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Abstract

Multi-objective optimization (MOO) and multi-
task learning (MTL) have gained much popularity
with prevalent use cases such as production model
development of regression / classification / rank-
ing models with MOO, and training deep learn-
ing models with MTL. Despite the long history
of research in MOQO, its application to machine
learning requires development of solution strat-
egy, and algorithms have recently been developed
to solve specific problems such as discovery of
any Pareto optimal (PO) solution, and that with a
particular form of preference. In this paper, we de-
velop a novel and generic framework to discover
a PO solution with multiple forms of preferences.
It allows us to formulate a generic MOO / MTL
problem to express a preference, which is solved
to achieve both alignment with the preference and
PO, at the same time. Specifically, we apply the
framework to solve the weighted Chebyshev prob-
lem and an extension of that. The former is known
as a method to discover the Pareto front, the latter
helps to find a model that outperforms an existing
model with only one run. Experimental results
demonstrate not only the method achieves com-
petitive performance with existing methods, but
also it allows us to achieve the performance from
different forms of preferences.

1. Introduction

Multi-objective optimization (MOQO) (Kaisa, 1999; Zhang
& Li, 2007) and multi-task learning (MTL) (Caruana, 1997)
have gained much popularity in machine learning (ML)
applications. For example, MOO has been used in produc-
tion system in search ranking (Momma et al., 2019; 2020;
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Carmel et al., 2020) and recommendation (Lin et al., 2019a).
MTL is one of the common methods to train a deep learn-
ing model (Ruder, 2017). Since the two areas share some
similarity in its core: trade-off among tasks / objectives, key
concepts such as Pareto optimality (PO) and methodologies
developed in MOO can also be applicable to MTL. One
prominent example is multiple gradient descent algorithm
(MGDA) (Désidéri, 2012). MGDA casts the Pareto station-
arity (PS) problem that is a necessary condition of PO as
a norm minimization problem of convex combination of
gradient vectors over all objectives. The resulting gradient
is the steepest-descent direction toward PS. This framework
is well suited for ML problems where functional optimiza-
tion via gradient methods is prevalent. The first adaptation
of MGDA to MTL (Sener & Koltun, 2018) demonstrates
it is able to generate MTL model that outperforms single
task baselines. However, although expected by design, the
MGDA based solution is found not being able to generate
diversified models, or models that meet user preference (e.g.,
ratio between objective values). Several works address the
issue by imposing additional constraints into the MGDA
optimization problem (Lin et al., 2019b; Ma et al., 2020;
Lin et al., 2019a).

In this paper, we propose a different approach to incorporate
preferences. Instead of starting from MGDA and modity
it, we start from formulating an optimization problem to
incorporate preference, then derive MGDA-like component
in the problem. The rationale of this approach is based on
the fact that what MGDA is solving for is only a portion of
some optimization problem. This is analogous to the more
general Karush-Kuhn-Tucker (KKT) conditions where the
stationarity condition is only a partial component of the full
optimality conditions, which consists of primal / dual fea-
sibility and complementarity in addition to the stationarity.
We apply this analogy to the PS problems in this paper.

As applications in our framework, we formulate the
weighted Chebyshev (WC) problem (Kaisa, 1999). This
problem is popular in the traditional MOO literature and
can be solved to discover the Pareto front (PF), a set of
PO points, by minimizing the /., norm between the ideal
point — infimum of each objective, and a PO point on PF.
The weight in WC represents preference in terms of ratio
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between objectives and it tries to find a PO solution aligned
with the preference. WC is known to be able to discover
the entire points in PF. This problem, however, is not suited
for ML applications as is — WC defines only the optimiza-
tion problem, and essential components in ML modeling
such as generation of gradient, and optimization strategy
to handle complex loss functions, etc., need to be specified.
We address the issue by incorporating the PS condition into
the original optimization problem in WC, and develop an
optimization strategy to solve the problem efficiently.

In many ML applications especially in industrial settings,
we often need to retrain a model with a fresh dataset. The
retrained model should achieve at least the same (if not bet-
ter) performance over all objectives / tasks as the existing
model trained with older dataset. Further, from such models,
we want to select a model that has desired trade-offs over
the objectives / tasks, to replace the existing model. This
requires exploration over a specific portion of PF. Existing
methods such as Momma et al. (2020) is not designed to
optimize such a problem, and requires 2(m) explorations
at least, where m is the number of objectives / tasks. We
address the challenge by extending the WC method to al-
lowing an arbitrary reference point / model (e.g., a baseline
model) in place of the ideal point in the formulation. Hence,
by design, the extended WC allows us to explore the specific
PF pivoted on the reference model. Application of the ex-
tended WC method would help modelers to be free from the
labor intensive tuning over multi-objectives / multi-tasks,
which typically takes at least a few days — reduction from
Q(m) to O(1). This is one of the biggest motivations for us
to develop the extended WC method.

The paper is organized as follows; Section 2 discusses the
related work. Section 3 is devoted to developing the pro-
posed method, Section 4 shows experimental results, and
Section 5 concludes this paper.

2. Related work

As a MOO method, MGDA (Désidéri, 2012; Fliege &
Svaiter, 2000) is found to be well suited to MTL applications
as it generates a gradient vector to discover PO solutions,
which is directly used in the existing gradient descent frame-
work. Sener & Koltun (2018) first leveraged MGDA for
MTL problems. However, MGDA alone does not suffice
since it may not generate models that are aligned with a pref-
erence, not to mention diverse solution to cover the full PF.
To address the issue, Lin et al. (2019b) proposed a method
to diversify the MGDA solution by imposing constraints
to split the loss space. Further, Lin et al. (2019a) imposed
constraints directly on the Lagrange multiplier to influence
the MGDA solution. These methods are built based on the
MGDA problem with additional constraints, and do not ad-
dress the fundamental point of MGDA being a method only

based on PS. In contrast, our method formulates a full opti-
mization problem to incorporate preference and develop an
algorithm with the optimality conditions. In this regard, the
Exact Pareto Optimal (EPO) Search (Mahapatra & Rajan,
2020) is closer to our work. EPO directly formulates the
optimization problem to optimize 1) uniformity, which is
defined as the KL divergence between the weighted loss
function and unity, and 2) PO. The optimization goal 1)
is similar to the WC problem. However, the algorithm is
designed specific to solving the problem with requirements
such as positivity on less, etc., and it is not straightforward
to extend it into more general problems such as handling
arbitrary reference points.

Another research direction is to generate the full PF. There
are several approaches such as perturbing the PO / MGDA
solution (Ma et al., 2020; Liu et al., 2021), building a hy-
pernetwork (Lin et al., 2020; Navon et al., 2021) or single
nextwork (Ruchte & Grabocka, 2021) to learn the entire PF.
Unlike these methods, our focus is to find PO solutions that
are aligned with user given preferences.

Aside from MGDA-like methods, Momma et al. (2019;
2020) proposed an e-constraint (EC) problem, which is
also popular in traditional MOO literature, for search rank-
ing. They apply the augmented Lagrangian (AL) method to
solve the hard constrained EC problem. Gong et al. (2021)
proposed a dynamic barrier gradient descent (DBGD) ap-
proach for EC and lexicographic optimization problems.
These methods have parameters to control smoothness of
the optimization steps, which has to be tuned to ensure best
performance. In contrast, our method auto-tunes such a
parameter.

Note, similar to related works in gradient based methods,
such as Liu et al. (2021), etc., we do not compare with
derivative-free MOO / MTL methods (e.g., those based on
evolutionary algorithms or Bayesian optimization) which
could fail to solve large-scale MOO / MTL problems be-
cause of the lack of gradient information.

3. Methodology

In this section, we introduce the basic settings of the investi-
gated problem and the development of our proposed method
and its extension. We summarize the main notations used
throughout this paper in Table 1.

3.1. An MOO / MTL problem

Suppose we have a MOO / MTL problem where we min-
imize a vector of loss of m objectives / tasks: I(xz) =
[[1(x),...,ln(x)]T € R™ over the vector of model pa-
rameters x € R™ with n > m in ML:

mnel]iRI}l l(x). (1)
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Table 1. List of notation

Notation Definition

m Number of objectives/tasks considered in (1)

n Deimension of model parameters considered in (1)

ecR™ A vector of ones

xz cR" Model parameters of the MOO/MTL problem

l(x) e R™ Vector of losses: I(x) = [l1(x), . . ., Ly (x)]T

a e RT Coefficients for combining the gradients where each of the components is non-negative
r e R, Preference vector of the objectives/tasks

diag(+/7) Diagonal matrix whose diagonal element is given by /1 = [\/74, ..., /T T
G(z) e R"™™ | G(z) = Vi(x) = [Vli(x),. .., Vig(x)]

K € Rmxm K = \/GTG

K, e R™*™ | K, = diag(y/r)Kdiag(\/r)

ueRL Non-negative trade-off constant in (7) and (13)

deR™ Dual variable of (7)

C Set of second order cones; e.g., (K ,a,~) € C implies || K, alls < 7.
becR™ Loss function value of the reference model

v € RT, A constant vector where each of the components is positive

w € R, w = v/(1 + eTv) where each of the components is positive

z e R™ Dual variable of XWC-MGDA

P The optimal objective value of (13)

When objectives compete with each other, there is a trade-
off between the objectives. As a result, there does not exist
an “optimal model” that dominates all other models in every
single objective. Below, we review some key concepts that
characterizes optimality over multi-objectives / tasks.

Pareto dominance: A solution & dominates another solu-
tion « if and only if [;(Z) < [;(x),Vi € [ and (%) <
lj(x),3j € I, where I = {1, ..., m} denotes the index set
of all objectives / tasks.

Pareto optimality: A solution & is a Pareto optimal (PO)
point if there is no other solution that dominates &. The set
of all Pareto optimal points is said to be the Pareto optimal
set and the corresponding set of loss function values is said
to be the Pareto front.

Weak Pareto optimality: A solution & is said to be a weak
Pareto optimal point if there is no other solution & such that
li(x) < l;(&),Vi € I. While PO mandates the existence of
strict inequality relationship, weak PO allows equality.

3.2. MGDA

MGDA aims to solve the Pareto stationarity condition —
a convex combination of the gradient vectors is zero, i.e.,
G(x)a =0, a > 0, eTax = 1, where e is a vector of ones,
and G(x) = Vi(z) = [Vii(x),...,Vin(x)] € R™™™,
by minimizing the {5 norm |G(x)||2. Since n > m, itis
not efficient to directly use G to compute ||G(z)cx||2. In-
stead, we use the matrix square root of G: K = VGTG €
R™*™ so [|G(x)als = VaTGTGa = ||[Kalls. Us-
ing K, the Pareto stationarity condition that we work with

throughout this paper is written by
Ka=0,a>0,eTa=1. 2)

Finally, MGDA solves the following problem (Désidéri,
2012):

min v st.eTa=1, |[Kalz <4. 3)
v, €RT

The primal problem of MGDA (Fliege & Svaiter, 2000) by
taking the dual of (3) is given as follows':

min p s.t. Kd < pe, ||d]|2 <1, 4
p,deR™
which is interpreted as the minimax problem of projection
of gradient vectors.

3.3. Weighted Chebyshev —- MGDA
3.3.1. WC-MGDA FORMULATION

Suppose we have the WC problem, which is to find a PO
point with a preference vector 7 € R, by minimizing the
{s-norm of weighted loss:

min p st.rol(x) < pe, ®)

p,ER™

where we use the origin as the ideal point, WLOG. By KKT
stationarity condition on p and x, and o being a Lagrange
multiplier on the constraints, we have the Wolfe dual:

MaXaeRr?y ,wER™ aT(rol(z))

st. K,a=0,,a>0, eTa=1, ©

"Note this is a modified version of the problem in Fliege &
Svaiter (2000), derived by taking the dual of (3).
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where we incorporate 7 into K, = diag(v/r)Kdiag(/r).
The following lemma ensures Pareto stationarity in (6);

Lemma 3.1. Constraints in (6) implies the Pareto station-
arity condition (2).

Proof. Consider K,a = diag(y/r)Kdiag(/r)aa = 0.
Since r € R, , we can divide it by diag(\/7ﬁ ) from left,
yielding K diag(\/r)a = 0. By defining diag(y/r)a = &,
we get Ka =0, a > 0.

Further, « > 0 and eTax = 1 implies 3, s.t., o; > 0 (this
can be proved by contradiction assuming o = 0), which
also implies Ji s.t., &; > 0. Therefore, by rescaling & =
a/eTé, we get the Pareto stationary condition: Ko
0,eTaa=1, &>0.

o

As K,.a = 0 may not be met at sub-optimality (i.e., during
optimization algorithm), we try to minimize the norm of
K,a. Using /5 norm on K, and a trade-off constant
u > 0, we have a working version of Wolfe dual:
T _
'y,aG%f?,):(BGRn @ (’I" © l(.’l))) wy (7)
st eTa=1, |[K, a2 <7.

Pleasantly, (7) can be seen as an extension of MGDA where
the objective function is specified to find a PS point along
the preference vector r (i.e., incorporating a WC objective
in MGDA). The use of norm instead of squares of norm
ensures same scaling of both terms in the objective function.
Problem (7) is referred to as the dual of weighted Chebyshev
- MGDA (WC-MGDA) hereafter.

When x is fixed, (7) can be seen as a second-order cone
program (SOCP) (Boyd & Vandenberghe, 2004; Alizadeh &
Goldfarb, 2001) with | K .c||2 < -y being the second-order
constraint (SOC): (K ,a,v) € C where C denotes the set
of SOC. By using SOCP duality, we further modify the
problem by deriving the dual of (7), i.e., dual of dual:
min
p,x€R™ deR
This is a primal of WC-MGDA. It is now clear that this
problem can be seen as a mix of WC problem (5) and primal
of MGDA (4): it tries to optimize both WC and PO by
minimizing the maximum element of » ® I(x) + K ,d.

P st.rol(x)+K,.d < pe, ||d||2 < u. (8)

Since SOCP is convex, it is known to enjoy strong duality
under the KKT conditions: 1) primal-dual feasibility and 2)
complementary slackness holds. In this case, the comple-
mentarity is given by a" K ,.d = yu. By the SOCP duality,
we can get primal variables such as p and d once we solve
the dual « in (7), and vice versa on the dual variables from
(8). However, when x is not fixed, we note that (7) and (8)
are non-convex. Similar to other gradient based methods
(Sener & Koltun, 2018; Lin et al., 2019b; Mahapatra & Ra-
jan, 2020), we separate the optimization w.r.t.  and other

variables. Namely, we conduct the gradient descent on x to
minimize the Lagrangian of Problem (7); 2

z=x-—nVzL=x—nG(r O a). )

Subsequently, given x, we solve (7) to get the gradient for
the next iteration. As with other gradient based methods,
improvement in the primal (8) depends on how to set the
parameter u and the stepsize 1. At the final optimality (i.e.,
with all variables including x), we require the following
stopping criteria: | K,alls < 7o, [|[K,d|2 < 74 with
tolerance 7, and 74.

a az

1 ¢ w: small 1

u: large
0 1 a, 0 1 a,

Figure 1. Illustrative example of SOC (shaded region), feasible
region (blue line), objective function value (orange line), and solu-
tion (red dot) in 2-dimensional space in cx. Left: too small u favors
extreme points. Right: larger u favors intermediate solutions.

We can gain a geometric interpretation of Problem (7) by
inspecting the parameter u. Figure 1 gives an illustrative
example of SOC (shaded region), feasible region (blue line
segment), objective function value (orange line), and so-
lution (red dot) in 2-dimensional space in . A small u
tends to relax the SOC (|| K,all2 < =), and the feasible
region would become large, which is depicted in Figure 1
(left). In this case, the dual solution « would likely to be at
extreme points, which tends to gives non-smooth changes to
the solutions when the solution (i.e., basis) jumps between
the extreme points. The non-smooth behavior gets even
worse if the stepsize is set too large for the gradient. On the
other hand, if u > 1, the SOC constraint will be tightened,
which pushes the solution to the cross-over point between
the SOC and the convex constraint on . This helps to
generate smoother solutions (Figure 1 (right)). However,
using too large u will weaken the first term in the objective
function in (7) that seeks alignment with preference, which
is not ideal®. Therefore, we need to choose the right value
of u to successfully solve the entire problem.

3.3.2. SOLUTION STRATEGY

As mentioned, a key to solve the problem is to find the right
value of u. By choosing a small u, we seek to find a solution

2We do not consider K .(x) as we would need to compute the
Hessian in &, which is prohibitive in n > 1 and out of scope of
this paper.

3When u. — 0o, WC-MGDA reduces to the weighted version
of MGDA with K.
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aligned with the preference (i.e., WC solution hereafter).
However, we also need to minimize the norm || K, || for
PS. This may not be achievable as evident in (7): a small u
would likely yield higher value of +, which means a looser
upper bound on || K ,.«x||2. Hence, PS is not guaranteed. On
the other hand, from (7), a large  tightens || K, a|2 < .
However, a large u also means loosening ||d||2 < u —hence
the 1% inequality constraint in (8), which is a key for WC.
This is a worse situation than the opposite case as finding a
WC solution is more difficult than finding any PS solution.

Although intermediate values of « may seem to be reason-
able, the choice of u is suboptimal due to the competing
nature of the SOC upper bounds w and ~; finding a WC so-
lution would be slower than having a smaller u, and finding
a PS solution would also be slower than having a larger u.
Moreover, having a hyperparameter u requires exploration
and is cumbersome for large-scale problems such as DNN
models, where one model training is costly. Therefore, we
propose a strategy to automatically tune u to discover a WC
solution that is also PS. The high-level idea is to prioritize
finding WC solutions. Once one WC solution is found, we
can increase u to push the WC solution to PS for conver-
gence. However, this is not straightforward as we need
certain criterion to tell if a solution is found in one way or
the other. To realize the idea, we propose the following
problem*, which is a variant of (8):

min  u s.t.rOl(x)+K,d < pe, |d||z <u, p<p°,
u,p,dER™
(10)

where pU is the objective value in the previous iteration and
constant. Namely, we use the primal objective function p in
(8) as the criterion. As noted, the primary objective value
is not guaranteed to be improved due to the sub-optimal
setting of u and stepsize 7). By leveraging the change in the
objective function, we identify if we need to adjust v and
how much to ensure monotonic non-increase of the primary
objective. We have some important results on solving (10).

Lemma 3.2. For any non-zero matrix K ., the following
statements regarding feasibility of (10), Pareto stationarity,
and feasibility of WC problem (5) with p = p° hold true.
Lemma 3.2.1. If Pareto stationarity does not hold, or WC
problem is feasible with p = p0, then (10) is feasible.

Lemma 3.2.2. If (10) is infeasible, Pareto stationarity holds,
and WC with p = pY is infeasible.

See A.1 for the proof. Intuitively, Lemma 3.2.1 covers two
directions for improvement: WC problem is feasible, but
not optimal (i.e., smaller p can be obtained), or PS is not
met. The following lemma covers two possible cases when
(10) is feasible.

*We will refrain from using  as a variable from now on as
indicated in (9).

Lemma 3.3. Suppose (10) is feasible. Either of following
two cases holds

1. p < p° which indicates there is room for strictly de-
creasing the primary objective. (10) gives a trivial
solution.

2. p = p°, which means there is no room for improving
p, and has non-trivial solutions u. The solution of (8)
can be obtained from (10).

See A.2 for the proof. Lemma 3.3 ensures solving (10) is
enough to generate the gradient when there is no improve-
ment in the primal objective. Otherwise, we need to switch
to solving (7). When we find p strictly smaller than p°, we
need to directly solve (7) with current w to find a better so-
lution since (10) yields only a trivial solution (i.e., & = 0).
When we meet equality p = p%, we find a minimum u
within the constraint. This means, we prioritize WC opti-
mization by choosing the smallest u as small u favors WC
optimization. During the iterations, © may go up or down.
Discovery of u smaller than the current « means we are pro-
ceeding toward WC optimization, and finding a larger « than
the current u implies we cannot find a solution for further
optimizing WC. At that moment, we will start increasing u
to ensure PS. If it successfully finds both WC and PS, we
can stop on meeting the stopping criteria. Otherwise, since
a larger u means relaxation of || K, d|2 < u, || K,d||2 may
increase, which leads to worsening of WC. This, in turn,
gives us room to find smaller » and improve WC. Note that
the exploration is controlled to keep the primary objective
unchanged over iterations if not improved.

Lastly, suppose (10) is infeasible (i.e., Lemma 3.2.2), which
means at least PS holds. In this case, we need to carefully
choose u to avoid drastically deviating from the PS that is
already satisfied. One can choose the same u previously
used, or minimally relax (10) to reach feasibility. In our
implementation, we choose to take the former approach.

3.3.3. EXTENDED WC-MGDA

We propose Extended WC-MGDA (XWC-MGDA) by ap-
plying the following two modifications to (8).

First, as discussed in Section 1, one motivation to develop
XWC-MGDA is to enable us to explore a specific portion
of PF pivoted on a reference model. The reference model
could be any baseline model such as an existing production
model, or a pre-trained model. To thi~s end, ins~tead of min-
imizing {(x), we minimize I(x) — b, where b is the loss
function value of the reference model. By the methodology,
we aim to build models that are closer or better than the
reference model. If we achieve a dominating solution w.r.t.
the reference model, we should have I(z) — b < 0.
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Second, WC method is known to generate weak PO (Kaisa,
1999), which suggests that we can have a solution with at
least one objective that is not strictly better than its dominat-
ing solutions. To avoid weak PO points, traditionally, one
can add a linear summation of loss functions in the objective
(Kaisa, 1999), i.e., with a constant vector v > 0, (5) can be
modified as follows;

min p+vT(rol(z)) st.rollx) < pe. (11)
P

The following lemma states that (11) is identical to setting
a lower bound constraint on cx.

Lemma 3.4. The dual of (11) can be formulated as

max aT(rol(x))st.eTa=1, a>w, K,a=0,
aecR™

(12)
where we define w = v/(1 + eTv), which implies that w
is restricted to eTw < 1.

See A.3 for the proof. Now, we can follow derivations in
Section 3.3.1 to derive the dual and primal of XWC-MGDA:

max aT(ro (I(z) — b)) —uy
v,c€R™

st. eTa=1, a>w, |Krals <7,

(13a)

min p—wlz
p,dERm,zeRzL
st. roO(x)—-b)+ K,d+ z < pe,
]2 < u.

(13b)

(13) can be seen as a specialized problem to the KKT station-
arity problem used in Lin et al. (2019a), and gives interpre-
tation of the lower bound w. Further, the auto-adjustment
of u is computed by
min U
u,p,dERm,zeRf{_‘
st. ro((z)—b)+ K,d+z < pe,
dll2 <u, p—wTz <p°,
(14)

where p° is the primary objective function value of the pre-
vious iteration. The arguments and properties developed for
the algorithm of WC-MGDA also applies to XWC-MGDA.

Note that WC-MGDA is a special case of XWC-MGDA
with b and w are zero. We show the algorithm for XWC-
MGDA in Algorithm 1, which subsumes that for WC-
MGDA.

3.3.4. COMPUTATIONAL COMPLEXITY

Computational complexity of Algorithm 1 is O(m?n) for
n > m, which is usually the case for machine learning

Algorithm 1 XWC-MGDA

1: input: preference vector r, lower bound on a:: w, loss
function value of a reference model b, step size 7, max.
t#iterations [y, tolerance 7, and 74.

2: randomly generate @1, initialize p° > 1 and u < 1
3: fori =1to I;; do

4:  compute gradient matrix G(x;), K (x;)

5. if (14) has non-trivial solution then

6: update u

7:  else

8: get (o, d, p) by solving (13), where p is the result-

ing objective function value

9: endif
10:  if |Kallz < 74 and || K,.d||2 < 74 then
11: return: x;
12 endif

13:  compute gradient g(x;) = G(z;)(r ® «). update
Tiy1 = x; —ng(x;), and p’ =p
14: end for

applications. It is dominated by the matrix computation of
G"G: O(m?®n). The computation of K, takes O(m?) due
to the matrix square root calculation (Frommer & Hashemi,
2010) and SOCP takes O(m?87) (Kerenidis et al., 2021).

4. Experiments
4.1. Synthetic data

We illustrate the behavior of the algorithms on synthetic
dataset from state-of-the-art papers (Lin et al., 2019b; Ma-
hapatra & Rajan, 2020):

1

T
l(:c) _ [1 _ €*HW* ﬁeﬂg’ 1— e*”erﬁeH; . (15

which is known to have highly non-convex PF. We use the
dimensionality n = 20 and the same initial point across
all models generated by uniform random sampling. We
compare linear scalarization (LinScalar), i.e., fixed linear
combination of objectives / tasks, PMTL (Lin et al., 2019b),
and EPO (Mahapatra & Rajan, 2020), WC-MGDA and
XWC-MGDA with a reference point (RP).

Figure 2 shows the results with several preference vectors
generated by equiangular directions from the origin for Lin-
Scalar, PMTL, EPO, WC-MGDA, and those from a RP with
XWC-MGDA. We can gain the following observations;

* LinScalar is only able to find the convex part of the PF.

e PMTL can find solutions roughly aligned with the pref-
erences due to the use of them to divide the objective
space into subregions. However, the alignments are
not perfect.
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Figure 2. Comparison of various methods. Dashed arrows represent preference directions.
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Figure 3. The effect of auto adjustment. A small value of v yields
non-smooth behavior in (a) and (b). Auto-tuning helps stabilize it,
resulting in a faster convergence as shown in (c) and (d), for both
the primary objective p and solution .

* EPO and WC-MGDA can achieve significantly better
alignments compared with PMTL.

* Further, once a RP is given, XWC-MGDA is able to ex-
plore PF that dominates the RP, which is also aligned
with the preference. This is the distinctive advan-
dange of XWC-MGDA over other five methods.

Next, we illustrate the effect of the auto-tuning of u. In
Figure 3, we plot the primal objective function p and oy by
iterations with WC-MGDA. Figure 3 (a) and (b) are from
the fixed policy of u with a small value 0.001, which results
in slower convergence (greater than 130 iterations). Figure
3 (c¢) and (d) are from the auto tuning logic. As illustrated,
setting a small w value introduces increase in objective func-
tion p and non-smooth behavior of the solution «g. The
auto adjustment of u ensures monotonic non-increase of p
and smoother / faster convergence to the desired solution
(smaller than 100 iterations).

4.2. Real dataset
4.2.1. IMAGE CLASSIFICATION

For image classification, we use three datasets: (1) Multi-
MNIST (Sabour et al., 2017), (2) Multi-Fashion (Xiao et al.,
2017), and (3) Multi-Fashion+MNIST (Lin et al., 2019b).
These are the same datasets used by Lin et al. (2019b) and
construction processes are detailed in Lin et al. (2019b). In
each dataset, there are 120,000 samples in the training set
and 20,000 samples in the test set. For each dataset, we
have two tasks; 1) classifying the top-left image, and 2) clas-
sifying the bottom-right image. For a fair comparison, we
apply LeNet (LeCun et al., 1998) used in (Lin et al., 2019b;
Mahapatra & Rajan, 2020) as the MTL neural network. The
baseline for comparison is training the network for individ-
ual tasks. Furthermore, to reduce the variability, we use
the same random seed across different methods. Note we
apply XWC-MGDA without RP when comparing with other
methods. We use w = 10~ %e for all cases.

First, we test the performance of all methods given three
preference vectors. Ideal solutions should lie on these rays
(i.e., inverse of preference), or dominate others. The top row
in Figure 4 shows test losses of the methods and bottom row
shows test accuracies. In terms of losses, XWC-MGDA is
able to generate models aligned with the preference, espe-
cially for green and yellow rays. For blue rays, EPO seems
to be closer to the preference. However, XWC-MGDA
either dominates other methods or achieves similar perfor-
mance. While EPO seeks weak PO, XWC-MGDA obtains
PO, which means that if PF looks flat in Task 2, it tries to
find one that is better in Task 1. The results seem to show
such a behavior, which can be confirmed from the accuracy
where XWC-MGDA tends to dominate EPO as well as other
gradient methods.

Figure 5 illustrates how XWC-MGDA (with RP) performs
on these three datasets. As shown in the figure, the models
are well aligned with rays originating from the given RP.
This means that it finds better solutions than the reference
with a given preference. This yields a significant reduction
of exploration to find a model that at least matches all losses
/ objectives from Q(m) (Momma et al., 2020) to O(1). The
resulting PF for both cases (i.e., with or without RP) is
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Figure 4. Comparison of methods with preference rays from the origin. X-axis and Y-axis are for task 1 and 2, respectively.
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Figure 5. XWC-MGDA with reference point (0.5, 0.5), (0.7,0.7), and (0.55, 0.55) for three datasets, respectively.

Table 2. Hypervolumes for experiments in Section 4.2

XWC-MGDA | EPO PMTL LinScalar
MultiMNIST Loss 0.0142 0.0135 0.0141 0.0168
MultiFashion Loss 0.0677 0.0602 0.0590 0.0675
MultiFashion+MNIST Loss 0.0389 0.0376 0.0303 0.0363
MultiMNIST Accuracy 0.0016 0.0015 0.0015 0.0019
MultiFashion Accuracy 0.0099 0.0087 0.0087 0.0099
MultiFashion+MNIST Accuracy | 0.0052 0.0050 0.0040 0.0048
River Loss 6.83E+28 5.93E+28 | 1.08E+28 | 6.64E+28
Emotion Loss 0.000348 0.000366 | 0.000230 | 0.000258
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similar to each other.

4.2.2. MULTI-TARGET REGRESSION

We use the multi-target regression dataset, i.e., River Flow
dataset (Spyromitros-Xioufis et al., 2016), that considers the
prediction of river network flows for 48 hours in the future
at 8 sites in the Mississippi River network. We note that it
has also been used in Mahapatra & Rajan (2020). To keep
consistency, we take the same data processing steps, use the
same fully connected feed-forward neural network (FNN)
with 4 layers, and Mean Squared Error (MSE) as the loss
for each task. We train the FNN using XWC-MGDA, EPO
search, PMTL and LinScalar. We generate 20 preference
vectors.

We report the results using the relative loss profile (RLP)
r © 1 on the test data in Figure 6. We notice that XWC-
MGDA and EPO perform quite similarly and are the best
among these methods; RLPs of both methods distribute
more uniformly across the 8 tasks than PMTL and Linear
Scalarization. Further, losses for all 8 tasks are similar
to those of Baseline and are much smaller than the other
multi-task learning methods, especially PMTL.

x103
6 7 —%— XWC-MGDA
57 —&— EPO
4 —&— PMTL
C: 31 —=— LinScalar
2 A T Baseline
1 4

T T T T T T T T
site 1 site 2 site 3 site 4 site 5 site 6 site 7 site 8

Tasks

Figure 6. Multi-target regression experiment. RLP (mean and stan-
dard deviation) is plotted for each task. XWC-MGDA and EPO
show superior performance than others.

4.2.3. MULTI-CLASS CLASSIFICATION

We next use the multi-class classification dataset, i.e., Emo-
tions and Music (Trohidis et al., 2011), as a counterexam-
ple to show when MOO methods would fail to outperform
LinScalar and Baseline. We consider the prediction of 6
emotions among a set of 593 songs based on the Tellegen-
Watson-Clark model of affect. To keep it consistent with
Mahapatra & Rajan (2020), we take the same data process-
ing steps, use fully connected feed-forward neural network
(FNN) with 4 layers, and Sigmoid Binary Cross Entropy
(SBCE) as the loss for each task. We train the FNN using
WC-MGDA, EPO, PMTL and LinScalar. We generate 50
preference vectors. Again, we report results using RLP on
the test data in Figure 7. We notice that all of the meth-
ods have almost uniform RLPs and none of them dominate

each other, which is expected as the PF might be convex as
noticed in Mahapatra & Rajan (2020).

—%—XWC-MGDA —*—EPO —&—PMTL —=—LinScalar T Baseline

0.20
0.15
§ 0.10
0.05

0.00

61 62 63 ©1 65 s ok
Figure 7. Multi-class classification experiment. RLP (mean and
standard deviation) is plotted for each task. LinScalar works well,
implying that the shape of PF might be convex.

4.2.4. HYPERVOLUMES FOR ALL EXPERIMENTS

To quantify the performance of these methods, we report
the mean value of hypervolumes (HV) for all experiments
in Section 4.2 as shown in Table 2. For image classification,
we repeat five trials, using various random seeds that are
shared across all methods. We use Nadir points® as the
reference points when computing HVs. We see that XWC-
MGDA achieves the highest HV in five out of eight results
(second best for the remaining three), indicating its superior
capability of generating strong PF that dominates others.

5. Conclusion

In this paper, we developed a novel and generic framework
to discover a Pareto optimal (PO) solution with multiple
forms of preference. It allows us to formulate a generic
MOO / MTL problem to express a preference, which is
solved to achieve the PO that is aligned with the prefer-
ence. Specifically, we applied the framework to solve the
weighted Chebyshev problem using WC-MGDA, and an ex-
tended weighted Chebyshev problem using XWC-MGDA.
While WC-MGDA solves a problem similar to existing
methods such as EPO, XWC-MGDA can further explore PF
from any given reference point. This means we can build
a model that is similar to or better than the reference (e.g.,
existing / pre-trained) model with only one attempt, which
yields a significant reduction of exploration from Q(m) in
(Momma et al., 2020) to O(1). The framework is generic
and opens up a door for incorporating preferences in a vari-
ety of ways such as e-constraint method (Kaisa, 1999) that
imposes upper bounds on losses to express a hard constraint
preference (i.e., we do not want to sacrifice), and even a
combination of XWC and e-constraint method. Experimen-
tal results demonstrated the method achieves competitive
performance with existing methods, and the performance
can be achieved from different forms of preferences (i.e.,
XWC-MGDA with or without a reference point).

>Worst performance on single task baselines
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A. Proofs
A.1. Proof of Lemma 3.2

Preliminaries.
First, let us prepare several materials for the proof. As our interest is feasibility, we can ignore the constraint on ||d||2:
|ld||2 < u, since we can take arbitrarily large u. Using p < p°, we can rewrite the first constraint in (10):

K. d<ple-rol(x)=s. (16)

Note the sign of i-th element of s indicates feasibility of the original WC problem: (5) is feasible if and only if s° > 0,
and (5) is infeasible if and only if 31, s.1., s? < 0.

Proof. Let us prove Lemma 3.2.2 first.

By applying the variant of Farkas’ lemma (Matouek & Girtner, 2006) to (16), we know exactly one of the followings holds
true;

(i) (16) holds true (i.e., (10) is feasible)

(i) K,aa=0,a>0,and s°ax < 0.

Suppose (10) is infeasible, which means (i) does not hold, and (ii) must hold. We have
K,a=0,aa>0, and s°"a < 0. (17)

The last inequality s°"a < 0 implies,

(a) Ji,s.t.,a; > 0O (this can be readily proved by contradiction), and

(b) s <0, 3ie {ia; > 0}.

From (a), by the existence of non-zero «;, we can rescale «x to derive the Pareto stationarity condition:
K,a=0a>0,eTa=1, (18)

with & = a/eT . Further, as discussed in Preliminaries, the existence of strictly negative s? implies WC is infeasible with

p = p°. Therefore, (ii) implies both Pareto stationarity and WC infeasibility must be true, which concludes Lemma 3.2.2.

For Lemma 3.2.1, we simply take contraposition of Lemma 3.2.2, which concludes Lemma 3.2.1. O

A.2. Proof of Lemma 3.3

Proof. The Lagrangian of (10) is given as follows;
L=u+aT(rol(x)+ K.d—pe)+87d—~yu+(p—p°), (19)

where a, (3, v) € C, and ¢ are dual variables associated with inequalities and SOC in (10). By complementarity, p < p°
implies § = 0. However, by the stationarity condition 9L/Jp = 0, we have eTax = 6, i.e., eTax = 0. Further, since a > 0,
a = 0 must be met, which is a trivial solution and proves the 1 part of the lemma.

If p = pY,  can take a finite value and hence . By using stationarity conditions V4£ = 0 and OL/0u = 0, the dual of
(10) is derived as follows;
max aTr ©l(x) —0p° st. aTe =0, | K,alz < 1. (20)

Assume all KKT conditions are met at the optimality. Let (&, 4, 5) be the solution for the dual (20), and (&, d, j5) be the
solution for the primal (10). Let us define the following rescaling:

G = /b, Ao = 1/6. Q1)
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By applying (21) to (20), we get
max 6(alr ©l(x) — pY) st. &le =1, | K, a2 < 7o. (22)
At the optimality, due to the strong duality, the objective value must be equal to the primal objective value, i.e., u:
i=d(alrol(z)—p°) (23)
Let (&, ) be the solution of (7). By plugging @ into the objective function in (7), we get
a'r ol(z) — iy = (& — a)r O l(z) + p°7/72 (24)
By the precondition p = pg at the optimality in (10), we have
(@ = @o)Tr O U(z) + p°7/72 = p". (25)

Since the identity equation (25) must hold for any (&, 52), we conclude & = &, 72 = 7, which implies solution of (7)
can be obtained by (10) by applying the rescaling (21).

O

A.3. Proof of Lemma 3.4

Proof. Using & as the dual variable for the inequality constraint of (11), the Lagrangian is given by
L=p+vT(rol(x))+ a(rol(x)— pe). (26)

From the stationarity condition on p: 9L/0p = 0, we have eT& = 1. Further, from the stationarity condition on a:
Vl(x) = 0 and definition of K, we have K. (& +v) =0. Leta = & + v. AseTa = 1, we have eTax = 1 + eTw. By
rescaling: @ = 1/(1 + eTv)ax, we have

K,a=0 eTa=1. 27)

Since the dual vector is non-negative: & > 0, a=a+v implies a > . By the definition of «, we have

1 1
= > v =w. (28)
l1+eTv l1+eTv

Qu

o

Note the last equality is by the definition of w. Now, using (28), it is readily shown
eTw=ev/(1+e"v) <1. (29)
Finally, plugging in all results into Eq. (26) and ignoring constant terms, we have
max aT(rol(z))st.eTa=1, a>w, K,a=0, (30)

which is equivalent to (12). O



