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Abstract

The goal of community detection over graphs is
to recover underlying labels/attributes of users
(e.g., political affiliation) given the connectivity
between users. There has been significant recent
progress on understanding the fundamental lim-
its of community detection when the graph is
generated from a stochastic block model (SBM).
Specifically, sharp information theoretic limits
and efficient algorithms have been obtained for
SBMs as a function of p and q, which represent
the intra-community and inter-community con-
nection probabilities. In this paper, we study the
community detection problem while preserving
the privacy of the individual connections between
the vertices. Focusing on the notion of (ϵ, δ)-edge
differential privacy (DP), we seek to understand
the fundamental tradeoffs between (p, q), DP bud-
get (ϵ, δ), and computational efficiency for exact
recovery of community labels.

To this end, we present and analyze the associated
information-theoretic tradeoffs for three differen-
tially private community recovery mechanisms:
a) stability based mechanism; b) sampling based
mechanisms; and c) graph perturbation mecha-
nisms. Our main findings are that stability and
sampling based mechanisms lead to a superior
tradeoff between (p, q) and the privacy budget
(ϵ, δ); however this comes at the expense of higher
computational complexity. On the other hand,
albeit low complexity, graph perturbation mech-
anisms require the privacy budget ϵ to scale as
Ω(log(n)) for exact recovery.
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1. Introduction
Community detection in networks is a fundamental prob-
lem in the area of graph mining and machine learning, with
many interesting applications such as social networks, im-
age segmentation, and biological networks (see, e.g., the
survey by (Fortunato, 2010)). The main goal is to partition
the network into communities that are “well-connected”;
no standard definition for communities exists, and a large
number of methods have been proposed, e.g., (Blondel et al.,
2008; Girvan & Newman, 2002; Holland et al., 1983), but,
in general, there is a limited theoretical basis for the per-
formance of these methods. One exception is the stochas-
tic block model (SBM) (Holland et al., 1983), which is a
probabilistic generative model for generating networks with
underlying communities, providing a rigorous framework
for detection algorithms. In the simplest canonical form
of an SBM, the n vertices are partitioned into r communi-
ties, and a pair of vertices connect with probability p within
communities and with probability q across communities,
where p > q. “Recovering” communities in a graph gen-
erated from an SBM (defined formally in Section 2) has
been a very active area of research, e.g., (Condon & Karp,
2001; Arias-Castro & Verzelen, 2014; Abbe et al., 2015;
Hajek et al., 2016a). The exact conditions for recoverabil-
ity are well understood in terms of the scaling of p and q
(more specifically the difference between p and q). In par-
ticular, in the dense regime (the focus of this paper), with
p = a log(n)/n and q = b log(n)/n, for some constants
a > b > 0, it is known that exact recovery is possible
if and only if

√
a −
√
b >

√
r (see (Abbe, 2017) for a

comprehensive survey). Efficient algorithms for recovering
communities have been developed using spectral methods
and semi-definite programming (SDP) (Boppana, 1987;
McSherry, 2001; Abbe et al., 2015; Massoulié, 2014; Gao
et al., 2017; Hajek et al., 2016a; Abbe et al., 2020; Wang
et al., 2020).

In many applications, e.g., healthcare, social networks, and
finance, network data is often private and sensitive, and there
is a risk of revealing private information through adversarial
queries. Differential Privacy (DP) (Dwork et al., 2014) is
the de facto standard notion for providing rigorous privacy
guarantees. DP ensures that each user’s presence in the
dataset has minimal statistical influence (measured by the
privacy budget ϵ) on the output of queries. Within the con-
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MLE-Stability SDP-Stability Bayesian Exponential RR + SDP
ϵ O(1) O(1) Ω(log(a/b)) O(1) Ω(log(n))

δ 1/n2 1/n2 0 0 0√
a−

√
b ≥

√
2 ·

√
1 + 3/2ϵ 4

√
2 · (1 +

√
3/

√
2ϵ) Theorem 3.6 Theorem 3.7 Theorem 3.8

Time complexity O(exp(n)) n(O(log (n))) O(exp(n)) O(exp(n)) O(poly(n))

Table 1. Summary of the recovery threshold(s), complexity and (ϵ, δ)-edge DP for r = 2 communities.

text of network/graph data, two privacy models have been
considered— edge and node privacy, and DP algorithms
have also been developed for a few network problems, e.g.,
the number of subgraphs, such as stars and triangles, cuts,
dense subgraphs, and communities, and releasing synthetic
graphs (Kasiviswanathan et al., 2013; Blocki et al., 2013;
Mülle et al., 2015; Nguyen et al., 2016; Qin et al., 2017;
Imola et al., 2021; Blocki et al., 2013); most of them focus
on edge privacy models, especially when the output is not a
count. Finally, there has been very little work on commu-
nity detection with privacy. (Nguyen et al., 2016) consider
communities based on the modularity. Very recently, (Hehir
et al., 2021; Ji et al., 2019) consider community detection
in the SBM models subject to edge privacy constraints (also
see related work Section 1.2); however, neither provides
any rigorous bounds on the accuracy or the impact of edge
privacy on the recovery threshold.

1.1. Contributions

In this paper, we present the first differentially private al-
gorithms for community detection in SBMs with rigorous
bounds on recoverability, under the edge privacy model.
Informally, a community recovery algorithm satisfies edge
privacy if the output has similar distribution irrespective of
the presence or absence of an edge between any two vertices
in the network (see Definition 2.2). Edge DP is the most nat-
ural privacy notion for community detection, as it involves
outputting the partition of the nodes into communities. Our
focus is on characterizing the recoverability threshold under
edge DP, i.e., how much does the difference between p and q
have to change in order to ensure recoverability with privacy.
We analyze three classes of mechanisms for this problem.

1. Stability based mechanisms. We show that the stability
mechanism (Thakurta & Smith, 2013) gives (ϵ, δ)-DP algo-
rithms for our problem. The main idea is to determine if
a non-private community recovery estimator is stable with
respect to graph G, i.e., the estimate of community struc-
ture does not change if a few edges are perturbed; if the
estimator is stable, the non-private estimate of community
labels can be released; otherwise, we release a random label.
We analyze stability based mechanism for two estimators—
the maximum likelihood estimator (MLE), which involves
solving a min-bisection problem, and an SDP based estima-
tor. We also derive sufficient conditions for exact recovery
for r = 2 and r > 2 communities for both these types of
algorithms—these require a slightly larger separation be-

tween p and q as a function of the privacy budget ϵ; further,
the threshold converges to the well known non-private bound
as ϵ becomes large. The SDP based stability mechanism can
be implemented in quasi-polynomial time.

Stability based mechanisms are less common in the DP
literature, compared to other mechanisms, e.g., exponen-
tial or randomized response, since proving stability turns
out to be very challenging, in general, and is one of our
important technical contributions. Stability of the MLE
scheme requires showing that the optimum bisection does
not change when k = O(log n) edges are perturbed, with
high probability. This becomes even harder for the SDP
based algorithm, which doesn’t always produce an optimum
solution. (Hajek et al., 2016a) construct a “certificate” for
proving optimality of the SDP solution, with high probabil-
ity. A technical contribution is to identify a new condition
that makes the certificate deterministic—this is crucial in
our stability analysis.

2. Sampling based mechanisms. In the second approach,
we design two different sampling based mechanisms: (1)
Bayesian Estimation and (2) Exponential mechanism. We
show that these algorithms are differentially private (with
constant ϵ for Bayesian Estimation and arbitrary small ϵ for
the Exponential mechanism) and guarantee exact recovery
under certain regimes of ϵ, a, b; note that, in contrast to the
stability based mechanisms, we have δ = 0.

3. Randomized Response (RR) based mechanism. We also
study and analyze a baseline approach, in which one can use
a randomized response (RR) technique to perturb the adja-
cency matrix, and subsequently run an SDP based algorithm
for community recovery on the perturbed graph. Due to the
post-processing properties of DP, this mechanism satisfies
ϵ-DP for any ϵ > 0. We show that in contrast to stability and
sampling based methods, the baseline RR approach requires
ϵ = Ω(log(n)) for exact recovery.

4. Empirical evaluation. We also present simulation results
on both synthetic and real-world graphs to validate our
theoretical findings (Section 4). We observe that the stability
based mechanism generally outperforms the others in terms
of the error, which is quite small even for fairly small ϵ.
Interestingly, the error is low even in real world networks.

Comparison between different mechanisms. We summarize
our theoretical results for differentially private community
recovery in Table 1, which shows the tradeoffs between
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Figure 1. Exact Recovery Threshold as a function of (a, b), and
the privacy budget ϵ for r = 2 communities.

(a, b), (ϵ, δ) as well as the computational complexity of the
mechanisms for r = 2 communities. Note that none of the
mechanisms is redundant— each is the best in some part
of the complex space consisting of the parameters a, b, ϵ, δ,
and the running time. To further illustrate these tradeoffs,
we plot the recovery threshold conditions for these mech-
anisms in Fig. 1. From Fig. 1(a), we observe that for
the high privacy regime (smaller ϵ), MLE based Stability
mechanism requires the least separation between a and b
compared to all other algorithms. In the low privacy regime
(larger ϵ), as shown in Fig. 1(b), we can see that exponential
mechanism tends to overlap with the non-private recovery
threshold (Abbe et al., 2015), whereas stability-based and
RR based mechanisms require more separation between a
and b. Complete proofs are presented in the Appendix.

1.2. Related Work

We first summarize a few of the main results on the com-
plexity of different recoverability algorithms and then dis-
cuss some relevant work on SBMs with DP. The seminal
work of (Abbe et al., 2015) showed that the optimal recon-
struction of graph partitions is achieved by the maximum
likelihood (ML) estimator, which is computationally in-
tractable. (Boppana, 1987; McSherry, 2001) designed poly-
nomial time algorithms for exact recovery; however, they
did not achieve the optimal information theoretic bound, i.e.,√
a−
√
b >
√
r. (Abbe et al., 2015) showed the first compu-

tationally efficient algorithm that achieves the information
theoretic limit. This algorithm has two phases: the first
phase performs partial recovery via the algorithm of (Mas-
soulié, 2014). The second phase uses a local improvement
to refine the recovery. (Hajek et al., 2016a) showed that an

SDP based rounding algorithm achieves the optimal recov-
ery threshold in polynomial time, and settled the conjecture
of (Abbe et al., 2015). Recently, there have been different
computationally efficient recovery algorithms (Gao et al.,
2017; Hajek et al., 2016a; Abbe et al., 2020; Wang et al.,
2020) proposed that achieve the optimal recovery threshold
in polynomial time or quasi-linear time for different settings,
e.g., multiple communities with different sizes.

As mentioned earlier, there has been little work on com-
munity detection with differential privacy. (Nguyen et al.,
2016) consider the problem of finding communities by mod-
ularity maximization. (Qin et al., 2017) design heuristics
for models which are related to SBM. Other related work
is on estimating parameters of graphons, which are gen-
eralizations of SBMs. (Borgs et al., 2015) developed an
exponential time algorithm for estimating properties in the
node DP model, and derived optimal information theoretic
error bounds. (Sealfon & Ullman, 2019) improved this
and designed a polynomial time algorithm. (Hehir et al.,
2021) study the problem of privacy-preserving community
detection on SBMs using a simple spectral method (Lei &
Rinaldo, 2015) for multiple communities. They general-
ized the convergence rate analysis of the spectral algorithm
and showed the impact of the privacy parameters on the
misclassification rate between the ground truth labels and
the estimated labels for the algorithm. (Ji et al., 2019) pro-
pose a DP gradient based community detection algorithm.
However, neither of these results analyze the thresholds for
recoverability, which has remained an open problem (under
edge DP constraints) till now.

2. Problem Statement & Preliminaries
We consider an undirected graph G = (V, E) consisting of
n vertices (vertices), where vertices are divided into r com-
munities with n

r vertices in each community. The commu-
nity label for vertex i is denoted by σ∗

i ∈ {1, 2, · · · , r},∀i ∈
[n]. We focus on the setting when the graph G is gener-
ated through a Stochastic block model (SBM), where the
edges within the classes are generated independently with
probability p and the edges between the classes are gen-
erated independently with probability q. The connections
between vertices are represented by an adjacency matrix
A ∈ {0, 1}n×n, where the elements in A are drawn as:

Ai,j ∼

{
Bern(p), i < j, σi = σj ,

Bern(q), i < j, σi ̸= σj .
(1)

with Ai,i = 0 and Ai,j = Aj,i. For the scope of this pa-
per, we focus on the so called “dense” connectivity regime,
where p = a log(n)

n and q = b log(n)
n , and a, b ≥ 0 are

fixed constants. Note that one can consider other regimes
for p and q such as the “sparse” regime (Decelle et al.,
2011), i.e., p = a

n and q = b
n , however, in this regime



Differentially Private Community Detection for Stochastic Block Models

exact recovery is not possible since the graph with high
probability is not connected. On the other hand, in the
dense regime one can still exactly recover the labels of
the graph with high probability. The goal of commu-
nity detection problem is to design a (stochastic) estimator
σ̂ : A → {1, 2, · · · , r}n for community recovery (i.e, the
true label vector σ∗ = {σ∗

1 , σ
∗
2 , · · · , σ∗

n}) upon observing
the adjacency matrix. We next define the notion of exact
asymptotic recovery as a measure of performance of an
estimator.
Definition 2.1 (Exact Recovery). An estimator σ̂ =
{σ̂1, σ̂2, · · · , σ̂n} satisfies exact recovery (upto a global
permutation of the community labels) if the probability of
error behaves as

Pr(σ̂ ̸= σ∗) = o(1), (2)

where the probability is taken over both the randomness of
the graph G as well as the stochastic estimation process.

In addition to exact recovery, we require that the recovery
algorithm for community detection also protects the indi-
vidual relationships (i.e., the edges in the graph G) in the
network. Specifically, we adopt the notion of (ϵ, δ)-edge
differential privacy (DP) (Karwa et al., 2011), defined next.
Definition 2.2 ((ϵ, δ)-edge DP). An estimator σ̂ satisfies
(ϵ, δ)-edge DP for some ϵ ∈ R+ and δ ∈ (0, 1], if for any
pair of adjacency matrices A and A′ that differ in one edge,
we have

Pr(σ̂(A) = σ) ≤ eϵ Pr(σ̂(A′) = σ) + δ. (3)

For privacy constraints in (3), the probabilities are com-
puted only over the randomness in the estimation process.
The case of δ = 0 is called pure ϵ-edge DP.

2.1. Prior results on exact recovery without privacy

The optimal maximum likelihood (ML) estimator for com-
munity detection, given by σ̂ML = argmaxσ p(A|σ) has
been recently analyzed in a series of papers (Boppana, 1987;
McSherry, 2001; Choi et al., 2012; Abbe et al., 2015; Mos-
sel et al., 2015). It has been shown that for SBMs with
“dense” regime, i.e., p = a log(n)

n and q = b log(n)
n , exact

recovery is possible if and only if
√
a−
√
b >
√
r (often re-

ferred to as the phase transition boundary or exact recovery
threshold). Even for r = 2 communities, the ML estima-
tor is equivalent to finding the minimum bisection of the
graph, which is known to be NP-hard (Abbe et al., 2015).
Specifically, the ML estimator of σ∗ is the solution of the
following optimization problem:

σ̂ML = argmax
σ
{σTAσ : 1Tσ = 0, σi = ±1}. (4)

Subsequently, several works have studied if polynomial
time algorithms can still achieve the exact recovery thresh-
old. For instance, it has been shown (Hajek et al., 2016a),

(Hajek et al., 2016b) that SDP relaxation of the ML estima-
tor can also achieve the same recovery threshold. Recently,
Abbe et.al. (Abbe et al., 2020) have analyzed the spectral
clustering estimator (Lei & Rinaldo, 2015), and showed that
it achieves the same recovery threshold as ML for r = 2.

3. Main Results & Discussions
In this section, we present three different approaches for the
design of community detection algorithms for exact recov-
ery while satisfying edge differential privacy. In the first
approach, we analyze the stability property of ML based
and SDP based algorithms. For MLE based algorithm, the
stability property of the min-bisection hinges on the concen-
tration properties of SBMs in terms of the intra and inter
communities edges. For SDP based algorithm, we introduce
a concept of concentration that both (1) provides sufficient
conditions for the dual certificate of the SDP and (2) per-
sists under certain degrees of connection perturbation. In
the second approach, we study and analyze sampling based
mechanisms, which release a differentially private estimate
of the community labels via sampling. In the third approach,
we perturb the adjacency matrix A to satisfy DP (using
randomized response (RR)), and perform the estimation
of community labels using the perturbed graph by using
computationally efficient SDP relaxation of the maximum-
likelihood estimator. In Table 1, we summarize our main
results for the case of r = 2 communities, where we show
the constraints on the privacy budget (ϵ, δ) and sufficient
conditions on (a, b) for exact recovery.

3.1. Stability-based Mechanisms

The basic idea behind stability based mechanisms is as fol-
lows: Let us consider a non-private estimator for community
detection σ̂. We first privately compute the stability of this
estimator with respect to a graph G, which essentially is the
minimum number of edge modifications on G, so that the
estimator output on the modified graph G′ differs from that
on G, i.e., σ̂(G) ̸= σ̂(G′). If the graph G is stable enough
(i.e., if the estimate of stability is larger than a threshold,
which depends on (ϵ, δ)), then we release the non-private
estimate σ̂(G), otherwise we release a random label vector.
The key intuition is that from the output of a stable estima-
tor, one cannot precisely infer the presence or absence of a
single edge (thereby providing edge DP guarantee). Before
presenting the general stability mechanism, we formally
define dσ̂(G), which quantifies the stability of an estimator
σ̂ with respect to a graph G.
Definition 3.1 (Stability of σ̂). The stability of an estimator
σ̂ with respect to a graph G is defined as follows:

dσ̂(G) = {min k : ∃G′, dist(G,G′) ≤ k, σ̂(G) ̸= σ̂(G′)}.
(5)

We now present the general stability based mechanism in
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Algorithm 1. We first state the following claim about the

Algorithm 1Mσ̂
Stability(G): Stability Based Mechanism

1: Input: G(V, E) ∈ G
2: Output: labelling vector σ̂Private.
3: dσ̂(G)← stability of σ̂ with respect to graph G
4: d̃← dσ̂(G) + Lap(1/ϵ)

5: if d̃ > log 1/δ
ϵ then

6: Output σ̂(G)
7: else
8: Output ⊥ (random label)

privacy guarantee of the above mechanism (Dwork et al.,
2014).
Lemma 3.2. For any community detection algorithm σ̂,
Mσ̂

Stability(G) satisfies (ϵ, δ)-edge DP.

In the above algorithm, Step 4 ensures that the stability is
computed privately and Step 5 ensures that the non-private
estimate is released only if the estimator is stable enough
(i.e., d̃ > log 1/δ

ϵ ).

Our first main contribution is to analyze the performance of
Mσ̂

Stability(G) and establish sharp phase transition thresh-
olds for exact recovery as a function of (p, q) and (ϵ, δ).
Specifically, we focus on two possible choices for σ̂: a)
when we use the MLE estimator, i.e., σ̂ = σ̂MLE, and b)
when we use the computationally efficient SDP relaxation,
i.e., σ̂ = σ̂SDP.

Stability of MLE. We start by first presenting the results for
MLE based approach for both r = 2 communities and then
for r > 2 communities.
Theorem 3.3. For r = 2 communities,MMLE

Stability(G) sat-
isfies exact recovery if

√
a−
√
b >
√
2×

√
1 +

t+ 1

2ϵ
(6)

for any ϵ > 0 and δ = n−t, t > 0.

We note two important points: (1) In contrast to the non-
private recovery threshold

√
a −
√
b >

√
2, the impact

of edge DP shows up explicitly in the threshold condition;
(2) As we relax the relax the privacy budget, namely as
ϵ → ∞, the privacy constrained threshold converges to
the non-private threshold. We next generalize our results
to r > 2 equal sized communities and present a sufficient
condition on a and b for exact recovery.
Theorem 3.4. For r > 2 communities,MMLE

Stability(G) sat-
isfies exact recovery if

√
a−
√
b >
√
r ×

√
1 +

t+ 1

ϵ
×
(
1 + log

(√
a

b

))
(7)

for any ϵ > 0 and δ = n−t, t > 0.

The result for r > 2 communities is slightly weaker com-
pared to the case for r = 2 case. However, it still converges
to the non-private optimal threshold (

√
a−
√
b >
√
r) when

the privacy budget ϵ→∞.

Main Ideas behind the Proof(s) of Theorems 3.3 and 3.4 and
Intuition behind the private recovery threshold: Analyzing
the error probability for the stability based mechanism for
SBM is highly non-trivial. Specifically, there are two types
of error events occur in this mechanism when estimating the
true labels σ∗: (1) When the stability mechanism outputs
the ML estimate σ̂MLE, then we are interested in bounding
the Pr(σ̂MLE ̸= σ∗). This error probability can be analyzed
using existing results on exact recovery (Abbe et al., 2015),
and the error vanishes as o(1) if

√
a−
√
b >
√
r. (2) The

second source of error is when the mechanism outputs a
random label ⊥, whose probability is bounded by Pr(d̃ ≤
log 1/δ

ϵ ). The key technical challenge arises in the analysis of
this probability. Specifically, we show that when the graph
G is drawn from an SBM, the ML estimator is Ω(log(n))-
stable with high probability. By leveraging this result, we
bound the probability Pr(d̃ ≤ log 1/δ

ϵ ), and in order to make
this probability decay as o(1) for exact recovery, we obtain
sufficient conditions on (a, b) presented in Theorems 3.3
and 3.4.

Stability of SDP relaxation. We show that the SDP relax-
ation (SDP for short) method also has the stability property,
i.e., a graph G generated by an SBM is Ω(log n)-stable with
respect to the SDP with high probability, which gives us
the following result for both r = 2 and r > 2 multiple
equal-sized communities.

Theorem 3.5. For r ≥ 2 communities,MSDP
Stability(G) sat-

isfies exact recovery if

√
a−
√
b >
√
r × 4

(
1 +

√
t+ 1√
2ϵ

)
(8)

for any ϵ > 0 and δ = n−t, t > 0.

In contrast with the threshold condition (7), we have a larger
constant in (8) forMSDP

Stability(G), arising out of the concen-
tration bounds for the SDP relaxation algorithm.

Main ideas in the proof of Theorem 3.5. The proof of the
stability ofMSDP

Stability(G) becomes more complex than that
of MLE, because SDP only takes the ground truth label as
the optimal solution in some regimes; further, arguing that
a solution σ̂ = σ̂SDP is not easy (since it may not be the
min bisection). (Hajek et al., 2016a) design a sophisticated
“certificate” for proving that the SDP solution is indeed the
optimal, and show that the certificate holds with high prob-
ability when

√
a −
√
b >
√
r (note that this certificate is

much more complex than the primal-dual based certificate
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used earlier for r = 2 communities (Chen, 2018)). The
high probability bound for the certificates is unfortunately
not sufficient, since we need to argue about the stability for
a graph G generated from the SBM deterministically, and
there are nO(logn) graphs within distance O(log n) of G.
Specifically, the high probability bound for the certificate
does not hold after flipping Ω(log n) connections, which
is required to maintain the stability of the optimal solution.
Instead, we define a notion of “concentration”, and show
that if a graph is concentrated, then SDP (G) is optimal
at the ground truth label; note that this holds determinis-
tically, not with high probability. We then use this notion
of concentration to determine stability, by showing that all
graphs within O(log n) distance of G are also concentrated.
Finally, we derive a lower bound on

√
a−
√
b that is both

(1) sufficient for concentration and (2) able to preserve con-
centration after flipping up to Ω(log n) connections. We
give more details below.

We say that a graph is (c1, c2, c3, c4)-concentrated, for con-
stants c1, . . . , c4, if the following four conditions hold:

• mini∈V (G)(si − ri) > c1 log n, where si is the num-
ber of same-community neighbors of i and ri is the
maximum number of neighbors of i in one of the other
communities.

• ∥A− E[A]∥2 ≤ c2
√
log n

• maxk∈[r]
1
K

∑
i∈Ck

ri ≤ Kq + c3
√
log n,

where K = n/r.

• e(Ck, Ck′) ≥ K2q − 3/4K
√
log n − c4 log n, where

e(Ck, Ck′) is the number of inter-community edges be-
tween communities k and k′ ̸= k

Next, we prove that a graph generated by an SBM with
appropriate parameters will be (c1, . . . , c4)-concentrated
w.h.p.. The concentration holds with high probability only
when a and b satisfies some conditions related to r i.e., a
must be large enough (relatively to b) and they will deter-
mine the exact recovery threshold of the method. Next, we
prove that the concentration persists under Ω(log n) edge
perturbations, i.e., that if the original graph is concentrated
under a tuple (c1, . . . , c4), a graph obtained by flipping up
to Ω(log n) connections of the original one is also concen-
trated with slightly different tuple.

We then apply the analyses of (Hajek et al., 2016b) to prove
that when a graph is (c1, . . . , c4)-concentrated for some
constants ci, the SDP relaxation (SDP for short) outputs the
(1) uniquely optimal solution and (2) the optimal solution is
also the ground truth community vector. Our proof differs
from (Hajek et al., 2016b)’s proof in a way that (Hajek et al.,
2016b)’s conditions holds with high probability and ours
holds deterministically. First we note that the SDP can be
presented by the following form:

maximize ⟨A,Z⟩
subsect to Z ⋟ 0

Zii = 1,∀i ∈ [n]

Zij ≥ 0,∀i, j ∈ [n]

Z1 = K1,

Then we provide the condition for a dual certificate (de-
terministically). Intuitively, if we can construct a positive
semi-definite matrix S∗ by the following formula without
violating the two constraints below, the SDP is uniquely op-
timal at Z∗ constructed by the ground truth community label
(We say SDP(G) is optimal at the ground truth community
label for short).

Lemma 6 of (Hajek et al., 2016b). Suppose there exists
D∗ = diag(d∗i ) with d∗i > 0 for all i,B∗ ∈ Sn with B∗ ≥
0 and Bij > 0 whenever i and j are in distinct clusters, and
λ∗ ∈ Rn such that S∗ ≜ D∗ −B∗ −A+ λ∗1T + 1(λ∗)T

satisfies S∗ ⋟ 0 and

S∗ξ∗k = 0,∀k ∈ [r]

B∗
ijZ

∗
ij = 0,∀i, j ∈ [n]

Then SDP(G) = Z∗ is the unique solution for the SDP.

We then prove that the concentration of the input graph
implies the existence of a positive semi-definite matrix S∗,
which satisfies the dual certificate above, i.e., we point out
that there’s always a way to construct matrices D∗,B∗ that
satisfies above conditions from the concentration’s condi-
tions. We note that when such S∗ exists, the SDP will
uniquely output the ground truth community vector.

Therefore if a graph G (with size n large enough) is gener-
ated by an SBM with the ground truth community vector
and G is concentrated, SDP (G) will outputs Z∗. We also
know that any G′ obtained by flipping up to c log n/ϵ edges
of G is also concentrated (for some constant c). It means
that SDP (G′) also outputs Z∗ and proves that SDP is
c log n/ϵ-stable. Compose with the fact that a graph gen-
erated by such SBM will be concentrated with high proba-
bility, we conclude that SDP is c log n/ϵ-stable with high
probability. The threshold for Theorem 3.5 derives from
the conditions of a, b and r for which the concentration
holds with high probability and choosing the constant c
accordingly to δ.

Complexity of Stability Based Mechanisms. A naive im-
plementation ofMσ̂

Stability(G), which involves computing
dσ̂(G) in Step 3 using (5), requires computing σ̂(G′) for all
graphs G′. It can be shown that the algorithm works if we
use min{dσ̂(G),O(log n)}, instead of dσ̂(G), for which it
suffices to compute σ̂(G′) for only those graphs G′ with
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d(G,G′) = O(log n). The MLE algorithm takes exponen-
tial time, so algorithmMMLE

Stability(G) still takes exponen-
tial time; however,MSDP

Stability(G) can be implemented in
quasi-polynomial time, i.e., n(O(log (n))), using the above
observation.

3.2. Sampling Mechanisms

We present two sampling based approaches for private com-
munity detection. In the first approach of Bayesian Sam-
pling, presented in Algorithm 2, we compute the posterior
probability of label vectors given the graph G and release a
label estimate by sampling from this posterior distribution.

Algorithm 2MBayesian(G): Bayesian Sampling Mechanism

1: Input: G(V, E) ∈ G
2: Output: A labelling vector σ̂ ∈ L.
3: For every σ ∈ L, calculate p(σ|G) = p(σ)×p(G|σ)

p(G)

4: Sample and output a labelling σ̂ ∈ L with probability
Pr(σ̂|G)

Surprisingly, we show that this mechanism satisfies pure
ϵ-edge DP whenever ϵ is larger than a threshold, namely,
ϵ ≥ log(a/b). This is in-contrast with Stability mechanisms
which achieve approximate (ϵ, δ)-edge DP, for any ϵ > 0
but require δ = 1/nt, for any t > 0. Our main result for
the Bayesian mechanism is stated in the following theorem
along with the corresponding recovery threshold.

Theorem 3.6. The mechanismMBayesian(G) satisfies ϵ-edge
DP, ∀ϵ ≥ ϵ0 = log

(
a
b

)
, and for r = 2 communities, satis-

fies exact recovery if

√
a−
√
b > max

[√
2,

2

(
√
2− 1)(1− e−ϵ0)

]
. (9)

Despite the fact that the Bayesian mechanism provides pure
edge DP, one disadvantage is that it requires the knowledge
of (a, b) for computing the posterior distribution. To this
end, we present and analyze the exponential sampling mech-
anism in Algorithm 3, where we sample from a distribution
over the labels which can be computed directly from the
graph and does not require the knowledge of (a, b). Specifi-
cally, for any label vector σ (partition of the graph in two
communities), the score(σ) = Einter(G,σ) is defined as the
set of cross-community edges in the partition σ, the corre-
sponding sampling probability is computed as a function of
this score and the privacy budget.

Theorem 3.7. The exponential sampling mechanism
MExpo.(G) satisfies ϵ-edge DP and for r = 2 communi-
ties, performs exact recovery if

√
a−
√
b > max

[√
2,

2

(
√
2− 1)ϵ

]
. (10)

Algorithm 3MExpo.(G): Exponential Mechanism

1: Input: G(V, E) ∈ G
2: Output: A labelling vector σ̂ ∈ L.
3: For every σ ∈ L, calculate score(σ) = Einter(G,σ)
4: Sample and output a labelling σ̂ ∈ L with probability

exp(−ϵ× score(σ))

Complexity and comparison with stability based mecha-
nisms. A key advantage of the sampling based mechanisms
over stability based mechanisms is that they give ϵ-DP so-
lutions. However, implementing the sampling step in these
mechanisms takes exponential time, as no efficient algo-
rithm is known for sampling σ with probability depending
on its utility.

3.3. Graph Perturbation Mechanisms

In this section, we present and analyze randomized response
(RR) based mechanism for private community detection.
The basic idea is to perturb the edges of the random graph
(i.e., the adjacency matrix A), where each element Ai,j is
perturbed independently to satisfy ϵ-edge DP. For a graph
with an adjacency matrix A, the perturbed matrix is denoted
as Ã, where µ = Pr(Ãi,j = 1|Ai,j = 0) = Pr(Ãi,j =
0|Ai,j = 1). By picking µ = 1

eϵ+1 , it can be readily shown
that the mechanism satisfies ϵ-edge DP. One can then apply
any community recovery algorithm (MLE, SDP or spectral
methods) on the perturbed matrix Ã. This mechanism is
presented in Algorithm 4.

Algorithm 4Mσ̂
RR(G): Graph Perturbation Mechanism via

Randomized Response

1: Input: G(V, E) ∈ G
2: Output: A labelling vector σ̂ ∈ L.
3: Perturb A→ Ã via randomized response mechanism
4: Apply community detection algorithm on Ã
5: Output σ̂(Ã)

From the perspective of computational complexity, this Al-
gorithm is faster compared to the stability and sampling
based approaches. However, in the next Theorem, we state
our main result which shows that RR based mechanism
achieves exact recovery if ϵ = Ω(log(n)), i.e., it requires
the privacy leakage to grow with n for exact recovery.
Theorem 3.8. The mechanismMSDP

RR (G) satisfies ϵ-edge
DP, ∀ϵ ≥ ϵn = Ω(log(n)), and for r = 2 communities,
satisfies exact recovery if

√
a−
√
b >
√
2×
√
eϵ + 1√
eϵ − 1

+
1√

eϵ − 1
. (11)

In order to understand the intuition behind the worse pri-
vacy leakage of RR mechanism for exact recovery, it is
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instructive to consider the statistics of the perturbed ad-
jacency matrix Ã as a function of ϵ. Specifically, the
perturbed elements in the adjacency matrix Ã are dis-
tributed as follows Ãi,j ∼ Bern(p̃), i < j, if σi = σj ,
and Ãi,j ∼ Bern(q̃), i < j, if σi ̸= σj , where

p̃ =

[
n

(eϵ + 1)× log(n)
+

eϵ − 1

eϵ + 1
× a

]
︸ ︷︷ ︸

an

× log(n)

n
,

q̃ =

[
n

(eϵ + 1)× log(n)
+

eϵ − 1

eϵ + 1
× b

]
︸ ︷︷ ︸

bn

× log(n)

n
. (12)

Note that p̃ and q̃ are the intra- and inter- community con-
nection probabilities for the perturbed matrix. From the
above, we note that if ϵ is chosen as a constant, and as n
grows, then limn→∞ p̃ = limn→∞ q̃, i.e., if we insist on
constant ϵ, then asymptotically, the statistics of the inter-
and intra-community edges are the same and exact recovery
is impossible. The result of Theorem 3.8 shows that one can
indeed get exact recovery by allowing the leakage to grow
logarithmically with n.

4. Numerical Experiments
In this section, we present experimental results to assess the
performance of our proposed private community detection
algorithms, and the associated tradeoffs between privacy
and community recovery for both synthetically generated
graphs (SBMs) as well as real-world graphs. The proposed
mechanisms are implemented in MATLAB 2020b and the
optimization (SDP) is done through CVX solver (Grant
et al., 2009). In the numerical results, we perform Monte
Carlo simulations, where in each iteration we compute the
normalized hamming distance between σ and σ̂ as an esti-
mate for the error probability. Our numerical experiments
address the following questions:

Q1: How does the error probability change with a and
b? We first study community recovery on synthetic graphs
(SBM) with n = 100 vertices, r = 2 communities, b = 0.1
and vary the parameter a. Fig. 2(a) shows the impact
of increasing a on the error probability of (i) non-private
recovery; (ii) SDP-stability mechanism and (iii) randomized-
response SDP mechanism. For a fixed privacy budget ϵ, we
observe that when the difference between a and b increases,
the error probabilities for all private mechanisms decrease
but are no better than the non-private case. For a fixed
ϵ, the SDP-stability mechanism achieves a smaller error
probability compared to RR+SDP mechanism, however, this
comes at the expense of approximate edge DP guarantee.

Q2: What is the impact of ϵ on the error probability? In
Figs. 2 (b) and (c), we fix n = 200, a = 3.5, b = 0.1 and
study the impact of privacy budget ϵ on the error probability
for the case of r = 2 and r = 3 communities. Specifically,

for r = 2, we observe that the SDP-stability mechanism
(with δ = 10−5) outperforms RR+SDP; furthermore, as
ϵ increases beyond a certain threshold, error probability
for both converge to 0. For r = 3 communities, we can
observe that the difference in performance between SDP-
stability and RR+SDP is even more pronounced. In this
setting, however, we do not expect the error probability to
converge to 0 even if ϵ→∞ since the chosen values (a =
3.5, b = 0.1) do not satisfy the exact recovery threshold
(
√
a−
√
b >
√
r).

Q3: What is the impact of the problem size on the accu-
racy (SDP-Stability, RR+SDP, RR+Spectral)? In Fig. 2
(d), we compare the performance of SDP relaxation based
recovery versus spectral method proposed in (Hehir et al.,
2021), both under randomized response for a = 3.5, b = 0.1
and r = 2 communities. We can observe that RR+SDP has
less probability of error as a function of n compared with
the RR-Spectral method; however, RR+SDP has more com-
putational complexity. In Fig. 2(e), we show the error
probability behavior as a function of n, the number of ver-
tices for r = 2 communities and different privacy levels.
From the figure, we observe that for the RR based approach,
the privacy level should scale as Ω(log(n)) to achieve exact
recovery, which is consistent with our theoretical findings.
On the other hand, the stability based mechanisms can still
provide exact recovery for finite ϵ. We can draw similar
conclusions for the case of r = 3 communities in Fig. 2(f).

Q4: How do the private community detection mecha-
nisms perform on real-world datasets? We now discuss
our results for two real-world datasets (shown in Figs. 2
(g) & (h)): (1) Zachary’s Karate Club dataset which con-
tains a social network of friendships between 34 members
of a karate club at a US university in the 1970s. (Girvan &
Newman, 2002) and (2) The Political Blogosphere dataset
(Adamic & Glance, 2005) which consists of 1490 political
blogs captured during 2004 US elections. Each blog is clas-
sified as left/liberal or right/conservative, i.e., r = 2 and
links between blogs were automatically extracted from a
crawl of the front page of the blog. For the smaller size
Karate club dataset (n = 34), we observe from Fig. 2(g),
we can observe the impact of choosing δ on SDP-stability
mechanism. Specifically, when δ = 34−2 ≈ 10−3, then
RR+SDP has lower error probability for smaller ϵ compared
to SDP-stability. For the larger Political Blogosphere dataset
(n = 1490), the SDP-stability mechanism outperforms
RR+SDP for all values of ϵ and δ = 1490−2 ≈ 4 × 10−7.
We can observe that SDP-Stability performs better than
RR+SDP for both datasets.

Q5: How tight are the obtained bounds? We have plotted
the phase transition behavior for both RR+SDP and SDP-
stability mechanisms (see Fig. 3). We observe that our
theoretical bound (red line) is quite tight, and the threshold
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Figure 2. Synopsis of Numerical results: (a) Shows the impact of changing a for fixed b, ϵ. (b)-(c) Show the impact of ϵ for r = 2, 3,
respectively. (d)-(f) Show the error probability as function of n. (g)-(h) Show the performance on real-world datasets.
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Figure 3. Phase transition for Randomized response (RR)-SDP
and SDP-Stability mechanisms: darker pixels represent lower
empirical probability of success for n = 50 nodes, ϵ = 2, δ =
4 × 10−4, and r = 2 communities. The red lines represent the
theoretical bounds presented in Theorems 3.3 and 3.8.

region obtained from empirical success probability is close
to this bound.

5. Conclusion
In this paper, we studied the problem of community de-
tection for SBMs subject to edge differential privacy. We
presented and analyzed three classes of privacy-preserving
mechanisms (stability, sampling, and randomized response)
and studied the tradeoffs for exact recovery as a function of
the connectivity (a, b) and privacy parameters (ϵ, δ). From
our results, we deduce the following conclusions: the stabil-
ity based mechanisms can achieve (ϵ, δ)-DP for any ϵ > 0

and require δ = n−t, t > 0. The sampling based mech-
anisms can instead achieve pure (ϵ, 0)-DP; however, they
require a larger separation between (a, b) for exact recov-
ery compared to the stability based methods. Among the
three mechanisms, the randomized response mechanism,
while least computationally complex, requires ϵ to scale as
Ω(log(n)) for exact recovery. We also presented simulation
results on both synthetic and real-world graphs to validate
our theoretical findings. There are several interesting open
problems: a) obtaining converse results (necessary condi-
tions) to assess the optimality (or gap to optimality) of the
proposed mechanisms; b) generalization of the mechanisms
and the associated analysis to degree-corrected SBMs; c)
studying the impact of privacy on other recovery notions
(such as weak recovery (Abbe, 2017)); and d) design and
analysis of efficient algorithms for stability based mecha-
nisms.
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A. Appendix
In this Appendix, we provide the proofs of our results presented in Section 3. We provide auxiliary results that are used
throughout the proofs at end of this document. We summarize the notations and symbols used in Table 2.

n Number of vertices
A Adjacency matrix
Ã Perturbed adjacency matrix
ϵ Privacy budget
σ∗ Ground truth labels
σ̂ Estimated labels
L Set of all possible labels
Einter(G,σ) set of cross-community edges of graph G
E(C1, C2) Number of edges between C1 and C2

I Identity matrix
J All ones matrix
1 All ones vector

Table 2. List of Symbols.

B. Proof of Lemma 3.2 (MMLE
stability(G) satisfies (ϵ, δ)-edge DP)

Algorithm 5Mσ̂
Stability(G): Stability Based Mechanism

1: Input: G(V, E) ∈ G
2: Output: labelling vector σ̂Private.
3: dσ̂(G)← stability of σ̂ with respect to graph G
4: d̃← dσ̂(G) + Lap(1/ϵ)

5: if d̃ > log 1/δ
ϵ then

6: Output σ̂(G)
7: else
8: Output ⊥ (random label)

The proof that the stability based mechanism satisfies (ϵ, δ))-edge DP follows directly from (Dwork et al., 2014), and we
include the proof here for the sake of completeness by adapting it to the community detection problem. Given a pair of
neighbor graphs G ∼ G′, we denote d(G) is the distance from G to its nearest unstable instance and d(G′) is the distance
from G′ to its nearest unstable instance. Due to the triangle inequality, |d(G) − d(G′)| ≤ 1, hence the sensitivity of d:
∆d = 1. Adding a Laplacian noise of magnitude of 1/ϵ guarantees ϵ-differential privacy for d̃. In order to verify (ϵ, δ)-edge
DP for the overall mechanism, we consider two scenarios: the first one, when the output of the mechanism is ⊥. In this case,
we have:

Pr(MStability(G) =⊥) = Pr

[
d̃(G) ≤ log 1/δ

ϵ

]
(a)

≤ eϵ Pr

[
d̃(G′) ≤ log 1/δ

ϵ

]
= eϵ Pr(MStability(G

′) =⊥). (13)

where (a) follows from the fact that d̃ satisfies ϵ-DP. For the second scenario, when the output of the mechanism is some
label vector σ, we have to analyze two cases. Let us denote σ̂ as the output of the estimator when the graph is G, and σ̂′ as
the output of the estimator when the graph is G′.
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- Case 1. σ̂ = σ̂′ = σ:

Pr(MStability(G) = σ) = Pr

[
d̃(G) >

log 1/δ

ϵ

]
≤ eϵ Pr

[
d̃(G′) >

log 1/δ

ϵ

]
= eϵ Pr(MStability(G

′) = σ). (14)

- Case 2. σ̂ ̸= σ̂′: In this case d(G) = d(G′) = 0, then we have the following:

Pr(MStability(G) = σ̂′) = 0 ≤ eϵ Pr(MStability(G
′) = σ̂′). (15)

Also,

Pr(MStability(G
′) = σ̂′) ≤ eϵ Pr(MStability(G) = σ̂′) + Pr(MStability(G

′) = σ̂′)

≤ eϵ Pr(MStability(G) = σ̂′) + δ, (16)

where Pr(MStability(G) = σ′) = 0 and δ > 0. The remaining two sub-cases (switching the roles of G and G′) follow
similarly and this completes the proof of Lemma 3.2.

C. Proof of Theorem 3.3 (Exact Recovery Threshold forMMLE
Stability(G) for r = 2)

The error probability for the stability mechanism can be expressed as

Pr(MStability(G) ̸= σ∗) = Pr(MStability(G) =⊥)× Pr(MStability(G) ̸= σ∗|MStability(G) =⊥)
+ Pr(MStability(G) = σ̂ML)× Pr(MStability(G) ̸= σ∗|σ̂stb. = σ̂ML)

≤ Pr(σ̂Stability =⊥)× 1 + 1× Pr(σ̂Stability ̸= σ∗|MStability(G) = σ̂ML)

≤ Pr(MStability(G) =⊥) + Pr(σ̂ML ̸= σ∗), (17)

where the probability is taken over the randomness of the Laplacian mechanism and over the randomness graph generated
from SBM. We further upper bound the first term in the above equation as follows:

Pr(MStability(G) =⊥) = Pr

[
d̃(G) <

log(1/δ)

ϵ

]
= Pr

[
d(G) + Lap(1/ϵ) <

log(1/δ)

ϵ

]
= Pr

[
Lap(1/ϵ) <

log(1/δ)

ϵ
− d(G)

]
≤ Pr [d(G) < fn,ϵ]× Pr

[
Lap(1/ϵ) <

log(1/δ)

ϵ

]
+ Pr [d(G) ≥ fn,ϵ]× Pr

[
Lap(1/ϵ) <

log(1/δ)

ϵ
− fn,ϵ

]
≤ Pr [d(G) < fn,ϵ]︸ ︷︷ ︸

Term 1

+Pr

[
Lap(1/ϵ) <

log(1/δ)

ϵ
− fn,ϵ

]
︸ ︷︷ ︸

Term 2

. (18)

Bounding Term 2: By picking fn,ϵ = (t + 1) log(n)/ϵ and δ = n−t for any positive t, it can be readily shown that

Pr
[
Lap(1/ϵ) < log(1/δ)

ϵ − fn,ϵ = − log (n)/ϵ
]
= o(1). To upper bound Term 1, we introduce an intermediate lemma

which gives a lower bound on d(G) as follows.
Lemma C.1. Let (RML, BML) be the output of MLE(G). Let d(G) be the distance from G to the nearest unstable instance,
then d(G) is lower bounded by

d(G) ≥ min
(R,B)̸=(RML,BML)

E(G)(R,B)− E(G)(RML, BML). (19)

where E(G)(R,B) denotes the number of edges between partitions R and B of the graph G.
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Proof. W.l.o.g, let’s consider two equal sized communities R and B. We prove this Lemma by contradiction. For a fixed
graph G, let us assume that we have min(R,B) ̸=(RML,BML) E

(G)(R,B)− E(G)(RML, BML) = d̃ > d. Let G̃ is the nearest
graph from G that we have MLE(G) ̸= MLE(G̃). We know that dist(G, G̃) = d so we can obtain G̃ by adding madd edges
to and removing mremove edges from G and madd +mremove = d. For any labelling (R,B) ̸= (RML, BML), we have

E(G̃)(RML, BML) ≤ E(G)(RML, BML) +madd

≤ min
(R,B)̸=(RML,BML)

E(G)(R,B)− d̃+madd

≤ min
(R,B)̸=(RML,BML)

E(G)(R,B) +mremove +madd − d̃

≤ min
(R,B)̸=(RML,BML)

E(G)(R,B) + d− d̃

< min
(R,B)̸=(RML,BML)

E(G)(R,B) + d (20)

which implies (RML, BML) = MLE(G̃), which contradicts that MLE(G) ̸= MLE(G̃).

With this Lemma, we now return to analyze the first term in (18) as follows.

Bounding Term 1: By expanding the probability by law of total of probability theorem, we get the following sequences of
steps:

Pr [d(G) < fn,ϵ]

(a)

≤ Pr
[
E(Rmin, Bmin)− E(RML, BML) < fn,ϵ

]
= Pr

[
E(Rmin, Bmin)− E(RML, BML) < fn,ϵ|E(RML, BML) = E(R∗, B∗)

]
× Pr

[
E(RML, BML) = E(R∗, B∗)

]
+ Pr

[
E(Rmin, Bmin)− E(RML, BML) < fn,ϵ|E(RML, BML) ̸= E(R∗, B∗)

]
× Pr

[
E(RML, BML) ̸= E(R∗, B∗)

]
(b)

≤ Pr
[
E(Rmin, Bmin)− E(R∗, B∗) < fn,ϵ

]
× 1 + 1× o(1)

= Pr
[
E(Rmin, Bmin)− E(R∗, B∗) < fn,ϵ

]
+ o(1), (21)

where (a) follows from Lemma 2.1, and we have defined (Rmin, Bmin) as the solution of the minimization
min(R,B)̸=(RML,BML) E

(G)(R,B); in step (b), Pr
[
E(RML, BML) ̸= E(R∗, B∗)

]
= o(1), when

√
a −
√
b >

√
2 (Abbe

et al., 2015). Note that any two communities (R,B) ̸= (R∗, B∗), (R,B) can be expressed as

B = B∗ − S2 + S1,

R = R∗ − S1 + S2, (22)

where S1 and S2 are the set of mis-classified labels with respect to R∗ and B∗, respectively. By the construction of
symmetric communities, we have |S1| = |S2|. We can further write the E(Rmin, Bmin)− E(R∗, B∗) as

E(Rmin, Bmin)− E(R∗, B∗) = E(S1, R
∗\S1) + E(S2, B

∗\S2)

− E(S1, B
∗\S2)− E(S2, R

∗\S1). (23)

Given S1, S2 both of size k, k ∈ [1, n
2 ], we have

Pr(E(Rmin, Bmin)− E(R∗, B∗) ≤ fn,ϵ||S1| = k, |S2| = k) = Pr(m̃
(k)
1 − m̃

(k)
2 < fn,ϵ), (24)

where m̃
(k)
1 ∼ Bin(2k(n− k), p), and m̃

(k)
2 ∼ Bin(2k(n− k), q). Applying Chernoff’s bounds, we get

Pr(m̃
(k)
1 − m̃

(k)
2 < fn,ϵ) ≤ min

λ>0
eλfn,ϵ × E

[
e−λ(m

(k)
1 −m

(k)
2 )
]

= min
λ>0

eλfn,ϵ × E
[
e−λm

(k)
1

]
× E

[
eλm

(k)
2

]
= min

λ>0
eλfn,ϵ × (1− p(1− e−λ))2k(n−k) × (1− q(1− eλ))2k(n−k)

≤ n−g, (25)
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where g = (a+ b)× 2k(n−k)
n − γ − α

2 log
[
(γ−α)a
(γ+α)b

]
and γ =

√
(t+1)2

ϵ2 + 4× 4k2(n−k)2

n2 ab and α = (t+ 1)/ϵ. The upper
bound in (25) is invoked from an existing result (Hajek et al., 2016b) (stated in Lemma H.4). We further lower bound g as
follows:

g = (a+ b)× 2k(n− k)

n
− γ − α

2
log

[
(γ − α)a

(γ + α)b

]
≥ (a+ b)× 2k(n− k)

n
− γ − α

2
log

(
a

b

)
= (a+ b)× 2k(n− k)

n
−
√

(t+ 1)2

ϵ2
+ 4× 4k2(n− k)2

n2
ab− (t+ 1)

2ϵ
log

(
a

b

)
= (a+ b)× 2k(n− k)

n
− 2k(n− k)

n
×

√
n2

4k2(n− k)2
× (t+ 1)2

ϵ2
+ 4ab− t+ 1

2ϵ
log

(
a

b

)
(a)

≥ (a+ b)× 2k(n− k)

n
− 2k(n− k)

n
×
√

(t+ 1)2

ϵ2
+ 4ab− t+ 1

2ϵ
log

(
a

b

)
= (a+ b)× 2k(n− k)

n
− 2k(n− k)

n
× 2×

√
(t+ 1)2

4ϵ2
+ ab− (t+ 1)

2ϵ
log

(
a

b

)
=

4k(n− k)

n
×

[
a+ b

2
−
√

(t+ 1)2

4ϵ2
+ ab

]
︸ ︷︷ ︸

Ca,b

− t+ 1

2ϵ
log

(
a

b

)
, (26)

where in step (a), we have the term n2

k2(n−k)2 ≤ 4,∀k ∈ [1 : n
2 ]. Applying the union bound and assuming that Ca,b > 1, we

have

Pr(E(Rmin, Bmin)− E(R∗, B∗) < fn,ϵ) ≤
n
2∑

k=1

(
n

k

)2

× exp

[
− log(n)

n
× 4k(n− k)Ca,b +

t+ 1

2ϵ
log

(
a

b

)]

≤
n
2∑

k=1

(
ne

k

)2k

× exp

[
− log(n)

n
× 4k(n− k)Ca,b +

t+ 1

2ϵ
log

(
a

b

)]

=

n
2∑

k=1

exp

[
2k

(
log

(
n

k

)
+ 1

)
− log(n)

n
× 4k(n− k)Ca,b +

t+ 1

2ϵ
log

(
a

b

)]

=

n
2∑

k=1

exp

[
2k

(
log(n)− log(k) + 1−

(
2− 2k

n

)
Ca,b log(n)

)
+

t+ 1

2ϵ
log

(
a

b

)]
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≤
n
2∑

k=1

exp

[
2k

(
log(n)− log(k) + 1− 2×

(
1− k

n

)
× 1× log(n)

)
+

t+ 1

2ϵ
log

(
a

b

) ]

=

n
2∑

k=1

exp

[
2k

(
− log(n)− log(k) + 1 +

2k

n
log(n)

)
+

t+ 1

2ϵ
log

(
a

b

)]

=

n
2∑

k=1

exp

[
2k

(
− log(k) + 1 +

2k

n
log(n)

)]
× exp(−2k log(n))× exp

[
t+ 1

2ϵ
log

(
a

b

)]

< n−2 ×
(
a

b

)(t+1)/2ϵ

×
n
2∑

k=1

exp

[
2k

(
− log(k) + 1 +

2k

n
log(n)

)]

= n−2 ×
(
a

b

)(t+1)/2ϵ

×
n
2∑

k=1

exp

[
−2k

(
log(k)− 2k

n
log(n)− 1

)]
(a)

≤ n−2 ×
(
a

b

)(t+1)/2ϵ

×
n
2∑

k=1

exp

[
−2k

(
1

3
log(k)− 1

)]
(b)
= o(1),

where in step (a), we have that log(k)− 2k
n log(n) > 1

3 log(k) for sufficiently large n (Abbe et al., 2015). In step (b), we

have that
(
a
b

)(t+1)/2ϵ ×
∑n

2

k=1 exp

[
−2k

(
1
3 log(k)− 1

)]
= O(1). To this end, we have the following conditions on a

and b:

a− b >
t+ 1

ϵ
⇒
√
a− b >

√
t+ 1√
ϵ

(a)⇒
√
a−
√
b >

√
t+ 1√
ϵ

, (27)

a+ b

2
−
√

(t+ 1)2

4ϵ2
+ ab > 1

(b)⇒
√
a−
√
b >
√
2×

√
1 +

t+ 1

2ϵ
, (28)

where in (a), we have that
√
a− b >

√
a −
√
b where a > b, while in (b), we used the fact that

√
a+ b <

√
a +
√
b.

Therefore, a sufficient condition to make Term 1 behave as o(1) will be

√
a−
√
b >
√
2×max

[√
t+ 1√
2ϵ

,

√
1 +

t+ 1

2ϵ

]

=
√
2×

√
1 +

t+ 1

2ϵ
. (29)

This completes the proof of Theorem 3.3.

D. Proof of Theorem 3.4 (Threshold condition forMMLE
Stability(G) for r > 2)

The proof steps follow on similar lines as the r = 2 case. Specifically, the error probability boils down to establishing an
upper bound on Pr

(
d(G) ≤ (t+1) log(n)

ϵ

)
(similar to Term 1 in the proof of Theorem 3.3) as follows.

Pr
(
d(G) ≤ (t+ 1) log(n)

ϵ

) (a)

≤ rn× Pr

(
Bin

(
n

r
, p

)
− Bin

(
n

r
, q

)
≤ (t+ 1) log(n)

ϵ

)
≤ n−g, (30)
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where step (a) follows from applying the union bound. In order to further upper bound (30), we invoke Lemma H.4. Define

γ =
√

(t+1)2

ϵ2 + 4× ab
r2 and α = t+1

ϵ . The function g is lower bounded as follows:

g =
a+ b

r
− γ − α

2
log

[
(γ − α)a

(γ + α)b

]
≥ a+ b

r
− γ − α

2
log

(
a

b

)
=

a+ b

r
−
√

(t+ 1)2

ϵ2
+ 4× ab

r2
− t+ 1

2ϵ
log

(
a

b

)
=

a+ b

r
− 2

r

√
r2(t+ 1)2

4ϵ2
+ ab− t+ 1

2ϵ
log

(
a

b

)
=

1

r
×

[
a+ b− 2

√
r2(t+ 1)2

4ϵ2
+ ab− r(t+ 1)

2ϵ
log

(
a

b

)]

≥ 1

r
×
[
a+ b− 2

√
ab− (t+ 1)r

ϵ
− r(t+ 1)

2ϵ
log

(
a

b

)]
≥ 1

r
×
[
a+ b− 2

√
ab− r

ϵ
×
(
t+ 1 +

t+ 1

2
log

(
a

b

))]
=

1

r
×
[
(
√
a−
√
b)2 − r

ϵ
×
(
t+ 1 +

t+ 1

2
log

(
a

b

))]
=

(
√
a−
√
b)2

r
− 1

ϵ
×
(
t+ 1 +

t+ 1

2
log

(
a

b

))
(31)

We have the following conditions on a and b:

(t+ 1) log(n)

ϵ
≤ n

r
× (a− b)× log(n)

n

⇒ a− b ≥ (t+ 1)r

ϵ

⇒
√
a−
√
b ≥
√
t+ 1√
ϵ
×
√
r. (32)

Also, we require that

1− (
√
a−
√
b)2

r
+

1

ϵ
×
(
t+ 1 +

t+ 1

2
log

(
a

b

))
< 0

⇒ (
√
a−
√
b)2

r
> 1 +

1

ϵ
×
(
t+ 1 +

t+ 1

2
log

(
a

b

))
⇒
√
a−
√
b >
√
r ×

√
1 +

1

ϵ
×
(
t+ 1 +

t+ 1

2
log

(
a

b

))
, (33)

where (33) leads to a sufficient condition on a and b for exact recovery. This completes the proof of Theorem 3.4.

Before delving into proving Theorem 3.5, we first present the optimization problem for SDP relaxation for r = 2 and r > 2
communities as follows.
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SDP Relaxation Recovery Algorithm:
Let us first define Y = σσT , where Yi,i = 1,∀i ∈ [n], and J as all ones matrix. Our goal is to solve the following
optimization problem:

ŶSDP = max
Y

tr(AY)

s.t. Y ≽ 0

Yi,i = 1,∀i ∈ [n]

tr(JY) = 0. (34)

It has been shown that if
√
a−
√
b >
√
2, then Pr(ŶSDP = Y∗) = 1− o(1). For r communities each of size n

r , the ML
estimator (Hajek et al., 2016a) is given as:

ẐSDP = max
Z

tr(AZ)

s.t. Z ≽ 0

Zi,i = 1,∀i ∈ [n]

Zi,j ≥ 0, i, j ∈ [n]

Z1 =
n

r
1, (35)

where Z∗ =
∑r

k=1 ξ
∗
k(ξ

∗
k)

T , and ξ∗k is a binary vector that is an indicator function for community k, such that ξk(i) = 1 if
vertex i is in community k and ξk(i) = 0, otherwise. It has been shown that if

√
a−
√
b >
√
r, then Pr(ẐSDP = Z∗) =

1− o(1).

E. Proof of Theorem 3.5 (Threshold condition forMSDP
Stability(G) for r ≥ 2)

Lemma E.1. Given any function f : G → R, the f -based Stability algorithmMf
Stability with δ = n−t for any positive t

outputs f(G) with probability at least 1−O(n−1), if G is (t+1) logn
ϵ -stable under f with probability at least 1−O(n−1).

Proof. Because G is (t+1) logn
ϵ -stable under f with probability at least 1−O(n−1), d(G) ≥ (t+1) logn

ϵ with probability
at least 1−O(n−1). We drop the parameter (G) when the context is clear. The probability thatMf

Stability(G) does not
output f(G) is:

Pr
[
Mf

Stability(G) ̸= f(G)
]
= Pr

[
d̃ ≤ log 1/δ

ϵ

]
(36)

= Pr

[
d+ Lap(1/ϵ) ≤ log 1/δ

ϵ

]
(37)

= Pr

[
Lap(1/ϵ) ≤ log 1/δ

ϵ
− d

]
(38)

= Pr

[
Lap(1/ϵ) ≤ log 1/δ

ϵ
− d

∣∣∣∣d >
(t+ 1) log n

ϵ

]
Pr

[
d >

(t+ 1) log n

ϵ

]
+ Pr

[
Lap(1/ϵ) ≤ log 1/δ

ϵ
− d

∣∣∣∣d ≤ (t+ 1) log n

ϵ

]
Pr

[
d ≤ (t+ 1) log n

ϵ

]
(39)

≤ Pr

[
Lap(1/ϵ) ≤ log 1/δ − (t+ 1) log n

ϵ

]
Pr

[
d >

(t+ 1) log n

ϵ

]
+ Pr

[
d <

(t+ 1) log n

ϵ

]
(40)

(41)
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≤ Pr

[
Lap(1/ϵ) ≤ t log n− (t+ 1) log n

ϵ

]
+O(n−1) (42)

≤ Pr

[
Lap(1/ϵ) ≤ − log n

ϵ

]
+O(n−1) (43)

≤ Pr

[
|Lap(1/ϵ)| ≥ log n

ϵ

]
+O(n−1) (44)

≤ n−1 +O(n−1) (45)

= O(n−1) (46)

Finally, we have thatMf
Stability(G) outputs f(G) with probability at least 1−O(n−1).

Proving the optimality of the SDP based algorithm is very challenging; (Hajek et al., 2016a) use a sophisticated dual
certificate, and use it to show that the SDP solution is optimal, with high probability (Theorem 4 of (Hajek et al., 2016b)).
However, this probability (which is 1 − 1/nO(1)) is not high enough for a union bound to ensure stability for all graphs
within O(log n) distance. Our main technical contribution in this analysis is a slightly different certificate, which ensures
that the SDP solution is optimal with probability 1; we refer to this certificate as “concentration”.

Definition E.2. A graph G is called (c1, c2, c3, c4)-concentrated if it satisfies all four (4) conditions below

• mini∈V (G)(si − ri) > c1 log n

• ∥A− E[A]∥2 ≤ c2
√
log n

• maxk∈[r]
1
K

∑
i∈Ck

ri ≤ Kq + c3
√
log n, where K = n/r,

• e(Ck, Ck′) ≥ K2q − 3/4K
√
log n− c4 log n

in which si is the number of same-community neighbors of node i and ri is the maximum number of neighbors of i in one of
the other communities; e(Ck, Ck′) is the number of inter-community edges between communities k and k′ ̸= k.

We note that the bound in the first condition is stronger than the one in Lemma 4 of (Hajek et al., 2016b).

Next we prove that in some regimes of the SBM, the concentration of a graph G generated by the SBM holds with high
probability. (Hajek et al., 2016b) proves the second and the third conditions holds with probability at least 1− 1/poly(n).
We will prove that the first and the last condition will hold with probability at least 1−O(1/n) to complete the Lemma.

Lemma E.3. A graph G generated by an SBM is (c1, c2, c3, c4)-concentrated with probability at least 1 − O(n−1) for
some constants (c1, c2, c3, c4) with c1 > 0, if there exists a constant γ ∈ (0, 1) such that a−b

r > 4
γ2 .

Proof. The second and the third condition have been proved to hold with high probability by (Hajek et al., 2016a). We need
to prove the first and last conditions will hold with high probability to complete the lemma.

The first condition’s proof. Let ri(k) be the number of cross-community neighbors of node i in community k (i is not in
community k). We have ∀k : ri(k) ≤ ri.

For any node i and community k that does not contain i:

E[si − ri(k)] =
n

r
p− n

r
q (47)

=
(a− b)n log n

rn
(48)

=
(a− b)

r
log n (49)

(50)
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There exists a constant γ ∈ (0, 1) such that a−b
r > 4

γ2 and:

Pr

[
si − ri(k) < (1− γ)

a− b

r
log n

]
≤ exp(−γ2(a− b) log n

2r
) (51)

≤ n−2 (52)

Taking the union bound over all r communities, we have:

Pr

[
si − ri < (1− γ)

a− b

r
log n

]
≤ rn−2 (53)

Taking the union bound on all node i, the lemma follows that Pr [∀i ∈ V : si − ri < c1 log n] < rn−1 and c1 = (1−γ)a−b
r .

The last condition’s proof. We first notice that e(Ck, Ck′) ∼ Binom(K2, q), since there are K2 pairs of nodes and the
probability of edges between each pair is q. By Chernoff’s bound, we have:

Pr
[
e(Ck, Ck′) < (1− α)K2q

]
≤ e−α2K2q/2 (54)

Set α = (3/4)K
√
logn+c4 logn
K2q . We notice that |c4 log n| ≪ (K/4)

√
log n, therefore α ≥ (K/2)

√
logn

K2q =
√
logn
2Kq

Therefore we have:

Pr

[
e(Ck, Ck′) <

(
1− (3/4)K

√
log n+ c4 log n

K2q

)
K2q

]
≤ e

−
(

(3/4)K
√

log n+c4 log n

K2q

)2
K2q/2 (55)

Pr
[
e(Ck, Ck′) < K2q − (3/4)K

√
log n− c4 log n

]
≤ e−(

√
log n
2Kq )2K2q/2 (56)

= e−
log n
8q (57)

= n− 1
8q (58)

Taking the union bound over all k and k′, we have that e(Ck, Ck′) ≥ K2q − (3/4)K
√
log n− c4 log n with probability at

least 1− r2n−O( n
log n ) > 1−O(n−1).

Taking the union bound over all four conditions, the Lemma follows.

Next we prove that the concentration persists under Ω(log n) edge perturbations. Specifically, we prove that if a graph is
concentrated, a graph obtained by flipping up to Ω(log n) connections of the original one is also concentrated, albeit with
slightly different tuple of constants.

Lemma E.4. If a graph G is (c1, c2, c3, c4)-concentrated, all graphs G′ at distance at most c log n/ϵ are (c′1, c
′
2, c

′
3, c

′
4)-

concentrated with c′1 = c1 − c/ϵ, c′2 = c2 +
√
2c/ϵ, c′3 = c3 + c/ϵ, c′4 = c4 + c/ϵ.

Proof. For the first condition:

min
i∈V (G)

(si − ri) ≥ min
i∈V (G)

(
si − ri −

c log n

ϵ

)
(59)

≥ min
i∈V (G)

(si − ri)−
c log n

ϵ
(60)

≥ (c1 − c/ϵ) log n (61)
= c′1 log n (62)
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Second, let A′ be the adjacency matrix of graph G′. We have E[A′] = E[A] = Ā with the assumption that both G and G′

are generated by the same SBM. We have:

∥A′ − Ā∥2 ≤ ∥A+ (A′ −A)− Ā∥2 (63)
≤ ∥A− Ā∥2 + ∥A′ −A∥2 (64)

≤ c2
√
log n+ ∥A′ −A∥F (65)

≤ c2
√

log n+

√
2c log n

ϵ
(66)

= (c2 +
√
2c/ϵ)

√
log n (67)

= c′2
√
log n (68)

Third, the third condition is:

max
k∈[r]

1

K

∑
i∈Ck

r′i ≤ max
k∈[r]

(
1

K

∑
i∈Ck

ri +
c log n

ϵ
) (69)

≤ max
k∈[r]

1

K

∑
i∈Ck

ri +
1

K

c log n

ϵ
(70)

≤ Kq + c3
√
log n+

cr log n

nϵ
(71)

≤ Kq + (c3 + c/ϵ)
√
log n (72)

= Kq + c′3
√
log n (73)

Finally, the last condition is:

e(C ′
k, C

′
k′) ≥ e(Ck, Ck′)− c log n

ϵ
(74)

= K2q − (3/4)K
√
log n− c4 log n−

c log n

ϵ
(75)

= K2q − (3/4)K
√
log n− (c4 + c/ϵ) log n (76)

= K2q − (3/4)K
√
log n− c′4 log n (77)

We follow (Hajek et al., 2016b) to prove that when a graph is (c1, c2, c3, c4)-concentrated for some constants ci, the SDP
relaxation (SDP for short) outputs the optimal ground truth community vector. First we note that the SDP can be presented
by the following form:

maximize ⟨A,Z⟩ (78)
subsect to Z ⋟ 0 (79)

Zii = 1,∀i ∈ [n] (80)
Zij ≥ 0,∀i, j ∈ [n] (81)
Z1 = K1, (82)

with K = n/r is the size of each community.
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Then the following Lemma provides the condition for a dual certificate (deterministically). Intuitively, if we can construct a
positive semi-definite matrix S∗ by the following formula without violating the two constraints below, the SDP is uniquely
optimal at Z∗ constructed by the ground truth community label (We say SDP(G) is optimal at the ground truth community
label for short).

Lemma E.5. Lemma 6 of (Hajek et al., 2016b). Suppose there exists D∗ = diag(d∗i ) with d∗i > 0 for all i,B∗ ∈ Sn with
B∗ ≥ 0 and B∗

ij > 0 whenever i and j are in distinct clusters, and λ∗ ∈ Rn such that S∗ ≜ D∗−B∗−A+λ∗1T+1(λ∗)T

satisfies S∗ ⋟ 0 and

S∗ξ∗k = 0,∀k ∈ [r] (83)
B∗

ijZ
∗
ij = 0,∀i, j ∈ [n] (84)

Then SDP(G) = Z∗ is the unique solution for the SDP.

In the following statement, we claim that when the concentration holds, the SDP outputs the uniquely optimal ground truth
community deterministically. We closely follow the proof of Theorem 4 of (Hajek et al., 2016b) but replacing their high
probability bounds by our concentration conditions. We prove that the concentration of the input graph implies the existence
of a positive semi-definite matrix S∗ satisfies Lemma E.5.

Lemma E.6. When a graph G is (c1, c2, c3, c4)-concentrated for some constants cj and c1 > 0, the SDP outputs optimal
ground truth community.

Proof. By the result of Lemma E.5, we will prove that the exists a S∗ ⋟ 0 and satisfies the two contraints above the Lemma
follows. The main idea is to specify a way to construct B∗, D∗, and λ∗ that satisfy all properties above. Theorem 4 of (Hajek
et al., 2016b) defines B∗, D∗, and λ∗ as follows:

ukk′ =
1

2K

(
e(Ck, Ck′)

K
−Kq +

√
log n

)
(85)

y∗kk′(i) =
1

K
(ri − e(i, Ck′)) + ukk′ (86)

z∗kk′(j) =
1

K
(rj − e(j, Ck)) + ukk′ (87)

B∗
Ck×Ck′ (i, j) = y∗kk′(i) + z∗kk′(j),∀, 1 ≤ k ≤ k′ ≤ r (88)

αk =
1

2
(Kq −

√
log n) (89)

d∗i = e(i, Ck)− ri + 2αk −
1

K

∑
i∈Ck

ri (90)

λ∗
i =

1

K
(ri − αk) , for i ∈ Ck (91)

We follow the proof of Theorem 4 of (Hajek et al., 2016b) to prove S∗ ⋟ 0. We note that the main difference between our
proof and Theorem 4 of (Hajek et al., 2016b) is that our proof proves the statement (about S∗) is always true under the
concentration condition while (Hajek et al., 2016b) proves the statement is true with high probability over the SBM. We also
utilize a different bound on mini∈V (si − ri) from (Hajek et al., 2016b) to tolerate the change of up to c log n/ϵ connections
later.

Let E be the subspace spanned by vectors {ξ∗k}k ∈ [r], i.e., E = span(ξ∗k : k ∈ [r]). We show that

xTS∗x > 0 ∀x ⊥ E, ∥x∥2 = 1 (92)

when the input graph G is (c1, c2, c3, c4)-concentrated and n is large enough.

Note that E[A] = (p− q)Z∗ + qJ − pI and Z∗ =
∑

k∈[r] ξ
∗
k(ξ

∗
k)

T . For any x such that x ⊥ E and ∥x∥2 = 1,
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xTS∗x = xTD∗x− xTE[A]x− xTB∗x+ 2xTλ∗1Tx− xT (A− E[A])x (93)

= xTD∗x− (p− q)xTZ∗x− qxTJx+ p− xTB∗x− xT (A− E[A])x (94)

= xTD∗x+ p− xTB∗x− xT (A− E[A])x (95)

≥ xTD∗x+ p− xTB∗x− ∥A− E[A]∥2 (96)

≥ xTD∗x+ p− xTB∗x− c2
√

log n, (97)

where the second equality holds because E[A] = (p− q)Z∗ + qJ − pI and x ⊥ 1; and the third equality holds because
⟨x, ξ∗k⟩ = 0 and x ⊥ 1.

Theorem 4 of (Hajek et al., 2016b) shows that B∗ can be chosen such that for any x ⊥ E, we have xTB∗x = 0 where both
constraints of Lemma E.5 are satisfied.

From the definition of D∗, we have

λmin(D
∗) ≥ min

i
d∗i (98)

= min
i

e(i, Ck)− ri + 2αk −
1

K

∑
i∈Ck

ri (99)

= min
i

e(i, Ck)− ri +Kq −
√
log n− 1

K

∑
i∈Ck

ri (100)

= min
i

e(i, Ck)− ri −
√
log n−

(
1

K

∑
i∈Ck

ri −Kq

)
(101)

≥ min
i
(e(i, Ck)− ri)− (c3 + 1)

√
log n (102)

≥ c1 log n− (c3 + 1)
√

log n, (103)

where the second inequality holds because from the third condition of concentration, 1
K

∑
i∈Ck

ri −Kq ≤ c3
√
log n; and

the last inequality holds because from the first condition of concentration, e(i, Ck)− ri) ≥ c1 log n . We then have:

xTD∗x ≥ λmin(D
∗)∥x∥22 (104)

≥ λmin(D
∗) (105)

≥ min
i

d∗i (106)

≥ c1 log n− (c3 + 1)
√
log n. (107)

With that, we simplify xTS∗x with the assumption that the graph is (c1, c2, c3, c4)-concentrated:

xTS∗x ≥ c1 log n− (c2 + c3 + 1)
√
log n (108)

≥ 0 when n is large enough. (109)

Finally, to guarantee that B∗
ij > 0 whenever i and j are in distinct clusters, we will prove y∗kk′(i) and z∗kk(j) > 0. From

their definitions, we see that ri − e(i, Ck′) ≥ 0 and rj − e(j, Ck) ≥ 0, therefore we need to prove ukk′ > 0 for all k
and k′ ̸= k to complete the proof, i.e., to prove e(Ck, Ck′) > K2q −K

√
log n. The fourth condition of (c1, c2, c3, c4)-

concentration says that there is a constant c4 such that e(Ck, Ck′) ≥ K2q − (3/4)K
√
log n− c4 log n for all k, k′. Since

c4 log n≪ (K/4)
√
log n for n large enough, it confirms that e(Ck, Ck′) > K2q−K

√
log n, B∗ satisfies above conditions.

Apply the result of Lemma E.5, the Lemma follows.



Differentially Private Community Detection for Stochastic Block Models

Next we prove that if a graph is appropriately concentrated, it is also stable under the SDP relaxation.

Lemma E.7. When a graph G is (c1, c2, c3, c4)-concentrated and c1 − c/ϵ > 0, it is also c logn
ϵ -stable.

Proof. When a graph G is (c1, c2, c3, c4)-concentrated, all graph G′ at distance at most c logn
ϵ , formally d(G′, G) ≤ c logn

ϵ ,
are (c′1, c

′
2, c

′
3, c

′
4)-concentrated with c′1 = c1 − c/ϵ > 0 as the result of Lemma E.4. Hence, in the radius of c log n/ϵ from

G, all graph G′ has that SDP (G′) is unique and optimal at Z∗ constructed by the ground truth communities with n large
enough.

From that, for all graphs G′ such that d(G,G′) ≤ c logn
ϵ , we have SDP(G) = SDP(G′) and the lemma follows.

Lemma E.8. A graph G generated by an SBM is Ω( c logn
ϵ )-stable with respect to SDP function with probability at least

1−O(n−1) if there exists a constant γ ∈ (0, 1) such that a−b
r ≥

4
γ2 and (1− γ)a−b

r ≥
c
ϵ

Proof. By the result of Lemma E.3 and Lemma E.7, the lemma follows. We note that in Lemma E.3, we select c1 =
(1− γ)a−b

r , hence we need (1− γ)a−b
r > c

ϵ to satisfy the condition of Lemma E.7.

Finally, we prove that our mechanism outputs the ground-truth community label with high probability if the SBM satisfies
two conditions for the stability. The first condition allows the concentration to holds with high probability and the second
condition makes the concentration to persist under edge perturbation (of up to Ω(log n) connections).

Theorem E.9. Given a graph G is generated by an r-community SBM model with a−b
r ≥

4
γ2 and (1− γ)a−b

r ≥
t+1
ϵ for

some constant γ ∈ (0, 1),MSDP
Stability with δ = n−t outputs Z∗ constructed by the ground-truth community vector w.h.p.,

i.e. Pr[MStability SDP (G) ̸= Z∗] = o(1).

Proof. Lemma E.8 states that a graph G generated by the r-community SBM is (c log n/ϵ)-stable under SDP w.h.p.. By
applying Lemma E.1, substituting the generic function f by SDP and c = t + 1, MSDP

Stability outputs SDP (G) w.h.p..
Given that Pr[SDP (G) ̸= Z∗] = o(1)(Hajek et al., 2016a), the Theorem follows. Finally, setting C = γ/2 and using√
a− b >

√
a−
√
b,we loosen the two conditions above as:

√
a−
√
b ≥
√
r

C
and (110)

√
a−
√
b ≥

√
(t+ 1)r

(1− 2C)ϵ
(111)

Set C = 1/4, we (loosely) simplify the conditions above to:

√
a−
√
b ≥
√
r × 4×

(
1 +

√
t+ 1√
2ϵ

)
. (112)

.

F. Proof of Theorem 3.6 (Threshold condition forMBayesian(G) for r = 2)
We first prove that MBayesian(G) satisfies ϵ-edge DP for ϵ ≥ log(a/b). For a fixed graph G, w.l.o.g., let us assume
G = G′ + e, where e is an edge. We define Eintra(G,σ) as the set of same-community edges in graph G and Einter(G,σ) is
the set of cross-community edges of graph G, with respect to a labeling σ. We analyze two cases: (1) e ∈ Eintra(G,σ) (1)
and e ∈ Einter(G,σ). For each of them, we analyze the likelihood ratio of releasing a label vector σ if the input graph is G
or G′. We start with the first case:
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- Case 1: e ∈ Eintra(G,σ)

R1 =
Pr(σ|G′)

Pr(σ|G)
=

Pr(G′|σ)
Pr(G|σ)

× Pr(G)

Pr(G′)

=
1− p

p
× Pr(G)

Pr(G′)

=
1− p

p
×
∑

σ′ Pr(σ′) Pr(G|σ′)∑
σ′ Pr(σ′) Pr(G′|σ′)

(a)
=

1− p

p
×
∑

σ′ Pr(σ′) Pr(G′|σ′)× p
1−p∑

σ′ Pr(σ′) Pr(G′|σ′)
= 1, (113)

where step (a) follows from the fact that Pr(G|σ) = p
1−p × Pr(G′|σ). Note that, the distribution p(G|σ) is given as

p(G|σ) =
∏
i<j

p(Ai,j |σ)
(a)
=
∏
i<j

p(Ai,j |σi, σj)

(b)
=
∏
i<j

[
P (Ai,j) +Q(Ai,j)

2
+

P (Ai,j)−Q(Ai,j)

2
σiσj

]
,

where in step (a), the random variable Ai,j only depends on the labels σi and σj . In step (b), we have P (Ai,j) =
pAi,j (1 − p)1−Ai,j , and Q(Ai,j) = qAi,j (1 − q)1−Ai,j , where Ai,j ∈ {0, 1}. The distribution p(σ) = ( 1r )

n, while

p(G) =
∑

σ′ p(G|σ′)p(σ′) = (1r )
n
∑

σ′
∏

i<j

[
P (Ai,j)+Q(Ai,j)

2 +
P (Ai,j)−Q(Ai,j)

2 σ′
iσ

′
j

]
.

We next analyze the other ratio as follows.

R2 =
Pr(σ|G)

Pr(σ|G′)
=

Pr(G|σ)
Pr(G′|σ)

× Pr(G′)

Pr(G)

=
p

1− p
× Pr(G′)

Pr(G)

=
p

1− p
×
∑

σ′ Pr(σ′) Pr(G′|σ′)∑
σ′ Pr(σ′) Pr(G|σ′)

=
p

1− p
×

[∑
σ′:e∈Eintra(σ′) Pr(σ

′) Pr(G′|σ′) +
∑

σ′:e∈Einter(L′) Pr(σ
′) Pr(G′|σ′)∑

σ′ Pr(σ′) Pr(G|σ′)

]

=
p

1− p
×

[∑
σ′:e∈Eintra(σ′) Pr(σ

′) Pr(G|σ′)× 1−p
p +

∑
σ′:e∈Einter(σ′) Pr(σ

′) Pr(G|σ′)× 1−q
q∑

σ′ Pr(σ′) Pr(G|σ′)

]
(a)

≤ p

1− p
×

[∑
σ′:e∈Eintra(σ′) Pr(σ

′) Pr(G|σ′)× 1−q
q +

∑
σ′:e∈Einter(σ′) Pr(σ

′) Pr(G|σ′)× 1−q
q∑

σ′ Pr(σ′) Pr(G|σ′)

]

=
p(1− q)

q(1− p)
= eϵ0 , (114)

where step (a) follows that 1−q
q > 1−p

p for p > q. Now, we analyze the second case as follows.

- Case 2: e ∈ Einter(G,σ)
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R1 =
Pr(σ|G′)

Pr(σ|G)

=
1− q

q
×
∑

σ′ Pr(σ′) Pr(G|σ′)∑
σ′ Pr(σ′) Pr(G′|σ′)

≤ 1− q

q
×
∑

σ′ Pr(σ′) Pr(G′|σ′)× p
1−p∑

σ′ Pr(σ′) Pr(G′|σ′)

=
p(1− q)

q(1− p)
. (115)

We next analyze the other ratio as follows:

R2 =
Pr(σ|G)

Pr(σ|G′)

=
q

1− q
×
∑

σ′ Pr(σ′) Pr(G′|σ′)∑
σ′ Pr(σ′] Pr(G|σ′)

=
q

1− q
×

[∑
σ′:e∈Eintra(σ′) Pr(σ

′) Pr(G′|σ′) +
∑

σ′:e∈Einter(σ′) Pr(σ
′) Pr(G′|σ′)∑

σ′ Pr(σ′) Pr(G|σ′)

]

=
q

1− q
×

[∑
σ′:e∈Eintra(σ′) Pr(σ

′) Pr(G|σ′)× 1−p
p +

∑
σ′:e∈Einter(σ′) Pr(σ

′) Pr(G|σ′)× 1−q
q∑

σ′ Pr(σ′) Pr(G|σ′)

]

≤ q

1− q
×

[∑
σ′:e∈Eintra(σ′) Pr(σ

′) Pr(G|σ′)× 1−q
q +

∑
σ′:e∈Einter(σ′) Pr(σ

′) Pr(G|σ′)× 1−q
q∑

σ′ Pr(σ′) Pr(G|σ′)

]
= 1. (116)

From the above cases, we conclude that the Bayesian sampling mechanism satisfies ϵ-edge DP for all ϵ ≥ log(pq ) +

log( 1−q
1−p ) ≥ log(pq ) = log(ab ) = ϵ0.

We next analyze the error probability of the Bayesian mechanism. For a fixed graph G, our goal is to show that

Pr(σ̂Bayesian(G) ̸= σ∗)

Pr(σ∗|G)
=

∑
σ ̸=σ∗ Pr(σ|G)

Pr(σ∗|G)

=

∑
σ ̸=σ∗ Pr(G|σ)
Pr(G|σ∗)

≤ o(1) (117)

which is equivalent to Pr(σ̂Bayesian(G) ̸= σ∗) ≤ o(1). Given the ground truth partitions (R∗, B∗), let us define the following
variables:

m1 ≜ E(R∗\S1, S1),

m2 ≜ E(B∗\S2, S1),

m3 ≜ E(B∗\S2, S2),

m4 ≜ E(R∗\S1, S2), (118)

where S1 ⊆ R∗, S2 ⊆ B∗ that represent the mis-classified nodes in both communities (R,B). Given S1, S2 both of size k,
k ∈ [1, n

2 ], we have

R(k) ≜
Pr(G|σ, |S1| = |S2| = k)

Pr(G|σ∗, |S1| = |S2| = k)
=

(
q

p

)m1
(
1− q

1− p

)k(n−k)−m1

×
(
p

q

)m2
(
1− p

1− q

)k(n−k)−m2

︸ ︷︷ ︸
=P

(k)
1

(119)

×
(
q

p

)m3
(
1− q

1− p

)k(n−k)−m3

×
(
p

q

)m4
(
1− p

1− q

)k(n−k)−m4

︸ ︷︷ ︸
=P

(k)
2

. (120)
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Note that,

Pr(σ̂Bayesian(G) ̸= σ∗)

Pr(σ∗|G)
≤

n
2∑

k=1

(
n

k

)2

R(k). (121)

In order to bound the above ratio, we will first bound R(k) individually. To this end, let us define α = p
q , β = 1−q

1−p . We now
simplify each term individually (i.e., (119) & (120)) as follows:

P
(k)
1 = α−m1 × βk(n−k)−m1 × αm2 × β−(k(n−k)−m2)

= αm2−m1 × βm2−m1

=

(
p

q
× 1− q

1− p

)m2−m1

=

(
q

p
× 1− p

1− q

)m1−m2

(a)
= (1− x)m1−m2 ,

(b)

≤ exp [−x(m1 −m2)] , (122)

where x ≜ 1− q(1−p)
p(1−q) where x ≤ 1. Step (b) follows that (1− x) ≤ e−x,∀x > 0. Similarly, we have

P
(k)
2 ≤ exp [−x(m3 −m4)] . (123)

Therefore, we have

R(k) ≤ exp [−x(m1 +m3 − (m2 +m4))]

= exp
[
−x(m̃(k)

1 − m̃
(k)
2 )
]
, (124)
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where m̃
(k)
1 ∼ Bin(2k(n− k), p), and m̃

(k)
2 ∼ Bin(2k(n− k), q). For all k ∈ [1 : n

2 ], we have that w.h.p.

Pr(σ̂Bayesian(G) ̸= σ∗)

Pr(σ∗|G)
=

n
2∑

k=1

(
n

k

)2

R(k)

≤
n
2∑

k=1

(
ne

k

)2k

R(k)

=

n
2∑

k=1

exp
[
2k(log(n)− log(k) + 1)− x(m̃

(k)
1 − m̃

(k)
2 )
]

=

n
2∑

k=1

exp

[
2k

(
log(n)− log(k) + 1− x

2k
(m̃

(k)
1 − m̃

(k)
2 )

)]

=

n
2∑

k=1

exp

[
−2k

(
− log(n) + log(k)− 1 +

x

2k
(m̃

(k)
1 − m̃

(k)
2 )

)]

=

n
2∑

k=1

exp

[
−2k

(
log(k)− 1

)]
× exp

[
−2k

(
− log(n) +

x

2k
(m̃

(k)
1 − m̃

(k)
2 )

)]

≤
n
2∑

k=1

exp

[
−2k

(
log(k)− 1

)]
(125)

× exp

[
−2k

(
− log(n) +

x

2k
× (1− δ̃)× 2k(n− k)(a− b)

log(n)

n

]

≤
n
2∑

k=1

exp

[
−2k

(
log(k)− 1

)]
× exp

[
−2k

(
− log(n) + (1− δ̃)× x

2
× (a− b) log(n)

)]
(a)
=

n
2∑

k=1

exp

[
−2k

(
log(k)− 1

)]
× exp

[
−2k

(
x

2
× (1− δ̃)× (a− b)− 1

)
log(n)

]
= o(1),

(126)

where in step (a), we have

x

2
(1− δ̃)(a− b) > 1⇒

√
a−
√
b >

√
2√

x(1− δ̃)
. (127)

To this end, the error probability of the Bayesian mechanism is

Pr(σ̂Bayesian(G) ̸= σ∗) = Pr(σ̂Bayesian(G) ̸= σ∗|ES1,S2
)× Pr(ES1,S2

)

+ Pr(σ̂Bayesian(G) ̸= σ∗|Ec
S1,S2

)× Pr(Ec
S1,S2

)

≤ o(1)× 1 + 1× n−δ′ , (128)

where ES1,S2
≜ {m̃1 − m̃2 ≥ c′ log(n)} and Ec

S1,S2
denotes its complement, and x = 1− b(n−a log(n))

a(n−b log(n)) > 1− b
a . In order

to make the error probability behave as o(1), we have the following condition on a and b:

√
a−
√
b >
√
2×max

√2
δ̃

,
1√

x(1− δ̃)

 . (129)

Note that we showed the Bayesian mechanism satisfies ϵ ≥ ϵ0 = log
(
a
b

)
, therefore, we have

b

a
= e−ϵ0 (130)
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We pick δ̃ as δ̃ = (
√
2− 1)ϵ so that the lower bound in (129) is minimized when the two arguments are equal. Plugging the

value of δ̃ into (129) yields the following

√
a−
√
b >

2

(1− e−ϵ0)(
√
2− 1)

. (131)

This completes the proof of Theorem 3.6.

G. Proof of Theorem 3.7 (Threshold condition forMExpo.(G) for r = 2)
The privacy analysis ofMExpo.(G) is straightforward and follows on similar lines as in (Dwork et al., 2006).

We next analyze the error probability ofMExpo.(G). The error probability analysis follows on similar lines as the Bayesian
mechanism.

R(k) =
exp(−ϵ× Einter(G,σ))

exp(−ϵ× Einter(G,σ∗))

=
exp(−ϵ× (Einter(G,σ∗) +m1 +m3 −m2 −m4))

exp(−ϵ× Einter(G,σ∗))

=
exp(−ϵ× Einter(G,σ∗))× exp(−ϵ(m1 +m3 −m2 −m4))

exp(−ϵ× Einter(G,σ∗))

= exp(−ϵ(m1 +m3 −m2 −m4))

= exp(−ϵ(m̃(k)
1 − m̃

(k)
2 )), (132)

where m̃
(k)
1 ∼ Bin(2k(n− k), p), and m̃

(k)
2 ∼ Bin(2k(n− k), q). Now, we have

Pr(σ̂Expo.(G) ̸= σ∗)

Pr(σ∗|G)
≤

n/2∑
k=1

(
n

k

)2

R(k). (133)

Similarly, in order to make the error probability behaves as o(1), we have

√
a−
√
b >
√
2×max

√2
δ̃

,
1√

ϵ(1− δ̃)

 . (134)

We pick δ̃ = (
√
2− 1)ϵ and this yields

√
a−
√
b >

2

(
√
2− 1)ϵ

. (135)

This completes the proof of Theorem 3.7.

H. Proof of Theorem 3.8 (Threshold condition forMRR(G) for r = 2)
Error probability analysis of SDP recovery algorithm:

For the ease of exposition, let us consider a graph G with 2n vertices. The Lagrangian function is written as follows:

L(Ã,Y,S,D, λ) = tr(ÃY) + tr(SY)− tr(D(Y − I))− λ tr(JY), (136)

where S ≽ 0, D = diag(di) and λ ∈ R. Then,

∇YL = Ã+ S−D− λJ = 0. (137)

In order to satisfy the first order stationery condition, we have

S∗ = D∗ − Ã+ λ∗J. (138)
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From the KKT conditions, we have the following:

tr(D,Y − I) = 0⇒ D∗Y∗ = D∗I, (139)
λ∗ tr(JY∗) = 0, (140)
tr(S∗Y∗) = 0⇒ Sσ∗ = 0, (141)

where in eqn. (141), σ∗ is the null space of S. In order to ensure that Y∗ is the unique solution, we require that λ2(S
∗) > 0,

i.e., the second smallest eigenvalues of S. This comes from the rank-nullity Theorem, i.e.,

rank(S∗) + Null(S∗) = 2n⇒ rank(S∗) = 2n− 1. (142)

To this end, we have the following:

tr(ÃY) ≤ L(Ã,Y∗,S∗,D∗, λ∗) = tr(S∗ −D∗ + Ã− λ∗JY ) + tr(D∗I)
(a)
= tr(D∗I)

= tr(D∗Y∗)

= tr(S∗ + Ã− λ∗J,Y∗) = tr(ÃY∗). (143)

Now, our goal is to prove that w.h.p. S∗ ≽ 0 with λ2(S
∗) > 0. More specifically, we want to show that

Pr

[
inf

x:∥x∥=1,x⊥σ∗
xTS∗x > 0

]
≥ 1− o(1). (144)

Alternatively,

Pr

[
inf

x:∥x∥=1,x⊥σ∗
xTS∗x ≤ 0

]
≤ o(1). (145)

Before we proceed, we note that

E[Ã] =
p̃− q̃

2
Y∗ +

p̃+ q̃

2
J− p̃I. (146)

Now, for any x such that ∥x∥ = 1,x ⊥ σ∗ (i.e., xTσ∗ = 0), and λ∗ ≤ (p̃+ q̃)/2,

xTS∗x = xTD∗x− xTE[Ã]x+ λ∗xTJx− xT (Ã− E[Ã])x

= xTD∗x− p̃− q̃

2
xTY∗x+

(
λ∗ − p̃+ q̃

2

)
xTJx+ p̃− xT (Ã− E[Ã])x

≤ xTD∗x− p̃− q̃

2
xTY∗x+ p̃− ∥Ã− E[Ã]∥

= xTD∗x− p̃− q̃

2
xTσ∗σ∗Tx+ p̃− ∥Ã− E[Ã]∥

= xTD∗x+ p̃− ∥Ã− E[Ã]∥

≤ xTD∗x+ p̃ =
∑

i∈[2n]

d∗i + p̃. (147)

Note that from (143), we have tr(D∗I) = tr(ÃY∗). Therefore,

d∗i =

2n∑
j=1

Ãi,jσ
∗
i σ

∗
j . (148)

Also, note that each d∗i is equal in distribution to X − Y , where X ∼ Bin
(
n − 1, an

log(n)
n

)
and Y ∼ Bin

(
n, bn

log(n)
n

)
.

Applying the union bound, our goal now is to derive conditions on an and bn such that

2n∑
i=1

Pr(d∗i ≤ 0) ≤ n× Pr(Y ≥ X) = o(1). (149)
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Similar as before, the above probability will be of order o(1) holds if

√
a−
√
b−

√
1

eϵ − 1
>
√
2×

√
eϵ + 1

eϵ − 1

⇒
√
a−
√
b >
√
2×

√
eϵ + 1

eϵ − 1
+

1√
eϵ − 1

. (150)

To this end, we conclude that

Pr(σ̂ ̸= σ) ≤ Pr(Ŷ ̸= Y) = o(1). (151)

We are ready now to analyze the error probability Pr(σ̂ ̸= σ). Denote Y ∼ Bin(n, qn) and X ∼ Bin(n, pn). Using union
bound, we have that

Pr(σ̂ ̸= σ) ≤ 2n× Pr(Y ≥ X). (152)

We next expand Pr(Y ≥ X) using law of total probability Theorem. We first define Z = X + Y and cn = an + bn, then
we have

Pr(Y ≥ X) =

2n∑
k=0

Pr(Y ≥ X|Z = k) Pr(Z = k)

≤
10cn log(n)∑

k=0

Pr(Y ≥ X|Z = k) Pr(Z = k) + Pr(Z ≥ 10cn log(n))

= Pr(Y ≥ X|Z = 0)Pr(Z = 0) +

10cn log(n)∑
k=1

Pr(Y ≥ X|Z = k) Pr(Z = k) + Pr(Z ≥ 10cn log(n))

= Pr(Y = X = 0) +

10cn log(n)∑
k=1

Pr(Y ≥ X|Z = k) Pr(Z = k) + Pr(Z ≥ 10cn log(n))

= Pr(Y = 0)× Pr(X = 0) +

10cn log(n)∑
k=1

Pr(Y ≥ X|Z = k) Pr(Z = k) + Pr(Z ≥ 10cn log(n))

(a)

≤ n−cn +

10cn log(n)∑
k=1

Pr(Y ≥ X|Z = k) Pr(Z = k) + n−10cn

≤ 2n−cn +

10cn log(n)∑
k=1

Pr(Y ≥ X|Z = k) Pr(Z = k), (153)

where in step (a), we have that Pr(X = 0) = (1− pn)
n ≤ e−npn = n−an . Similarly, Pr(Y = 0) ≤ n−bn . Also, we have

Pr(Z ≥ 10cn log(n)) ≤ n−10cn using Bernstein’s inequality. We next upper bound Pr(Z = k) as follows:

Pr(Z = k) =

k∑
i=0

Pr(Y = i)× Pr(X = k − i), (154)



Differentially Private Community Detection for Stochastic Block Models

where,

Pr(Y = i) =

(
n

i

)
× pin × (1− pn)

n−i

=
n!

i!(n− i)!
× pin × (1− pn)

n−i

=
n!

i!(n− i)!
× (bn log(n))

i

ni
×
(
1− bn log(n)

n

)n−i

=
(bn log(n))

i

i!
× n!

ni × (n− i)!
× e−

bn log(n)
n ×(n−i)

=
(bn log(n))

i

i!
× n!

ni × (n− i)!
× e−bn log(n)×(1−i/n)

=
(bn log(n))

i

i!
× n!

ni × (n− i)!
× n−bn × nbn×i/n

=
(bn log(n))

i

i!
× n× (n− 1)× · · · × (n− i+ 1)

ni
× n−bn × nbn×i/n

(a)

≤ (bn log(n))
i

i!
× 1× n−bn × nbn×i/n, (155)

where in step (a) follows that
∏i−1

j=0

(
1− j

n

)
≤ 1. Similarly, we upper bound Pr(X = k − i) as

Pr(X = k − i) ≤ (an log(n))
k−i

(k − i)!
× n−an × nan×(k−i)/n. (156)

To this end, we get

Pr(Z = k)
(a)

≤ n−cn × nank/n
k∑

i=0

n−(an−bn)×i/n × (bn log(n))
i

i!
× (an log(n))

k−i

(k − i)!

≤ n−cn × nank/n
k∑

i=0

(bn log(n))
i

i!
× (an log(n))

k−i

(k − i)!

≤ n−cn × nank/n × 1

k!

k∑
i=0

k!× (bn log(n))
i

i!
× (an log(n))

k−i

(k − i)!

≤ n−cn × nank/n × 1

k!

k∑
i=0

(
k

i

)
× (bn log(n))

i × (an log(n))
k−i

= n−cn × nank/n × (cn log(n))
k

k!
, (157)

where in step (a), we have that an ≥ bn and n−(an−bn)×i/n ≤ 1. Similarly, we upper bound Pr(Y ≥ X|Z = k) as follows:

Pr(Y ≥ X|Z = k) =

k∑
i= k

2

Pr(Y = i)× Pr(X = k − i)

≤ n−cn × nank/n × 1

k!

k∑
i= k

2

(
k

i

)
× (bn log(n))

i × (an log(n))
k−i

= n−cn × nank/n × (cn log(n))
k

k!

k∑
i= k

2

(
k

i

)
× ηin × (1− ηn)

k−i, (158)
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where ηn = bn
an+bn

< 1/2. For a fixed k where k ≤ 10cn log(n), we have

Pr(Z = k)× Pr(Y ≥ X|Z = k) ≤ n−2cn × n2ank/n × (cn log(n))
2k

(k!)2
× Pr(Bin(k, ηn) ≥

k

2
)

(a)

≤ 1− ηn
1− 2ηn

× n−2cn × (cnn
an/n log(n))2k

(k!)2
× Pr(Bin(k, ηn) =

k

2
)

=
1− ηn
1− 2ηn

× n−2cn × (cnn
an/n log(n))2k

(k!)2
× k!(

k
2 !
)2 × θkn

=
1− ηn
1− 2ηn

× n−2cn × (cnn
an/n log(n))2k

k!
× 1(

k
2 !
)2 × θkn

=
1− ηn
1− 2ηn

× n−2cn × (cn log(n))
k

k!
× (cnn

2an/n log(n))k × 1(
k
2 !
)2 × θkn

(b)

≤ 1√
2π
× 1− ηn

1− 2ηn
× n−2cn × (cne log(n))

k

kk+1/2
× (cnn

2an/n log(n))k × 1(
k
2 !
)2 × θkn

(c)

≤ 1√
2π
× 1− ηn

1− 2ηn
× n−2cn × ncn × (cnn

2an/n log(n))k × 1(
k
2 !
)2 × θkn√

k

=
1√
2π
× 1− ηn

1− 2ηn
× n−cn × (θncnn

2an/n log(n))k(
k
2 !
)2√

k

(d)

≤ 2

(2π2)3/2
× 1− ηn

1− 2ηn
× n−cn × (cnn

2an/ne log(n))k

kk+1
× (2θn)

k

√
k

=
1√
2π3
× 1− ηn

1− 2ηn
× n−cn × (2θncnn

2an/ne log(n))k

kk+3/2

=
1√
2π3
× n2ank/n × 1− ηn

1− 2ηn
× n−cn × (2θncne log(n))

k

kk+3/2

≤ 1√
2π3
× n20ancn log(n)/n × 1− ηn

1− 2ηn
× n−cn × (2θncne log(n))

k

kk+3/2
, (159)

where θn =
√
ηn(1− ηn) =

√
anbn

an+bn
. In step (a), we used Lemma H.1, while in steps (c) and (d) we used the following

lower bound on k!, i.e., k! ≥
√
2πkk+1/2e−k. In step (b), it can be readily shown that

(cne log(n))
k

kk
≤ ncn .

We next upper bound (2θncne log(n))
k

kk+3/2 ≜ ef(k). By taking log(·) for this term, we have

f(k) = k × log(2θncne log(n))− (k + 3/2)× log(k). (160)

We next take the derivative of f(k),

f ′(k) = log(2θncne log(n))− (1 + 3/2k)− log(k) = 0. (161)
⇒ log(2θncne log(n))− (1 + 3/2k)− log(k) = 0,

⇒ log(e−12θncne log(n)) = 3/2k + log(k),

⇒e−12θncne log(n) = k × e3/2k,

⇒2θncn log(n) = k × e3/2k. (162)

Therefore, the optimal solution can be written as

k∗ = 2θncn log(n)e
−3/2k∗

. (163)
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To this end, we have

ef(k
∗) =

n2θncne
−3/2k∗

2θncn log(n)e−3/2k∗

≤ n2θncne
−3/20cn log(n)

2θncn log(n)
× e3/2k

∗

≤ n2θncn

2θncn log(n)
× e3/2. (164)

The second term will be upper bounded by

n−cn × 10cn log(n)×
n2θncn

2θncn log(n)
× e3/2 =

5e3/2

θn
× n−cn+2θncn

=
5e3/2

θn
× n−2[cn/2−θncn]. (165)

In order to achieve exact recovery, we require that an and bn:

cn
2
− θncn > 1⇒ an + bn

2
−
√
anbn > 1. (166)

Plugging the values of θn, cn, we get

Pr(σ̂ ̸= σ) ≤ 2n×
[
2n−(an+bn) + ζn × n−2[(an+bn)/2−

√
anbn]

]
, (167)

where ζn = 5×e3/2√
2π3
× e20an(an+bn) log

2(n)/n × an

an−bn
× an+bn√

anbn
. We upper bound the term e20an(an+bn) log

2(n)/n such that

e20an(an+bn) log
2(n)/n ≤ e40a

2
n log2(n)/n ≤ nα = eα log(n)

⇒a2n ≤
α

40
× n

log(n)
, (168)

where α < an + bn − 2
√
anbn − 1. Plugging the value of an, we get

eϵ >
n

log(n)
× 1√

αn
40 log(n) − a

. (169)

Based on the previous condition, we have two cases: When (1) a >
√

αn
40 log(n) , in this case, a sufficient condition will be ϵ >

log(n)−log(log(n)), and (2) a <
√

αn
40 log(n) , in this case we require that ϵ > log(n)−log(log(n))−log

(√
αn

40 log(n)−a
)

.

Derivation of Recovery Threshold Condition:

The randomized response mechanismMRR(G) can be expressed as

Ãi,j = (Ai,j +Ni,j)mod 2,∀i ̸= j, (170)

where Ni,j ∼ Bern(1− µ), µ = 1
eϵ+1 , Ni,j = Nj,i, and the operation mod2 ensures that the released output is bounded,

i.e., Ãi,j ∈ {0, 1}. If nodes i and j belong to the same community, we have the following:

p̃ = Pr(Ãi,j = 1) = Pr(Ai,j = 1)× Pr(Ni,j = 0|Ai,j = 1) + Pr(Ai,j = 0)× Pr(Ni,j = 0|Ai,j = 1)

(a)
= Pr(Ai,j = 1)× Pr(Ni,j = 0) + Pr(Ai,j = 0)× Pr(Ai,j = 1)

= p× (1− µ) + (1− p)× µ ≜ p⊛ µ, (171)



Differentially Private Community Detection for Stochastic Block Models

where in step (a), the perturbation mechanism is independent of the Ai,j’s. Similarly, if nodes i and j belong to different
communities, we have

q̃ = Pr(Ãi,j = 1) = q ⊛ µ. (172)

Plugging the expression of µ, p and q into the previous equations (171) and (172), we get

p̃ =

[
n

(eϵ + 1)× log(n)
+

eϵ − 1

eϵ + 1
× a

]
× log(n)

n
≜ an ×

log(n)

n
. (173)

Similarly,

q̃ =

[
n

(eϵ + 1)× log(n)
+

eϵ − 1

eϵ + 1
× b

]
× log(n)

n
≜ bn ×

log(n)

n
. (174)

We next derive a necessary threshold condition for randomized response mechanism. From eqn. (167), in order to ensure
exact recovery we require that

an + bn
2

−
√
anbn > 1. (175)

Plugging the expressions for an and bn into (175), we get the following:

1

2

[
2

eϵ + 1
+

eϵ − 1

eϵ + 1
× (a+ b)

]
−
√

1

eϵ + 1
+

eϵ − 1

eϵ + 1
× a×

√
1

eϵ + 1
+

eϵ − 1

eϵ + 1
× b > 1

⇒ 1

eϵ + 1
+

eϵ − 1

eϵ + 1
× a+ b

2
− 1

eϵ + 1
×
√
1 + (eϵ − 1)× a×

√
1 + (eϵ − 1)× b > 1

⇒eϵ − 1

eϵ + 1
× a+ b

2
− 1

eϵ + 1
×
√
1 + (eϵ − 1)× a×

√
1 + (eϵ − 1)× b >

eϵ

eϵ + 1

⇒a+ b

2
− 1

eϵ − 1
×
√
1 + (eϵ − 1)× a×

√
1 + (eϵ − 1)× b >

eϵ

eϵ − 1

⇒a+ b

2
−

√(
1

eϵ − 1
+ a

)(
1

eϵ − 1
+ b

)
>

eϵ

eϵ − 1
. (176)

We can further simplify the above equation as follows:

a+ b− 2

√(
1

eϵ − 1
+ a

)(
1

eϵ − 1
+ b

)
>

2eϵ

eϵ − 1

⇒− 2

eϵ − 1
+

1

eϵ − 1
+ a+

1

eϵ − 1
+ b− 2

√(
1

eϵ − 1
+ a

)(
1

eϵ − 1
+ b

)
>

2eϵ

eϵ − 1

⇒
(√

1

eϵ − 1
+ a−

√
1

eϵ − 1
+ b

)2

>
2eϵ

eϵ − 1
. (177)

To this end, we get √
1

eϵ − 1
+ a−

√
1

eϵ − 1
+ b >

√
2×

√
eϵ + 1

eϵ − 1
. (178)

A more stringent condition is

√
a−
√
b−

√
1

eϵ − 1
>
√
2×

√
eϵ + 1

eϵ − 1

⇒
√
a−
√
b >
√
2×

√
eϵ + 1

eϵ − 1
+

1√
eϵ − 1

. (179)

This completes the proof of Theorem 3.8. Note that the threshold condition matches the non-private case when ϵ =∞.
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Auxiliary Results:
Lemma H.1. Suppose X ∼ Bin(k, p), then for p < 1/2, we have

Pr(X ≥ k

2
) ≤ 1− p

1− 2p
× Pr(X =

k

2
). (180)

Proof. Our goal is to upper bound the following ratio:

Pr(X ≥ k
2 )

Pr(X = k
2 )
≤

Pr(X = k
2 ) + Pr(X = k

2 + 1) + · · ·+ Pr(X = k)

Pr(X = k
2 )

(181)

For any m and i, we have the following:

Pr(X = m+ i)

Pr(X = m)
=

(
k

m+i

)
pm+i(1− p)k−m−i(

k
m

)
pm(1− p)k−m

=

(
k

m+i

)(
k
m

) × ( p

1− p

)i

=
m!

(m+ i)!
× (k −m)!

(k −m− i)!
×
(

p

1− p

)i

≤
(
k −m

m+ 1

)i

δi, (182)

where δ = p
1−p < 1,∀p < 1/2. For m = k

2 , we have

Pr(X = k
2 + i)

Pr(X = k
2 )

≤
(

k/2

k/2 + 1

)i

δi ≤ δi. (183)

To this end,

Pr(X ≥ k
2 )

Pr(X = k
2 )
≤

k/2∑
i=0

δi ≤
∞∑
i=0

δi

=
1

1− δ
=

1

1− p
1−p

=
1− p

1− 2p
. (184)

Lemma H.2. Consider a random variable Z as a sum of 2n independent random variables, i.e., Z =
∑n

i=1(Xi + Yi),
where Xi ∼ Bern(pn), Yi ∼ Bern(qn) and µZ = cn log(n). Then, we have

Pr(Z ≥ 10cn log(n)) ≤ n−10cn . (185)

Proof. By direct application of Bernstein’s inequality, it is straight forward to show that |Xi| ≤ 1, |Yi| ≤ 1 and∑n
i=1E

[
(Xi − µXi

)2
]
+
∑n

i=1E
[
(Yi − µYi

)2
]
≤ n(pn + qn) = cn log(n). Then, we have the following:

Pr(Z ≥ 10cn log(n)) = Pr(Z − cn log(n) ≥ 9cn log(n))

= Pr(Z − µZ ≥ 9cn log(n))

≤ exp

[
−

1
2 × 81××c2n log

2(n)

cn log(n) +
1
3 × 9cn log(n)

]

≤ exp

[
− 40c2n log

2(n)

cn log(n) + 3cn log(n)

]
= exp (−10cn log(n)) = n−10cn . (186)
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Lemma H.3. (Chernoeff-Hoeffding bound) Let X =
∑

i∈[n] Xi, where Xi’s are indentically and independently distributed
over the support {0, 1}. Then, for any γ ∈ (0, 1], we have

Pr [X /∈ [(1− γ)E(X), (1 + γ)E(X)]] ≤ 2e−
γ2E(X)

3 . (187)

Lemma H.4. (Tail bounds on the difference of two Binomial R.V.s (Hajek et al., 2016b)) Let X and R be independent R.V.s
with X ∼ Bin(m1,

a log(n)
n ) and R ∼ Bin(m2,

b log(n)
n ), where m1,m2 ∈ N, such that fn,ϵ ≤ (m1a−m2b)

log(n)
n , then

Pr(X −R ≤ fn,ϵ) ≤ n−g(m1/n,m2/n,a,b,fn,ϵ/ log(n)), (188)

where,

g(m1/n,m2/n, a, b, fn,ϵ/ log(n)) = a× m1

n
+ b× m2

n
− γ − α

2
× log

[
(γ − α)am1

(γ + α)bm2

]
, (189)

where α = fn,ϵ/ log(n), and γ =
√
α2 + 4m1m2

n2 ab.

Definition H.5 (Multiplicative Chernoff Bound). Given m̃
(k)
1 ∼ Bin(2k(n− k), p), and m̃

(k)
2 ∼ Bin(2k(n− k), q), we

have

Pr
[
m̃

(k)
1 − m̃

(k)
2 < (1− δ̃)µ(k)||S1| = k, |S2| = k

]
≤ exp(−δ̃2µ(k)/2), (190)

where,

µ(k) = 2k(n− k)(a− b)
log(n)

n
. (191)

Applying the union bound for possible values of k ∈ [1 : n
2 ], it yields

Pr
[
Ec

S1,S2

]
=

n
2∑

k=1

(
n

k

)2

× exp

[
− δ̃2

2
× 2k(n− k)× (a− b)× log(n)

n

]

≤
n
2∑

k=1

(
ne

k

)2k

× exp

[
− δ̃2

2
× k × (a− b)× log(n)

]

=

n
2∑

k=1

exp

[
2k

(
log(n)− log(k) + 1− δ̃2

4
× (a− b)× log(n)

)]

=

n
2∑

k=1

exp

[
−2k

(
log(k)− 1 +

(
δ̃2

4
× (a− b)− 1

)
log(n)

)]
. (192)

In order to make the probability decays with n, we require that

δ̃2(a− b) > 4⇒ a− b >
4

δ̃2
⇒
√
a−
√
b >

√
2

δ̃/
√
2
. (193)


