EqR: Equivariant Representations for
Data-Efficient Reinforcement Learning

Arnab Kumar Mondal ! >3 Vineet Jain'? Kaleem Siddiqi'?? Siamak Ravanbakhsh ' >

Abstract

We study a variety of notions of equivariance as an
inductive bias in Reinforcement Learning (RL). In
particular, we propose new mechanisms for learn-
ing representations that are equivariant to both the
agent’s action, as well as symmetry transforma-
tions of the state-action pairs. Whereas prior work
on exploiting symmetries in deep RL can only in-
corporate predefined linear transformations, our
approach allows non-linear symmetry transfor-
mations of state-action pairs to be learned from
the data. This is achieved through 1) equivari-
ant Lie algebraic parameterization of state and
action encodings, 2) equivariant latent transition
models, and 3) the incorporation of symmetry-
based losses. We demonstrate the advantages
of our method, which we call Equivariant rep-
resentations for RL (EqR), for Atari games in
a data-efficient setting limited to 100K steps of
interactions with the environment.

1. Introduction

The recent success of deep reinforcement learning (Francois-
Lavet et al., 2018) in applications ranging from games such
as Atari (Mnih et al., 2015), Go (Silver et al., 2016) and
Poker (Brown & Sandholm, 2019), to robotics (Levine et al.,
2016) and autonomous navigation (Bellemare et al., 2020)
has demonstrated its promise as a powerful framework for
sequential decision making. However, using a reward as the
only signal for representation learning in contexts with high
dimensional states and actions leads to tremendous data
inefficiency. Notably, almost all success stories of RL rely
on vast amounts of data or simulations with a substantial

'School of Computer Science, McGill University, Montréal,
Canada *Mila- Quebec Artificial Intelligence Institute, Montréal,
Canada *Centre for Intelligent Machines, McGill University,
Montréal, Canada. Correspondence to: Arnab Kumar Mondal
<arnab.mondal @mila.quebec>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

State transition

Action
equivariant e
transition S

Latent Embedding

Group
equivariant
transition

Figure 1. This figure demonstrates the relationship between two
types of equivariance in latent variable modeling for an MDP with
a symmetric transition function. Green arrows (vertical plane) iden-
tify a diagram for transition models in an MDP homomorphism.
A model T and state embedding function hg that are equivariant
under an agent’s action makes this diagram commute. Red arrows
(horizontal plane) identify the commutativity diagram for a sym-
metric transition function of an MDP in the latent space. Here the
state-action embedding (8, @) is produced through the symmetry
transformation of another state-action embedding (3, a).

computational overload.

More data-efficient representation learning (Bengio et al.,
2013) requires the construction of stronger inductive bi-
ases, which is a challenging problem in its own right. One
general approach is to place a central emphasis on a set of
transformations of the data, such that invariance and equiv-
ariance to them impose strong conditions on the learned
representations. Intuitively, equivariance leads to better
sample efficiency because by observing a specific trajectory
or triplet (s, a, s"), the agent has effectively observed all of
its transformations. This transformation-based viewpoint is
particularly appealing in RL, where the agent is in control
of some of these transformations through its actions.

In addition, transformations naturally lead to a notion of dis-
entanglement in the representations (Higgins et al., 2018),
potentially enabling better out-of-distribution generalization

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

(Higgins et al., 2017; Thomas et al., 2017). The recent suc-
cess of self-supervised learning approaches that rely on a
(predefined) set of transformations (Chen et al., 2020; Zbon-
tar et al., 2021), as also shown in the context of RL (Yarats
et al., 2021; Laskin et al., 2020b), further highlights the im-
portance of transformations in data-efficient representation
learning.

Motivated by these observations, this article develops a
broader perspective on the notion of equivariant represen-
tation learning within RL. In particular, we integrate equiv-
ariance under the agent’s action and equivariance under the
symmetries of the environment into a single latent variable
model that is equivariant to an a priori unknown group of
non-linear transformations of state-action pairs; see Fig-
ures 1 and 2. In contrast to the traditional approach of using
symmetric Markov Decision Processes (MDPs), we model
the larger group of state-action symmetries (separate from
reward symmetries). We show how to parameterize the
latent embeddings of states and actions to make the repre-
sentations equivariant to continuous transformations of the
environment resulting from an agent’s action. We evaluate
our approach, which we call Equivariant representations for
RL (EqR), on the 26 games in the Atari 100K benchmark
(Kaiser et al., 2019). Here we outperform other compa-
rable methods using reliable evaluation metrics (Agarwal
et al., 2021). Our approach, however, is not restricted to this
domain. It is applicable in any setting where the transforma-
tions that an agent undergoes can be expressed using matrix
Lie groups, including autonomous driving, navigation, and
robotics.

2. Related work

The use of transformations, be it in data-augmentation or
self-supervision, has become a common ingredient in re-
cent representation learning methods for deep RL. However,
theoretical work on symmetry in RL goes back to Zinke-
vich & Balch (2001) and Ravindran & Barto (2001), both
of which use symmetric MDPs. More recent use of this
formalism is in van der Pol et al. (2020b); Mondal et al.
(2020), where policy networks, with built-in equivariance,
are shown to improve data-efficiency. Closely related no-
tions, that motivated the early work on symmetric MDPs,
are model minimization (Ravindran & Barto, 2002), state
abstraction (Ravindran & Barto, 2003; Li et al., 2006), MDP
homomorphism (Ravindran & Barto, 2004) and lax bisimu-
lations (Taylor, 2008). In particular, MDP homomorphism,
which requires equivariance under an agent’s action, en-
compasses the general idea of model-based reinforcement
learning. For example, a latent MDP that matches the state
dynamics and the reward distribution of the environment is
learned in (van der Pol et al., 2020a; Gelada et al., 2019).

Other work in RL that is relevant to our objective includes

attempts to increase data-efficiency using a learned model
of the environment. While some methods such as Sim-
PLe (Kaiser et al., 2019), learn this transition model at the
pixel level, the majority of approaches use a latent space
model. The latent space is either learned using reconstruc-
tion (Hafner et al., 2019a;b), or through self-supervision
and contrastive methods (Laskin et al., 2020b) (CURL).
However, there is evidence that the improvement in sample
efficiency is largely due to image augmentation, as seen in
Laskin et al. (2020a) and DrQ (Yarats et al., 2021). Using
a reconstruction-based method is also inefficient because
similar to pixel-level models, one needs to learn potentially
irrelevant details. The fact that variations of model-free algo-
rithms such as Data-Efficient Rainbow (DER) (van Hasselt
et al., 2019) and OTRainbow (Kielak, 2019) are compet-
itive with reconstruction-based methods without explicit
representation learning components confirms this intuition.
More recently SPR (Schwarzer et al., 2021) shows that
data augmentation and improvements in Rainbow combined
with particular forms of self-supervision, can significantly
improve the sample efficiency, leading to state-of-the-art
results in sample-efficient representation learning in RL.

3. Background
3.1. Groups and their Representations

A group G = {g} is a set, equipped with an associative binary
operation, such that the set is closed under this operation,
and each element g € G has a unique inverse, such that their
composition gives the identity g~1¢ = e. Any subset G’ < G
that is closed under binary operation of the groups forms a
subgroup. A group G can act on a set X' by transforming its
elements x € X through a bijection. Weuse a: G x X' —» X
to denote the group action, and for brevity replace (g, x)
with g - x moving forward. The action captures some of the
structure of G due to two constraints — the identity element
acts trivially e - = x; and the composition of actions is
equal to the action of the composition, i.e., (g¢') -z =
g-(9' - x),Vg,g' € G. X is then called a G-set. Any G-
action partitions X into orbits 9 = {g-x | g € G}, and we
denote the set of orbits under G-action as X' /G. A G-action
is transitive iff its action results in a single orbit.

Parameterizing Lie Groups In this work, we assume G
is (any sub-group of) a classical Lie group over R. These
are the groups that can be represented using invertible ma-
trices. We use p(G) to denote a linear representation of G,
and p, : RP - RP for the action (a.k.a. the representation)
of g € G. Two other greek letters 7 and « are also used for
this purpose. Many such Lie groups are identifiable by their
infinitesimal generators, their Lie algebra g = Lie(p(G)).!
This connection enables a simple parameterization of p(G)

"This relation is bijective for “simply connected” Lie groups.

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

using a set of linear bases {E(i)}i for their Lie algebra —
that is pg = exp(X; Bg.i E("), where exp(Y) = 0 g—f is
the matrix exponential. We refer to this parameterization
later in Section 4. Such linear representations in the form
of invertible matrices can be used for both continuous trans-
formations (e.g., 3D rotations) and finite groups (e.g., x90°
rotations).

3.2. MDP Homomorphism and Symmetric MDPs

We define an MDP as the 4-tuple M = (S, A, R,T)
where S and A are respectively the sets of states and
actions, R : S x A — R is the reward function, and
T : SxAxS — R2Y is the state transition function.? For two
MDPs M = (S, A, R, T) and M = (S, A, R,T), an MDP
homomorphism can be defined as a tuple H = (hs,h)
where hs : S — S is the state mapping and h4 : Sx A - A
is the state dependent action mapping. These two mappings

satisfy the following invariance and equivariance conditions:

(1) Invariance of the reward:

R(hs(s),ha(s,a)) = R(s,a), Vs,aeSxA (1)

(2) Equivariance of the deterministic transition model un-
der the agent’s action:

T(hS(s)ah.A(saa)):hS(T(Sva))a Vs,aeSx A

2

A probabilistic variation of the above equation for a
stochastic MDP (Bloem-Reddy & Teh, 2020) is:

T(hs(s") | hs(s),ha(s,a))= > T(s"]|s,a)

s"e[s']n
3)

forall s,s" € S,a € A, where [s']5 = hs " (hs(s'))
is the equivalence class of s’ under hs.

In related literature, MDP homomorphism is often used fgr
minimization of the MDP, because the optimal policy of M
can be lifted to obtain the optimal counterparts for M.

Symmetric MDPs The automorphism group Gaq =
Aut(M) of an MDP identifies the set of symmetry trans-
formations of state-actions that preserve the reward and the
transition dynamics:

R(S,G)ZR(Q'(S,CE>)), VgEgM,SGS,CLEA “4)

T(s' | 5,0) =T(g-' | g-(5a)) and

g'T(Saa):T(g'<5aa))v VgegM,s,s'eS,aeA
&)

>We ignore the discount factor for brevity.

We refer to a reward function R that satisfies Equation (4)
as a Gaq-invariant reward function and a deterministic
transition function 7" that satisfies Equation (5) as a G-
equivariant transition function. Note that this is a distinct
notion from invariance and equivariance under the agent’s
action in the context of MDP homomorphism. Here, the
action refers to the action of a symmetry group, while in
MDP homomorphism, the equivariance is to the action of
the agent. We use group action or G-action to make this
distinction clear when necessary.

For a symmetric MDP that satisfies both Equation (4) and
Equation (5), both the optimal action-value and optimal pol-
icy functions become invariant under G 4 action (Ravindran
& Barto, 2001) — that is,

Q(s,a)=Q(g-(s,a)) and
m(a,s) =7m(g-(a,s)), VgeGms,aeSxA. 6)

The connection of symmetric MDPs to MDP homomor-
phism is due to the fact that symmetries can be used
to define a homomorphism H : M + M by collaps-
ing the state-actions that form an orbit under Go4. For-
mally, the collapsed MDP M = (S, A, R, T) is defined
by S = S/Gm,A = AlGum. R((s,a)°) = R(s,a)
and T(s'9 | (s,a)9") = T(s' | s,a). This results in
symmetry-based model minimization of symmetric MDPs.

4. Desiderata for Symmetry-Based
Representation in RL

Separating Transition and Reward Symmetries One
important choice is that between using the symmetry group
of the MDP (G4) versus the symmetry group of state-
transitions (Gr), where G is the group of transformations of
state-action pairs that lead to equivariant deterministic tran-
sitions, as given by Equation 5. The former is a subgroup of
the latter Goq < Gr, i.e, the symmetries of a transition model
contain the symmetries of the MDP. In fact it is easy to see
that Goq = Gr N GR, where G, is the group of transforma-
tions of state-action pairs that preserve the one step-reward
and only satisfy Equation 4. We observe that working with
a larger symmetry group G has two benefits. First, it cre-
ates a stronger inductive bias for the model, because many
real-world settings can involve a range of symmetries in
transitions that are not present in the reward. For example,
an agent’s transition function in a 2D space may be equiv-
ariant to the Euclidean group, while the reward may not be
invariant to the same group (e.g., the reward for arriving at
a particular location could break this symmetry). Second,
the separate modeling of transition symmetries facilitates
transfer to new tasks, where the reward is changing.

Invariance in Model-Free and Equivariance in Model-
Based RL If the objective is to carry out model-free RL,

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

Equation (6) motivates the need to learn action-value func-
tions, or the policies that are invariant to symmetries of
the MDP (Guq). For a deterministic policy, the invari-
ance of Equation (6) becomes an equivariance constraint:
g-m(s) =7(g-s). Since this essentially leads to model min-
imization, van der Pol et al. (2020b); Mondal et al. (2020)
use this idea to improve sample efficiency when the group’s
actions in the agent’s action space are known permutations.
However, if our objective is to learn only a symmetry-based
model of the environment (i.e., transition and reward func-
tions), Equation (5) suggests that we need to learn a G-
equivariant transition function.

Symmetries in a Latent Transition Model While it is
possible to learn the state transition model in the observa-
tion space that is equivariant to the agent’s action, for high-
dimensional inputs this could be quite challenging since the
model has to learn details of the environment that are irrel-
evant to the RL agent. Using state and action embeddings
enables learning of the transition model in the latent space.
Indeed the constraint on the model and the embedding is
that of the MDP homomorphism (Section 3.2). Working
in the latent space has an additional benefit when it comes
to symmetries: we can assume that the G action on the la-
tent state-action pairs is linear through p(G) despite having
non-linear transformations in the observation space.

From the fact that symmetries of states Gs < G is a subgroup
of the state-action or transition symmetry, it follows that
pg € p(G) can be divided into two parts: 1) 7, € 7(Gs) the
group representation acting on the state embedding, and;
2) kj € (G), the group representation for state-dependent
action embedding.’

At this point we can combine the requirement for an
MDP homomorphism in Equation (2), with that of the G-
equivariant transition model, Equation (5) of a symmetric
MDP. The result is the following two constraints in our sym-
metric latent variable model (see Figure 1): Vs,a e S x A
andge G

T(hS(S)a h.A(S> a)) = hS(T(87 CL)) (7
TQT(hS(S)’ hA(S’a)) = T(TghS(s)ﬂizhA(saa)) 3

Matrix Embedding of States and Actions We now con-
sider a design choice which can significantly simplify the
constraints discussed above, though strictly speaking it is
not required. We propose to use group representations for
our state, and state action embeddings hs : S - 7(Gs)
and hy : S x A — £(G) — that is we use matrices to rep-
resent both states and actions. This choice assumes that
a G action on state and state-action pairs is transitive, so

3This is because p(G) can be seen as a representation that is
induced by the representation 7(Gs) of its subgroup: p = Indgs T.

that each state, and state-action pair can be mapped to a
group member. To emphasize this in our notation, we use
k() instead of hs(s) and similarly use 7(s,a) instead of
ha(s,a) for state, and state-dependent action embedding
respectively. This choice of embedding has several benefits:
First, the learned embeddings are automatically equivariant
to symmetry transformations of the state, and state-actions:

7(g-5)=71,7(s) and k(g-(s,a))=ryK(s,a),
Vs,aeSxA,geg. 9

This means that the symmetries of the state-action pairs are
preserved and now take a linear form in the latent space.
While the embeddings are automatically equivariant, they
may be equivariant to irrelevant non-linear transformations
of the input. The world modeling constraint (Equation (7))
ensures the relevance of the non-linear transformations that
are captured by the group equivariant embeddings above.
Moreover, this embedding enables matrix multiplication for
the transition model

T(1(s),k(s,a)) = k(s,a)T(s), (10)

which simply transforms the state-embedding 7(s) through
the linear group action of state-dependent action encoding
(s, a). Using this transition model, the action equivariance
constraint of Equation (7), and G-equivariance constraint of
Equation (8), simplify to:

7(s") = k(s,a)7(s) (11)

Tgk(s,a)7(s) = Kgh(s,a)yT(s) (12)

for any state transition triplet {s,a,s’}. In practice our
model seeks to satisfy these two constraints via the direct
minimization of appropriate loss functions, as will be dis-
cussed in Section 5.

Decomposition of the Latent Space The decomposition
G = G1 x ... x Gk into a direct product of subgroups can
disentangle the factors of variation in the dataset (Higgins
et al., 2018).* This gives us a way to represent the latent
embedding space as a direct product of K factors, where
each factor varies independently by actions of a subgroup
of G. Intuitively such a symmetry-based disentanglement
provides an effective inductive bias particularly when there
is modularity so that temporally coherent changes in the
environment are due to the change of a (sparse) subset of
factors. In our case this constraint takes the form of block-
diagonal matrices for state and action embeddings. More
precisely, we have a direct sum for state representation and

*As noted by Caselles-Dupré et al. (2019), simply having a
product structure in the latent space does not guarantee disentan-
glement, and further constraints are required. In this work, we do
not impose any additional constraints for disentanglement.

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

a\ s’

Q
ms..
N

(a)

(b)

Figure 2. An illustration of typical symmetries in a pendulum, and the corresponding transformations of the state and action for a group
equivariant transition model: (a) shows how reflection of the agent’s state results in a permutation of the action, denoted by a™*. (b) shows
how rotation of the agent’s state results in invariance of the action in the absence of gravity. The state transitions can be modeled as
group actions (2D rotations in this example), which can be captured by our symmetry transformation-based transition model. Note that
rotational symmetry can hold even when gravity is present. In this case, symmetry transformations include rotations (and reflections) that
preserve the Hamiltonian. Such non-linear energy-preserving transformations of state-actions in the pixel space can become linear in the

embedding space.

the state-dependent action representation:
7(s) =@ 7(s) and £(s,a) = Pri(s,a)
k k

where k € {1,...,K} and g = (g1,...,9K). Accordingly,
the representation of the symmetry group G acting on the
state embedding and the state-dependent action embedding
is decomposed as 7, = @, 74, and /12 = @y sz. Combin-
ing this block structure with the Lie parameterization of
Section 3.1 we obtain

To(8) = ?exp (Z 6i,k79(s)E(i)) and

ke(T0(8),a) = Q]?exp (Z a; 1,06 (10(5), a)E(i)) (13)

where we use any standard neural network to implement the
o and B functions that represent coefficients for the bases
of the Lie algebra®. As we can backpropagate through this
function, the network parameters 6, ¢ can be learned end to
end. We refer the readers to Appendix A.2 for more detail.
The choice of the subgroup depends on the symmetries of
the RL environment, and this choice only affects the set
of bases {E(i)}i in Equation (13). For example, in Atari
games, the screen often has multiple objects undergoing 2-D
translations and rotations, and one can use blocks of the 2-D
Special Euclidean (SE(2)) group, that comprise translation
and rotations of Euclidean space. For more realistic 3D
environments, such as those of interest in robotics, self-
driving cars and third-person games, one can use SFE(3),
which is the group of 3-D translations and rotations. Also,
in theory, we only need to specify a group that “contains”

SWe denote both the neural networks which map to group
representations and the network parameters by lowercase greek
letters.

the group of interest as a subgroup. For example, if our state-
actions only have 90° rotational symmetry, we may use a
more general group for the representation (e.g., SE(2)).
The embedding function can define a homomorphism into
the relevant subgroup.

5. Loss Functions

We consider a standard RL setup where the agent interacts
with its environments in episodes and we have access to
({st, at, 7ty St+1})e=1,.. 7 Where s, is the state, a; is the ac-
tion taken by the agent, r; is the reward received and s,
is the observed next state at timestep ¢. Below we describe
three loss functions that encode the equivariance/invariance
constraints of Equations (1), (11) and (12).

Action Equivariant Transition Loss - Equation (11)
Given triplets (s¢, at, st11) from our dataset we simply ap-
ply a loss function ¢ such as a square loss® that penalizes
the difference between two arguments:

LAET(07 ¢) =/ (T0(3t+1)7 K’¢(St7 at)TG(st)) . (14)

The choice of the embedding space and the latent transition
function ensure that state embeddings are transformed by
linear group action of the action embeddings. Minimization
of L g7 encourages these symmetry transformations to
capture state transitions resulting from the agent’s action.

Group Equivariant Transition Loss - Equation (12) For
this we need a s,/ in addition to (s, a;), where ¢’ can be any
state (at a different time step in the same or in a different
episode.) We find the group transformation that maps s to

SIn practice we use the normalized square loss £(Y,Y’) =

H Y Y 2
Y[z 1Y]2

2

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

s’ in the latent space using 7, = 79 (s¢)7o(s¢) . Using this
we can rewrite Equation (12) as

1o (50)79(5¢) 7" K (8t,a1)Te(5t) = Kyhkg(st,ar) To(ser) -

—_— —_——
Tg TgTG(St)
(15)

Since the state-dependent action encoding k¢ (s¢,a;) for
the pair (s, a;) is also produced by a neural network, the
only missing part in the equation above is ry, the state-
dependent action transformation. We use a neural network
Pw Tg = Ky to infer it from state transformation 7.
Example 1. To get an intuition for what this network is doing
consider the example of a pendulum without gravity, with
rotation and reflection symmetry O(2) as shown in Figure 2,
where inputs to the networks (s) are image sequences and
the (ideal) embeddings 7y (s), k4 (s, a) are the angle plus
angular velocity and torque respectively. If we rotate the
pendulum using a rotation matrix 7,, we expect the state-
dependent action embedding to remain the same since the
effect of torque remains similar after rotation. However, if
we transform the pendulum by reflection around the vertical
axis, we expect that the effect of torque will be negated. p,,
parameterizes this dependence.

A loss function ¢ could then measure the difference between
the left and right hand side of the equation above

Leer(0,¢,w) :f(Ta(Stl)Tg(St)_llid,(St, at)7e(st),

P (1o(31:)79 (51) ™ Vg (50, a1) 70 (517))-
(16)

Action Invariant Reward Loss - Equation (1) While
L 4gr and Lg g enforce the equivariance of the latent tran-
sition model to an agent’s action and the symmetry group,
they do not encode information about the reward in the
state representations. In order for the latent model to be ho-
momorphic to the underlying MDP of the environment we
match the reward at every state embedding using a reward
predictor network 7 : 79(s) — R. We measure the differ-
ence between the predicted reward and the actual reward at
time step ¢ + 1:

Lr(1h,0,0) = (ry (5o ((s0), ar) 10 (5:)) = 11)> . (17)

Example 2 (Sliding Ball). Here, we visualize the matrix
embedding produced using our loss functions on a sim-
ple toy example. We design a sliding ball environment
where a ball moves on the screen vertically in a closed
loop with two actions: up and down. We parameterize the
latent representation to be a single block of SO(2), that
cos(sin(8
—Q&cgﬂwme
[is the output of the image encoder network (see Ap-
pendix A.2 for more detail on parameterization). Since in

is a rotation matrix 74(s) = [

this example, the action encoding is not state-dependent, we
obtain it by feeding the action to the action encoder network
w(a) = [co.s(a) sin(a)

—-sin(a) cos(a)
network. As the action is also invariant to the group trans-
formation SO(2), Equation (16) becomes unnecessary, and
we can only use Equation (14). To this end, we randomly
sample actions (up and down) and generate trajectories to
train the encoder using Equation (14). Figure 3 visualizes
the learned embedding. For visualization, we transform a
2D unit vector ([1,0] using the matrix embedding of the
state. As the ball moves in a 1D loop in the environment,
the encoder learns to map the transformation to the correct
rotation matrix in SO(2).

] where [is the output of the

100

AN
N -
050

0.00

0.25

0.50

0.75

1.00
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100

Figure 3. (a) Latent visualization of a sliding ball environment.
The ball moves up or down in one dimension as dictated by the
action. We show that our latent parameterization combined with
L spr learns the SO(2) manifold of the ball’s transition. To
obtain the visualization, we start with a 2D unit vector ([1, 0] here)
and transform it using the representation matrix obtained from
the trained encoder by feeding the image observations. Images of
eight uniformly separated positions of the ball are mapped to the
red points, which denote the transformed unit vector.

6. Application to Model-free RL

While the framework discussed so far is ideal for model-
based RL, here we confine our experiments to a model-
free setting. Following the success of transition models
for representation learning in model-free RL (Gelada et al.,
2019; Schwarzer et al., 2021) we add the losses discussed
above to the Temporal Difference (TD) error in Deep Q-
learning. In practice, we need to make three modifications
to our model/loss. These modifications are from the self-
supervised representation learning literature (Grill et al.,
2020) and were introduced in the RL setup in (Schwarzer
et al., 2021). For ablation studies on these additional com-
ponents we refer the reader to (Schwarzer et al., 2021).

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

Target Network A trivial solution to both equivariance en-
forcing losses of Section 5 is to encode all states and actions
using an identity matrix. This problem in different contexts
is known as the problem of collapse in representation learn-
ing. While using the reward signal helps in avoiding the
collapse it is often not sufficient in sparse reward settings.
Following Schwarzer et al. (2021), we use a target network
to encode state s;;; and s in Equation (16) in which the
network parameters do not receive a gradient and are copied
from the online network. We explicitly drop the subscripts
to differentiate the target from the online network in this
section (e.g., 79 = T).

Projection Head for Transition Losses The strict en-
forcement of symmetry constraints by our model can be
overly restrictive when the environment has non-symmetric
components, or when the our transition model is too simplis-
tic. For this reason, following previous work, we enforce
the losses on a learnable projection of the state embedding.
That is, before application of the loss ¢ in Equations (14)
and (16) we pass the embedding through a projection head.

M-step prediction Following the success of (Schwarzer
et al., 2021) in long-term state embedding predictions, we
predict state embeddings and rewards for M -steps.

6.1. Putting it All Together

Considering M consecutive state-actions {Sg¢+ a7, G440 }
and &; = x; = 79(s¢), we predict the state embeddings and
the rewards of the next M steps:

i’t-i—m =Ky (£t+m—1a at+m—1)£t+m—1 and
Prok =Ty (Tear) Yme{l,...,M}

Here we are using & for M-step model prediction of the
embedding to distinguish this from the latent embedding
z, and the embedding produced by the target network z =
7(S¢+m). This also applies to the M-step predicted reward
7 and observed reward r. We then project these embeddings
using a projection head p¢ to produce 2., = p¢(Zt4m) and
Zt+m = P(Zt4m). Using this notation, our final expressions
for L sg7 and Ly are:

2

M 2t+m 2t+’rn
LAET = Z - - and
mt | Zeeml2 | Zeem 2],
M
Lr= Y (Feem = Tesm)? (18)
m=1

For Lot we need (s, at, S¢+1) and another state s’. From
their embedding using the notation above we obtain 7, =
Zpxe L, the linear transformation between them, and /{Z =
pu(74), the state-dependent action transformation. Now for
T4, we obtain the predicted next state from Zy as Tyyq =

ngm(:rt, ay)Zy = po(Tex;t)r(2e, ay) 2y and from T4, as
%441 = T4%41. Before penalizing the difference between
these embeddings, we project them to /41 = b,,(:%tfH) and
Up+1 = b(Zy41) using projection head b,, to get the final
expression for Lgpr:

2

gt’+1 gt’+1

19)

LGET:H - -
(/7Y P ey P

2

Q-learning We pass the representation x; to a (Q-learning
head g to learn policies based on the output of the ()-value
estimator. The ()-value estimator is learnt by minimizing:

Lpon(€,0) = (Q§(7'9(5t)7at)
—(re+ 7 max qe(T(541), a)))2 (20)

We use the data efficient adaptation of Rainbow (van Hasselt
et al., 2019; Hessel et al., 2018) which combines many
improvements over the original DQN(Mnih et al., 2013)
such as Distributional RL(Dabney et al., 2018), Dueling
DQN (Wang et al., 2016), and Double DQN (Van Hasselt
et al., 2016). The total loss optimized by our model is:

L=Lpgn+MLg+XoLger + A3Laer 2D

where A1, Ao and A3 are hyper-parameters. We use \; =
A2 = A3 = 1 in all experiments. Motivated by the perfor-
mance improvements due to augmentation reported in recent
literature (Yarats et al., 2021; Schwarzer et al., 2021), we
also augment our states by shifting and changing the pixel
intensity before encoding them. Figure 8 in Appendix B.3
shows a detailed schematic of our model. We provide the al-
gorithm for our model in Algorithm 1 and details of network
architectures in Appendix B.4.

7. Experiments

We test our method on a suite of 2D Atari games, which
is a popular benchmark used in RL. The full Atari suite
consists of 57 games with typically 50 million environment
steps. We use the sample-efficient Atari suite introduced
by Kaiser et al. (2019), which consists of 26 games with
only 100,000 environment steps of training data available.
In our experiments, we use three types of simple connected
Lie subgroup blocks including General Linear GL(2), Spe-
cial Euclidean SE(2), and Translation 7'(2). Additional
details are in Appendix A. Unless stated otherwise, our EQR
model uses SFE(2) subgroup blocks, with K = 12 blocks
and M =5 steps during training. L4 g7 is always used to
train EqR. Lg g7, which makes transition model equivariant
with respect to the symmetry transformation of state-actions,
and L are optional. We build our implementation on top of
SPR’s (Schwarzer et al., 2021), which is based on r1pyt

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

SimPLe DER [CURL
b Score Distributions
A 100
(0]
b
S
n 0.75
K=
E=
=
n 0.50
c
>
e
—
O 0.25
c
o
g =
e
@ 0.00
|-
[T
0.0 0.5 1.0 1.5 2.0

Human Normalized Score ()

DrQ SPR I EqR, Lg + Lger

Score Distributions with Non Linear Scaling
1.00

0.75

0.50

0.25

\ -
gy

0.00

Fraction of tasks with score > T

0.0 0.1 0.2 0.5 1.0 2.0

Human Normalized Score (T)

Figure 4. Performance profiles for different methods based on score distributions (a), and average score distributions (b). Shaded regions
show pointwise 95% confidence bands. The higher the curve, the better the method is.

QM Optimality Gap

EQR, Lg + Laer
EQR. Lg
MLP 1 I
SPR l l
Rainbow w/ aug L]
DrQ 1 1
CURL ® 1
DER 1 l
SimPLe 1 1

0.30 0.45 0.56 0.64 0.72 0.80

Human Normalized Score

(a)

Optimality Gap
EqR, Lg + Laer ! !
EqR, Leer
EqR, Ly I I
EqR I I
MLP 1 1
SPR 1 1
Rainbow w/ aug ™ 1

0.24 0.32 040 0.48 0.56 0.64 0.72
Human Normalized Score

(b)

Figure 5. Plots of Interquartile Mean (IQM) and Optimality Gap (Agarwal et al., 2021) computed from human-normalized scores, showing
the point estimates along with 95% confidence intervals (over 10 runs for all methods, 5 runs for SimPLe). A higher IQM and a lower
optimality gap reflects better performance. (a) shows different methods for all 26 games. (b) shows our proposed method with different

loss compomnents for all 26 games.

(Stooke & Abbeel, 2019) and PyTorch (Paszke et al., 2019).
We use the same underlying RL algorithm and hyperparame-
ters used by SPR for a fair comparision. Our implementation
is available at https://github.com/arnab39/Symmetry-RL.

Evaluation Metrics We compute the average episodic
return (the ‘game score’) at the end of training and nor-
malize it with respect to human scores, as is standard
practice. The human-normalized score (HNS) is given by
hf;g;f:;;f;;;;ﬁ:ﬁfg; Since there is considerable variance
across different runs, the mean and the median are not very
reliable metrics. Instead, Agarwal et al. (2021) propose
using bootstrapped confidence intervals (CI) with stratified
sampling which is more suitable for small sample sizes (10
runs per game in our case). We report the Interquartile
Mean (IQM), which is the mean across the middle 50% of
the runs, as well as the Optimality Gap, which is the amount

by which the algorithm fails to meet a minimum HNS of 1.0.
We also provide performance profiles showing the fraction
of runs above a certain normalized score, which gives a
more complete picture of the performance.

Results We use 10 seeds for every game, for every vari-
ation of our model. Figure 4 shows performance profiles
for our model, EqR with Lr + Lggr, along with other
comparable methods. If one curve is strictly above another,
the better method is said to “stochastically dominate” the
other (Agarwal et al., 2021). The curves for both variations
of the proposed method are almost always above the next
best method, SPR (Schwarzer et al., 2021). Figure 5(a) pro-
vides results for different methods on all 26 games. The two
best variations of the proposed method outperform previ-
ous methods, and the difference is statistically significant
considering the CI. Table 2 in Appendix B.1 shows the full
results on all games: our best model achieves super-human

https://github.com/arnab39/Symmetry-RL

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

performance on eight games and achieves a higher score
than any other previous method on 13 out of the 26 games.

In order to better understand the effect of various modeling
choices, loss functions and implementation details on the
performance, we now consider different variations of EqR,
with the same augmentation as the baseline for ablation
studies.

Choice of Group To understand the role of the choice of
a group in the embedding space, we use our EQR model
with Lg. This variation of EqR is similar to DeepMDP
(Gelada et al., 2019), except for the group structured latent
embedding space and group action-based state transition. In
order to investigate the effect of the above two group-related
constructs, we remove them and use an action encoder to
predict the next states directly, referring to this as MLP
which makes it like as DeepMDP but with normalized mean
square error loss for the model learning part.

Loss functions Figure 5(b) compares the performance of
EqgR with different loss components. Using EqR with the
default L 4 g results in a considerable improvement over
Rainbow with augmentation (note that this is still using
symmetry-based representation and transition with SFE(2)
subgroup blocks.) Adding L g7 improves the performance
slightly, while adding only L improves the performance
even further. We hypothesize that the reward loss plays a
role in both preventing representation collapse and preserv-
ing more information about the reward distribution in the la-
tent state embeddings. Adding both Lg g and L i improves
the performance only slightly. The reason why the contri-
bution of Lggr is not significant is likely that this prior
of a equivariant transition model with respect to symmetry
transformations of state-actions is too restrictive for some
games, while being beneficial for others. Notably, in 17 out
of a total of 26 games, including this loss term leads to a sta-
tistically significant boost in performance. These 17 games
are: ‘Alien’, ‘BankHeist’, ‘BattleZone’, ‘Boxing’, ‘Chopper-
Command’, ‘CrazyClimber’, ‘DemonAttack’, ‘Freeway’,
‘Hero’, ‘Jamesbond’, "MsPacman’, ‘Pong’, ‘PrivateEye’,
‘Qbert’, ‘RoadRunner’, ‘Seaquest’, ‘UpNDown’. The full
list of game-wise scores for the ablation studies are pre-
sented in Tables 3 and 4 in Appendix B.1. Further, to show
that our model is learning the symmetry in the latent space
we provide the combined loss plots Lsgr and Lggr in
Appendix B.2.

8. Conclusion

In this paper, we introduced a latent variable model for rep-
resentation learning in RL, considering both equivariance
to an agent’s action and symmetry transformations in the
environment. The proposed model has the capacity to be-
come equivariant to non-linear symmetry transformations

of state-actions.

We have considered three major symmetry-related con-
structs within a single coherent framework. First, we use
the group equivariant state and action embedding, which
we achieve through Lie parameterization. We believe our
Lie parameterization will have applications beyond RL, for
learning symmetric representations. The world modeling
constraints further ensure that the transformations captured
by the equivariant embedding are relevant. Second, the
equivariance to agent’s action, which when combined with
group equivariant embeddings, ensures that the state transi-
tions are captured by symmetry transformations in the latent
space. Our empirical results suggest the importance of these
two components on improving performance in Atari games
with limited data. However, symmetry in RL can also appear
in the form of a symmetric MDP. By this we mean that not
only are the state and action embeddings equivariant, and
that the transition model uses group transformation, but also
that the latent transition model itself is equivariant under
symmetry transformations of state-action pairs. This is a
stricter constraint, and we found it marginally helpful in
some settings of Atari games.

In future work we aim to explore the application of our
approach in model-based RL, its ability to generalize across
tasks, and its evaluation in more symmetric environments,
such as those in Mujoco. We also plan to further investigate
theoretically grounded methods for combining both sym-
metric and asymmetric aspects of the environment in our
model.

Acknowledgments

We thank the reviewers for their valuable feedback. We are
grateful to Tara Akhound-Sadegh for discussions on Lie pa-
rameterization and for sharing the sliding ball environment’s
implementation. This research was supported by funds from
NSERC and by a CIFAR AI chair. Computational resources
were provided by Mila and Compute Canada.

References

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,
and Bellemare, M. G. Deep reinforcement learning at
the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588(7836):77-82, 2020.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

tions on pattern analysis and machine intelligence, 35(8):

1798-1828, 2013.

Bloem-Reddy, B. and Teh, Y. W. Probabilistic symmetries
and invariant neural networks. J. Mach. Learn. Res., 21:
90-1, 2020.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885-890, 2019.

Caselles-Dupré, H., Garcia Ortiz, M., and Filliat, D.
Symmetry-based disentangled representation learning re-
quires interaction with environments. Advances in Neural
Information Processing Systems, 32:4606-4615, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597-1607. PMLR, 2020.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile re-
gression. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Francgois-Lavet, V., Henderson, P., Islam, R., Bellemare,
M. G., and Pineau, J. An introduction to deep reinforce-
ment learning. arXiv preprint arXiv:1811.12560, 2018.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Belle-
mare, M. G. Deepmdp: Learning continuous latent space
models for representation learning. In International Con-
ference on Machine Learning, pp. 2170-2179. PMLR,
2019.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Pires, B., Guo, Z., Azar,
M., et al. Bootstrap your own latent: A new approach to
self-supervised learning. In Neural Information Process-
ing Systems, 2020.

Hafner, D, Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019a.

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, pp. 2555-2565. PMLR, 2019b.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

Higgins, L., Pal, A., Rusu, A., Matthey, L., Burgess, C.,
Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,

A. Darla: Improving zero-shot transfer in reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 1480-1490. PMLR, 2017.

Higgins, 1., Amos, D., Pfau, D., Racaniere, S., Matthey, L.,
Rezende, D. J., and Lerchner, A. Towards a definition
of disentangled representations. ArXiv, abs/1812.02230,
2018.

Kaiser, L., Babaeizadeh, M., Mitos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model based reinforcement
learning for atari. In International Conference on Learn-
ing Representations, 2019.

Kielak, K. P. Do recent advancements in model-based deep
reinforcement learning really improve data efficiency?
2019.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
arXiv preprint arXiv:2004.14990, 2020a.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639-5650. PMLR, 2020b.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334-1373, 2016.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified
theory of state abstraction for mdps. ISAIM, 4:5, 2006.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, L., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533, 2015.

Mondal, A. K., Nair, P, and Siddiqi, K. Group equiv-
ariant deep reinforcement learning. arXiv preprint
arXiv:2007.03437, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32:8026-8037, 2019.

Quessard, R., Barrett, T. D., and Clements, W. R. Learning
group structure and disentangled representations of dy-
namical environments. arXiv preprint arXiv:2002.06991,
2020.

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

Ravindran, B. and Barto, A. G. Symmetries and model
minimization in markov decision processes. Technical
report, USA, 2001.

Ravindran, B. and Barto, A. G. Model minimization in hier-
archical reinforcement learning. In International Sympo-
sium on Abstraction, Reformulation, and Approximation,
pp. 196-211. Springer, 2002.

Ravindran, B. and Barto, A. G. Smdp homomorphisms: an
algebraic approach to abstraction in semi-markov deci-
sion processes. In Proceedings of the 18th international
Jjoint conference on Artificial intelligence, pp. 1011-1016,
2003.

Ravindran, B. and Barto, A. G. An algebraic approach to
abstraction in reinforcement learning. 2004.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D.,
Courville, A., and Bachman, P. Data-efficient reinforce-
ment learning with self-predictive representations. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=uCQfPZwRaUu.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the

game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

Stooke, A. and Abbeel, P. rlpyt: A research code base for
deep reinforcement learning in pytorch. arXiv preprint
arXiv:1909.01500, 2019.

Taylor, J. Lax probabilistic bisimulation. 2008.

Thomas, V., Pondard, J., Bengio, E., Sarfati, M., Beaudoin,
P, Meurs, M.-]., Pineau, J., Precup, D., and Bengio,
Y. Independently controllable features. arXiv preprint
arXiv:1708.01289, 2017.

van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling,
M. Plannable approximations to mdp homomorphisms:
Equivariance under actions. In Proceedings of the 19th In-

ternational Conference on Autonomous Agents and Mul-
tiAgent Systems, pp. 1431-1439, 2020a.

van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., and
Welling, M. Mdp homomorphic networks: Group sym-
metries in reinforcement learning. Advances in Neural
Information Processing Systems, 33, 2020b.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use
parametric models in reinforcement learning? Advances
in Neural Information Processing Systems, 32:14322—
14333, 2019.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In International conference on
machine learning, pp. 1995-2003. PMLR, 2016.

Yarats, D., Kostrikov, L., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=GY6-6sTvGat.

Zbontar, J., Jing, L., Misra, 1., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. arXiv preprint arXiv:2103.03230, 2021.

Zinkevich, M. and Balch, T. Symmetry in markov deci-
sion processes and its implications for single agent and
multi agent learning. In In Proceedings of the 18th In-
ternational Conference on Machine Learning. Citeseer,
2001.

https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

A. Subgroup blocks and their parameterization
A.1. Choice of group

Atari games differ in their style of play, their objectives, the symmetry transformations of both the agent and other objects
on the screen and associated symmetry transformation of the agent’s action. But most of these games include symmetry
transformations. For example, the screen often has multiple objects undergoing two dimensional translations and rotations.
In this case one can use blocks of the 2D Special Euclidean Group SE(2). Each such block can capture the transformation
of a particular object in the screen, including the agent. One can also use more restrictive subgroup blocks like 7'(2), which
capture only 2D translations. For more realistic 3D environments, such as those of interest in robotics, self-driving cars and
third person games, one can use SE(3), which is the group of 3D translations and rotations. This should capture both the
transformations of the objects in the environment and changes in viewpoint due to the agent’s actions.

QM Optimality Gap
EqR, GL(2) I I
EqR, SE(2) I I
EgR, T(2) I 1
MLP I 1
Rainbow w/ aug ™ 1

024 032 040 048 056 064 072
Human Normalized Score

Figure 6. Plots of Interquartile Mean (IQM) and Optimality Gap computed from human-normalized scores, showing the point estimates
along with 95% confidence intervals (over 10 runs for all methods). A higher IQM and a lower optimality gap reflects better performance.
The plot shows the proposed model with different group choices for all 26 games.

We further test models with other subgroups including 7°(2) and GL(2). Figure A.1 shows that adding a symmetry-based
inductive bias in the model by making the embeddings group representations and modeling the transitions as group actions
is indeed helpful. The success of the model which uses SE(2) blocks might be attributed to the fact that translations and
rotations are the most common types of symmetry transformations present in Atari games. However, the more restrictive
T'(2) slightly hurts the performance, while the more general GL(2) performs similarly to the MLP model.

A.2. Implementing parameterization

We consider three types of subgroups: GL(n) - the set of all invertible linear transformations, SE(n) - the set of all rotations
and translations and T(n) - the set of all translations. We provide a general method to parameterize each of these, based on
the type of group.

GL(n) As the matrix representation of GL(n) is the set of invertible matrices which has a measure of 1 it is easy to
parameterize it. We just generate n? parameters using a network corresponding to each element of the matrix. This gives an
element from GL(n).

T(m) As T(n) just denotes translation in a n-dimensional space with group action being addition, implementing it is
straightforward. We generate n parameters using a neural network and instead of using matrix multiplication use addition
for the group action. Note that we can also use a matrix representation for T(n) but it is unnecessary and inefficient.

SE(n) Unlike GL(n) and T(n), parameterizing SE(n) is a bit tricky because it involves parameterizing SO(n). We use a
R
0

parameters for SO(n) from the neural network. As explained in Section 4, we can use a

homogeneous co-ordinate based representation of SE(n) = {(i) ,ReSO(n)andte T(n)} So we need n parameters

for the ¢ and another D = @

Lie parameterization to get the elements of SO(n) by R = exp(X2, B4 E?) where E(¥) denote D bases of the space of
skew symmetric matrices and the (3;s are the parameters of the neural network. For example, in the case of SO(2) we can

use the basis E() = (0

1 (1)) . Similarly, we can extend this to SO(n) by using a basis given by D n x n matrices E()

V{1 <4< j < n} whose only non-zero elements are EELJJ) = _1and Eglf) -1,

Although Lie parameterization gives us a general recipe to output a representation of simple connected Lie groups like

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

SO(n), in our implementation we use Euler parameterization because it runs faster in Pytorch. We provide the code for
both. Following (Quessard et al., 2020), we parameterize each rotation matrix in SO(n) using the product of rotations on D
orthogonal planes in R™: R = [TjL; [Ti<;cj<n, R*. Here R € R™" is the rotation matrix in the i — j plane, and its non-zero
elements besides the diagonal are the four values on the ¢, j rows and columns, which comprise the 2D rotation matrix that
cos(0;;) sin(6;;)

is R, = . . We have D parameters 6; ; which we can obtain from a neural network.

©J —Sln(ei,j) COS(HZ‘J') ’
The parameters in all the parameterization techniques mentioned here can be back-propagated. We summarize the number
of parameters required from a neural network output, representation type and the associated group actions of different

subgroups in Table 1.

Table 1. Group Properties

Subgroup block type #Parameters Representation type Group action

General Linear - GL(n) n? Matrix,, xn Matrix multiplication
Special Euclidean - SE(n) nncd) 4 MatriX(,+1)x(n+1) ~ Matrix multiplication
Special Orthogonal - SO(n) w Matrix,xp, Matrix multiplication

Translation - T'(n) n Vector,, Addition

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

B. Atari Details
B.1. Full Results

We provide individual results on the 26 Atari games after 100K training steps. Our results are averaged over 10 seeds,
and the network architectures and full list of hyperparameters used to produce them are provided in Appendix B.4 and
Appendix B.6.

* Table 2 compares our two best performing EqR models using SFE(2) subgroup blocks with other methods.

» Table 3 compares different choices of subgroup blocks with the reward loss, L, included for all EQR models (also see
Figure 6 (a)).

* Table 4 compares EqR using SE(2) subgroup blocks with different loss terms included in the training objective (see
Section 5 and Figure 6 (b)). The action equivariance transition loss, L 4 g is always included for EqQR models.

Table 2. Mean game scores on the 26 Atari games after 100K environment steps. The EqR models use SE(2) subgroup blocks along
with an action equivariant transition loss, L 4 g7, and are averaged over 10 seeds.

Game Random Human SimPLe DER CURL DrQ SPR EqR, Lr EqR, Lr + Lger
Alien 227.8 7127.7 616.9 739.9 558.2 771.2 801.5 774.0 872.9
Amidar 5.8 1719.5 88.0 188.6 142.1 102.8 176.3 140.9 138.4
Assault 2224 742.0 527.2 431.2 600.6 4524 571.0 753.8 734.3
Asterix 210.0 8503.3 11283 470.8 734.5 603.5 977.8 923.2 902.5
Bank Heist 14.2 753.1 34.2 51.0 131.6 168.9 380.9 395.1 3974
BattleZone 2360.0 37187.5 51844 10124.6 14870.0 12954.0 16651.0 13044.0 13255.0
Boxing 0.1 12.1 9.1 0.2 1.2 6.0 35.8 37.5 39.2
Breakout 1.7 30.5 16.4 1.9 4.9 16.1 17.1 17.2 16.0
ChopperCommand 811.0 7387.8 1246.9 861.8 1058.5 780.3 974.8 1073.5 1142.2
Crazy Climber 10780.5 35829.4 62583.6 161853 12146.5 20516.5 42923.6 49399.0 52008.1
Demon Attack 152.1 1971.0 208.1 508.0 817.6 11134 545.2 531.4 532.1
Freeway 0.0 29.6 20.3 279 26.7 9.8 244 24.1 252
Frostbite 65.2 4334.7 254.7 866.8 1181.3 331.1 1821.5 1855.6 1699.4
Gopher 257.6 2412.5 771.0 349.5 669.3 636.3 715.2 1010.0 912.1
Hero 1027.0 308264 2656.6 6857.0 62793 37363 7019.2 5775.2 6118.5
Jamesbond 29.0 302.8 125.3 301.6 471.0 236.0 365.4 312.8 319.7
Kangaroo 52.0 3035.0 323.1 779.3 872.5 940.6 3276.4 3569.3 3296.0
Krull 1598.0 2665.5 45399 28515 4229.6 4018.1 3688.9 5614.5 5467.7
Kung Fu Master 258.5 227363 17257.2 14346.1 14307.8 9111.0 13192.7 18511.0 17510.9
Ms Pacman 307.3 6951.6 1480.0 1204.1 1465.5 960.5 1313.2 1317.1 1663.5
Pong -20.7 14.6 12.8 -19.3 -16.5 -8.5 -5.9 -6.0 -6.1
Private Eye 24.9 69571.3 58.3 97.8 2184 -13.6 124.0 76.6 88.9
Qbert 163.9 13455.0 1288.8 1152.9 1042.4 854.4 669.1 773.8 814.9
Road Runner 11.5 7845.0 5640.6 9600.0 5661.0 8895.1 14220.5 13385.0 13708.8
Seaquest 68.4 42054.7 683.3 354.1 384.5 301.2 583.1 650.3 697.9
Up N Down 5334 11693.2 3350.3 2877.4 29552 3180.8 28138.5 442954 521184
Mean Human-Norm’d 0.000 1.000 0.443 0.285 0.381 0.357 0.704 0.859 0.886
Median Human-Norm’d 0.000 1.000 0.144 0.161 0.175 0.268 0.415 0.418 0.398
Superhuman games 0 N/A 2 2 2 2 7 8 7
B.2. Loss Plots

We provide the combined loss plots for symmetry-based losses (L 4 g7 and Lggr) for 4 of the 26 games to verify that the
model is indeed minimizing the losses and learning symmetry in the latent. The loss plots of the rest of the games follow the
same pattern.

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

Table 3. Mean game scores on the 26 Atari games after 100K environment steps for different choices of subgroup blocks, averaged over
10 seeds. The reward loss, L g, is included in addition to the default loss L sg7.

Game Random Human MLP EqR,7> EgR, SE: EqR,GL,
Alien 227.8 7127.7 780.1 846.4 774.0 881.3
Amidar 5.8 1719.5 143.3 139.7 140.9 132.2
Assault 222.4 742.0 701.5 684.0 753.8 692.3
Asterix 210.0 8503.3 973.6 1004.4 923.2 889.5
Bank Heist 14.2 753.1 402.1 353.5 395.1 430.2
BattleZone 2360.0 37187.5 12722.6 11500.0 13044.0 13114.0
Boxing 0.1 12.1 38.0 28.9 37.5 334
Breakout 1.7 30.5 16.2 14.8 17.2 154
ChopperCommand 811.0 7387.8 989.5 1028.9 1073.5 1088.1
Crazy Climber 10780.5 35829.4 43705.8 50822.1 49399.0 55018.5
Demon Attack 152.1 1971.0 518.6 544.2 531.4 510.2
Freeway 0.0 29.6 20.3 18.5 24.1 21.4
Frostbite 65.2 4334.7 1702.4 1653.8 1855.6 1797.7
Gopher 257.6 2412.5 720.2 1012.5 1010.0 894.4
Hero 1027.0 30826.4 6840.0 5779.8 5775.2 5934.7
Jamesbond 29.0 302.8 337.4 313.25 312.8 334.8
Kangaroo 52.0 3035.0 2994.8 2942.5 3569.3 3186.4
Krull 1598.0 2665.5 3801.5 5293.0 5614.5 5772.6
Kung Fu Master 2585 227363 13780.4 149242 18511.0 16002.8
Ms Pacman 307.3 6951.6 1220.8 1166.8 1317.1 1147.7
Pong -20.7 14.6 -6.1 -11.5 -6.0 -8.2
Private Eye 249 69571.3 724 65.1 76.6 559
Qbert 163.9 13455.0 6784 763.2 773.8 635.2
Road Runner 11.5 7845.0 12765.2 13654.2 13385.0 12560.4
Seaquest 68.4 42054.7 656.9 647.3 650.3 633.3
Up N Down 533.4 11693.2 23130.6 58164.4 442954 43767.2
Mean Human-Norm’d 0.000 1.000 0.681 0.829 0.859 0.833
Median Human-Norm’d 0.000 1.000 0.398 0.361 0.418 0.380
Superhuman games 0 N/A 6 6 8 7
ModelGroupLoss ModelGroupLoss ModelGroupLoss ModelGroupLoss
0.025
0.02 0.01
0.02 0.015
0.015 0.008
0.015
0.006 0.01
0.01
0-01 0.004
0.005 0005 5000 0.005
. Step . Step . Step . Step
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
(@) (b) © (d)

Figure 7. Loss Lapr + Laer vs. training steps (in 10,000s) of (a) Boxing (b) Krull. (c) Kung Fu Master (d) Up N Down

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

Table 4. Mean game scores on the 26 Atari games after 100K environment steps for EqR using S E(2) subgroup blocks with different
loss terms included in the training objective. The action equivariance transition loss, L 4 g, is included for all EqQR models and the scores
are averaged over 10 seeds.

Game Random Human EqR EqR,Lr EqR, Lger EqR,Lr+ Lger
Alien 227.8 7127.7 856.5 774.0 862.5 872.9
Amidar 5.8 1719.5 134.7 140.9 135.0 138.4
Assault 222.4 742.0 643.1 753.8 701.3 734.3
Asterix 210.0 8503.3 824.8 923.2 864.9 902.5
Bank Heist 14.2 753.1 407.3 395.1 335.9 3974
BattleZone 2360.0 37187.5 12805.6 13044.0 12990.4 13255.0
Boxing 0.1 12.1 32.7 37.5 34.8 39.2
Breakout 1.7 30.5 14.6 17.2 14.8 16.0
ChopperCommand 811.0 7387.8 1015.6 1073.5 934.8 1142.2
Crazy Climber 10780.5 35829.4 38483.9 49399.0 43085.6 52008.1
Demon Attack 152.1 1971.0 523.8 531.4 504.6 532.1
Freeway 0.0 29.6 22.1 24.1 22.5 25.2
Frostbite 65.2 4334.7 1635.2 1855.6 1563.9 1699.4
Gopher 257.6 2412.5 695.3 1010.0 789.3 912.1
Hero 1027.0 308264 5763.9 5775.2 5603.8 6118.5
Jamesbond 29.0 302.8 388.4 312.8 344.9 319.7
Kangaroo 52.0 3035.0 2667.9 3569.3 2848.7 3296.0
Krull 1598.0 2665.5 4209.2 5614.5 4411.2 5467.7
Kung Fu Master 258.5 227363 122879 18511.0 16394.6 17510.9
Ms Pacman 307.3 6951.6 1141.3 1317.1 1514.7 1663.5
Pong -20.7 14.6 -9.9 -6.0 -6.5 -6.1
Private Eye 249 69571.3 73.2 76.6 87.5 88.9
Qbert 163.9 13455.0 696.7 773.8 736.8 814.9
Road Runner 11.5 7845.0 12659.2 13385.0 13110.4 13708.8
Seaquest 68.4 42054.7 593.6 650.3 641.0 697.9
Up N Down 533.4 11693.2 294254 442954 39076.6 52118.4
Mean Human-Norm’d 0.000 1.000 0.682 0.859 0.749 0.886
Median Human-Norm’d ~ 0.000 1.000 0.337 0.418 0.377 0.398

Superhuman games 0 N/A 6 8 6 7

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

B.3. Model schematic
Lg
I /r\o
Reward 4 tawm
Loss TieM
A
I
I
r
—
e e e o o e i SteM
Q-learning w
I
(Rainbow) T
|
XM
Pc p
Action
Equivariant ZieM Z44M
S
KgK(*1, 1) Loss
T
L et
|_ _______________________________ 1
a .
Group I latent representation —i» action dependent state :
— I
Equivariant Yy 4q | p transition in the environment |
Loss L ! 2% function with parameter @ > copy of parametric function f :
CET I (no gradient flow) !
Ps . L |
: —» linear group action in the <> non-linear group action in |
! latent space the original state space :

Figure 8. A schematic of the EqR model, applied to model-free RL. Green in the framework corresponds to learning equivariance under
the agent’s action and red corresponds to learning equivariance of the transition model with respect to symmetry transformation of the
state-action. This color scheme is consistent with Figure 2. The part of the framework that corresponds to reward matching and Q-learning
is shown in blue and brown respectively. The arrows in the schematic are differentiated by their heads and are described in the legend.

B.4. Network Architecture

We follow the baseline RL implementation of DrQ (Yarats et al., 2021) and SPR (Schwarzer et al., 2021) by using the
3-layer convolutional encoder from (Mnih et al., 2015) and then use a linear layer to get the parameters for the Group
Parameterization. The output size of this layer varies depending on the group type, the number of blocks used and the size of
the group. This defines our 7y. Note that the output of our encoder is a matrix for GL(n) and SE(n). We flatten it before
we feed to other neural network like the Q-head ge(-).

For the action encoder x(-) we use a simple 1 layer MLP with batchnorm, ReLU and a hidden size of 256. We concatenate
the one-hot encodings of the actions with the state representations coming from 7y and pass it through the action encoder to
get matrix representation of the group after parameterization.

For the reward predictor network r,, we use a 2-layered MLP with batchnorm, ReL.U and a hidden size of 256.
For the Q-head ¢¢(-) we use 2-layered MLP as well.

For the projection head p¢ () we share the first layer of Q-head whereas for projection head b, (-) we use a single layer MLP.

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

B.5. Algorithm

Algorithm 1 Equivariant Representations for RL

Denote the parameters of online networks 7y, K4, P¢, by as ©,
Denote the parameters of target networks 7, x, p, b as O,
Denote the parameters of networks p,,, q: as ®
Denote the dept of the prediction as M and batch size as [NV
Initialize the replay buffer B
while Training do
Collect {s,a,r, s’} using policy with (©,, ®) and add to the buffer B
Sample a minibatch of M length sequences {so:.ar, @o:ar, To:01 + ~ B
for 7 in range(0, V) do
if augmentation then
sty < augment(sh.r)
end if
xl < 7o(s{) {state representation}
&8 < xh
I'<0
for k in range(1, M + 1) do
&}, < ky(&},_y,aj,_y)}, {state transition by group action}
fi < 7(s k){target state representation }
< pe(}). . < pe(a}) {projetions)
li <+ Hzt+k|\2 |2{compute L g7 at step k}
Py (2 k){predlct rewards }
li < 1"+ M| —ri|%2{compute L, at step k}
end for
J ~{0,.., N = 1}{uniformly sample an index}
T}« T(so){encode the state for that index from the batch}

Tg = xozo {ﬁnd the group representation}

:ijl 742} {next state by group action}
jrjl < Puw (7';)/@(%, a(’))jé{next state by action-embedding}
i< by(#1), 91 < b(f{){pmjections}

U I+ Xl e, — i |3 {compute Lapr}
I' < I" + RLloss(2}, ab, v, 745 qe)
end for

l< YN, 1;{average over minibatch}
O,, P < optmize((O,, ®),1){update online networks}
O, < O,{copy weights to target networks}

end while

EqR: Equivariant Representations for Data-Efficient Reinforcement Learning

B.6. Hyperparameters

In this section, we provide the full set of hyperparameters in our model. As mentioned earlier, our baseline RL algorithm
closely follows SPR’s (Schwarzer et al., 2021) implementation of Rainbow and hence we use most of their hyperparameters
setting in order to be able to compare to them. Note that the weights of L - A1, Lagr - A2 and Lggr - A3 are set to one
whenever they are used in the model.

Table 5. Hyperparameters for ErQ (including variations) on Atari.

Parameter Setting
Gray-scaling True
Observation down-sampling 84 x 84
Frames stacked 4
Action repetitions 4
Reward clipping [-1,1]
Terminal on loss of life True
Max frames per episode 108K
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: /31 0.9
Optimizer: (52 0.999
Optimizer: e 0.00015
Max gradient norm 10
Priority exponent 0.5
Priority correction 04-1
Exploration Noisy nets
Noisy nets parameter 0.5
Training steps 100K
Evaluation trajectories 100
Min buffer size for sampling 2000
Replay period every 1 step
Updates per step 2
Multi-step return length 10
Prediction depth, M 5
A1 1
A2 1
A3 1
Data Augmentation Random shifts (+4 pixels)

Intensity(scale=0.05)
Parameter Setting (T3) Setting (SE5) Setting (GL-)
Num Blocks (K) 32 12 12

Group Action Addition MatMul MatMul

