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Abstract

Stochastic gradient descent (SGD) undergoes
complicated multiplicative noise for the mean-
square loss. We use this property of SGD
noise to derive a stochastic differential equation
(SDE) with simpler additive noise by perform-
ing a random time change. Using this formal-
ism, we show that the log loss barrier ∆ logL =
log[L(θs)/L(θ∗)] between a local minimum θ∗

and a saddle θs determines the escape rate of SGD
from the local minimum, contrary to the previous
results borrowing from physics that the linear loss
barrier ∆L = L(θs)− L(θ∗) decides the escape
rate. Our escape-rate formula strongly depends
on the typical magnitude h∗ and the number n of
the outlier eigenvalues of the Hessian. This result
explains an empirical fact that SGD prefers flat
minima with low effective dimensions, giving an
insight into implicit biases of SGD.

1. Introduction
Deep learning has achieved breakthroughs in various ap-
plications in artificial intelligence such as image classifica-
tion (Krizhevsky et al., 2012; LeCun et al., 2015), speech
recognition (Hinton et al., 2012), natural language process-
ing (Collobert & Weston, 2008), and natural sciences (Iten
et al., 2020; Bapst et al., 2020; Seif et al., 2021). Such
unparalleled success of deep learning hinges crucially on
stochastic gradient descent (SGD) and its variants as an
efficient training algorithm.

Although the loss landscape is highly nonconvex, the SGD
often succeeds in finding a global minimum. It has been
argued that the SGD noise plays a key role in escaping
from local minima (Jastrzȩbski et al., 2017; Wu et al., 2018;
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2020; Zhu et al., 2019; Meng et al., 2020; Xie et al., 2021;
Liu et al., 2021). It has also been suggested that SGD has
an implicit bias that is beneficial for generalization. For
example, SGD may help the network to find flat minima,
which are considered to imply good generalization (Keskar
et al., 2017; Hoffer et al., 2017; Wu et al., 2018; Pittorino
et al., 2022). How and why does SGD help the network
escape from bad local minima and find flat minima? These
questions have been addressed in several works, and it is
now recognized that the SGD noise strength and structure
significantly affect the efficiency of escape from local min-
ima. Our work follows this line of research and adds new
theoretical perspectives.

In physics and chemistry, escape from a local minimum of
the energy landscape due to thermal noise at temperature
T is a thoroughly studied fundamental problem (Kramers,
1940; Eyring, 1935). When the energy barrier is given
by ∆E, the escape rate is proportional to e−∆E/T , which
is known as the Arrhenius law. By analogy, in machine
learning, escape from a local minimum of the loss function
is considered to be determined by the loss barrier height
∆L = L(θs)−L(θ∗), where L(θ) denotes the loss function
at the network parameters θ, θ∗ stands for a local minimum
of L(θ), and θs denotes a saddle point that separates θ∗

from other minima. Indeed, if we assume that the SGD
noise is uniform and isotropic, which is often assumed in
machine-learning literature (Jastrzȩbski et al., 2017), the
escape rate is proportional to e−∆L/D, where D denotes the
SGD noise strength.

In this paper, we show that inhomogeneity of the SGD noise
strength in the parameter space brings about drastic modifi-
cation for the mean-square loss. We show that the escape
rate is determined by the logarithmic loss barrier height
∆ logL = logL(θs) − logL(θ∗) = log[L(θs)/L(θ∗)]. In
other words, the escape rate is determined not by the differ-
ence but by the ratio of L(θs) and L(θ∗). This result means
that even if the loss barrier height ∆L is the same, minima
with smaller values of L(θ∗) are more stable.

Moreover, given the fact that the eigenvalue spectrum of
the Hessian at a minimum consists of a bulk of almost
zero eigenvalues and outliers (Sagun et al., 2017; Papyan,
2019), our escape-rate formula implies that SGD prefers flat
minima with a low effective dimension, where the effective
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dimension is defined as the number of outliers (MacKay,
1992) and flatness is measured by a typical magnitude of
outlier eigenvalues (Keskar et al., 2017). The previous the-
ories (Jastrzȩbski et al., 2017; Wu et al., 2018; Zhu et al.,
2019; Meng et al., 2020; Xie et al., 2021; Liu et al., 2021)
have also successfully explained the fact that SGD prefers
flat minima, but not the preference of small effective dimen-
sions. The logarithmic loss naturally explains the latter, and
sheds light on implicit biases of SGD.

Main contributions: We obtain the following main results:

• We derive an equation for approximating the SGD
noise in Eq. (6). Remarkably, the SGD noise strength
in the mean-square loss is shown to be proportional to
the loss function, which is experimentally verified in
Section 5.2. A key ingredient in deriving Eq. (6) is the
decoupling approximation given in Eq. (7). This is a
novel approximate method introduced in our analysis,
and hence we experimentally verify it in Section 5.1.

• We derive a novel stochastic differential equation
(SDE) in Eq. (14) via a random time change intro-
duced in Eq. (13). Although the original SDE (4) has a
multiplicative noise, the transformed SDE (14) has a
simple additive noise with the gradient of the logarith-
mic loss. This shows the relevance of the logarithmic
loss landscape for understanding SGD.

• We derive a novel form of SGD escape rate from a
local minimum in Eq. (15). Remarkably, the escape
rate takes the power-law form with respect to the ratio
between L(θ∗) and L(θs). In Section 5.3, we exper-
imentally test the validity of this result for a linear
regression and a neural network.

• We show that the escape rate of SGD crucially depends
on the flatness and the effective dimension, which im-
plies that SGD has implicit biases towards flat minima
with low effective dimension. We also show in Eq. (16)
that a local minimum with an effective dimension n
greater than a certain critical value nc becomes unsta-
ble.

Related works: The role of the SGD noise structure has
been discussed in some previous works (Zhu et al., 2019;
Xie et al., 2021; Liu et al., 2021; Meng et al., 2020; Wo-
jtowytsch, 2021). It was pointed out that the anisotropic
nature of the SGD noise is important: the SGD noise covari-
ance matrix is aligned with the Hessian of the loss function,
which is beneficial for escape from sharp minima (Zhu et al.,
2019; Xie et al., 2021; Liu et al., 2021). These previous
works, however, do not take the parameter dependence of
the SGD noise strength into account, and consequently, es-
cape rates derived there depend exponentially on the loss
barrier height, which differs from our formula.

Compared with the anisotropy of the SGD noise, the inho-
mogeneity of the SGD noise strength has been less explored.
In (Meng et al., 2020; Wojtowytsch, 2021), the SGD dynam-
ics under a state-dependent noise is discussed. However,
in these previous works, the connection between the noise
strength and the loss function was not theoretically estab-
lished, and the logarithmic loss landscape was not discussed.
The instability due to large effective dimensions was also
not shown. Another recent work (Pesme et al., 2021) ob-
served that the noise is proportional to the loss for specific
simple models. In our paper, such a result is derived for
more generic models. Gürbüzbalaban et al. (2021) showed
that SGD will converge to a heavy-tailed stationary distri-
bution due to a multiplicative nature of the SGD noise in
a simple linear regression problem. Our paper strengthens
this result: we argue that such a heavy-tailed distribution
generically appears for the mean-square loss.

2. Background
2.1. Setup

We consider supervised learning. Let D = {(x(µ), y(µ)) :
µ = 1, 2, . . . , N} be the training dataset, where x(µ) ∈ Rd
denotes a data vector and y(µ) ∈ R be its label. The network
output for a given input x is denoted by f(θ, x) ∈ R, where
θ ∈ RP stands for a set of trainable parameters with P
being the number of trainable parameters. In this work, we
focus on the mean-square loss

L(θ) =
1

2N

N∑
µ=1

[
f(θ, x(µ))− y(µ)

]2
=:

1

N

N∑
µ=1

`µ(θ).

(1)
The training proceeds through optimization ofL(θ). In most
machine-learning applications, the optimization is done via
SGD or its variants. In SGD, the parameter θk+1 at the time
step k + 1 is determined by

θk+1 = θk − η∇LBk(θk), LBk(θ) =
1

B

∑
µ∈Bk

`µ(θ),

(2)
where η > 0 is the learning rate, Bk ⊂ {1, 2, . . . , N} with
|Bk| = B is a mini-batch used at the kth time step, and LBk
denotes the mini-batch loss. Since the training dataset D is
randomly divided into mini-batches, the dynamics defined
by Eq. (2) is stochastic. When B = N , the full training data
samples are used for every iteration. In this case, the dynam-
ics is deterministic and called gradient descent (GD). SGD
is interpreted as GD with stochastic noise. By introducing
the SGD noise ξk = −[∇LBk(θk) − ∇L(θk)], Eq. (2) is
rewritten as

θk+1 = θk − η∇L(θk) + ηξk. (3)

Obviously, 〈ξk〉 = 0, where the brackets denote the average
over possible choices of mini-batches. The noise covariance
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matrix is defined as Σ(θk) := 〈ξkξT
k 〉. The covariance

structure of the SGD noise is important in analyzing the
SGD dynamics, which will be discussed in Section 3.1.

2.2. Stochastic differential equation for SGD

When the parameter update for each iteration is small, which
is typically the case when the learning rate η is sufficiently
small, the continuous-time approximation can be used (Li
et al., 2017; Smith & Le, 2018). By introducing a continuous
time variable t ∈ R and regarding η as an infinitesimal time
step dt, we have a SDE

dθt = −∇L(θt)dt+
√
ηΣ(θt) · dWt, (4)

where dWt ∼ N (0, IP dt) with In being the n-by-n iden-
tity matrix, and the multiplicative noise

√
ηΣ(θt) · dWt is

interpreted as Itô since the noise ξk in Eq. (3) should not
depend on θk+1. Throughout this work, we consider the
continuous-time approximation (4) with Gaussian noise.

In machine learning, the gradient Langevin dynamics (GLD)
is also considered, in which the isotropic and uniform Gaus-
sian noise is injected into the GD as

dθt = −∇L(θt)dt+
√

2DdWt, (5)

where D > 0 corresponds to the noise strength (it is also
called the diffusion coefficient) (Sato & Nakagawa, 2014;
Zhang et al., 2017b; Zhu et al., 2019). The GLD yields an
escape rate proportional to e−∆L/D (Eyring, 1935; Kramers,
1940). We will see in Section 4 that the SGD noise structure,
which is characterized by Σ(θ), drastically alters the escape
rate from a local minimum.

3. Dynamics of SGD
The fluctuation of SGD and the local landscape are the two
most important factors that influence the escaping behavior
of learning. In Sections 3.1 and 3.2, we establish the form of
the noise of SGD and show that under this type of noise, the
relevant landscape for consideration should be logL instead
of L. We then use these two results to derive the escape rate
of SGD in Section 4.

3.1. Structure of the SGD noise covariance

The SGD noise covariance matrix Σ(θ) significantly affects
the dynamics (Jastrzȩbski et al., 2017; Smith & Le, 2018;
Zhu et al., 2019; Ziyin et al., 2021). In this section, under
some approximations, we derive the following expression
of Σ(θ) for the mean-square loss near a local minimum θ∗:

Σ(θ) ≈ 2L(θ)

B
H(θ∗), (6)

where H(θ) = ∇2L(θ) is the Hessian. It should be noted
that ∇L(θ∗) = 0 and H(θ∗) is positive semidefinite at any

local minima θ∗. We give a derivation below and the list of
the approximations and their justifications in Appendix A.
In particular, the following decoupling approximation is a
key assumption in the derivation.

Assumption 3.1 (decoupling approximation). The quan-
tities `µ and C(µ)

f (θ) := ∇f(θ, x(µ))∇f(θ, x(µ))T are un-
correlated, which implies

1

N

N∑
µ=1

`µC
(µ)
f (θ) =

(
1

N

N∑
µ=1

`µ

)
·

(
1

N

N∑
µ=1

C
(µ)
f

)

= L(θ)
1

N

N∑
µ=1

C
(µ)
f (θ). (7)

This approximation seems justified for large networks in
which ∇f behaves as a random vector. In Section 5.1, we
experimentally verify the decoupling approximation for the
entire training dynamics.

Our formula (6) possesses two important properties. First,
the noise is aligned with the Hessian, which is well known
and has been pointed out in the literature (Jastrzȩbski et al.,
2017; Zhu et al., 2019; Xie et al., 2021; Liu et al., 2021).
If the loss landscape has flat directions, which correspond
to the directions of the Hessian eigenvectors belonging to
vanishingly small eigenvalues, the SGD noise does not arise
along these directions. Consequently, the SGD dynamics is
frozen along the flat directions, which effectively reduces
the dimension of the parameter space explored by the SGD
dynamics. This reduction plays an important role in the
escape efficiency. Indeed, we will see that the escape rate
crucially depends on the effective dimension of a given local
minimum.

Second, the noise is proportional to the loss function, which
is indeed experimentally confirmed in Section 5.2. This
property has not been pointed out and not been taken into
account in previous studies (Jastrzȩbski et al., 2017; Zhu
et al., 2019; Xie et al., 2021; Liu et al., 2021) and therefore
gives new insights into the SGD dynamics. Indeed, this
property allows us to formulate the Langevin equation on
the logarithmic loss landscape with simple additive noise
as discussed in Section 3.2. This new formalism yields the
power-law escape rate summarized as Theorem 4.7, and the
importance of the effective dimension of local minima for
their stability.

It should be noted that although Eq. (6) is derived for the
mean-square loss, the proportionality between the noise
strength and the loss function seems to hold for more gen-
eral loss functions such as the cross-entropy loss (see Ap-
pendix D for the detail).

Derivation of Eq. (6): We start from an analytic expression
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of Σ(θ), which reads

Σ(θ) =
1

B

N −B
N − 1

(
1

N

N∑
µ=1

∇`µ∇`Tµ −∇L∇LT

)

' 1

B

(
1

N

N∑
µ=1

∇`µ∇`Tµ −∇L∇LT

)
, (8)

where B � N is assumed in the second equality. The
derivation of Eq. (8) is found in Jastrzȩbski et al. (2017);
Smith & Le (2018). Usually, the gradient noise variance
dominates the square of the gradient noise mean, and hence
the term ∇L∇LT in Eq. (8) is negligible (Shwartz-Ziv &
Tishby, 2017; Zhu et al., 2019).

For the mean-square loss, we have ∇`µ = [f(θ, x(µ)) −
y(µ)]∇f(θ, x(µ)), and hence

Σ(θ) ≈ 2

BN

N∑
µ=1

`µ∇f(θ, x(µ))∇f(θ, x(µ))T

=
2

BN

N∑
µ=1

`µC
(µ)
f (θ) ≈ 2L(θ)

NB

N∑
µ=1

C
(µ)
f (θ), (9)

where the decoupling approximation (7) is used in the last
equality. Equation (9) is directly related to the Hessian of
the loss function near a (local or global) minimum. The
Hessian H(θ) = ∇2L(θ) is written as

H(θ) =
1

N

N∑
µ=1

{
C

(µ)
f (θ)

+
[
f(θ, x(µ))− y(µ)

]
∇2f(θ, x(µ))

}
. (10)

It is shown by Papyan (2018) that the last term of Eq. (10)
does not contribute to outliers (i.e. large eigenvalues) of the
Hessian. The dynamics near a local minimum is governed
by outliers, and hence we can ignore this term. At θ = θ∗,
we therefore obtain

H(θ∗) ≈ 1

N

N∑
µ=1

C
(µ)
f (θ∗). (11)

Let us assume C(µ)
f (θ) ≈ C

(µ)
f (θ∗) for θ within the val-

ley of a local minimum θ∗. We then obtain the desired
expression (6) by substituting it into Eq. (9).

3.2. Logarithmized loss landscape

Let us consider the Itô SDE (4) with the SGD noise co-
variance (6) near a local minimum θ∗, which is written as

dθt = −∇L(θt)dt+

√
2ηL(θt)

B
H(θ∗) · dWt. (12)

Let us consider a stochastic time t(τ) for τ ≥ 0 as

τ =

∫ t(τ)

0

dt′ L(θt′), (13)

and perform a random time change from t to τ (Øksendal,
1998). Correspondingly, we introduce the Wiener process
dW̃τ ∼ N (0, IP dτ). Since dτ = L(θt)dt, we have dW̃τ =√
L(θt) · dWt. In terms of the notation θ̃τ = θt, Eq. (12) is

expressed as

dθ̃τ = − 1

L(θ̃τ )
∇L(θ̃τ )dτ +

√
2ηH(θ∗)

B
dW̃τ

= −
[
∇ logL(θ̃τ )

]
dτ +

√
2ηH(θ∗)

B
dW̃τ . (14)

We should note that at a global minimum with L(θ) = 0,
which is realized in an overparameterized regime (Zhang
et al., 2017a), the random time change through Eq. (13) is
ill-defined since τ is frozen at a finite value once the model
reaches a global minimum. We can overcome this difficulty
by adding an infinitesimal constant ε > 0 to the loss, which
makes the loss function positive without changing the finite-
time dynamics like the escape from a local minimum θ∗

with L(θ∗) > 0.

In this way, the Langevin equation on the loss landscape
L(θ) with multiplicative noise is transformed to that on
the logarithmic loss landscape U(θ) = logL(θ) with sim-
pler additive noise. This formulation indicates the im-
portance of considering the logarithmic loss landscape
U(θ) = logL(θ). In the following, we use Eq. (14) to
discuss the escape efficiency from local minima.

4. Escape rate from local minima
Now we present our main result on the escape from a local
minimum θ∗. First, we formally define some key concepts
regarding the escape problem.

Definition 4.1 (basin of attraction). For a given local min-
imum θ∗, its basin of attraction Aθ∗ (or a valley of θ∗)
is defined as the set of all the starting points θ0 such that
θt → θ∗ as t→∞ when there is no noise.

Definition 4.2 (escape rate). We denote by P ∗ the total
probability within Aθ∗ and by J the total flux of the proba-
bility current across the boundary of Aθ∗ .1 The escape rate
κ is then defined as J /P ∗ (Kramers, 1940).

1By defining the probability current density J(θ, t) via the
continuity equation ∂P (θ, t)/∂t = −∇J(θ, t) for the probabil-
ity distribution P (θ, t) of θ at time t, J is explicitly given by
J =

∫
Aθ∗

dθ∇ · J(θ, t) =
∫
∂Aθ∗

da · J(θ, t), where the second
equality follows from Gauss’ law. Here, ∂Aθ∗ denotes the bound-
ary ofAθ∗ and da is a vector representing an infinitesimal element
of area of the surface.
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We now calculate the asymptotic behavior of the escape rate
in the weak-noise limit η/B → +0, which has been inves-
tigated in many fields, including physics (Kramers, 1940;
Langer, 1969), chemistry (Eyring, 1935), stochastic pro-
cesses (Bovier et al., 2004; Berglund, 2013), and machine
learning (Jastrzȩbski et al., 2017; Xie et al., 2021). In these
previous studies, the following two basic assumptions are
commonly used, which are expected to hold in the weak-
noise limit. Indeed, the Kramers formula (Kramers, 1940),
which is obtained by using Assumptions 4.3 and 4.4 below,
is rigorously justified (Bovier et al., 2004).

Assumption 4.3 (quasi-stationary approximation). The pa-
rameters θ obey the quasi-stationary distribution near θ∗,
which is identified as the stationary distribution restricted to
Aθ∗ (Bianchi & Gaudillière, 2016).

Assumption 4.4 (most probable escape path). The escape
from θ∗ is dominated by the most probable escape path
(MPEP) (Freidlin & Wentzell, 1998; Maier & Stein, 1993).
It is known that the direction of the MPEP at one point
must be the direction of one eigenvector of the Hessian at
that point, and the MPEP passes a saddle point θs at the
boundary of Aθ∗ .

Now we introduce further key assumptions in our analysis
for P > 1.

Assumption 4.5 (Hessian outliers). The eigenvalue spec-
trum of the Hessian H(θ∗) at θ∗ has n nonzero eigenvalues,
which are called “outliers”. The remaining P − n eigenval-
ues are vanishingly small.

Assumption 4.6 (low-dimensional subspace of SGD). Out-
lier eigenvectors of the Hessian v1, v2, . . . , vn ∈ RP do
not change within Aθ∗ , and the SGD dynamics is restricted
to the n-dimensional subspace spanned by those outlier
eigenvectors (n is called the effective dimension of the local
minimum).

Assumption 4.5 is empirically confirmed (Sagun et al., 2017;
Papyan, 2019). Since the SGD dynamics is frozen along flat
directions as we pointed out in Section 3.1, the restriction
to the n-dimensional outlier subspace in Assumption 4.6 is
justified. Indeed, it is empirically observed that the SGD dy-
namics is actually restricted to a low-dimensional subspace
spanned by top eigenvectors of the Hessian (Gur-Ari et al.,
2018).

Now we are ready to state our main result in the form of the
following theorem.

Theorem 4.7. Let the model parameter θt evolve according
to the SDE in Eq. (12). Under Assumptions 4.3 to 4.6, the
escape rate κ asymptotically behaves as

κ ∼
√
h∗e|hse|
2π

[
L(θs)

L(θ∗)

]−( B
ηh∗e

+1−n2
)

(15)

as η/B → +02, where θs is the saddle on the MPEP, h∗e is
the eigenvalue of the Hessian at θ∗ along the MPEP, and
hse is the negative eigenvalue of the Hessian at θs along the
MPEP.

Proof. The proof is given in Appendix B.

From Eq. (15) we can obtain some implications. The factor

[L(θs)/L(θ∗)]
−
(

B
ηh∗e

+1−n2
)

increases with h∗e and n, which
indicates that sharp minima (i.e. minima with large h∗e)
or minima with large n are unstable. This fact explains
why SGD finds flat minima with a low effective dimension
n. Equation (15) also implies that the effective dimension
of any stable minima must satisfy n < 2(B/(ηh∗e) + 1).
This condition guarantees the stability along the MPEP, but
any minimum must be stable along all the directions. The
stability condition along the direction of the ith eigenvector
of the Hessian is obtained by replacing h∗e by hi. Therefore,
the maximum eigenvalue hmax gives the most stringent
stability condition:

n < nc := 2

(
B

ηhmax
+ 1

)
. (16)

The instability due to a large effective dimension is a new
insight naturally explained by the picture of the logarithmic
loss landscape.

Let us summarize novel aspects of the escape rate derived
here, which are not found in previous studies (Jastrzȩbski
et al., 2017; Wu et al., 2018; Zhu et al., 2019; Meng et al.,
2020; Xie et al., 2021; Liu et al., 2021). First, the escape
rate in Eq. (15) takes a power-law form with respect to
the ratio between L(θ∗) and L(θs), which differs from a
conventional exponential form with respect to the difference
∆L = L(θs)− L(θ∗). Intuitively, escaping behavior must
be a result of noise in the gradient, and if there is no noise,
gradient descent cannot escape any basin of attraction. Our
result agrees with this intuition: at the global minimum
where L(θ∗) = 0, there is no noise, and the SGD must be
stuck in where it is with no escaping behavior, which is
directly reflected by our formula. However, the standard
exponential escape rate formula predicts a non-zero escape
rate even when L(θ∗) = 0, which cannot be correct in
principle. Second, Eqs. (15) and (16) imply that the SGD is
biased to small effective dimensions n. As we mentioned, it
is empirically confirmed that the SGD dynamics is restricted
to a low-dimensional subspace spanned by top eigenvectors
of the Hessian (Gur-Ari et al., 2018). Since the restriction to
a low-dimensional subspace greatly reduces the capacity of
the network (Li et al., 2018), Eq. (16) supports the presence
of an implicit regularization via the SGD.

2Here, the notation “f(x) ∼ g(x) as x → +0” means
limx→+0(f(x)/g(x)) = 1.
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The formula in Eq. (15) is tested in Section 5.3. Since it is
difficult in practice to identify when the barrier crossing oc-
curs, we instead consider the mean first passage time, which
imitates the escape time for a non-convex loss landscape.
Let us fix a threshold value of the loss function. The first
passage time tp is defined as the shortest time at which the
loss exceeds the threshold value. We identify the threshold
value as L(θs), i.e., the loss at the saddle in the escape prob-
lem. It is expected that tp is similar to the escape time and
proportional to κ−1. Indeed, at least when noise is isotropic
and uniform as in the GLD (5), the inverse of the mean
first passage time 1/ 〈tp〉 is logarithmically equivalent to
κ, i.e., log κ ∼ − log 〈tp〉, in the weak-noise asymptotic
limit (Freidlin & Wentzell, 1998; Berglund, 2013).

5. Experiments
Our key theoretical observation is that the SGD noise
strength is proportional to the loss function, which is ob-
tained as a result of the decoupling approximation. This
property leads us to the Langevin equation (14) with the
logarithmic loss gradient and an additive noise through a
random time change (13). Equation (14) implies the escape
rate (15).

In Section 5.1, we show that the decoupling approximation
is valid during the entire training dynamics. In Section 5.2,
we measure the SGD noise strength and confirm that it is
indeed proportional to the loss function near a minimum. In
Section 5.3, we experimentally test the validity of Eq. (15)
for the escape rate. We will see that numerical results for a
linear regression and for a non-linear neural network agree
with our theoretical results.

5.1. Experimental verification of the decoupling
approximation

Let us compare the eigenvalue distribution of the ex-
act matrix (1/N)

∑N
µ=1 `

(µ)C
(µ)
f with that of the de-

coupled one L(θ) · (1/N)
∑N
µ=1 C

(µ)
f with C

(µ)
f =

∇f(θ, x(µ))∇f(θ, x(µ))T. We consider a binary classifi-
cation problem using the first 104 samples of the MNIST
dataset such that we classify each image into even (its la-
bel is y = +1) or odd number (its label is y = −1). The
network has two hidden layers, each of which has 100 units
and the ReLU activation, followed by the output layer of
a single unit with no activation. Starting from the Glorot
initialization, the training is performed via SGD with the
mean-square loss, where we fix η = 0.01 and B = 100.

Figure 1 shows histograms of their eigenvalues at different
stages of the training: (a) at initialization, (b) after 50 epochs,
and (c) after 500 epochs. We see that the exact matrix and
the approximate one have statistically similar eigenvalue
distributions except for exponentially small eigenvalues dur-

ing the training dynamics. This shows that the decoupling
approximation holds during the entire training dynamics in
this experiment.

5.2. Measurements of the SGD noise strength

Now we test whether the SGD noise strength is actually pro-
portional to the loss function, which is predicted by Eq. (6),
an essential theoretical result of ours. As a measure of
the SGD noise strength, let us consider the norm of the
noise vector ξ given by 〈ξTξ〉 = Tr Σ ≈ N/B, where
N := (1/N)

∑N
µ=1∇`Tµ∇`µ−∇LT∇L. Here we present

experimental results for two architectures and datasets. First,
we consider training of the Fashion-MNIST dataset by using
a fully connected network with three hidden layers, each
of which has 2 × 103 units and the ReLU activation, fol-
lowed by the output layer of 10 units with no activation
(classification labels are given in the one-hot representation).
Second, we consider training of the CIFAR-10 dataset by us-
ing a convolutional neural network. Following Keskar et al.
(2017), let us denote a stack of n convolutional layers of a
filters and a kernel size of b× c with the stride length of d
by n× [a, b, c, d]. We use the configuration: 3× [64, 3, 3, 1],
3× [128, 3, 3, 1], 3× [256, 3, 3, 1], where a MaxPool(2) is
applied after each stack. To all layers, the ReLU activation
is applied. Finally, an output layer consists of 10 units with
no activation.

Starting from the Glorot initialization, the network is trained
by SGD of the mini-batch size B = 100 and η = 0.1 for
the mean-square loss. During the training, we measure
the training loss and the noise strength N for every epoch.
Numerical results are given in Fig. 2. We see that roughly
N ∝ L at a later stage of the training, which agrees with
our theoretical prediction.

Although N is not proportional to L at an early stage of
training, it does not mean that Eq. (9) is invalid there. Since
the decoupling approximation is valid for the entire train-
ing dynamics, Eq. (9) always holds. The reason why the
SGD noise strength does not decrease with the loss func-
tion in the early-stage dynamics is that N ≈ 2L(θ) ×
(1/N)

∑N
µ=1∇f(θ, x(µ))T∇f(θ, x(µ)), but the quantity

(1/N)
∑N
µ=1∇f(θ, x(µ))T∇f(θ, x(µ)) also changes dur-

ing training.

Although Eq. (9) is derived for the mean-square loss, the
relation N ∝ L(θ) holds in more general loss functions;
see Appendix D for general argument and experiments on
the cross entropy loss.

5.3. Experimental test of the escape rate formula

We now experimentally verify our escape-rate formula (15).
Below, we first present numerical results for a simple linear
regression problem, and then for a nonlinear model, i.e., a



Power-Law Escape Rate of SGD

(a) at initialization (b) at 50 epochs (c) at 500 epochs
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Figure 1. Comparison of the eigenvalue distributions of the left-hand side (exact expression) and the right-hand side (decoupled one) of
Equation (7). They agree with each other except for exponentially small eigenvalues during the entire training dynamics. For the detail,
see the description in Section 5.1.
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Figure 2. Training dynamics of the loss and the SGD noise strengthN . In the figure, we multiplyN by a numerical factor to emphasize
thatN is proportional to the loss in a later stage of the training. (Top left) Fully connected network trained by the Fashion-MNIST dataset.
(Top right) Convolutional network trained by the CIFAR-10 dataset. (Bottom left) Mean values with standard deviations (shaded regions)
taken over 10 independent runs with different initializations in convolutional network trained by the CIFAR-10 dataset. (Bottom right)
Loss vsN in the training of the convolutional network. The dashed line is a straight line of slope 1, which impliesN ∝ L(θ).

neural network.

5.3.1. LINEAR REGRESSION

Let us start with the following linear regression problem:
each entry of x(µ) ∈ Rd and its label y(µ) ∈ R are i.i.d.
Gaussian random variables of zero mean and unit variance.
We focus on the case of d � N . The output for an in-
put x is given by f(θ, x) = θTx, where θ ∈ Rd is the
trainable network parameter. We optimize θ via SGD. The
mean-square loss L(θ) = (1/2N)

∑N
µ=1

(
θx(µ) − y(µ)

)2
is quadratic and has a unique minimum at θ ≈ 0. the
Hessian H = (1/N)

∑N
µ=1 x

(µ)x(µ)T has d nonzero eigen-
values, all of which are close to unity. We can therefore
identify h∗e = h∗ = 1 and n = d.

Before investigating the escape rate, we remark that the
stationary distribution of θ in this case is theoretically
obtained because of the isotropy of SGD noise. Indeed,
H(θ∗) in Eq. (14) can be replaced by h∗Id, where Id is
the d-dimensional identity matrix, and then the station-
ary distribution of θ̃τ is simply given by the Gibbs dis-
tribution under the potential U(θ) = logL(θ): P̃s(θ) ∝
e−U(θ)/T = L(θ)−1/T , where the “temperature” T is given
by T = ηh∗/B. In Appendix C, it is shown that the sta-
tionary distribution Ps(θ) of θt under Eq. (12) is related to
P̃s(θ) via Ps(θ) ∝ L(θ)−1P̃s(θ). We therefore have

Ps(θ) ∝ L(θ)−φ, φ = 1 +
B

ηh∗
. (17)

Remarkably, it depends on L(θ) polynomially rather than
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(a) Exponent φ in Ps(θ) (b) tp for the linear regression (c) tp for the neural network
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Figure 3. (a) Exponent φ for the stationary distribution Ps(θ) ∝ L(θ)−φ for d = 1 in the linear regression. Dashed lines show the
theoretical prediction φ = 1 +B/(ηh∗). (b) Log-log plot of the mean first-passage time tp vs c = L(θs)/L(θ∗) for B = 1 and η = 0.1
in the linear regression. Dashed lines show the theoretical prediction, tp ∝ κ−1 ∝ cφ−d/2. (c) Log-log plot of tp vs c for B = 10 and
various η in the neural network. Dashed lines show the theoretical prediction, tp ∝ κ−1 ∝ cB/(ηh

∗
e)+1−n/2 with h∗e = 95.6 and n = 9.

exponentially as in the standard GLD (Jastrzȩbski et al.,
2017; Sato & Nakagawa, 2014; Zhang et al., 2017b). This
property is closely related to the power-law form of the
escape rate.

First, we test Eq. (17), i.e. the stationary distribution, for
d = 1 and N = 105. We sampled the value of θk at every
100 iterations (k = j × 100, j = 1, 2, . . . , 104) and made a
histogram. We then fit the histogram to the form Ps(θ) ∝
L(θ)−φ and determine the exponent φ. Our theory predicts
φ = 1 +B/(ηh∗). Numerical results for the exponent φ are
presented in Fig. 3 (a) againstB for three fixed learning rates
η. In the same figure, theoretical values of φ are plotted in
dashed lines. The agreement between theory and experiment
is fairly well. For a large learning rate η = 1, the exponent
slightly deviates from its theoretical value. This is due to the
effect of a finite learning rate (recall that η is assumed to be
small in deriving the continuous-time stochastic differential
equation).

Next, we test our formula on the escape rate, Eq. (15). Al-
though the mean-square loss is quadratic and no barrier
crossing occurs, we can measure the first passage time,
which imitates the escape time for a non-convex loss land-
scape as is mentioned in Section 4.

The mean first passage time over 100 independent runs
is measured for varying threshold values which are spec-
ified by c = L(θs)/L(θ∗) > 1. Experimental results
for N = 104 are presented in Fig. 3 (b). Dashed
straight lines have slope B/(ηh∗) + 1 − n/2. Experi-
ments show that the first passage time behaves as tp ∝
[L(θs)/L(θ∗)]B/(ηh

∗)+1−n/2, which agrees with our theo-
retical evaluation of κ−1 [see Eq. (15)]. We conclude that
the escape rate crucially depends on the effective dimension
n, which is not explained by the previous results (Zhu et al.,
2019; Xie et al., 2021; Liu et al., 2021; Meng et al., 2020).

5.3.2. NEURAL NETWORK

The escape-rate formula (15) is also verified in a non-linear
model. As in Section 5.1, we consider the binary classifica-
tion problem using the first 104 samples of MNIST dataset
such that we classify each image into even or odd. The
network has one hidden layer with 10 units activated by
ReLU, followed by the output layer of a single unit with no
activation. We always use the mean-square loss. Starting
from the Glorot initialization, the network is pre-trained via
SGD with η = 0.01 and B = 100 for 105 iterations. We
find that after pre-training, the loss becomes almost station-
ary around at L(θ) ≈ 0.035. We assume that the pre-trained
network is near a local minimum. We then further train
the pre-trained network via SGD with a new choice of η
and B (here we fix B = 10), and measure the first passage
time tp. The mean first-passage time over 100 independent
runs is measured for varying threshold values which are
specified by c = L(θs)/L(θ∗) > 1. Experimental results
are presented in Fig. 3 (c). We see the power-law behavior,
which is consistent with our theory.

To further verify our theoretical formula (15), we also com-
pare the power-law exponent for the mean first-passage time
with our theoretical prediction B/(ηh∗e) + 1− n/2. Here,
h∗e and n are estimated by the Hessian eigenvalues. In Ap-
pendix E, we present a numerical result for eigenvalues of
the approximate Hessian given by the right-hand side of
Eq. (11). By identifying the largest eigenvalue of the Hes-
sian as h∗e , we have h∗e ≈ 95.6. On the other hand, it is
difficult to precisely determine the effective dimension n,
but it seems reasonable to estimate n ∼ 10. It turns out that
theory and experiment agree with each other by choosing
n = 9. Dashed lines in Fig. 3 (c) correspond to our theoreti-
cal prediction κ−1 ∝ cB/(ηh

∗
e)+1−n/2 with h∗e = 95.6 and

n = 9. This excellent agreement shows that our theoretical
formula (15) is also valid in non-linear models.
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5.4. Stability condition and minima selection

As we have argued in Section 4, any stable solution found
by SGD should satisfy Equation (16). For a fixed value ofB,
Equation (16) implies the existence of the critical learning
rate

ηc =
2

n− 2

B

hmax
, (18)

above which a minimum with a certain value of h∗max and n
is unstable. Moreover, Equation (16) indicates that increas-
ing η/B, i.e. making the SGD noise stronger, leads to a
flatter minimum with a lower effective dimension.

We numerically test these statements in the following. We
conducted binary classification of 5,000 samples of MNIST
dataset (classify each image into even or odd number) by
using a fully connected network with three hidden layers of
width 100. The number of trainable parameters is about 105.
First, we perform pre-training with fixed values of the learn-
ing rate ηini and the batch size Bini. Here we consider the
two cases (ηini, Bini) = (0.1, 50) and (0.05, 100), the for-
mer of which corresponds to stronger SGD noise compared
with the latter. In both cases, we find that the loss becomes
almost stationary at a small value after 104 iterations. We
then measure the largest Hessian eigenvalue hmax and the
effective dimension n by the method in Appendix E, and
determine ηc for B = 8. Next, we fix B = 8 and gradually
increase the learning rate from a small value η = 0.001 and
measure the loss. When the minimum becomes unstable,
the loss will rapidly increase and fluctuate. Such behavior
is actually observed in Figure 4. We find that our theoret-
ical prediction of ηc (vertical dashed lines in Figure 4) is
relatively close to the actual transition point. In this way,
Equation (16) is relevant in learning with a neural network.

Furthermore, by comparing hmax and n in Figure 4 (a) and
(b), we find that increasing the SGD noise results in a flatter
minimum with a lower effective dimension. It shows that
SGD has a bias towards flatter minima with lower effective
dimensions.

6. Conclusion
In this work, we have investigated the SGD dynamics via a
Langevin approach. With several approximations listed in
Appendix A, we have derived Eq. (6), which shows that the
SGD noise strength is proportional to the loss function. This
SGD noise covariance structure yields the stochastic differ-
ential equation (14) with additive noise near a minimum
via a random time change (13). The original multiplica-
tive noise is reduced to simpler additive noise, but instead
the gradient of the loss function is replaced by that of the
logarithmic loss function U(θ) = logL(θ). This new for-
malism yields the power-law escape rate formula (15) whose
exponent depends on η, B, h∗e , and n.
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Figure 4. Stability of a minimum found by SGD with η = ηini and
B = Bini. After finding a minimum, we fix B = 8 and gradually
increase the learning rate η. When η exceeds a threshold value,
the minimum becomes unstable and the loss rapidly increases and
fluctuates. Vertical dashed lines correspond to the critical learning
rate ηc estimated by Equation (16).

The escape-rate formula in Eq. (15) explains an empirical
fact that SGD favors flat minima with low effective dimen-
sions. The effective dimension of a minimum must satisfy
Eq. (16) for its stability. This result as well as the for-
mulation of the SGD dynamics using the logarithmic loss
landscape should help understand more deeply the SGD dy-
namics and its implicit biases in machine learning problems.

Although the present work focuses on the Gaussian noise,
the non-Gaussianity can also play an important role. For
example, Şimşekli et al. (2019) approximated SGD as a
Lévy-driven SDE, which explains why SGD finds wide
minima. It would be an interesting future problem to take
the non-Gaussian effect into account.
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A. List of approximations and their justifications
In Section 3.1, we made several approximations to derive the result (6). For clarity, we list the approximations made and
their justifications below.

• In Eq. (8), we make the approximation of B � N , which simplifies the expression but is not essential. The main
conclusion is not affected by this approximation.

• We ignore ∇L∇LT in Eq. (8), which is justified near a local minimum.

• In Eq. (9), we make the decoupling approximation (7), which is one of the key heuristic approximations in our work.
This approximation is verified experimentally in Section 5.1.

• We ignore the last term of Eq. (10), which is a common approximation (Sagun et al., 2017). This approximation is
justified if we are only interested in the outliers of the Hessian eigenvalues. Indeed, outliers of the Hessian eigenvalues,
which play dominant roles in escape from local minima, are known to be attributable to the first term of the right-hand
side of Eq. (10) (Papyan, 2018).

• In Eq. (11), we assume that the matrix (1/N)
∑N
µ=1∇f(θ, x(µ))∇f(θ, x(µ))T does not change so much in a valley

with a given local minimum. This approximation is indirectly verified in Fig. 2 (the proportionality between the loss
and the noise strength implies this matrix is actually constant).

B. Proof of Theorem 4.7
We now prove Theorem 4.7. Under Assumption 4.6, dynamics of θ is restricted to the n-dimensional subspace spanned by the
outlier eigenvectors v1, v2, . . . , vn ∈ RP of the Hessian. Consequently, θ is parametrized by n variables z1, z2, . . . , zn ∈ R
as

θ = θ∗ +

n∑
i=1

zivi. (19)

The Hessian is a diagonal matrix in the basis of (v1, v2, . . . , vn) within Aθ∗ because of Assumption 4.6. Therefore,
∂2U/∂zi∂zj = 0 for any i 6= j, where U = logL is the logarithmic loss introduced in Eq. (14). It implies that ∂U/∂zi is a
function of zi, and hence U is written in the form

U(θ) = logL(θ∗) +

n∑
i=1

Ui(zi). (20)

It should be noted that

Ui(0) = 0, Ui(zi) > 0 for any zi 6= 0,
∂Ui
∂zi

(0) = 0,
∂2Ui
∂z2
i

(0) =
h∗i

L(θ∗)
, (21)

where the last equality is obtained by putting U = logL and ∂2L/∂z2
i

∣∣
z=0

= h∗i .

The stochastic differential equation for the n-dimensional vector z = (z1, z2, . . . , zn)T in the rescaled time variable τ is

given by dz = −∇zUdτ +

√
2ηĤ(θ∗)/BdW̃τ [see Eq. (14), which is equivalent to the following Fokker-Planck equation

for the distribution function P (z, τ) of z at τ :

∂P (z, τ)

∂τ
=

n∑
i=1

[
∂

∂zi

(
∂Ui
∂zi

P

)
+
ηh∗i
B

∂2

∂z2
i

P

]
=: −∇zJ(z), (22)

where the probability current density J(z) = (J1(z), J2(z), . . . , Jn(z))T is explicitly given by

Ji(z) = −∂Ui(zi)
∂zi

P (z)− ηh∗i
B

∂

∂zi
P (z). (23)

Under Assumption 4.4, the escape rate is evaluated by considering the MPEP. It is known that the MPEP aligns with one
of the eigenvectors of the Hessian (Xie et al., 2021). Without loss of generality, let us assume that the direction of eth
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eigenvector ve corresponds to the direction of the MPEP. We denote by z⊥ ∈ Rn−1 the displacement perpendicular to
the escape direction, and write z = (ze, z⊥). At the saddle zs, hse < 0 and hsi > 0 for all i 6= e, where {hsi} is the set of
eigenvalues of the Hessian at zs, and

∂Ui
∂zi

(zsi ) = 0,
∂2Ui
∂z2
i

(zsi ) =
hsi

L(θs)
. (24)

We now derive the escape rate formula for asymptotically weak noise η/B → +0 following Kramers (1940). The steady
current J ∈ Rn is aligned to the escape direction, and hence Je 6= 0 and J⊥ = 0 along the MPEP. Let us denote by P ∗ the
total probability within the valley Aθ∗ and by Jτ the total current per unit change of τ flowing to the outside of the valley
through the saddle θs = θ∗ + zs. From Assumption 4.3, z is assumed to be in the quasi-stationary distribution. Since the
quasi-stationary distribution is concentrated around θ∗ in the weak-noise limit, L(θt) is approximately equal to L(θ∗) before
the escape. Consequently, the rescaled time variable τ in Eq. (13) is approximately equal to L(θ∗)t, and hence the total
probability current Jt per unit change of t is given by L(θ∗)Jτ . The escape rate κ per unit change of t is therefore given by

κ =
Jt
P ∗
∼ L(θ∗)

Jτ
P ∗

as
η

B
→ +0.3 (25)

We now evaluate P ∗ and Jτ . First, to obtain P ∗, we must know about the quasi-stationary distribution Ps(z) near θ∗. It is
obtained by putting ∂P (z, τ)/∂τ = 0 in Eq. (22), which implies J(z) = 0. We therefore have

∂Ps(z)

∂zi
= − B

ηh∗i

∂Ui(zi)

∂zi
Ps(z). (26)

By solving this equation, we obtain for θ = θ∗ + z ∈ Aθ∗

Ps(z) = P (θ∗) exp

[
−

n∑
i=1

B

ηh∗i
Ui(zi)

]
. (27)

For convenience, we put Ps(z) = 0 for z /∈ Aθ∗ . Then, P ∗, which is the total probability within Aθ∗ , is given by

P ∗ =

∫ ∞
−∞

dz1

∫ ∞
−∞

dz2· · ·
∫ ∞
−∞

dzn Ps(z) = P (θ∗)

n∏
i=1

∫ ∞
−∞

dzi e
− B
ηh∗
i
U(zi)

. (28)

In the weak-noise limit η/B → +0, we can evaluate the above integral by using the saddle-point method, which is also
called the Laplace method. By using Eq. (21), the saddle-point method yields∫ ∞

−∞
dzi e

− B
ηh∗
i
U(zi) ∼

∫ ∞
−∞

dzi e
− B

2ηL(θ∗) z
2
i =

[
2πηL(θ∗)

B

]1/2

(29)

as η/B → +0, and therefore

P ∗ ∼ P (θ∗)

[
2πηL(θ∗)

B

]n/2
. (30)

Next, let us evaluate Jτ . Along the MPEP (z⊥ = 0), the current vector J⊥ perpendicular to the escape direction is zero, and
hence the probability distribution near the saddle is evaluated in a similar way as Eq. (27):

P (ze = zse , z⊥) = P (ze = zse , z⊥ = 0) exp

−∑
i(6=e)

B

ηh∗i
Ui(zi)

 . (31)

By substituting it into

Je = −∂Ue
∂ze

P − ηh∗e
B

∂

∂ze
P, (32)

3Recall that the notation “f(x) ∼ g(x) as x→ +0” means limx→+0(f(x)/g(x)) = 1.
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U(θ) − U(θ*) : z⊥ = 0

0 zs
e zc

e(θ = θ*) (θ = θs)
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Figure 5. Schematic illustration of the escape from a potential barrier.

we obtain

Je(z
s
e , z⊥) = Jpath exp

−∑
i(6=e)

B

ηh∗i
Ui(zi)

 , (33)

where the current along the MPEP (z⊥ = 0) is denoted by Jpath := J(zse , z⊥ = 0). The total current through the saddle is
then evaluated by using the saddle-point method:

Jτ =

∫
dz⊥ Je(z

s
e , z⊥) = Jpath

∏
i( 6=e)

∫ ∞
−∞

dz⊥ e
− B
ηh∗
i
Ui(zi) ∼ Jpath

[
2πηL(θs)

B

](n−1)/2

(34)

as η/B → +0. When the distribution function is almost stationary, Eq. (22) yields ∂Je(ze, z⊥ = 0)/∂ze = 0, and hence
the current along the MPEP is constant Je(ze, z⊥ = 0) = Jpath. By putting z⊥ = 0 in Eq. (33), we have

Jpath = − ∂U
∂ze

P (ze, z⊥ = 0)− ηh∗e
B

∂P

∂ze
(ze, z⊥ = 0) = −ηh

∗
e

B
e
− B
ηh∗e

U ∂

∂ze

[
e
B
ηh∗e

U
P (ze, z⊥ = 0)

]
. (35)

By multiplying e
B
ηh∗e

U in both sides and integrating over ze from 0 to zce, where zce defined as Ue(θ∗ + zceve) = Ue(θ
∗) (see

Fig. 5), we obtain

Jpath

∫ zce

0

dze e
B
ηh∗e

U ∼ ηh∗e
B

e
B
ηh∗e

U(θ∗)
P (θ∗) (36)

as η/B → +0, where we used the fact that the probability at zce is negligible in the weak-noise limit. By using the
saddle-point method, the integral in the left-hand side of Eq. (36) is evaluated as∫ zce

0

dze e
B
ηh∗e

U ∼
∫ ∞
−∞

dze exp

[
B

ηh∗e

(
U(θs) +

hse
2L(θs)

(ze − zse)2

)]
=

(
2πηh∗e

B|hse|L(θs)

)1/2

e
B
ηh∗e

U(θs)
. (37)

By substituting this result in Eq. (36), we obtain

Jpath ∼
(

ηh∗e|hse|
2πBL(θs)

)1/2

e
− B
ηh∗e

∆U
P (θ∗), (38)

where ∆U = U(θs)− U(θ∗). The total current Jτ in Eq. (34) is then expressed as

Jτ ∼
√
h∗e|hse|

2πL(θs)

(
2πηL(θs)

B

)n/2
e
− B
ηh∗e

∆U
P (θ∗). (39)
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By using Eqs. (30) and (39), the escape rate κ in Eq. (25) is evaluated as

κ ∼ L(θ∗)
Jτ
P ∗

=

√
h∗e|hse|
2π

[
L(θs)

L(θ∗)

]n
2−1

e−
B

ηhe∗∆U . (40)

Since ∆U = log[L(θs)/L(θ∗)], we finally obtain

κ ∼
√
h∗e|hse|
2π

[
L(θs)

L(θ∗)

]−( B
ηh∗e

+1−n2
)
, (41)

which is exactly identical to the escape rate formula given in Theorem 4.7.

C. Stationary distribution
Suppose that θ̃τ obeys a simple Langevin equation

dθ̃τ = −U ′(θ̃τ ) +
√

2TdW̃τ . (42)

The stationary distribution of θ̃τ is then given by the Gibbs distribution P̃s(θ) ∝ e−U(θ)/T . On the other hand, what we
want is the stationary distribution Ps(θ) of θt, where θt = θ̃τ with τ =

∫ t
0
dt′ L(θt′). In this section, we show the relation

between the two distributions: Ps(θ) ∝ L(θ)−1P̃s(θ).

We express the stationary distributions in terms of the long-time average of the delta function:

Ps(θ) = lim
s→∞

1

s

∫ s

0

dt δ(θt − θ), P̃s(θ) = lim
s→∞

1

s

∫ s

0

dτ δ(θ̃τ − θ). (43)

By using the relation τ =
∫ t

0
dt′ L(θt′), we have dτ = L(θt)dt. For a sufficiently large t, we also obtain τ ∼ tL̄, where

L̄ := lims→∞(1/s)
∫ s

0
dt′ L(θt′) denotes the long-time average of L(θt). By using them, Ps(θ) is rewritten as

Ps(θ) ≈ lim
s→∞

1

s

∫ sL̄

0

dτ
δ(θ̃τ − θ)
L(θ̃τ )

=
1

L(θ)
lim
s→∞

L̄

sL̄

∫ sL̄

0

dτ δ(θ̃τ − θ)

=
L̄

L(θ)
P̃s(θ). (44)

We thus obtain the desired relation, Ps(θ) ∝ L(θ)−1P̃s(θ).

D. Other loss functions
In our paper, we mainly focus on the mean-square loss, for which we can analytically derive the relation between the loss
L(θ) and the SGD noise covariance Σ(θ). An important observation is that the SGD noise strength N is proportional to the
loss, i.e., N ∝ L(θ) (see Section 5.2 for the definition of N ).

Here, we argue that the relation N ∝ L(θ) also holds in more general situations. During the training, the value of `µ will
fluctuate from sample to sample. At a certain time step of SGD, let us suppose that N −M samples in the training dataset
are already fit correctly and hence `µ ≈ 0, whereas the other M samples are not and hence `µ = O(1). The loss function is
then given by L(θ) = (1/N)

∑N
µ=1 `µ ∝M/N . When `µ is small,∇`µ will also be small. Therefore, for N −M samples

with `µ ≈ 0,∇`µ ≈ 0 also holds. The other M samples will have non-small gradients: ‖∇`µ‖2 = O(1). We thus estimate
N as N ≈ (1/N)

∑N
µ=1∇`Tµ∇`µ ∝M/N ∝ L(θ). In this way, N ∝ L(θ) will hold, irrespective of the loss function.

However, we emphasize that this is a crude argument. In particular, the above argument will not hold near a global minimum
because all the samples are correctly fit there, which implies that `µ is small for all µ, in contrast to the above argument
relying on the existence of M samples with `µ and ‖∇`µ‖2 of O(1).
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Figure 6. Training dynamics of the cross-entropy loss and the SGD noise strength N for (a) a fully connected network trained by the
Fashion-MNIST dataset and (b) a convolutional network trained by the CIFAR-10 dataset. In the figure, we multipliedN by a numerical
factor to emphasize thatN is actually proportional to the loss in an intermediate stage of the training. Loss vsN for (c) a fully connected
network trained by the Fashion-MNIST and (d) a convolutional network trained by CIFAR-10. Dashed lines in (c) and (d) are straight
lines of slope 1, which implyN ∝ L(θ).

We now experimentally test the relation N ∝ L(θ) for the cross-entropy loss. We consider the same architectures and
datasets in Section 5.2: a fully connected neural network trained by Fashion-MNIST and a convolutional neural network
trained by CIFAR-10 (see Section 5.2 for the detail). We fix B = 100 in both cases, and η = 0.1 for the fully connected
network and η = 0.05 for the convolutional network. Experimental results are presented in Fig. 6. We find that the relation
N ∝ L(θ) seems to hold true at an intermediate stage of the training dynamics, although the proportionality is less clear
compared with Fig. 2 in the main text for the mean-square loss.

We also find that for sufficiently small values of the loss, N ∝ L(θ)2 [see Fig. 6 (c) and (d)], whose implications should
merit further investigation in future studies.

E. Hessian eigenvalues for a neural network in Section 5.3
We present numerical results on Hessian eigenvalues in a pre-trained neural network studied in Section 5.3. Instead of the
exact Hessian, we consider an approximate Hessian given on the right-hand side of Eq. (11), i.e.,

H(θ∗) ≈ 1

N

N∑
µ=1

∇f(θ, x(µ))∇f(θ, x(µ))T. (45)

Eigenvalues {hi} are arranged in descending order as h1 ≥ h2 ≥ · · · ≥ hP (in our model P = 7861).

A histogram of the Hessian eigenvalues is presented in Fig. 7 (a). We see that most eigenvalues are close to zero, which
corresponds to the bulk, but there are some large eigenvalues, which correspond to the outliers. The largest eigenvalue is
λ1 = 95.6, which is identified as h∗ in our theoretical formula (15).
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Figure 7. Hessian eigenvalues for a pre-trained neural network studied in Section 5.3. (a) The histogram of the Hessian eigenvalues and
(b) top 30 eigenvalues. Most eigenvalues are close to zero, but there are some large eigenvalues, which correspond to outliers.

Another important quantity is the effective dimension n corresnding to the number of outliers. Since the outliers and the
bulk are not sharply separated, it is difficult to precisely determine n. In Fig. 7 (b), we plot hi up to i = 30. From this figure,
it seems reasonable to estimate n ≈ 10.

As a heuristic method of determining n, we can consider the following identification: first we define the weight pi for ith
eigenmode as pi = hi/

∑P
j=1 hj . We then determine n as

n =

(
P∑
i=1

p2
i

)−1

, (46)

which gives n = 12.7 in our case.

In Section 5.3, our formula (15) with n = 9 explains numerical results on the first-passage time.


