation
put forward in Section 5.2: Our approach predicts many
more ancestral pairs (8 for ICP compared to 23 for IAS).
Since ICP does not depend on power of the test, they have a
lower false positive rate (25% for ICP compared to 69.6%
for IAS).

In Figure 5, we explore how changing α0 and qTP impacts
the true positive rate. Reducing α0 increases the true pos-
itive rate, but lowers the number of gene pairs found (see
Figure 5). This is because a lower α0 makes it more difficult
to detect non-invariance of the empty set, making the proce-
dure more conservative (with respect to finding ancestors);
see Remark 5.3. For example, when α0 ≤ 10−15, the true
positive rate is above 0.8; however, 5 or fewer pairs are
found. When searching for ancestors, the effect of interven-
ing may be reduced by noise from intermediary variables, so
qTB = 1% might be too strict; in Appendix E.6, we analyze
the impact of increasing qTB .

7Only sets of size exactly m can be tested at level α1; the
remaining hypotheses should still be corrected by C(m) (or by the
hypothesized number of minimally invariant sets).
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7. Extensions
7.1. Latent variables

In Assumption 2.1, we assume that all variables X are
observed and that there are no hidden variables H . Let
us write X = XO ∪̇XH , where only XO is observed and
define I := {S ⊆ XO | S invariant}. We can then define

SIAS,O :=
⋃

S⊆XO:HMI
0,S true

S

(again with the convention that a union over the empty set
is the empty set), and have the following modification of
Proposition 3.3.

Proposition 7.1. It holds that SIAS,O ⊆ ANY .

All results in this paper remain correct in the presence of hid-
den variables, except for Proposition 3.4 and Proposition 5.4
(iii-iv).8 Thus, the union of the observed minimally invari-
ant sets, SIAS,O is a subset of ANY and can be learned from
data in the same way as if no latent variables were present.

7.2. Non-exogenous environments

Throughout this paper, we have assumed that the environ-
ment variable is exogenous (Assumption 2.1). However,
all of the results stated in this paper, except for Proposi-
tion 4.1, also hold under the alternative assumption that E
is an ancestor of Y , but not necessarily exogenous. From
the remaining results, only the proof of Proposition 3.2 uses
exogeneity of E, but here the result follows from Tian et al.
(1998). In all other proofs, we account for both options.
This extension also remains valid in the presence of hidden
variables, using the same arguments as in Section 7.1.

8. Conclusion and Future Work
Invariant Ancestry Search (IAS) provides a framework for
searching for causal ancestors of a response variable Y
through finding minimally invariant sets of predictors by
exploiting the existence of exogenous heterogeneity. The
set SIAS is a subset of the ancestors of Y , a superset of
SICP and, contrary to SICP, invariant itself. Furthermore,
the hierarchical structure of minimally invariant sets allows
IAS to search for causal ancestors only among subsets up
to a predetermined size. This avoids exponential runtime
and allows us to apply the algorithm to large systems. We
have shown that, asymptotically, SIAS can be identified
from data with high probability if we are provided with a

8These results do not hold in the presence of hidden variables,
because it is not guaranteed that an invariant set exists among
XO (e.g., consider a graph where all observed variables share a
common, unobserved confounder with Y ). However, if at least
one minimally invariant set exists among the observed variables,
then all results stated in this paper hold.

test for invariance that has asymptotic level and power. We
have validated our procedure both on simulated and real
data. Our proposed framework would benefit from further
research in the maximal number of minimally invariant sets
among graphs of a fixed size, as this would provide larger
finite sample power for identifying ancestors. Further it
is of interest to establish finite sample guarantees or con-
vergence rates for IAS, possibly by imposing additional
assumptions on the class of SCMs. Finally, even though
current implementations are fast, it is an open theoretical
question whether computing SIAS in the oracle setting of
Section 4 is NP-hard, see Appendix B.
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A. Proofs
A.1. A direct Proof of Proposition 3.2

Proof. Assume that E is exogenous. If E ∈ PAY , then there are no minimally invariant sets, and the statement holds
trivially. If E ̸∈ PAY , then assume for contradiction, that an invariant set S0 ⊊ S exists. By assumption, |S \ S0| > 1,
because otherwise S0 would be non-invariant.

We can choose S1 ⊆ S and k0, k1, . . . , kl ∈ S with l ≥ 1 such that for all i = 1, . . . , l : ki /∈ DEk0 and

S0 ∪ S1 ∪ {k0, . . . , kl} = S ∈ I
for 0 ≤ i < l : S0 ∪ S1 ∪ {k0, . . . , ki} /∈ I

S0 ∪ S1 ∈ I.

This can be done by iteratively removing elements from S \ S0, removing first the earliest elements in the causal order. The
first invariant set reached in this process is then S0 ∪ S1.

Since S0 ∪S1 ∪ {k0} is non-invariant, there exists a path π between E and Y that is open given S0 ∪S1 ∪ {k0} but blocked
given S0 ∪ S1. Since removing k0 blocks π, k0 must be a collider or a descendant of a collider c on π:

E · · · c · · · Y

...

k0

π

πE πY

Here, − represents an edge that either points left or right. Since π is open given S0 ∪ S1, the two sub-paths πE and πY are
open given S0 ∪ S1.

Additionally, since S0 ∪ S1 ∪ {k1, . . . , kl} = S \ {k0} is non-invariant, there exists a path τ between E and Y that is
unblocked given S0 ∪ S1 ∪ {k1, . . . , kl} and blocked given S0 ∪ S1 ∪ {k1, . . . , kl} ∪ {k0}. It follows that k0 lies on τ
(otherwise τ cannot be blocked by adding k0) and k0 has at least one outgoing edge. Assume, without loss of generality that
there is an outgoing edge towards Y . Since τ is open given S0 ∪ S1 ∪ {k1, . . . , kl}, so is τY .

E · · · k0 · · · Y

τ

τY

If there are no colliders on τY , then τY is also open given S0 ∪ S1. But then the path the path E
πE· · ·→ c→ · · · → k0

τY→ · · ·
is also open given S0 ∪ S1, contradicting invariance of S0 ∪ S1.

E · · · c

· · · Y

...

k0

πE
τY

If there are colliders on τY , let m be the collider closest to k0, meaning that m ∈ DEk0
. Since τY is open given

S0∪S1∪{k1, . . . , kl}, it means that eitherm or a descendant ofm is in S0∪S1∪{k1, . . . , kl}. Since {k1, . . . , kl}∩DEk0
=

∅, there exist v ∈ (S0 ∪ S1) ∩ ({m} ∪ DEm). But then v ∈ DEk0 ∩(S0 ∪ S1), meaning that π is open given S0 ∪ S1,
contradicting invariance of S0 ∪ S1.
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We could assume that τY had an outgoing edge from k0 without loss of generality, because if there was instead an outgoing
edge from k0 on τE , the above argument would work with πY and τE instead. This concludes the proof.

A.2. A direct proof of Proposition 3.3

Proof. If E is a parent of Y , we haveMI = ∅ and the statement follows trivially. Thus, assume that E is not a parent of Y .
We will show that if S ∈ I is not a subset of ANY , then S∗ := S ∩ANY ∈ I, meaning that S /∈MI.

Assume for contradiction that there is a path p between E and Y that is open given S∗. Since S ∈ I, p is blocked given S.
Then there exists a non-collider Z on p that is in S \ANY . We now argue that all nodes on p are ancestors of Y , yielding a
contradiction.

First, assume that there are no colliders on p. If E is exogenous, then p is directed from E to Y . (If E is an ancestor of Y ,
any node on p is either an ancestor of Y or E, and thus Y .) Second, assume that there are colliders on p. Since p is open
given the smaller set S∗ ⊊ S, all colliders on p are in S∗ or have a descendant in S∗; therefore all colliders are ancestors of
Y . If E is exogenous, any node on p is either an ancestor of Y or of a collider on p. (If E is an ancestor of Y , any node on p
is either an ancestor of Y , of a collider on p or of E, and thus also Y .) This completes the proof of Proposition 3.3.

A.3. Proof of Proposition 3.4

Proof. First, we show that SIAS ∈ I . If SIAS is the union of a single minimally invariant set, it trivially holds that SIAS ∈ I .
Now assume that SIAS is the union of at least two minimally invariant sets, SIAS = S1 ∪ . . . ∪ Sn, n ≥ 2, and assume for a
contradiction that there exists a path π between E and Y that is unblocked given SIAS.

Since π is blocked by a strict subset of SIAS, it follows that π has at least one collider; further every collider of π is either in
SIAS or has a descendant in SIAS, and hence every collider of π is an ancestor of Y , by Proposition 3.3. If E is exogenous,
π has the following shape

E · · · c1 · · · c2 · · · ck · · · Y.

π1 π2 π3, . . . , πk πk+1

(If E is not exogenous but E ∈ ANY , then π takes either the form displayed above or the shape displayed below. However,

E · · · c1 · · · c2 · · · ck · · · Y .

π1 π2 π3, . . . , πk πk+1

no matter which of the shapes π takes, the proof proceeds the same.) The paths π1, . . . , πk+1, k ≥ 1, do not have any
colliders and are unblocked given SIAS. In particular, π1, . . . , πk+1 are unblocked given S1.

The path πk+1 must have a final edge pointing to Y , because otherwise it would be a directed path from Y to ck, which
contradicts acyclicity since ck is an ancestor of Y .

As c1 is an ancestor of Y , there exists a directed path, say ρ1, from c1 to Y . Since π1 is open given S1 and since S1 is
invariant, it follows that ρ1 must be blocked by S1 (otherwise the path E π1→ c1

ρ1→ Y would be open). For this reason, S1

contains a descendant of the collider c1.

Similarly, if ρ2 is a directed path from c2 to Y , then S1 blocks ρ2, because otherwise the path E π1→ c1
π2← · · · → c2

ρ2→ Y
would be open. Again, for this reason, S1 contains a descendant of c2.

Iterating this argument, it follows that S1 contains a descendant of every collider on π, and since π1, . . . , πk+1 are unblocked
by S1, π is open given S1. This contradicts invariance of S1 and proves that SIAS ∈ I.

We now show that SICP ⊆ SIAS with equality if and only if SICP ∈ I. First, SICP ⊆ SIAS because SIAS is a union of the
minimally invariant sets, and SICP is the intersection over all invariant sets. We now show the equivalence statement.

Assume first that SICP ∈ I. As SICP is the intersection of all invariant sets, SICP ∈ I implies that there exists exactly one
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invariant set, that is contained in all other invariant sets. By definition, this means that there is only one minimally invariant
set, and that this set is exactly SICP. Thus, SIAS = SICP.

Conversely assume that SICP /∈ I. By construction, SICP is contained in any invariant set, in particular in the minimally
invariant sets. However, since SICP is not invariant itself, this containment is strict, and it follows that SICP ⊊ SIAS.

A.4. Proof of Proposition 4.1

Proof. First we show PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆ SICP. If j ∈ PAY ∩CHE , any invariant set contains j,
because otherwise the path E → j → Y is open. Similarly, if j ∈ PAY ∩PA(ANY ∩CHE), any invariant set contains j
(there exists a node j′ such that E → j′ → · · · → Y and E → j′ ← j → Y , and any invariant set S must contain j′ or one
of its descendants; thus, it must also contain j to ensure that the path E → j′ ← j → Y is blocked by S.) It follows that for
all invariant S,

PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆ S,

such that

PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆
⋂

S invariant

S.

To show SICP ⊆ PAY ∩ (CHE ∪PA(ANY ∩CHE)), take any j /∈ PAY ∩ (CHE ∪PA(ANY ∩CHE)). We argue, that an
invariant set S̄ not containing j exists, such that j /∈ SICP =

⋂
S invariant S. If j /∈ PAY , let S̄ = PAY , which is invariant. If

j ∈ PAY , define

S̄ = (PAY \{j}) ∪ PAj ∪(CHj ∩ANY ) ∪ PA(CHj ∩ANY ).

Because j /∈ CHE and j /∈ PA(ANY ∩CHE), we have E /∈ S̄. Also observe that S̄ ⊆ ANY . We show that any path
between E and Y is blocked by S̄, by considering all possible paths:

· · · j′ → Y for j′ ̸= j: Blocked because j′ ∈ PAY \{j}.

· · ·v→ j→ Y: Blocked because v ∈ PAj ⊆ S̄ and E /∈ PAj .

· · ·v→ c← j→ Y and c ∈ ANY: Blocked because v ∈ PAj(CHj ∩ANY ).

· · ·v→ c← j→ Y and c /∈ ANY: Blocked because S̄ ⊆ ANY , and since c /∈ ANY , S̄ ∩ DEc = ∅ and the path is
blocked given S̄ because of the collider c.

· · · → c← · · · ← v← j→ Y and c ∈ ANY: Blocked because v ∈ ANc and c ∈ ANY , so v ∈ CHj ∩ANY ⊆ S̄.

· · · → c← · · · ← v← j→ Y and c /∈ ANY: Same reason as for the case ‘· · ·v→ c← j→ Y and c /∈ ANY’.

· · · → c← · · · ← Y Since S̄ ⊆ ANY , we must have S̄ ∩ DEc = ∅ (otherwise this would create a directed cycle from
Y → · · · → Y ). Hence the path is blocked given S̄ because of the collider c.

Since there are no open paths from E to Y given S̄, S̄ is invariant, and SICP ⊆ S̄. Since j /∈ S̄, it follows that j /∈ SICP.
This concludes the proof.

A.5. Proof of Theorem 5.1

Proof. Consider first the case where all marginal tests have pointwise asymptotic power and pointwise asymptotic level.

Pointwise asymptotic level: Let P0 ∈ HMI
0,S . By the assumption of pointwise asymptotic level, there exists a non-negative
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sequence (ϵn)n∈N such that limn→∞ ϵn = 0 and P0(ϕn(S) = 1) ≤ α+ ϵn. Then

P0(ϕ
MI
n (S) = 1) = P0

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≤ P0(ϕn(S) = 1) +

∑
j∈S

P0(ϕn(S \ {j}) = 0)

≤ α+ ϵn +
∑
j∈S

P0(ϕn(S \ {j}) = 0)

→ α+ 0 as n→∞
= α.

The convergence step follows from
HMI

0,S = HI
0,S ∩

⋂
j∈S

HI
A,S\{j}

and from the assumption of pointwise asymptotic level and power. As P0 ∈ HMI
0,S was arbitrary, this shows that ϕMI

n has
pointwise asymptotic level.

Pointwise asymptotic power: To show that the decision rule has pointwise asymptotic power, consider any PA ∈ HMI
A,S .

We have that

HMI
A,S = HI

A,S ∪

HI
0,S ∩

⋃
j∈S

HI
0,S\{j}

 . (7)

As the two sets HI
A,S and

HI
0,S ∩

⋃
j∈S

HI
0,S\{j}

are disjoint, we can consider them one at a time. Consider first the case PA ∈ HI
A,S . This means that S is not invariant and

thus

PA(ϕ
MI
n (S) = 1) = PA

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}, α) = 0)


≥ PA(ϕn(S) = 1)

→ 1 as n→∞

by the assumption of pointwise asymptotic power.

Next, assume that there exists j′ ∈ S such that PA ∈ (HI
0,S ∩HI

0,S\{j′}). Then,

PA(ϕ
MI
n (S) = 1) = P0

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≥ PA(ϕn(S \ {j′}) = 0)

≥ 1− α− ϵn
→ 1− α as n→∞.

Thus, for arbitrary PA ∈ HMI
A,S we have shown that PA(ϕ

MI
n (S) = 1) ≥ 1 − α in the limit. This shows that ϕMI

n has
pointwise asymptotic power of at least 1− α. This concludes the argument for pointwise asymptotic power.

Next, consider the case that the marginal tests have uniform asymptotic power and uniform asymptotic level. The calculations
for showing that ϕMI

n has uniform asymptotic level and uniform asymptotic power of at least 1− α are almost identical to
the pointwise calculations.
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Uniform asymptotic level: By the assumption of uniform asymptotic level, there exists a non-negative sequence ϵn such
that limn→∞ ϵn = 0 and supP∈HI

0,S
P(ϕn(S) = 1) ≤ α+ ϵn. Then,

sup
P∈HMI

0,S

P(ϕMI
n (S) = 1) = sup

P∈HMI
0,S

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≤ sup

P∈HMI
0,S

P(ϕn(S) = 1) +
∑
j∈S

P(ϕn(S \ {j}) = 0)


≤ sup

P∈HMI
0,S

P(ϕn(S) = 1) +
∑
j∈S

sup
P∈HMI

0,S

P(ϕn(S \ {j}) = 0)

≤ α+ ϵn +
∑
j∈S

(
1− inf

P∈HMI
0,S

P(ϕn(S \ {j}) = 1)

)
→ α+ 0 +

∑
j∈S

(1− 1) as n→∞

= α.

Uniform asymptotic power: From (7), it follows that

inf
P∈HMI

A,S

P(ϕMI
n (S) = 1) = min

{
inf

P∈HI
A,S

P(ϕMI
n (S) = 1), inf

P∈HI
0,S∩

⋃
j∈S HI

0,S\{j}

P(ϕMI
n (S) = 1)

}
.

We consider the two inner terms in the above separately. First,

inf
P∈HI

A,S

P(ϕMI
n (S) = 1) = inf

P∈HI
A,S

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≥ inf

P∈HI
A,S

P(ϕn(S) = 1)

→ 1 as n→∞.

Next,

inf
P∈HI

0,S∩
⋃

j∈S HI
0,S\{j}

P(ϕMI
n (S) = 1) = inf

P∈HI
0,S∩

⋃
j∈S HI

0,S\{j}

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


= min

j∈S

 inf
P∈HI

0,S∩HI
0,S\{j}

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≥ min

j∈S

{
inf

P∈HI
0,S∩HI

0,S\{j}

P(ϕn(S \ {j}) = 0)

}

= min
j∈S

1− sup
P∈HI

0,S∩HI
0,S\{j}

P(ϕn(S \ {j}) = 1)


≥ 1− α− ϵn
→ 1− α as n→∞.

This shows that ϕMI
n has uniform asymptotic power of at least 1− α, which completes the proof.
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A.6. Proof of Theorem 5.2

Proof. We have that
lim
n→∞

P(ŜIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜIAS = SIAS)

as SIAS ⊆ ANY by Proposition 3.4. Furthermore, we have

P(ŜIAS = SIAS) ≥ P(M̂I =MI).

Let A := {S | S ̸∈ I} \ {S | ∃S′ ⊊ S s.t. S′ ∈MI} be those non-invariant sets that do not contain a minimally invariant
set and observe that

(M̂I =MI) ⊇
⋂

S∈MI
(ϕn(S, αC

−1) = 0) ∩
⋂
S∈A

(ϕn(S, αC
−1) = 1). (8)

To see why this is true, note that to correctly recoverMI, we need to 1) accept the hypothesis of minimal invariance for
all minimally invariant sets and 2) reject the hypothesis of invariance for all non-invariant sets that are not supersets of a
minimally invariant set (any superset of a set for which the hypothesis of minimal invariance is not rejected is removed in
the computation of M̂I). Then,

P(M̂I =MI) ≥ P

( ⋂
S∈MI

(ϕn(S, αC
−1) = 0) ∩

⋂
S∈A

(ϕn(S, αC
−1) = 1)

)

≥ 1− P

( ⋃
S∈MI

(ϕn(S, αC
−1) = 1)

)
−
∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1−
∑

S∈MI
P(ϕn(S, αC−1) = 1)−

∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1−
∑

S∈MI
(αC−1 + ϵn,S)−

∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1− |MI|αC−1 +
∑

S∈MI
ϵn,S −

∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1− α+
∑

S∈MI
ϵn,S −

∑
S∈A

P(ϕn(S, αC−1) = 0)

→ 1− α as n→∞,

where (ϵn,S)n∈N,S∈MI are non-negative sequences that converge to zero and the last step follows from the assumption of
asymptotic power. The sequences (ϵn,S)n∈N,S∈MI exist by the assumption of asymptotic level.

A.7. Proof of Proposition 5.4

Proof. We prove the statements one by one.

(i) Since Sm
IAS is the union over some of the minimally invariant sets, Sm

IAS ⊆ SIAS. Then the statement follows from
Proposition 3.3.

(ii) If m ≥ mmax, all S ∈MI satisfy the requirement |S| ≤ m.

(iii) If m ≥ mmin, then Sm
IAS contains at least one minimally invariant set. The statement then follows from the first part

of the proof of Proposition 3.4 given in Appendix A.3.

(iv) Sm
IAS contains at least one minimally invariant set and, by (iii), it is itself invariant. Thus, if SICP ̸∈ I, then

SICP ⊊ Sm
IAS. If SICP ∈ I, then there exists only one minimally invariant set, which is SICP (see proof of Proposition 3.4),

and we have SICP = Sm
IAS. This concludes the proof.
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A.8. Proof of Theorem 5.5

Proof. The proof is identical to the proof of Theorem 5.2, when changing the correction factor 2−d to C(m)−1, adding
superscript m’s to the quantities M̂I, ŜIAS and SIAS, and adding the condition |S| ≤ m to all unions, intersections and
sums.

A.9. Proof of Proposition 7.1

By Proposition 3.3, we have SIAS ⊆ ANY , and since SIAS,O ⊆ SIAS, the claim follows immediately.

B. Oracle Algorithms for Learning SIAS

In this section, we review some of the existing literature on minimal d-separators, which can be exploited to give an
algorithmic approach for finding SIAS from a DAG. We first introduce the concept of M -minimal separation with respect to
a constraining set I .

Definition B.1 (van der Zander et al. (2019), Section 2.2). Let I ⊆ [d], K ⊆ [d], and S ⊆ [d]. We say that S is a K-minimal
separator of E and Y with respect to a constraining set I if all of the following are true:

(i) I ⊆ S.
(ii) S ∈ I.

(iii) There does not exists S′ ∈ I such that K ⊆ S′ ⊊ S.

We denote by MK,I the set of all K-minimal separating sets with respect to constraining set I .

(In this work, S ∈ I means E ⊥⊥ Y |S, but it can stand for other separation statements, too.) The definition of a K-minimal
separator coincides with the definition of a minimally invariant set if both K and the constraining set I are equal to the
empty set. An ∅-minimal separator with respect to constraining set I is called a strongly-minimal separator with respect to
constraining set I .

We can now represent (2) using this notation. M∅,∅ contains the minimally invariant sets and thus

SIAS :=
⋃

S∈M∅,∅

S.

Listing the set MI,I of all I-minimal separators with respect to the constraining set I (for any I) can be done in polynomial
delay time O(d3) (van der Zander et al., 2019; Takata, 2010), where delay here means that finding the next element of MI,I

(or announcing that there is no further element) has cubic complexity. This is the algorithm we exploit, as described in the
main part of the paper.

Furthermore, we have
i ∈ SIAS ⇔ M∅,{i} ̸= ∅.

This is because i ∈ SIAS if and only if there is a minimally invariant set that contains i, which is the case if and only if
there exist a strongly minimal separating set with respect to constraining set {i}. Thus, we can construct SIAS by checking,
for each i, whether there is an element in M∅,{i}. Finding a strongly-minimal separator with respect to constraining set I ,
i.e., finding an element in M∅,I , is NP-hard if the set I is allowed to grow (van der Zander et al., 2019). To the best of our
knowledge, however, it is unknown whether finding an element in M∅,{i}, for a singleton {i} is NP-hard.

C. The Maximum Number of Minimally Invariant Sets
If one does not have a priori knowledge about the graph of the system being analyzed, one can still apply Theorem 5.2 with
a correction factor 2d, as this ensures (with high probability) that no minimally invariant sets are falsely rejected. However,
we know that the correction factor is strictly conservative, as there cannot exist 2d minimally invariant sets in a graph. Thus,
correcting for 2d tests, controls the familywise error rate (FWER) among minimally invariant sets, but increases the risk
of falsely accepting a non-invariant set relatively more than what is necessary to control the FWER. Here, we discuss the
maximum number of minimally invariant sets that can exist in a graph with d predictor nodes and how a priori knowledge
about the sparsity of the graph and the number of interventions can be leveraged to estimate a less strict correction that still
controls the FWER.
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As minimally invariant sets only contain ancestors of Y (see Proposition 3.3), we only need to consider graphs where Y
comes last in a causal ordering. Since d-separation is equivalent to undirected separation in the moralized ancestral graph
(Lauritzen, 1996), finding the largest number of minimally invariant sets is equivalent to finding the maximum number of
minimal separators in an undirected graph with d+ 2 nodes. It is an open question how many minimal separators exists in a
graph with d+ 2 nodes, but it is known that a lower bound for the maximum number of minimal separators is in Ω(3d/3)
(Gaspers & Mackenzie, 2015). We therefore propose using a correction factor of C = 3⌈d/3⌉ when estimating the set ŜIAS

from Theorem 5.2 if one does not have a priori knowledge of the number of minimally invariant sets in the DAG of the SCM
being analyzed. This is a heuristic choice and is not conservative for all graphs.

Theorem 5.2 assumes asymptotic power of the invariance test, but as we can only have a finite amount of data, we will
usually not have full power against all non-invariant sets that are not supersets of a minimally invariant set. Therefore,
choosing a correction factor that is potentially too low represents a trade-off between error types: if we correct too little, we
stand the risk of falsely rejecting a minimally invariant set but not rejecting a superset of it, whereas when correcting too
harshly, there is a risk of failing to reject non-invariant sets due to a lack of power.

If one has a priori knowledge of the sparsity or the number of interventions, these can be leveraged to estimate the maximum
number of minimally invariant sets using simulation, by the following procedure:

1. For b = 1, . . . , B:

(a) Sample a DAG with d predictor nodes, Ninterventions ∼ PN interventions and p ∼ Pp probability of an edge
being present in the graph over (X,Y ), such that Y is last in a causal ordering. The measures PN and Pp are
distributions representing a priori knowledge. For instance, in a controlled experiment, the researcher may have
chosen the number N0 of interventions. Then, PN is a degenerate distribution with PN (N0) = 1.

(b) Compute the set of all minimally invariant sets, e.g., using the adjustmentSets algorithm from dagitty
(Textor et al., 2016).

(c) Return the number of minimally invariant sets.

2. Return the largest number of minimally sets found in the B repetitions above.

Instead of performing B steps, one can continually update the largest number of minimally invariant sets found so far and
end the procedure if the maximum has not updated in a predetermined number of steps, for example.

D. A Finite Sample Algorithm for Computing ŜIAS

In this section, we provide an algorithm for computing the sets ŜIAS and Ŝm
IAS presented in Theorems 5.2 and 5.5. The

algorithm finds minimally invariant sets by searching for invariant sets among sets of increasing size, starting from the
empty set. This is done, because the first (correctly) accepted invariant is a minimally invariant set. Furthermore, any
set that is a superset of an accepted invariant set, does not need to be tested (as this set cannot be minimal). Tests for
invariance can be computationally expensive if one has large amounts of data. Therefore, skipping unnecessary tests offers a
significant speedup. In the extreme case, where all singletons are found to be invariant, the algorithm completes in d+ 1
steps, compared to

∑m
i=0

(
d
i

)
steps (2d if m = d). This is implemented in lines 8-10 of Algorithm 1.

E. Additional Experiment Details
E.1. Simulation Details for Section 6.1

We sample graphs that satisfy Assumption 2.1 with the additional requirement that Y ∈ DEY by the following procedure:

1. Sample a DAG G for the graph of (X,Y ) with d+1 nodes, for d ∈ {4, 6, . . . , 20} ∪ {100, 1,000}, and choose Y to be
a node (chosen uniformly at random) that is not a root node.

2. Add a root node E to G with Ninterventions children that are not Y . When d ≤ 20, Ninterventions ∈ {1, . . . , d} and when
d ≥ 100, Ninterventions ∈ {1, . . . , 0.1× d} (i.e., we consider interventions on up to ten percent of the predictor nodes).

3. Repeat the first two steps if Y ̸∈ DEE .
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Algorithm 1 An algorithm for computing ŜIAS from data
input A decision rule ϕn for invariance, significance thresholds α0, α, max size of sets to test m (potentially m = d) and

data
output The set ŜIAS

1: Initialize M̂I as an empty list.
2: PS ← {S ⊆ [d] | |S| ≤ m}
3: if ϕn(∅, α0) = 0 then
4: End the procedure and return ŜIAS = ∅
5: end if
6: Sort PS in increasing order according the set sizes
7: for S ∈ PS do
8: if S ⊋ S′ for any S′ ∈ M̂I then
9: Skip the test of S and go to next iteration of the loop

10: else
11: Add S to M̂I if ϕn(S, α) = 0, else continue
12: end if
13: if The union of M̂I contains all nodes then
14: Break the loop
15: end if
16: end for
17: Return ŜIAS as the union of all sets in M̂I

E.2. Simulation Details for Section 6.2

We simulate data for the experiment in Section 6.2 (and the additional plots in Appendix E.4) by the following procedure:

1. Sample data from a single graph by the following procedure:

(a) Sample a random graph G of size d+ 1 and sample Y (chosen uniformly at random) as any node that is not a root
node in this graph.

(b) Sample coefficients, βi→j , for all edges (i→ j) in G from U((−2, 0.5) ∪ (0.5, 2)) independently.
(c) Add a node E with no incoming edges and Ninterventions children, none of which are Y . When d = 6, we set

Ninterventions = 1 and when d = 100, we sample Ninterventions uniformly from {1, . . . , 10}.
(d) If Y is not a descendant of E, repeat steps (a), (b) and (c) until a graph where Y ∈ DEE is obtained.
(e) For n ∈ {102, 103, 104, 105}:

i. Draw 50 datasets of size n from an SCM with graph G and coefficients βi→j and with i.i.d. N(0, 1) noise
innovations. The environment variable, E, is sampled independently from a Bernoulli distribution with
probability parameter p = 0.5, corresponding to (roughly) half the data being observational and half the data
interventional. The data are generated by looping through a causal ordering of (X,Y ), starting at the bottom,
and standardizing a node by its own empirical standard deviation before generating children of that node; that
is, a node Xj is first generated from PAj and then standardized before generating any node in CHj . If Xj is
intervened on, we standardize it prior to the intervention.

ii. For each sampled dataset, apply IAS and ICP. Record the Jaccard similarities between IAS and ANY and
between ICP and ANY , and record whether or not is was a subset of ANY and whether it was empty.

iii. Estimate the quantity plotted (average Jaccard similarity in Figure 4 or probability of ŜIAS ⊆ ANY or
ŜIAS = ∅ in Figure 7) from the 50 simulated datasets.

(f) Return the estimated quantities from the previous step.

2. Repeat the above 100 times and save the results in a data-frame.

E.3. Analysis of the Choice of C in Section 6.2

We have repeated the simulation with d = 6 from Section 6.2 but with a correction factor of C = 26, as suggested by
Theorem 5.2 instead of the heuristic correction factor of C = 9 suggested in Appendix C. Figure 6 shows the results. We
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see that the results are almost identical to those presented in Figure 4. Thus, in the scenario considered here, there is no
change in the performance of ŜIAS (as measured by Jaccard similarity) between using a correction factor of C = 26 and a
correction factor of C = 3⌈6/3⌉ = 9. In larger graphs, it is likely that there is a more pronounced difference. E.g., at d = 10,
the strictly conservative correction factor suggested by Theorem 5.2 is 210 = 1024, whereas the correction factor suggested
in Appendix C is only 3⌈10/3⌉ = 34 = 81, and at d = 20 the two are 220 = 1,048,576 and 3⌈20/3⌉ = 37 = 2187.
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Figure 6. The same figure as in Figure 4, but with a correction factor of C = 26 = 64 instead of C = 3⌈6/3⌉ = 9. Only d = 6 shown
here, as the correction factor for d = 100 is unchanged. Here, the guarantees of Theorem 5.2 are not violated by a potentially too small
correction factor, and the results are near identical to those given in Figure 4 using a milder correction factor.

E.4. Analysis of the Choice of α0 in Section 6.2

Here, we investigate the quantities P(ŜIAS ⊆ ANY ), P(Ŝ1
IAS ⊆ ANY ), P(ŜIAS = ∅) and P(Ŝ1

IAS = ∅) using the same
simulation setup as described in Section 6.2. Furthermore, we also ran the simulations for values α0 = α (testing all
hypotheses at the same level), α0 = 10−6 (conservative, see Remark 5.3) as in Section 6.2 and α0 = 10−12 (very
conservative). The results for α = 10−6 (shown in Figure 7) were recorded in the same simulations that produced the
output for Figure 4. For α0 ∈ {α, 10−12} (shown in Figure 8 and Figure 9, respectively) we only simulated up to 10,000
observations, to keep computation time low.

Generally, we find that the probability of IAS being a subset of the ancestors seems to generally hold well and even more so
with large sample sizes. (see Figures 7 to 9), in line with Theorem 5.2. When given 100,000 observations, the probability of
IAS being a subset of ancestors is roughly equal to one for almost all SCMs, although there are a few SCMs, where IAS is
never a subset of the ancestors (see Figure 7). For α0 = 10−6, the median probability of IAS containing only ancestors is
one in all cases, except for d = 100 with 1,000 observations – here, the median probability is 87%.

In general, varying α0 has the effect hypothesized in Remark 5.3: lowering α0 increases the probability that IAS contains
only ancestors, but at the cost of increasing the probability that it is empty (see Figures 7 to 9). For instance, the median
probability of IAS being a subset of ancestors when α0 = 10−12 is one for all sample sizes, but the output is always
empty when there are 100 observations and empty roughly half the time even at 1,000 observations when d = 100 (see
Figure 9). In contrast, not testing the empty set at a reduced level, means that the output of IAS is rarely empty, but the
probability of IAS containing only ancestors decreases. Still, even with α0 = α, the median probability of IAS containing
only ancestors was never lower than 80% (see Figure 8). Thus, choosing α0 means choosing a trade-off between finding
more ancestor-candidates, versus more of them being false positives.

E.5. Analysis of the strength of inverventions in Section 6.2

Here, we repeat the d = 6 simulations from Section 6.2 with a reduced strength of the environment to investigate the
performance of IAS under weaker interventions. We sample from the same SCMs as sampled in Section 6.2, but reduce the
strength of the interventions to be 0.5 instead of 1. That is, the observational distributions are the same as in Section 6.2, but
interventions to a node Xj are here half as strong as in Section 6.2.

The Jaccard similarity between ŜIAS and ANY is generally lower than what we found in Figure 4 (see Figure 10). This is
likely due to having lower power to detect non-invariance, which has two implications. First, lower power means that we
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Figure 7. The empirical probabilities of recovering a subset of ANY (top row) and recovering an empty set (bottom row), when testing
the empty set for invariance at level α0 = 10−6. Generally, our methods seem to hold level well, especially when sample sizes are large.
When the sample size is small, the output is often the empty set. When d = 6, we estimate ŜIAS (left column) and when d = 100, we
estimate Ŝ1

IAS (right column). The results here are from the simulations that also produced Figure 4. Medians are displayed as orange
lines through each boxplot. Each point represents the probability that the output set is ancestral (resp. empty) for a randomly selected
SCM, as estimated by repeatedly sampling data from the same SCM for every n ∈ {102, 103, 104, 105}. Observations from the same
SCM are connected by a line. Each figure contains data from 100 randomly drawn SCMs. Points have been perturbed slightly along the
x-axis to improve readability.

may fail to reject the empty set, meaning that we output nothing. Then, the Jaccard similarity between ŜIAS and ANY is
zero. Second, it may be that we correctly reject the empty set, but fail to reject another non-invariant set which is not an
ancestor of Y which is then potentially included in the output. Then, the ŜIAS and ANY is lower, because we increase the
number of false findings.

We find that the probability that ŜIAS is a subset of ancestors is generally unchanged for the lower intervention strength,
but the probability of ŜIAS generally increases for small sample sizes (see Table 1). This indicates that IAS does not make
more mistakes under the weaker interventions, but it is more often uninformative. We see also that in both settings, ŜIAS is
empty more often than ŜICP for low sample sizes, but less often for larger samples (see Table 1). This is likely because
IAS tests the empty set at a much lower level than ICP does (10−6 compared to 0.05). Thus, IAS requires more power to
find anything, but once it has sufficient power, it finds more than ICP (see also Figure 10). The median probability of ICP
returning a subset of the ancestors was always at least 95% (not shown).
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(Ŝ

IA
S

=
∅)

102 103 104

Number of observations

P n
(Ŝ
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Figure 8. The same figure as Figure 7, but with α0 = α = 0.05 and n ∈ {102, 103, 104}. Testing the empty set at the non-conservative
level α0 = α means that the empty set is output less often for small sample sizes, but decreases the probability that the output is a subset
of ancestors. Thus, we find more ancestor-candidates, but make more mistakes when α0 = α. However, the median probability of the
output being a subset of ancestors is at least 80% in all configurations.

Table 1. Summary of the quantities P(ŜIAS ⊆ ANY ), P(ŜIAS = ∅) and P(ŜICP = ∅) for weak and strong do-interventions (strength 0.5
and 1, respectively) when d = 6. Numbers not in parentheses are means, numbers in parentheses are medians. The level is generally
unchanged when the environments have a weaker effect, but the power is lower, in the sense that the empty set is output more often.

P(ŜIAS ⊆ ANY ) P(ŜIAS = ∅) P(ŜICP = ∅)

Strong interventions

n = 100 96.6% (100%) 89.6% (98%) 52.3% (52%)
n = 1,000 75.7% (100%) 10.0% (0%) 30.4% (14%)
n = 10,000 83.7% (100%) 1.0% (0%) 24.9% (10%)
n = 100,000 93.8% (100%) 0.2% (0%) 22.9% (10%)

Weak interventions

n = 100 99.3% (100%) 98.7% (100%) 72.0% (84%)
n = 1,000 81.1% (100%) 40.2% (26%) 36.9% (24%)
n = 10,000 80.8% (100%) 1.7% (0%) 27.5% (15%)
n = 100,000 92.6% (100%) 1.1% (0%) 24.8% (14%)
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(Ŝ

1 IA
S
⊆

A
N
Y

)

d = 100

102 103 104

Number of observations

0.00

0.25

0.50

0.75

1.00

P n
(Ŝ
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(Ŝ

1 IA
S

=
∅)

Figure 9. The same figure as Figure 7, but with α0 = 10−12 and n ∈ {102, 103, 104}. Testing the empty set at at very conservative level
α0 = 10−12 means that the empty set is output more often (for one hundred observations, we only find the empty set), but increases the
probability that the output is a subset of ancestors. Thus, testing at a very conservative level α0 = 10−12 means that we do not make
many mistakes, but the output is often non-informative.
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Figure 10. The same figure as the one presented in Figure 4, but with weaker environments (do-interventions of strength 0.5 compared to
1 in Figure 4). Generally, IAS performs the same for weaker interventions as for strong interventions, when there are more than 10,000
observations. Graphs represented in each boxplot: 42 (left), 58 (right).

E.6. Analysis of the Choice of qTB in Section 6.3

In this section, we analyze the effect of changing the cut-off qTB that determines when a gene pair is considered a true
positive in Section 6.3. For the results in the main paper, we use qTB = 1%, meaning that the pair (geneX ,geneY ) is
considered a true positive if the value of geneY when intervening on geneX is outside of the 0.01- and 0.99-quantiles
of geneY in the observational distribution. In Figure 11, we plot the true positive rates for several other choices of qTB .
We compare to the true positive rate of random guessing, which also increases if the criterion becomes easier to satisfy.
We observe that the choice of qTB does not substantially change the excess true positive rate of our method compared to
random guessing. This indicates that while the true positives in this experiments are inferred from data, the conclusions
drawn in Figure 5 are robust with respect to some modelling choices of qTB .

E.7. Learning causal ancestors by estimating the I-MEC

In this section, we repeat the experiments performed in Section 6.2, this time including a procedure (here denoted IASest. graph),
where we perform the following steps.

1. Estimate a member graph of the I-MEC and the location of the intervention sites using Unknown-Target Interventional
Greedy Sparsest Permutation (UT-IGSP) (Squires et al., 2020) using the implemention from the Python package
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Figure 11. True positive rates (TPRs) for the gene experiment in Section 6.3. qTB specifies the quantile in the observed distribution that
an intervention effect has to exceed to be considered a true positive. While the TPR increases for our method when qTB is increased, the
TPR of random guessing increases comparably. This validates that changing the definition of true positives in this experiment by choosing
a different qTB does not change the conclusion of the experiment substantially.

CausalDAG.9

2. Apply the oracle algorithm described in Section 4 to the estimated graph to obtain an estimate ofMI.

3. Output the union of all sets in the estimate ofMI.

The results for the low-dimensional experiment are displayed in Figure 12 and the results for the high-dimensional experiment
are displayed in Table 2. Here, we see that IASest. graph generally performs well (as measured by Jaccard similarity) in the
low-dimensional setting (d = 6), and even better than IAS for sample sizes N ≤ 103, but is slightly outperformed by
IAS for larger sample sizes. However, in the high-dimensional setting (d = 100), we observe that IASest. graph fails to hold
level and identifies only very few ancestors (see Table 2). We hypothesize that the poor performance of IASest. graph in the
high-dimensional setting is due to IASest. graph attempting to solve a more difficult task than IAS. IASest. graph first estimates a
full graph (here using UT-IGSP), even though only a subgraph of the full graph is of relevance in this scenario. In addition,
UT-IGSP aims to estimate the site of the unknown interventions. In contrast, IAS only needs to identify nodes that are
capable of blocking all paths between two variables, and does not need to know the site of the interventions.

d = 100, N = 103 d = 100, N = 104 d = 100, N = 105

IAS IASest. graph IAS IASest. graph IAS IASest. graph
P(S· ⊆ ANY ) 84.64% 15.30% 94.04% 14.92% 94.72% 14.74%
P(S· = ∅) 51.96% 12.32% 12.72% 11.84% 6.98% 11.42%
J(S·,ANY ) 0.19 0.10 0.33 0.10 0.35 0.11

Table 2. Identifying ancestors by first estimating the I-MEC of the underlying DAG and then applying the oracle algorithm of Section 4
fails to hold level and identifies fewer ancestors than applying IAS, when in a high-dimensional setting.

9Available at https://github.com/uhlerlab/causaldag.

https://github.com/uhlerlab/causaldag


Invariant Ancestry Search

102 103 104 105

N

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

si
m

ila
ri

ty
to
A
N
Y

Method

IAS

IASest. graph

Figure 12. Comparison between the finite sample output of IAS and the procedure described in Appendix E.7, in the low-dimensional
case. Generally, these procedures have similar performance, although IAS performs worse for small sample sizes but slightly better for
high sample sizes.


