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Abstract

We propose a fundamental theory on ensemble
learning that evaluates a given ensemble system
by a well-grounded set of metrics. Previous stud-
ies used a variant of Fano’s inequality of infor-
mation theory and derived a lower bound of the
classification error rate on the basis of the ac-
curacy and diversity of models. We revisit the
original Fano’s inequality and argue that the stud-
ies did not take into account the information lost
when multiple model predictions are combined
into a final prediction. To address this issue, we
generalize the previous theory to incorporate the
information loss. Further, we empirically validate
and demonstrate the proposed theory through ex-
tensive experiments on actual systems. The theory
reveals the strengths and weaknesses of systems
on each metric, which will push the theoretical
understanding of ensemble learning and give us
insights into designing systems.

1. Introduction
Ensemble learning has had great success in various fields of
machine learning. Bagging (Breiman, 1996) trains diverse
models from artificial datasets built by random sub-sampling
on the original one. It is common to train models with differ-
ent weight initializations (Lakshminarayanan et al., 2017) or
models with different network architectures (Qummar et al.,
2019; Morishita et al., 2020b). While models are usually
combined by voting on predictions, other methods focus on
how to combine them cleverly (Omari & Figueiras-Vidal,
2015; Morio et al., 2020a). Stacking (Wolpert, 1992) trains
meta-estimators that make final predictions from model pre-
dictions as their inputs. Mixture of Experts (Jacobs et al.,
1991; Shazeer et al., 2017) focuses more on the models that
are best specialized for a given dataset instance.
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It has been widely believed that accurate and diverse models
lead to better performance for ensemble systems. Guided by
this intuition, many heuristical metrics have been proposed
to measure accuracy and diversity (Kohavi et al., 1996;
Skalak et al., 1996; Cunningham & Carney, 2000; Shipp
& Kuncheva, 2002). However, these metrics lack theoret-
ical grounding, and indeed, Kuncheva & Whitaker (2003)
empirically showed that there are no connections between
the metrics and system performance through a broad range
of experiments. Turning to theoretical viewpoints, Geman
et al. (1992) decomposed the squared error loss used in re-
gression tasks into the bias and covariance of models. Bias
here corresponds to accuracy and covariance diversity. For
classification tasks, Tumer & Ghosh (1995) showed that
the error rate reductions obtained by unweighted voting is a
decreasing function of models’ correlations, indicating that
diverse models lead to better performance.

While the theory of Tumer & Ghosh (1995) deals with clas-
sification tasks under a limited setting, Brown (2009); Zhou
& Li (2010) first derived accuracy and diversity in a general
setting. Using Fano’s inequality of information theory, they
derived a lower bound to the error rate of a given system.
Then, they decomposed the lower bound into relevance Irelev
and redundancy Iredun (Lemma 2.3, illustrated in Figure 1).
Irelev is the information theoretical version of accuracy and
Iredun diversity. Their framework is promising as a funda-
mental theory of ensemble learning since it derives well-
believed metrics in a general setting. However, the validity
of the framework has not been examined much from both
theoretical and empirical perspectives. Theoretically, we
find that the framework rests on implicit assumptions used
by a variant of Fano’s inequality, which generally do not
hold in ensemble learning. As a result, the framework fails
in capturing important aspects of ensemble learning. Em-
pirically, the experiments of the studies were not extensive
enough to justify the framework. In particular, they did
not check whether the framework can predict representative
phenomena in ensemble learning.

In this paper, we rethink the theoretical framework from
both perspectives. We first revisit the theory (Sections 2
and 3). We argue that the framework does not take into
account the information lost when multiple model predic-
tions are combined into a single final prediction. We call
this information loss combination loss. To address the issue,
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Figure 1: Previous framework (Brown, 2009; Zhou & Li, 2010) (left) and ours (right).

we propose a generalized framework that incorporates the
third metric of combination loss Icombloss based on original
Fano’s inequality (Lemma 3.1, illustrated in Figure 1). We
also solve the issue of the previous framework producing a
loose lower bound when the number of classes is small.

Next, we turn to empirical viewpoints. We first validate
the proposed framework in Sections 4 and 5. In contrast
to the previous studies, (i) we directly check whether the
framework can predict phenomena in ensemble learning, (ii)
we use various ensemble systems (Table 2), and (iii) we use
various tasks (Table E.10). Additionally, to be modern and
realistic, we use state-of-the-art DNNs such as BERT (De-
vlin et al., 2019), and the tasks are chosen from widely-used
benchmarks such as GLUE (Wang et al., 2018). Exten-
sive experiments reveal that the previous framework can
not predict phenomena such as the performance ranking of
ensemble systems (Figure 2) and performance scaling be-
havior (Figure 3), ignoring combination loss. These results
refute the previous framework. In contrast, the proposed
framework justifies itself by predicting all these phenom-
ena. Finally, we demonstrate the proposed framework (Sec-
tion 6). We analyze DNN ensemble systems and answer
why a system performs well or badly through its strengths
and weaknesses in terms of the three metrics (Table 4). Such
analysis pushes the theoretical understanding of ensemble
learning and gives us insights into designing systems. In
summary,

• We propose a fundamental theoretical framework
that measures a given ensemble system from a well-
grounded set of metrics: relevance Irelev, redundancy
Iredun, and combination loss Icombloss. The metrics are
tied to the bound on the performance of a system. The
framework applies to any ensemble system.

• We validate the framework through extensive experi-
ments on DNN ensemble systems.

• We demonstrate the framework. We analyze the DNN
ensemble systems and answer why a system performs
well or badly as follows:

1. Systems with models that simply differ in the

training seeds perform well because the models
are accurate (large Irelev) and combinable (small
Icombloss).

2. Heterogeneous systems, which use various types
of DNNs, also perform well. While some DNNs
are inaccurate (small Irelev), DNNs are diverse
(small Iredun). Further, such systems should per-
form the best among all the systems when DNNs
are combined by meta-estimators.

3. Bagging-based systems do not perform that well.
Their models are diverse (small Iredun) but in-
accurate (small Irelev) and uncombinable (large
Icombloss).

4. Systems with models with randomly chosen hy-
perparameters do not perform that well. The mod-
els are diverse (small Iredun) but inaccurate (small
Irelev).

5. Meta-estimators generally push the performance
of the systems by combining models smartly to
reduce Icombloss. Further, meta-estimators benefit
systems such as 2 and 4 the most since the amount
of information of the true label is unevenly dis-
tributed on models of varied accuracies and such
information is recovered well by meta-estimators.
Finally, a simple estimator such as logistic regres-
sion should be enough on strong DNNs.

• We release our code as open source.1

2. Conventional Framework Based on Variant
of Fano’s Inequality

2.1. Fano’s Inequality

Let Y ∈ {1, 2, . . . , Ymax} be a discrete stochastic variable
representing the input and O ∈ Rm be m stochastic vari-
ables representing an observation after a noisy channel.
We want to recover Y from O by using the reconstruc-
tion function F : O 7→ Ŷ ∈ {1, 2, . . . , Ymax}. Note that
Y ⇛ O ⇛ Ŷ forms a Markov chain. Fano’s inequality

1Available at: https://github.com/hitachi-nlp/
ensemble-metrics

https://github.com/hitachi-nlp/ensemble-metrics
https://github.com/hitachi-nlp/ensemble-metrics
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relates the information lost in a noisy channel to the error
rate when recovering the input as follows.

Lemma 2.1 (Fano’s inequality (Fano, 1961)). For any func-
tion F , the following holds:

H2(perr) + perr log2(Ymax − 1) ≥ H(Y | Ŷ ), (1)

where perr = Pr[Ŷ ̸= Y ] ∈ [0, 1] is the reconstruction error
rate, H2(p) = −p log2(p) − (1 − p) log2(1 − p) binary
cross entropy, and H(Y | Ŷ ) conditional entropy (C.2).

From the Markovness, the amount of information carried by
Ŷ is never more than that carried by O; thus, the right-hand
side of (1) is lower bounded as

H(Y | Ŷ ) ≥ H(Y | O). (2)

Since the binary cross entropy never exceeds one, the left
side of Lemma 2.1 is upper bounded as

H2(perr) + perr log2(Ymax − 1) ≤ 1 + perr log2(Ymax − 1),

< 1 + perr log2(Ymax) (3)

From (1)–(3), we obtain the following well-known variant
of Fano’s inequality:

Lemma 2.2 (An error rate lower bound (Fano, 1961)).

perr >
H (Y | O)− 1

log2 Ymax
.

2.2. Error Rate Lower Bound of Ensemble Systems

In ensemble learning, Y denotes a label on a given instance,
and O = {O1, O2, . . . , ON} is the output from N models.
Note that the output from i-th model Oi ∈ RYmax can be a
predicted label (Ymax = 1) or class probabilities (Ymax ≥ 2).
F denotes a model combination method such as voting or
Stacking. Lemma 2.2 gives a lower bound of the classifica-
tion error rate perr of an ensemble system.

Brown (2009) decomposed the lower bound into relevance
and redundancy, the formulation of which was later simpli-
fied by Zhou & Li (2010) as follows:

Lemma 2.3 (Zhou & Li, 2010).

perr > B(I(O, Y )) :=
H(Y )− I(O, Y )− 1

log2 Ymax
. (4)

I(O, Y ) is defined as follows:

I(O, Y ) := Irelev(O, Y )− Iredun(O, Y ), (5)

Irelev(O, Y ) :=

N∑
i=1

I(Oi;Y ),

Iredun(O, Y ) := Imulti(O)− Imulti(O|Y ),

where H denotes entropy (C.1), I denotes mutual in-
formation (C.3), and Imulti denotes multi-information
(C.4) to (C.5), a multivariate generalization of mutual-
information.

Since H(Y ) and Ymax are constants given a machine learn-
ing task, the important term in (4) is I(O, Y ) defined in
(5), which denotes the amount of unique information on Y
carried by O. The first term Irelev(O, Y ) is the relevance,
whose component I(Oi;Y ) denotes the amount of informa-
tion on Y given by Oi. It can be seen as the accuracy of the
model i from the information theoretical point of view. The
second term Iredun(O, Y ) is the redundancy, which indicates
how strongly the model outputs O = {O1, O2, . . . ON} are
correlated with each other. In other words, it describes
the amount of redundant (duplicated) information. Overall,
Lemma 2.3 reveals that an ensemble system should include
accurate (large Irelev) and diverse (small Iredun) models to
get a small lower bound for the error rate B(I).

3. Proposed Framework Based on Original
Fano’s Inequality

3.1. Error Rate Lower Bound with Better Properties

To derive Lemma 2.2, which is the basis of Lemma 2.3,
two bounds, (2) and (3), are used. However, in a ensemble
learning context, both are not tight, so Lemma 2.3 would
not give a good approximation of the lower bound.

The problem with relying on (2) is that the existence of a
perfect reconstruction function F is implicitly assumed. In
the information theoretical context, using the noisy-channel
coding theorem (Shannon, 1948), we can construct a smart
reconstruction function F so that the information lost by
F is zero as H(Y |Ŷ )−H(Y |O) → 0. Thus, the equality
in (2) holds. On the other hand, in the ensemble learning
context, we usually use a simple function such as voting or
a meta-estimator trained on a limited amount of data as F .
Therefore, the information loss H(Y |Ŷ )−H(Y |O) caused
by combining the outputs from multiple models O into a
single prediction Ŷ should also be taken into account. We
refer to this loss as combination loss.

The problem with relying (3) is that an exponentially large
number of classes is assumed, i.e., Ymax ≫ 1. In information
theory, Y is assumed to be a sequence of symbols (e.g., bits).
Suppose that the sequence length L ≫ 1 and that there are
C types of symbols; Ymax becomes exponentially large as
Ymax = CL. Then, the second term of the left-hand side of
(3) is approximated as perr log2(Ymax−1) ≈ perrL log2 C ≫
1. Since the first term (H2(perr) ≤ 1) becomes negligible, it
can be safely replaced with its upper bound (i.e. 1) without
loosening the inequality much. On the other hand, in the
ensemble learning context, the number of classes Ymax can
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Table 1: Extreme toy ensemble systems on imaginary binary classification task for discussing combination loss (Section 3.2).
Each row shows predicted labels on instance from dataset. O = {O1, . . . , O5}: model predictions, Ŷ = F(O): ensemble
prediction, and Y : ground-truth label. Red 0/1 shows wrong ensemble predictions. Orange 0/1 shows correct but neglected
model predictions. Blue 0 shows correct prediction recovered by weighted voting. Tables 1b and 1c use the same O.

(a) Ŷvote: voting on O.

O Ŷvote Y

11111 1 1
11111 1 1
11111 1 1
. . . . . . . . .
00000 0 0
11111 1 0
00000 0 0
. . . . . . . . .

(b) Ŷvote: voting on O.

O Ŷvote Y

11100 1 1
11111 1 1
10011 1 1
. . . . . . . . .
01101 1 0
00000 0 0
00011 0 0
. . . . . . . . .

(c) Ŷw.vote: just using O1.

O Ŷw.vote Y

11100 1 1
11111 1 1
10011 1 1
. . . . . . . . .
01101 0 0
00000 0 0
00011 0 0
. . . . . . . . .

(d) Ŷvote: voting on O, Ŷw.vote: on O3−5

O Ŷvote Ŷw.vote Y

11100 1 0 1
11111 1 1 1
00011 0 1 1
. . . . . . . . . . . .
11100 1 0 0
00000 0 0 0
00011 0 1 0
. . . . . . . . . . . .

be small; thus, simply neglecting H2(perr) produces a loose
bound. For example for binary classification problems, the
bound by Lemma 2.2 is always negative as H(Y |O)−1

log2 Ymax
≤ 0

because H(Y | O) ≤ 1 when Ymax = 2.

To address these two problems, we lower bounded the er-
ror rate using the original Fano’s inequality (Lemma 2.1)
directly:
Lemma 3.1 (Decomposition of error rate lower bound into
three metrics). Let U(p) = H2(p) + p log2(Ymax − 1) and
U ′(p) = dU

dp (p), and let p0 ∈ [0, 1] be the approximate
error rate. Then, for any p0, the error rate perr is bounded
as

perr ≥ Btight
p0 (E(O, Y, Ŷ ))

:= p0 +
U ′(p0)

4

1−

√
1− 8

H(Y )− E(O, Y, Ŷ )− U(p0)
U ′(p0)2

 ,

(6)

where the ensemble strength E(O, Y, Ŷ ) is given by

E(O, Y, Ŷ ) :=Irelev(O, Y )− Iredun(O, Y )

− Icombloss(O, Y, Ŷ ), (7)

Icombloss(O, Y, Ŷ ) :=H(Y |Ŷ )−H(Y |O).

Proof. In Lemma 2.1, we expand H2(perr) by using strong
convexity and solve for perr. Appendix D.1 shows the proof.

Lemma 3.1 differs from Lemma 2.3 in that (i) the ensemble
strength E (7) includes the third metric of combination loss,
and (ii) the bound function is tighter2: Btight

p0 (E) ≥ B(E),
which is the result of removing the large Ymax assumption.

Since E = I − Icombloss holds, E denotes the amount of
unique information on Y carried by O that can be extracted
when a combination F is applied to O. Btight

p0 is still a
decreasing function of E when p0 ∈ [0, Ymax−1

Ymax
], where

2If p0 is not far from the lower bound values (Appendix D.3)

Ymax−1
Ymax

denotes the error rate of a random-guessing system
on a balanced label dataset. Thus, Lemma 3.1 reveals that
an ensemble system should include accurate (large Irelev)
and diverse (small Iredun) models and keep Icombloss small in
order to have a small lower bound.

3.2. What Kind of Systems Produce Combination Loss?

To clarify in what kind of ensemble systems combina-
tion loss becomes apparent, four toy ensemble systems
on an imaginary binary classification task are shown in
Table 1. The systems differ in terms of models O =
{O1, O2, O3, O4, O5} or combination function F . Al-
though the systems examined here are extremely simplified
and the claims here are hypothetical, they can illustrate cer-
tain aspects of empirical behaviors of ensemble systems as
discussed in Section 6.

Table 1a shows the case where the outputs from each model
in O are perfectly correlated, i.e., there is no diversity be-
tween models. Information theoretically, the system has
large redundancy Iredun. In this case, simple voting Ŷvote
does not lose any information carried by O, so the combina-
tion loss is trivially zero.

Tables 1b and 1c show the cases where the models differ
in accuracy, among which O1 performs best. Information
theoretically, the amount of information on Y given by the
models is unevenly distributed on the models, and especially
concentrated on O1. Note that the same model set is shown
in both tables. If naive voting is used for model combination
(Table 1b), it produces a prediction error 1 even though
some of the models (O1 and O4 in this case) give correct
predictions 0. These correct but neglected minorities are the
source of combination loss. On the other hand, if weighted
voting that focuses more on the best model (i.e., O1) is
used (Table 1c), it will succeed in recovering the correct
prediction, 0.

Table 1d shows the case where the models’ outputs are di-
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Table 2: Ensemble methods used in this study. We built 16 ensemble systems using all combinations of model generation and
combination methods. Note that Stacking has three variations (i.e., LogR, SVM and RForest). All generation methods train
N (≤ 30) models using different seed for each model. Seed affects random aspects of training, e.g., weight initialization or
hidden units dropped when using dropout. See Section 4.2 for details.

Type Method Description

Model
Generation

Random-HyP Train models with different hyperparameters randomly sampled around the best value.

Bagging Train models using different dataset instance sets. Each set contains instances randomly sampled
from the original dataset.

Random-Seed Train models that differ only in the seed of fine-tuning.

Hetero-DNNs Train models from L(=5) types of DNNs. M models from each type so that L×M = N .

Model
Combination

Voting Take a majority vote on labels predicted by models.

Stacking
(LogR|SVM|RForest)

Use meta-estimators that make prediction from outputs of models as inputs. We used two-
layered stacking with a single meta-estimator, which takes predicted labels as inputs. We trained
logistic regression (LogR), Support Vector Machine (Platt, 1999) with RBF kernel (SVM) and
Random Forest (Breiman, 2001) (RForest) as meta-estimators.

verse but have the same accuracy. Information theoretically,
information on Y given by O is uniformly distributed on all
the models. In this case, weighted voting will not help much
in recovering the correct predictions compared with simple
voting, since there are no better models to be focused on.

From the discussion above, it is expected that (i) models’
redundancy decreases combination loss, and (ii) smart com-
bination functions help reduce combination loss, especially
when the accuracies of models are varied.

4. Experiments
We empirically validate and demonstrate Lemma 3.1. To
this end, we built various ensemble systems and measured
their error rates, error rate lower bounds, and the three met-
ric values. To be modern and realistic, we built ensemble
systems on top of state-of-the-art DNNs, specifically pre-
trained language models such as BERT (Devlin et al., 2019).
We used various tasks from the GLUE and SuperGLUE
benchmarks (Wang et al., 2018; 2019). These benchmarks
include challenging tasks from different domains of NLP
and are commonly used to compare state-of-the-art models.

Below, we briefly describe these setups. For reproducibility,
we show the details in Appendix E and release the code.

4.1. Models

We fine-tuned the following five types of language models
on downstream tasks: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), ELECTRA (Clark et al., 2020), ALBERT
(Lan et al., 2020), and BART (Lewis et al., 2020).

4.2. Ensemble Systems

To build an ensemble system, we must specify a model
generation method (i.e., how to train models that produce
O) and a combination method (i.e., F). We used well-
established methods that can be used with DNNs (Table 2).
These methods are commonly used with DNNs in a wide
range of domains (Kumar et al., 2016; Liu et al., 2017; Qum-
mar et al., 2019; Ma & Chu, 2019), especially in competi-
tions where the highest performance is required (Szegedy
et al., 2015; Yan et al., 2015; Atwood et al., 2020; Morishita
et al., 2020a; Morio et al., 2020b). We built 16 systems
using all the combinations of generation and combination
methods.

For later convenience, we define the baseline system s0
in each task, which is a single DNN (i.e., no-ensemble)
that performs the best among DNNs: ELECTRA for the
MRPC/Boolq/SST and RoBERTa for the other tasks.

Random-Seed, Random-HyP and Bagging used a single
DNN type the same as s0. Hetero-DNNs used L=5 DNN
types.

4.3. Estimation of Metric Values and Lower Bound

We estimated the three metric values (Irelev, Iredun, and
Icombloss) and the other quantities appearing in Lemmas 2.3
and 3.1 on the basis of the observed frequency distribu-
tion of the labels (O, Ŷ , Y ). Then, we computed the lower
bounds by Lemmas 2.3 and 3.1. All such operations were
done on test sets3.

To tackle the count sparsity of high-dimensional variables

3In order to eliminate from our discussion the statistical fluc-
tuation caused by dataset splitting. Such counfounding factor is
undesirable for verifying the theory.
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(a) Lemma 2.3 B(I).
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(b) Btight(I).
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(c) Lemma 3.1 Btight(E).

Figure 2: Correlations between error rate reductions and lower bound reductions. Each figure uses different type of lower
bound. Each point in figures shows quantity of specific ensemble system s, and quantity is average over eight tasks. See
Table 4a for real value of each point. We used 16 ensemble systems described in Section 4.2. Each system s used N = 15
models. Baseline values in (8) and (9) are: ER(s0): 15.5%, LB(s0) by Btight(E): 2.8%, LB(s0) by Btight(I): 2.8%, and
LB(s0) by B(I): −2.0%.

O = {Oi | 1 ≤ i ≤ N,Oi ∈ {1, 2, . . . , Ymax}} , we used
the trick of MTIk=3 introduced by Zhou & Li (2010).

We set the approximate error rate p0 in (6) as the error rate
of the baseline s0. Below, we simply denote Btight

p0 as Btight.

4.4. Tasks

We used eight classification tasks with moderately-sized
datasets for computational reasons: Boolq (Clark et al.,
2019), CoLA (Dolan & Brockett, 2005), Cosmos QA (Khot
et al., 2018), MNLI (Williams et al., 2018), MRPC (Dolan
& Brockett, 2005), SciTail (Khot et al., 2018), SST (Socher
et al., 2013), and QQP.

4.5. Computational Resources / Experimental Runs

A single run of experiments required about 200 GPUs
(V100) × 1 day. We ran the experiments three times.

5. Validation of Framework Through its
Predictive Power to Ensemble Phenomena

We show that we can predict various phenomena observed
on actual ensemble systems using Lemma 3.1. We show the
results aggregated over the eight tasks here and those for
each task in Appendix K. The discussions here are valid for
all tasks, showing their significance.

Lemma 3.1 Btight(E) differs from Lemma 2.3 B(I) in two
ways, i.e., it has a tightened bound function Btight and en-
semble strength with combination loss E . To separate con-
tribution of each, we analyze three types of lower bounds
hereafter: B(I), Btight(I), and Btight(E).

5.1. Effect of Bound Function Btight

First, as theoretically expected, the lower bound Btight(I)
was tighter than Lemma 2.3 B(I), for example for the base-
line system s0, Btight(Is0) = 2.8% and B(Is0) = −2.0%
(average of eight tasks). The captions of Tables K.15 to K.22
show the error rates and the error rate lower bounds for eight
tasks.

5.2. Correlation between Error Rate and Lower Bound

The error rate lower bound denotes the best-case error rate.
Thus, a system with a smaller lower bound has higher
chance of having a smaller error rate (Brown, 2009; Zhou
& Li, 2010). Guided by this intuition, we measured the
correlation between the error rates and lower bounds of the
ensemble systems.

Figure 2 plots the following normalized versions of the error
rate and lower bound for each ensemble system s:

ErrorRateReduction(s) =
ER(s0)− ER(s)

ER(s0)
× 100 [%],

(8)

LowerBoundReduction(s) =
LB(s0)− LB(s)

|LB(s0)|
× 100 [%].

(9)
s0 denotes the single DNN baseline defined in Section 4.2.
ER(s) denotes the error rate (i.e., 100% − accuracy) and
LB(s) the lower bound. Note that Pearson correlation coeffi-
cient is invariant under this transformation.

Neither the lower bound reduction by Lemma 2.3 B(I) nor
that by Btight(I) correlated with the error rate reduction, as
shown in Figures 2a and 2b. In addition, Lemma 2.3 B(I)
predicted the same lower bound reduction value for different

4The correlation coefficient between the averaged error rate
reductions and lower bound reductions. The average is taken over
the eight tasks.
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(d) Lower bound reduction [%]
by Lemma 3.1 Btight(E).

Figure 3: Change in error rate reduction and lower bound reduction when number of models N was changed. Each value is
an average of eight tasks. Ensemble systems used SVM model combination.

Table 3: Pearson correlation coefficients between error rate
reduction and lower bound reduction. In each task, we used
the 16 ensemble systems described in Section 4.2, and each
system used N = 15 models.

Lower bound type

Task Lemma 2.3 B(I) Btight(I) Lemma 3.1 Btight(E)
Boolq 0.341 0.330 0.910
CoLA -0.211 -0.210 0.991
CosmosQA -0.324 -0.320 1.000
MNLI 0.226 0.216 0.961
MRPC 0.332 0.252 0.989
QQP -0.131 -0.076 0.998
SciTail -0.237 -0.191 0.966
SST -0.242 -0.252 0.998

average4 -0.238 -0.165 0.984

systems that share the same model generation method. This
behavior of the lower bounds can be seen from the points
on the same horizontal lines in Figure 2a. This behavior
is theoretically expected: since Lemma 2.3 B(I) does not
include Icombloss, it does not consider model combination
methods. This behavior was also observed on Btight(I) for
the same reason.

By contrast, the lower bound reduction by Lemma 3.1
Btight(E) was very strongly correlated with the error rate
reduction, as shown in Figure 2c. Strong correlations were
observed for all eight tasks (Table 3) and also for different
Ns (Tables G.11 to G.14). These results justify Lemma 3.1
and show that Btight(E) can be used for comparing systems.
These results also show the importance of combination loss
given that the only difference between Btight(E) and Btight(I)
is combination loss.

5.3. Predicting Error Rate Scaling Curve

Figure 3 shows the change in error rate reduction and
lower bound reductions when the number of models N
was changed.

Both Lemma 2.3 B(I) (Figure 3b) and Btight(I) (Figure 3c)

could not predict the shape the of error rate reduction curve
(Figure 3a), especially the saturation over N ⪆ 15. By
contrast, Lemma 3.1 Btight(E) (Figure 3d) could predict
such phenomena. The results again justify Lemma 3.1 and
show the importance of combination loss.

Refer to Appendix H for more detailed discussions, where
we examine the scaling property of each metric values.

6. Analysis of Ensemble Systems by
Framework

We demonstrate how we can reveal the strengths and
weaknesses of the systems on the basis of the metrics in
Lemma 3.1. The results here are summarized in Section 1.
We show the results aggregated over the eight tasks here and
those for each task in Appendix K. The discussions here are
valid for all tasks, showing their significance.

6.1. Justification of Three Metrics for Ensemble System
Analysis

Table 4 shows the statistics of the ensemble systems. First,
the ranking of the lower bound reduction by Btight(E) in
Table 4a matches the ranking of E in Table 4b. This is
theoretically expected because Btight is a decreasing function.
Thus, E can be used for comparing systems, instead of
Btight(E). Furthermore, since E is decomposed into the three
metrics (Irelev, Iredun, Icombloss) as in (7), the three metrics
can be used to analyze ensemble systems.

Below, we use per-model metrics i{relev, redun, combloss} =
I{relev, redun, combloss}/N for intuitive understanding.

6.2. Analysis of Model Generation Methods

Random-Seed and Hetero-DNNs systems performed the
best or second best in each column of Table 4a (i.e. among
the systems with the same combination method). Looking
into the per-model relevance irelev in Table 4b, Random-
Seed had the largest irelev in each column. irelev denotes the
average accuracy of the models. Indeed, the ranking of irelev
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Table 4: Statistics of ensemble systems described in Section 4.2. Rows and columns list model generation and combination
methods of Table 2, respectively. Each cell shows quantity of specific system s. Each quantity is average over eight tasks.
Each system contains N = 15 models. Color shows rank within each column (brighter is better).

(a) Error rate and lower bound reductions. Baseline values used in (8) and (9) were ER(s0): 15.5%, LB(s0) by Btight(E): 2.8%, LB(s0)
by Btight(I): 2.8%, and LB(s0) by B(I): −2.0%.

Error rate reductions [%] Lower bound reductions by Btight(E) [%]

Voting LogR SVM RForest Voting LogR SVM RForest

Random-HyP 6.8±1.4 8.5±0.9 8.4±1.2 7.6±0.7 5.8±1.4 7.2±1.0 7.5±1.1 6.6±0.7
Bagging 7.3±2.0 8.2±1.9 9.0±1.9 5.8±2.0 6.8±2.1 6.9±2.0 8.2±2.1 4.8±2.0
Random-Seed 9.6±1.2 10.1±0.7 9.5±0.7 8.7±0.2 8.8±1.2 8.5±0.7 8.7±0.8 7.7±0.1
Hetero-DNNs 6.5±1.4 11.9±0.8 10.4±1.5 9.1±1.9 5.5±1.4 10.3±0.8 9.2±1.5 7.8±1.9

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all values are normalized by
ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is raw value.

Ensemble strength E Per-model metric values

irelev iredun
icombloss irelev − iredun

Voting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.478) 100 0 0 0 0 0 100

Random-HyP 105.0±1.4 107.4±1.0 107.5±1.3 105.2±0.7 89.4±0.9 74.5±0.9 7.96±0.36 7.80±0.34 8.00±0.37 7.94±0.29 15.0±1.3
Bagging 105.3±1.9 105.7±1.8 108.0±1.1 103.1±1.4 90.1±0.3 73.5±0.3 9.56±0.08 9.54±0.03 9.40±0.05 9.71±0.05 16.6±0.4
Random-Seed 109.2±1.1 108.5±0.9 108.8±1.3 107.7±1.0 100.0±0.0 84.9±0.3 7.79±0.21 7.84±0.26 7.82±0.19 7.89±0.23 15.1±0.3
Hetero-DNNs 104.5±1.1 110.9±0.8 110.6±1.0 107.8±1.7 86.0±0.4 69.9±0.2 9.16±0.24 8.73±0.26 8.75±0.29 8.94±0.19 16.1±0.4

coincided with the ranking of the average error rate shown
as “avg” in Table 5. Random-Seed had the most accurate
models because it used only the best DNN type (cf. Hetero-
DNNs), all the dataset instances (cf. Bagging), and only the
best hyperparameter (cf. Random-HyP).

On the per-model redundancy iredun, Hetero-DNNs had a
value smaller than that of Random-Seed (i.e., it had more
diverse models), benefitting from the diverse DNN types.

For per-model combination loss icombloss
5, Random-Seed

had the smallest value in the voting column. We attribute
this to it having lowest diversity (i.e., the largest iredun), sim-
ilarly to Table 1a. However, the meta-estimators (LogR,
SVM, and RForest) reduced icombloss more on Hetero-DNNs
than on Random-Seed. This pushed the performance of
Hetero-DNNs to the highest among all the systems. Regard-
ing this phenomenon, Hetero-DNNs can be analogous to
Tables 1b to 1c and Random-Seed to Table 1d: since Hetero-
DNNs uses various DNN types of varied accuracies, the
amount of information on Y is concentrated more on better
models compared with Random-Seed. Thus, Hetero-DNNs
benefitted more from the meta-estimators, which focused
on these models and recovered the information to reduce

5The magnitude of icombloss is smaller than those of irelev and
iredun. However, irelev and iredun are strongly correlated, and thus,
icombloss is not negligible compared with irelev − iredun, as shown.
Thus, combination loss is significant.

icombloss, similarly to the transition from Tables 1b to 1c.
This phenomenon did not occur in Random-Seeed since it
uses models of similar accuracies, similarly to Table 1d.

Indeed, we can see the information concentration and how
the meta-estimator handled such information more directly.
To this end, we propose an auxiliary metric of n-model
concentration ConcNn (Appendix J) which measures the
degree to which the amount of information given by N
models O = {O1, . . . , ON} is concentrated on the top-n
models ΩN,max

n :

ConcNn (O, Y ) =
I(ΩN,max

n ;Y )− I(ΩN,min
n ;Y )

I(O;Y )
∈ [0, 1],

(10)

I(ΩN,max/min
n ;Y ) = max/min

{i1,i2,...,in}∈ΩN
n

I({Oi1 , Oi2 , . . . , Oin};Y ).

Table 5 shows ConcN=15
n=3 for each model generation

method. Intuitively, ConcNn and the standard deviation of
model error rates, which denotes the variety in accuracies,
were strongly correlated. Hetero-DNNs had a larger ConcNn
and Random-Seed a smaller one, as expected. Table 6 shows
that the meta-estimator for Hetero-DNNs distributed weight
Wt to each DNN type t in accordance with its error rate.
Overall, we can see a clear analogy of Hetero-DNNs to
Tables 1b and 1c, and of Random-Seed to Table 1d.

Bagging and Random-HyP performed the third or fourth
best in each column of Table 4a. Similarly to Hetero-DNNs,
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Table 5: The information concentration metric ConcN=15
n=3 .

See (10). Color shows rank (brighter is better) in each
column. Values are averages over eight tasks.

ConcN=15
n=3

Error rates of models [%]

Model generation avg. std.

Baseline (s0) 0 16.1±0.9 -

Random-HyP 0.28±0.02 17.3±0.1 3.4±0.2
Bagging 0.08±0.00 17.1±0.0 0.8±0.0
Random-Seed 0.08±0.00 15.5±0.1 0.7±0.1
Hetero-DNNs 0.20±0.00 18.1±0.0 2.3±0.0

Table 6: Logistic regression meta-estimator weight Wt dis-
tributed to each DNN type t. N=15 models are generated
by Hetero-DNNs (i.e., 3 models per DNN type). Values are
averages over eight tasks. See Appendix F.2 for details.

DNN t Average error rate of models [%] Wt

RoBERTa 15.1±0.3 0.49
ELECTRA 17.0±0.1 0.40
BART 17.9±0.1 0.25
BERT 18.7±0.1 0.24
ALBERT 20.4±0.1 0.21

they had a smaller irelev and iredun compared with Random-
Seed (Table 4b). The smaller irelev is attributed to Bagging
using smaller subsets of training instances and Random-
HyP using randomly sampled non-optimal hyperparameters,
which degraded model accuracies. The smaller iredun is
due to the diverse instance sets of Bagging and the diverse
hyperparameters of Random-HyP.

Bagging had the largest icombloss in each column, and more
importantly, the meta-estimators (LogR, SVM and RForest)
could not reduce icombloss as much as they could on Hetero-
DNNs and Random-HyP. This phenomenon should be due
to the Bagging’s smaller ConcNn (Table 5), which is the
result of models of similar accuracies, similarly to Table 1d.
Such models were generated because Bagging used dataset
sub-sets of the same size.

6.3. Analysis of Model Combination Methods

Stacking (i.e., LogR, SVM, and RForest) generally outper-
formed voting in each row of Table 4a. This is due to the
smaller icombloss since irelev and iredun are the same in each
row. Simply, the meta-estimators combined the models
better to reduce icombloss.

Interestingly, the simple meta-estimator of LogR performed
on par with or better than the complex ones of SVM and
RForest. We estimate that the DNN’s predictions were so
good that simple combinations were enough, and complex
ones were superfluous.

7. Other Considerations
The limitations of the study are listed in Appendix A. Ethical
matters and social impacts are discussed in Appendix B.

8. Conclusion
We proposed a novel and fundamental theoretical frame-
work that measures a given ensemble system on the basis
of a well-grounded set of metrics. We also validated and
demonstrated the framework through experiments on DNN
ensemble systems. In the future, we will analyze a broader
range of systems, including rec/ent DNN ensemble systems
optimized in an end-to-end manner. We will also incorporate
combination loss into ensemble systems as an optimization
target (i.e., as a loss-term) for better performance.
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A. Limitations
The study has the following limitations:

• As stated in Section 1, the framework Lemma 3.1 deals
with classification tasks.

• As stated in Section 3.2, the claims made on the toy
ensemble systems of Table 1 are hypothetical rather
than theoretically driven, although they have explained
certain aspects of the experimental results as discussed
in Section 6.

B. Ethics and Social Impacts
Ensemble learning is a generic technology to boost the per-
formance of machine learning models. This study provides
a theoretical framework on ensemble learning for evaluat-
ing a given ensemble system by a set of specific metrics.
The framework enables us to reveal the strengths and weak-
nesses of ensemble systems on each metric, which will give
us insights into the designing of ensemble systems. Thus,
this study should ultimately lead to the better performance
of machine learning models.

While it is possible that inappropriate use of improved ma-
chine learning models poses negative effects on society, we
believe that this study does not directly pose negative effects
on society.

C. Definitions
We show the definitions of information theoretical quantities
used in this study. In the below, we assume that S and T
denote sets of discrete stochastic variables:

S = {S1, S2, . . . , SL}, L ∈ N,
T = {T1, T2, . . . , TM}, M ∈ N,

where Si and Ti are discrete stochastic variables. We de-
note si, ti as the values of Si, Ti, and p as the probability
distribution function.
Definition C.1 (Entropy of S).

H(S) = −
∑

s1,...,sL

p(s1, . . . , sL) log2 p(s1, . . . , sL).

(C.1)

Definition C.2 (Conditional entropy of T given S).

H(T|S) = −
∑

s1,...,sL

∑
t1,...,tM

p(s1, . . . , sL, t1, . . . , tM )

× log2 p(t1, . . . tM |s1, . . . , sL).
(C.2)

Definition C.3 (Mutual-information between S and T).

I(S;T) = H(T)−H(T|S). (C.3)

Definition C.4 (Multi-information of S).

Imulti(S) =
∑

s1,...,sL

p(s1, . . . , sL) log2
p(s1, . . . , sL)

p(s1) . . . .p(sL)
.

(C.4)

Definition C.5 (Conditional multi-information of T given
S).

Imulti(T|S) =
∑

s1,...,sL

∑
t1,...,tM

p(s1, . . . , sL, t1, . . . , tM )

× log2
p(t1, . . . , tM |s1, . . . , sL)

p(t1|s1, . . . , sL) . . . p(tM |s1, . . . , sL)
.

(C.5)

For the interpretation of (C.4) to (C.5), see (Brown, 2009;
Zhou & Li, 2010).

D. About Lemma 3.1
D.1. Full Proof

H(Y |O) +H(Y |Ŷ )−H(Y |O)︸ ︷︷ ︸
combination loss

= H(Y |Ŷ ),

≤ H2(perr)︸ ︷︷ ︸+perr log2(Ymax − 1) =: U(perr),

≤ H2(p0) +H′
2(p0)(perr − p0)−

m

2
(perr − p0)

2︸ ︷︷ ︸
=:Ĥ2(perr)

+ perr log2(Ymax − 1),

=: Û tight
m,p0

(perr). (D.1)

The first inequality follows from Fano’s inequality
Lemma 2.1. In the second inequality, we used strong con-
cavity of binary cross entropy function H2(perr)︸ ︷︷ ︸ to upper

bound it by another quadratic function Ĥ2(perr) tangent to
H2(perr) at perr = p0. (D.1) holds for any p0 ∈ [0, 1] and
m ≤ 4.

m represents the curvature of Ĥ2(perr). Setting m = 4
produces the most curved quadratic function Ĥ2(perr), and
hence the tightest upper bound of H2(perr). Then, decom-
posing H(Y |O) of the left-hand side as Lemma 2.3 and
solving (D.1) for perr derives Lemma 3.1.

The choice of p0 of Lemma 3.1 is discussed in Ap-
pendix D.2.

D.2. Which Choice of p0 is Preferable for Ensemble
System Comparison

Lemma 3.1 discloses lower bounds that depend on p0. For
fair comparisons of ensemble systems, we must first choose
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and fix a specific value of p0 from [0, 1]. Any choice of p0
is ok since it does not change the ranking of lower bounds.
In our experiments, we chose the baseline error rate as our
p0 due to the following reason.

As stated in Appendix D.1, we approximated the binary
cross entropy function H2(perr) as a quadratic function
Ĥ2(perr) tangent to H2(perr) at perr = p0. Thus, the ap-
proximation error Û tight

m=4,p0
(perr) − U(perr) is the smallest

when p0 ∼ perr, where perr = Btight
p0 (E) is the actual lower

bound obtained by ensemble strength E of each of the en-
semble systems. This means that we should choose a value
of p0 that is similar to the error rate lower bounds of the
target ensemble systems due to the following reason.

Since we do not know the error lower bounds of the systems
before we choose p0 and solve perr = Btight

p0 (E), it is a bit
complicated to tune the value of p0, although it is possible.
Thus, in the experiments of this study, we chose the baseline
error rate as our p0 rather than tuning p0. The baseline
error rate is expected to be similar to the error rates of the
ensemble systems, and hence it should not be much different
from the lower bounds of the systems.

D.3. Comparison between Tightness of Lemma 3.1 and
Lemma 2.3

Lemma 3.1 differs from Lemma 2.3 in the lower bound func-
tions. That is, Lemma 3.1 uses Btight

p0 (E) while Lemma 2.3
uses B(E). In this section, we show that the bound func-
tion Btight

p0 (E) is tighter (i.e. larger) than B(E) if E is in a
specific range in which Btight

p0 (E) is not much different from
p0. Hereafter we assume p0 ≤ Ymax−1

Ymax
, Btight

p0 (E) ≤ Ymax−1
Ymax

,
and B(E) ≤ Ymax−1

Ymax
, where Ymax−1

Ymax
means an error rate of a

random guessing system on a balanced label dataset.

Firstly, we show how the two lemmas are derived.

Lemma 3.1 is derived using (D.1) as:.

1. Set m = 4. That is, we use Û tight
m=4,p0

(perr) for the upper
bound function.

2. Solving for perr derives Lemma 3.1 perr ≥ Btight
p0 (E).

Lemma 2.3 is derived in a similar way as:

H(Y |O)+H(Y |Ŷ )−H(Y |O)︸ ︷︷ ︸
combination loss

≤ Û tight
m,p0

(perr),

≤ Û tight
m,p0

(perr) + perr log2
Ymax

Ymax − 1
=: Ûm,p0(perr).

(D.2)

1. Set m = 0, p0 = 1
2 . That is, we use Ûm=0,p0=

1
2
(perr)

for the upper bound function.

2. Loosen the left-hand side as H(Y |O) +
H(Y |Ŷ )−H(Y |O)︸ ︷︷ ︸

combination loss

≥ H(Y |O), that is, ignore the

combination loss.

3. Then, solving for perr derives Lemma 2.3 perr ≥ B(I).

Viewing these, we can immediately show that if we
use p0 = 1

2 for Lemma 3.1, it’s bound function is
tighter as ∀E,Btight

p0=
1
2

(E) ≥ B(E). This follows from

Û tight
m=4,p0=

1
2

(perr) ≤ Û tight
m=0,p0=

1
2

(perr) + perr log2
Ymax

Ymax−1 =

Ûm=0,p0=
1
2
(perr). We also point out that Lemma 2.3 poses

the following assumptions which may lead to loose bound;
(i) m = 0. This means that the upper bound function
Ûm=0,p0=

1
2
(perr) is a line. (ii) The existence of positive

term perr log2
Ymax

Ymax−1 .

When we use p0 ̸= 1
2 , that is more general, the tightness

Btight
p0 (E) ≥ B(E) holds in limited ranges of E. As stated

in Appendix D.2, the approximation error produced by
Û tight
m,p0(E) is the smallest if Btight

p0 (E) ∼ p0. Thus, roughly
speaking, Btight

p0 (E) ≥ B(E) holds if Btight
p0 (E) ∼ p0 and

Btight
p0 (E) ≤ B(E) holds if Btight

p0 (E) and p0 differ much in
their values.

We can discuss the details as follows. The tightness condi-
tion on ensemble strength E is given by:

Btight
p0

(E) ≥ B(E). (D.3)

Let lower bound function p̄p0(E) = Btight
p0 (E). Solving

(D.3) for E can derive the range of p̄p0
(E) where the tight-

ness holds:

p̄p0(E) ≤ min(p0 +∆+
p0
, p0 +∆−

p0
), (D.4)

max(p0 +∆+
p0
, p0 +∆−

p0
) ≤ p̄p0

(E), (D.5)

where

∆±
p0

:= τ(p0)

1
√
1− 1

2

1−H2(p0)− log Ymax−1
Ymax

τ(p0)2

 ,

τ(p0) :=
1

4

[
dH2

dp
(p0)− log

Ymax

Ymax − 1

]
.

We assumed 1− 1
2

1−H2(p0)−log Ymax−1
Ymax

τ(p0)2
≥ 0. Otherwise, the

tightness (D.3) always holds.

We proceed by specifying p0. Firstly, suppose p0 is mildly
small: p0 ≤ Ymax−1

2Ymax−1 . Then, we can show τ(p0) ≥ 0. Thus,
∆−

p0
≤ ∆+

p0
holds, and (D.4) becomes:

p̄p0(E) ≤ p0 +∆−
p0
. (D.6)
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Additionally, we can show that ∆−
p0

≥ 0. Thus, (D.6) dis-
closes that if the lower bound p̄p0(E) is not much larger than
p0, the tightness (D.3) holds. Especially, if p̄p0(E) ≤ p0
the tightness holds. This condition applies to the exper-
iments of this study. We have also directly shown that
Btight
p0 (I) > B(I) in Table 4a.

If p0 is large p0 ≥ Ymax−1
2Ymax−1 , we can show τ(p0) ≤ 0. Thus,

∆−
p0

≥ ∆+
p0

holds, and (D.5) becomes:

p̄p0(E) ≥ p0 +∆−
p0
. (D.7)

Additionally, we can show that ∆−
p0

≤ 0. Thus, (D.7)
discloses that if the lower bound p̄p0(E) is not much smaller
than p0, the tightness (D.3) holds.
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E. Details of Experimental Setup
E.1. Models

DNN types: Table E.7 shows the five types of pre-trained
language models used in this study. Pre-trained language
models are essentially large neural networks with self-
attention layers that are trained on huge text corpora in
an unsupervised manner. These models are shown to ob-
tain state-of-the-art performance when fine-tuned on down-
stream tasks (Liu et al., 2019; Lan et al., 2020; Clark et al.,
2020; Devlin et al., 2019; Lewis et al., 2020). In addition,
since they differ in terms of model architecture and pre-
training method, they should produce strong diversity, and
hence, are suitable for ensembles.

Fine-tuning procedures: We trained each DNN on each
downstream task following the standard practice of language
model fine-tuning (see Devlin et al. (2019) for example) as
follows.

We added a new softmax layer on top of the embedding
layers of the DNNs. We preprocessed the input text by
the following steps: (i) we tokenized the input text with a
DNN-type-specific tokenizer, (ii) if the text included more
than two sentences, we added DNN-type-specific “separator”
tokens between sentences, (iii) we tensorized each token
into a one-hot vector using DNN-type-specific vocabulary.

We trained these models on the training sets of the tasks.
TValidation sets were used only during the preliminary ex-
periments to adjust some hyperparameters (shown below).
Please refer to Appendix F.4 for the details of the datset
splitting strategy.

We used the hyperparameters shown in Table E.8 to fine-
tune all of the DNN types. The values were chosen on the
basis of the original papers (Liu et al., 2019; Lan et al.,
2020; Clark et al., 2020; Devlin et al., 2019; Lewis et al.,
2020) and our preliminary experiments. Note that language
models require only a few epochs for convergence.

Some of the ensemble methods in Table 2 use different
seeds for fine-tuning to produce diverse DNN models. In
our study, seeds affect (i) the initial weights of the softmax
layer, (ii) the hidden units dropped by dropout, and (iii) the
shuffling order of the training instances.

Implementations: We implemented the fine-tuning of
DNNs described here using the jiant library (Phang et al.,
2020) (v2.2.06), which in turn utilizes Hugging Face’s Trans-
formers library (Wolf et al., 2020). Jiant enables us to
fine-tune various types of pre-trained language models on
various NLP tasks. See our code for details.

6github hash: 961bd577f736449956ddb2c15dcfce68bbb75e59

E.2. Ensemble Systems

For the random hyperparameter sampling of Random-HyP,
we sampled the fine-tuning learning rate since it affect the
resulting model the most. We sampled the learning rate
around the best value of 3e-5, i.e., from [1e-5, 1e-4], as
shown in Table E.8.

The baseline system s0 was single DNN (i.e. no-ensemble)
that performed the best among DNNs. These baselines are
shown as bold in Table E.7

We implemented the model generation methods in Table 2
by ourselves.

We implemented the model combination methods in Ta-
ble 2 using scikit-learn 7. For the training of Stacking meta-
estimators, we used the hyperparameters shown in Table E.9.
We tuned some of the hyperparameters using scikit-learn’s
GridSearchCV with 5-fold cross validation. Appendix F
gives other details on Stacking ensemble used in this study.

E.3. Estimation of metric values and lower bound

Trick of MTI

In our experiments, we estimated the three metric values
on the basis of the frequency distribution observed for the
datasets. We used the trick of MTI introduced by (Zhou &
Li, 2010), which approximates quantities appearing in the
three metrics which depend on high-dimensional stochastic
variables O. Please refer to (Zhou & Li, 2010) for more
details.

We repeat the three terms of Lemma 3.1 below:

Irelev(O, Y ) =

N∑
i=1

I(Oi, Y ),

Iredun(O, Y ) = Imulti(O)− Imulti(O|Y ),

Icombloss(O, Y, Ŷ ) = H(Y |Ŷ )−H(Y |O).

Looking at above, it can be seen that some terms (i.e.
Imulti(O), Imulti(O|Y ) and H(Y |O)) depend on high-
dimensional variable O = {O1, . . . , ON}, where N is the
number of models. Since N can be as large as 30 in our
experiments, these terms might not be estimated reliably
due to the count sparsity for the limited amount of dataset
instances.

Thus, we use the trick of MTI introduced by Zhou & Li
(2010), which approximates the quantities by replacing O

7https://scikit-learn.org/stable/

https://scikit-learn.org/stable/


Rethinking Fano’s Inequality in Ensemble Learning

Table E.7: DNNs used in study and their error rates for each task. Convention of “variant” follows Huggingface’s transformer
library (Wolf et al., 2020). Bold shows best model in each task, which is used as baseline s0 stated in Section 4.2.

DNN type variant avg. Boolq CoLA CosmosQA MNLI MRPC QQP SciTail SST

RoBERTa (Liu et al., 2019) base 15.5±0.3 24.1±0.6 15.6±0.2 28.2±0.5 18.7±1.2 13.6±0.5 14.1±0.8 4.2±0.2 5.8±0.7
ELECTRA (Clark et al., 2020) base-discriminator 17.3±0.3 23.1±1.3 17.0±0.5 29.8±0.7 22.6±1.0 13.3±0.7 18.5±0.9 7.1±0.2 5.7±0.5
BART (Lewis et al., 2020) base 17.9±0.2 25.5±1.3 20.9±0.5 30.1±0.5 22.3±0.8 15.8±0.7 15.9±1.2 4.7±0.3 8.3±0.5
BERT (Devlin et al., 2019) base-uncased 18.7±0.1 26.0±0.8 17.2±0.4 34.1±0.6 26.3±0.2 17.1±0.7 16.5±0.7 4.5±0.2 8.0±0.7
ALBERT (Lan et al., 2020) base-v1 20.4±0.1 25.3±2.2 19.5±0.2 43.2±0.1 27.1±0.3 14.5±0.4 18.8±0.8 4.9±0.1 9.6±0.3

Table E.8: Hyperparameters used for fine-tuning of DNNs.

hyperparameter value

learning rate 3e-5 ([1e-5, 1e-4] for the random sampling of Random-HyP)
optimizer Adam (Kingma & Ba, 2015) (ϵ = 1e− 8) with linear warmup (data

size proportion=0.1), described in (Devlin et al., 2019).
gradient clipping 1.0
gradient accumulation steps 1
epochs 5
dropout DNN specific values (follows jiant (Phang et al., 2020))
training batch size 16
inference batch size 32
number of softmax layer 1

Table E.9: Meta-estimator hyperparameters. Hyperparameter names follow scikit-learn. Most of the hyperparameters are set
as default values of scikit-learn (version 0.22.2).

meta-estimator hyperparameter value / search range

logistic regression C [1e-2, 3e-2, 1e-1, 3e-1, 1e0]
penalty L2
solver liblinear
max_iter 1000
multi_class auto
random_state 0

SVM C [1e-2, 3e-2, 1e-1, 3e-1, 1e0]
max_iter -1
decision_function_shape ovr
random_state 0

Random Forest ccp_alpha [0.0, 0.03, 0.1, 0.3]
random_state 0
criterion gini
max_depth None

with its smaller subset Ω as follows:

Imulti(O) =

N∑
i=1

I(Oi;O1:i−1) ≥
N∑
i=1

max
Ωi−1

k

I(Oi|Ωi−1
k ),

(E.1)

Imulti(O|Y ) =

N∑
i=1

I(Oi;O1:i−1|Y ) ≥
N∑
i=1

max
Ωi−1

k

I(Oi; Ω
i−1
k |Y ),

(E.2)

H(Y |O) ≤ min
ΩN

k

H(Y |ΩN
k ), (E.3)

where Ωi = {X1, . . . , Xi}, and Ωi−1
k is a subset of size k.

The first equalities of (E.1) and (E.2) were proved by (Zhou
& Li, 2010). The last inequality in each equation is un-
derstood as follows. By replacing O with its subset Ωi

k,
we lose some amount of information carried by O. Thus,
this transformation might make mutual information in (E.1)
and (E.2) smaller than the original value and the entropy in
(E.3) larger. However, if we find Ωi

k, which contains the
largest amount of information (corresponding to max and
min operations in each equation), the difference from the
original value (i.e,. approximation error) is the smallest.

Zhou & Li (2010) empirically showed that the method works
well to produce almost an exact value. In our experiments,
we used k = 3 (MTIk=3).
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On the choice of p0

We set the approximate error rate p0 in (6) as the error rate
of the baseline s0 defined in Section 4.2. We state the reason
for this in Appendix D.2.

E.4. Tasks

Table E.10 details the eight tasks used in this study.
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Table E.10: Tasks used in this study.Mmajority of tasks are from GLUE benchmark (Wang et al., 2018) (shown as ∗) and
SuperGLUE benchmark (Wang et al., 2019) (shown as ⋆). All datasets are publicly available.

task dataset
size

#
classes
(Ymax)

description

Boolq⋆ (Boolean Question) (Clark et al., 2019) 9.5k 2 We are required to choose yes or no about a given question on a
given passage. The questions are the ones naturally occurring
in Google search engine, rather than the ones artificially built.
Answering the questions often requires query for complex, non-
factoid information, and difficult entailment-like inference.

CoLA∗ (Corpus of Linguistic Acceptability)
(Dolan & Brockett, 2005)

8.5k 2 We are required to judge linguistic acceptability (i.e., grammati-
cal or non grammatical) of given text such as “What did Bill buy
potatoes?”. The text are drawn from books and journal articles
on linguistic theory. Answering the questions requires the rich
grammatical knowledge from the local word dependencies such
as subject-verb-object order to the non-local dependencies.

Cosmos QA (Khot et al., 2018) 25k 4 After reading a short narrative passage, we are required to an-
swer a question about the passage (such as “What’s a possible
reason the writer needed someone to dress him every morning?”)
by choosing one answer from four possible candidates. The
passages are taken from blogs on the web and personal narra-
tives. Understanding the narrative requires common sense such
as inference on causes and effects of events, even when they are
not mentioned explicitly in the texts.

MNLI∗ (Multi-Genre Natural Language Infer-
ence) (Williams et al., 2018)

400k
(10k
used)

3 Given two pieces of text, we answer the relationship of the one
piece to the other piece from three choices: “entails”, “neutral”,
“contradicts”. The dataset is composed of texts from various
distinct genres of written English. The pairs are such as “At
8:34, the Boston Center controller received a third transmission
from American 11” and “The Boston Center controller got a
third transmission from American 11.” Answering the question
requires total ability of natural language understanding, e.g.,
handling lexical entailment, quantification, coreference, tense,
belief, modality, and lexical and syntactic ambiguity.

MRPC∗ (Microsoft Research Paraphrase Cor-
pus) (Dolan & Brockett, 2005)

3k 2 We are required to judge whether given two sentences are se-
mantically equivalent. The sentences are automatically extracted
from online news sources and twitter. Pairs are such as: “Charles
O. Prince, 53, was named as Mr. Weill’s successor.” “Mr. Weill’s
longtime confidant, Charles O. Prince, 53, was named as his suc-
cessor.”. Recognizing such paraphrase is a fundamental skill
needed for various tasks in NLP.

QQP∗ (Quora Question Pairs) 8 300k
(10k
used)

2 We are required to determine whether a pair of questions are
semantically equivalent. The questions are taken from the social
Q&A website Quora. The skill is used by question-answering
system to recognize the semantically same questions of different
linguistic expressions.

SciTail (Khot et al., 2018) 23k 4 We are required to answer a given scientific question such as
“Which of the following best explains how stems transport water
to other parts of the plant?” by choosing one answer from four
candidates. We have access to the additional relevant text. The
questions are the ones naturally arising in the web rather than
ones artificially created.

SST∗ (Stanford Sentiment Treebank) (Socher
et al., 2013)

50k (10k
used)

2 We predict a sentiment label (i.e., positive or negative) of a given
sentence. The sentences are taken from movie reviews. The task
requires the understanding of compositoinality of langeuage.
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F. Stacking Ensemble

Model

Meta-estimator

Model ModelModel

Figure F.4: Stacking ensemble used in this study.

Here, we give destails of the stacking ensemble used in this
study.

F.1. Architecture:

Figure F.4 illustrates the stacking ensemble used in this
study. We used the two-layered stacking ensemble where
the first-layer models are fine-tuned DNNs, and the second-
layer model (i.e. the meta-estimator) is another classification
model. For the meta-estimator, we used logistic regression,
Support Vector Machine (Platt, 1999) with RBF kernel, and
Random Forest (Breiman, 2001). For the inputs of the meta-
estimator, we used class labels predicted by the models.

In the below, we show the details of the logistic regres-
sion meta-estimator case. The meta-estimator estimates
the probability for a given instance i belonging to class
c pi,c ∈ [0, 1] from class labels predicted by N models
ŷi = {ŷ1i , ŷ2i , . . . , ŷNi }, ŷni ∈ {0, 1} as:

pi,c =
1

1 + exp(−li,c)
,

li,c = w0
c +

N∑
m=1

wm
c ŷmi .

The class with the largest pi,c is chosen as the final answer.
The meta-estimator is trained using “meta-feature dataset”
Dmeta = {(ŷ1, y1), (ŷ2, y2), . . . , (ŷ|D|, y|D|)}, where yi
denotes the groundtruth label. Details of the meta-estimator
training are shown in E.2 and F.4.

F.2. Weight Distribution of Table 6

The DNN-type-wise weight sum mentioned in Table 6 is
calculated as follows:

Wt =
∑

m∈Mt

|wm
c=1|,

where m denote the index of model, t a specific DNN type
and Mt the set of indexes of models from DNN type t.
Note that since our study used binary classification tasks, it
suffices to look c = 1.

F.3. Meta-estimator training

Hyperparameters The hyperparameters of the meta-
estimators (i.e., logistic regression and the SVM used by
Stacking ensemble) are shown in Table E.9.

Implementation: We implemented the model combina-
tion methods in Table 2 using scikit-learn 9.

F.4. Dataset splitting

In order to train meta-estimator of Stacking, we must take
cross-validation based dataset splitting strategy (Wolpert,
1992). In the below, we describe the data splitting strategy,
which is illustrated in Figure F.5. Note that the same data
splitting strategy was used for voting-based systems for fair
comparisons.

Training of stacking meta-estimators requires “meta-feature
dataset” Dmeta = {(ŷ1, y1), (ŷ2, y2), . . . , ŷ|D|, y|D|)}., as
stated in Appendix F. Here, ŷi = {ŷ1i , ŷ2i , . . . , ŷNi } where
ŷmi ∈ {0, 1} denotes the label predicted by model m on
instance i. yi denotes the groundtruth label of the same
instance i. To prevent overfitting of meta-estimators, the
model predictions {ŷ1, ŷ2, . . . } must be label-leak-free.
Thus, the model predictions are usually obtained using n-
fold cross-validation as follows.

Meta-feature dataset construction For each model m,
we use n-fold cross-validation to obtain its label-leak-free
predictions. Specifically:

1. Choose model m.

2. Divide the dataset D = {(x1, y1), . . . , (x|D|, y|D|)}
into n sets.

3. One of them (i.e. base-test-i) is set aside for testing
later.

4. Train the model m on the rest sets (i.e. base-train-i).

5. Apply the trained model m to the test set (i.e. base-
test-i) to get label-leak-free predictions.

6. Repeat 3-5 for i to collect label-leak-free predictions
on whole the dataset {ŷm1 , ŷm2 , . . . , ŷm|D|} where ŷmi
denotes a label prediction by model m on the instance
i, as stated in F.

7. Repeat 1-6 for m to collect label-leak-free predictions
by all the models: {ŷ1, ŷ2, . . . , ŷ|D|}. Then, we con-
catenate the predictions Dmeta. Then, we merge the pre-
dicted labels {ŷ1, ŷ2, . . . , ŷ|D|} and the groundtruth
labels {y1, . . . , y|D|} into the meta-feature dataset
Dmeta = {(ŷ1, y1), (ŷ2, y2), . . . , (ŷ|D|, y|D|)}.

9https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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Dataset D = {. . , (𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖), . . }

Base-train-1 Base-test-1

Base
model

train predict

Meta-feature dataset Dmeta = {. . �𝒚𝒚𝒊𝒊,𝑦𝑦𝑖𝑖 . . }

Meta-train-1 Meta-test-1

Meta-
estimator

train
calculate
error rate

Dataset

Base-train-2

Base
model

train

predict
Base-test-2 Base-train-2

train

Dataset

Base-train-3Base-test-3

Base
model

trainpredict

Test

Meta-train-2 Meta-test-2

Meta-
estimator

train
calculate error  rate

Test

Meta-train-3Meta-test-3

Meta-
estimator

train
calculate error  rate

Meta-train-2

train

Averaged
error rate

Meta-feature dataset
construction

Meta-estimator
training and scoring

Figure F.5: Our dataset splitting strategy (Appendix F.4) with 3-split case.

Note that, since the test set (i.e. base-test-i) is never used by
model training, the predictions on the test set are label-leak-
free.

In this study, we used n = 5.

Meta-estimator training and scoring :

Some of the datasets used in this study are small, as shown
in Table E.10. The official test-sets of the datasets are also
small. For example, the test sets of RTE dataset includes
only 277 instances. We supposed that the performance
measurements conducted on such small test-sets might not
be so reliable. Thus, we conducted the following l-fold
cross-validation to train and score the meta-estimators:

1. Divide Dmeta into l sets.

2. One of them (i.e. meta-test-i) is set aside for testing.

3. Train a meta-estimator on the rest sets (i.e. meta-train-
i).

4. Apply the meta-estimator to the test sets (i.e. meta-test-
i) and calculate its error rate.

5. Repeat 2-4 for i to get error rates on the test-sets, then
calculate the average of them.

In this study, we used l = 4.
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G. Pearson Correlation Coefficients between
Error Rate Reductions and Lower Bound
Reductions for Various Number of Models
N

Tables G.11 to G.14 show the Pearson correlation coeffi-
cients between the error reductions and lower bound re-
ductions of the ensemble systems in each task. Each table
shows the results of different N , which is the number of
models used by the ensemble systems.

See Section 5.2 for the discussion of such correlations.

Table G.11: N = 10. Pearson correlation coefficients be-
tween error rate reduction and lower bound reduction. In
each task we used the 16 ensemble systems described in
Section 4.2.

Lower bound type

Task Lemma 2.3 B(I) Btight(I) Lemma 3.1 Btight(E)
Boolq 0.413 0.377 0.869
CoLA -0.259 -0.245 0.993
CosmosQA -0.188 -0.174 1.000
MNLI -0.275 -0.385 0.955
MRPC 0.218 0.218 0.983
QQP -0.359 -0.330 0.999
SciTail -0.076 -0.092 0.944
SST 0.286 0.357 0.998

average10 -0.482 -0.431 0.975

Table G.12: N = 15. Pearson correlation coefficients be-
tween error rate reduction and lower bound reduction. In
each task we used the 16 ensemble systems described in
Section 4.2.

Lower bound type

Task Lemma 2.3 B(I) Btight(I) Lemma 3.1 Btight(E)
Boolq 0.341 0.330 0.910
CoLA -0.211 -0.210 0.991
CosmosQA -0.324 -0.320 1.000
MNLI 0.226 0.216 0.961
MRPC 0.332 0.252 0.989
QQP -0.131 -0.076 0.998
SciTail -0.237 -0.191 0.966
SST -0.242 -0.252 0.998

average10 -0.238 -0.165 0.984

10The correlation coefficient between the averaged error rate
reductions and lower bound reductions. The average is taken over
the eight tasks.

Table G.13: N = 20. Pearson correlation coefficients be-
tween error rate reduction and lower bound reduction. In
each task we used the 16 ensemble systems described in
Section 4.2.

Lower bound type

Task Lemma 2.3 B(I) Btight(I) Lemma 3.1 Btight(E)
Boolq 0.323 0.311 0.915
CoLA -0.324 -0.320 0.995
CosmosQA -0.510 -0.512 1.000
MNLI -0.190 -0.192 0.976
MRPC -0.235 -0.199 0.964
QQP 0.411 0.390 0.999
SciTail -0.286 -0.307 0.958
SST 0.032 0.024 0.997

average10 -0.452 -0.425 0.985

Table G.14: N = 30. Pearson correlation coefficients be-
tween error rate reduction and lower bound reduction. In
each task we used the 16 ensemble systems described in
Section 4.2.

Lower bound type

Task Lemma 2.3 B(I) Btight(I) Lemma 3.1 Btight(E)
Boolq 0.158 0.146 0.940
CoLA -0.215 -0.213 0.994
CosmosQA -0.592 -0.588 1.000
MNLI -0.048 -0.050 0.976
MRPC -0.471 -0.498 0.974
QQP 0.187 0.231 0.999
SciTail -0.379 -0.377 0.954
SST 0.213 0.208 0.996

average10 -0.330 -0.288 0.990
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H. Behavior of Ensemble Quantities When
Number of Models N is Changed

In this section, we examine the behavior of the ensemble
quantities when the number of models is changed (Fig-
ure G.6). Most importantly: (i) both Lemma 2.3 B(I) (Fig-
ure G.6b) and Btight(E) (Figure G.6c) could not predict the
shape of error rate reduction curve (Figure G.6a), especially
the saturation over N ⪆ 15. (ii) by contrast Lemma 3.1
(Figure G.6d) could predict the phenomena. This success is
attributed to the ensemble strength which consider combina-
tion loss (Figure G.6j).

Figure G.6e shows the per-model relevance irelev = Irelev/N ,
that denotes the average amount of information on Y con-
veyed by a single model or average accuracy of the models.
All the systems kept it nearly constant, since their model
training procedures do not change with respect to N .

Figure G.6f shows the per-model redundancy iredun =
Iredun/N , which denotes the average amount of informa-
tion on Y conveyed by a single model that is redundant to
the other models. In all of the systems, it increased to about
the same as irelev. It increased because as more models come
into an ensemble system, it becomes more difficult for a new
model to output a “novel” prediction distribution compared
with those of the existing models. As a result, new models
eventually become totally redundant as iredun ∼ irelev.

irelev− iredun (Figure G.6g), the average amount of unique in-
formation conveyed by a single model, converged to nearly
zero. Because of this diversity saturation, the increase in the
I = N × (irelev − iredun) slowed at large scale (Figure G.6h).
However, their saturation speed was smaller than the ob-
served one (Figure G.6a). As a result, both lower bound
reductions of Lemma 2.3 B(I) (Figure G.6b) and Btight(E)
(Figure G.6c) could not predict the saturation behavior.

Figure G.6i shows the combination loss Icombloss. Icombloss
increased in proportion to the increase of I, since Icombloss
represents the amount of information lost from I (Ap-
pendix I gives the intuition behind this increase). Over-
all, E = I − Icombloss saturated at the large scale (Fig-
ure G.6j). Thus, the lower bound reduction by Lemma 3.1
(Figure G.6d) produced by E succeeded in detecting the
observed saturation behavior (Figure G.6a).
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Figure G.6: The change in ensemble quantities when the number of models N is changed. Each figure shows a specific
quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i denotes
per-model metric values defined as i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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I. On Increase in Combination Loss with
respect to N

We describe the reason for the increase in combination loss
Icombloss with respect to number of models N observed in
Figure G.6i.

In particular, we discuss that the fact that Icombloss increases
with N does not contradict the fact that a larger N leads to
better performance.

I.1. Information theoretical view

From information theoretical viewpoints:

1. Since incoming models bring us more information, I,
which denotes the total amount of information carried
by the models, increases with N , as shown in Fig-
ure G.6h.

2. Since Icombloss represents the amount of information
lost from I when a combination function F is applied,
Icombloss generally increases as I increases. This is
shown in Figure G.6i. This fact is not counter-intuitive,
since, for example, if the information loss “rate” is
constant as c, Icombloss = c × I increases at the same
speed as I.

3. Since the growth of I is faster than that of Icombloss,
E = I − Icombloss, which denotes the total amount
of information remaining after the combination, also
increases, as shown in Figure G.6j.

4. Since E represents the performance of an ensemble
system, increasing E leads to better performance.

As seen, the fact 2 that Icombloss increases with N does not
contradict the fact 3-4 that a larger N leads to better perfor-
mance.

I.2. Viewing through neglected minority model
predictions

In Section 3.2, we discussed that the source of Icombloss is
neglected but correct model predictions. We can also discuss
Icombloss from this view as follows:

1. The number of neglected minority predictions on a
misclassified dataset instance increases as the number
of total predictions on the instance increases. Since the
latter is rougly proportional to N , the former is also
roughly proportional to N .

2. The total number of misclassified dataset instances,
which denotes error rate, decreases more slowly than
linearly with N . This is empirically known, for exam-
ple as shown in Figure G.6a.

3. The total number of neglected minority predictions in
a dataset, which is the source of Icombloss, is roughly
estimated as [the number of neglected minority predic-
tions on a misclassified dataset instance] × [the total
number of misclassified dataset instances]. From 1 and
2, this quantity increases roughly linearly with N .

As seen, the fact 3 that Icombloss increase with N does not
contradict with the fact 2 that error rate decrease with N .

J. Measurements of Information
Concentration

To observe this directly, we defined n-model concentration
(ConcNn ) which measures the degree of concentration on
top-n models as a value in [0, 1]:

ConcNn (O, Y ) =
I(ΩN,max

n ;Y )− I(ΩN,min
n ;Y )

I(O;Y )
∈ [0, 1],

I(ΩN,max/min
n ;Y ) = max/min

{i1,i2,...,in}∈ΩN
n

I({Oi1 , Oi2 , . . . , Oin};Y ),

where I is mutual information defined by (C.3) and ΩN
n

is all possible combinations of n integers from [1, N ].
Since the amount of information on Y carried by a sub-
set {Oi1 , . . . , Oin} can never be more than that of a full
set O, I(Ω

N,max/min
n ;Y ) ≤ I(O;Y ). This leads to

ConcNn (O, Y ) ∈ [0, 1]. The ConcNn takes 1 when all the in-
formation carried by O can be reconstructed by top-n Oi and
bottom-n Ois having no information (i.e. I(ΩN,max

n ;Y ) =
I(O;Y ) and I(ΩN,min

n ;Y ) = 0). The ConcNn are small
when the amount of information on top-n Oi is similar to
that of bottom-n Oi (i.e. I(ΩN,max

n ;Y ) ∼ I(ΩN,min
n ;Y )).
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K. Results of each task
Below, we show the experimental results of the eight tasks.
The discussion in Sections 5 and 6 holds in each task, that
is:

• Btight generate lower bound tighter than B. This is
discussed in Section 5.1.

• The lower bound reduction by Lemma 3.1 Btight(E) is
strongly correlated to the error rate reductions, while
those of Lemma 2.3 B(I) and Btight(I) are not. This
is discussed in Section 5.2.

• The lower bound reduction by Lemma 3.1 Btight(E)
successfully predicts the shape of error rate reduction
curve when the number of models N is changed, while
those of Lemma 2.3 B(I) and Btight(I) do not. This is
discussed in Section 5.3.

• The strengths and weaknesses of ensemble systems
in terms of the three metrics. This is discussed in
Section 6.
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(c) Lemma 3.1 Btight(E).

Figure K.7: Boolq task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.15 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 24.1%.
LB(s0) by Btight(E): 3.1%. LB(s0) by Btight(I): 3.1%. LB(s0) by B(I): −2.0%.
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Figure K.8: Boolq task. The change in ensemble quantities when the number of models N is changed. Each figure shows a
specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.15: Boolq task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 24.1%. LB(s0)
by Btight(E): 3.1%. LB(s0) by Btight(I): 3.1%. LB(s0) by B(I): −2.0%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 7.9±1.2 9.6±2.0 9.1±2.0 10.3±1.4 3.3±1.2 6.3±1.8 5.7±1.0 5.8±1.7 33±2 73±5
Bagging 5.3±2.0 6.4±3.0 6.2±2.4 5.4±1.4 3.1±1.7 2.8±2.7 2.7±1.8 1.0±1.3 43±2 94±3
Random-Seed 9.2±1.9 9.5±1.8 8.5±3.1 8.8±2.9 6.9±1.7 6.0±1.7 4.5±3.1 4.7±2.5 38±1 83±3
Hetero-DNNs 9.8±0.3 11.8±1.6 12.6±0.4 12.2±1.5 5.5±0.4 7.2±1.3 7.6±0.4 6.2±1.4 52±2 114±7

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.182) 100 0 0 0 0 0 100

Random-HyP 110.1±3.8 119.2±6.0 117.2±3.5 117.7±5.6 74.2±3.2 60.9±2.8 5.97±0.32 5.36±0.47 5.50±0.48 5.46±0.55 13.3±4.3
Bagging 109.5±5.3 108.8±8.5 108.4±5.7 103.2±3.9 80.0±2.4 64.7±2.5 7.97±0.12 8.02±0.41 8.04±0.28 8.39±0.07 15.3±3.4
Random-Seed 120.8±5.6 118.1±5.8 113.9±9.8 114.3±8.0 100.0±0.0 85.8±0.3 6.18±0.27 6.36±0.17 6.64±0.41 6.61±0.27 14.2±0.3
Hetero-DNNs 116.4±1.6 121.4±3.1 122.8±1.8 118.7±4.9 85.4±2.0 68.4±1.5 9.33±0.65 8.99±0.92 8.90±0.63 9.18±0.41 17.1±2.5
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(a) Lemma 2.3 B(I).

5 0 5 10
Error rate reduction

42.5

45.0

47.5

50.0

52.5

55.0

57.5

Lo
we

r b
ou

nd
 re

du
ct

io
n

Pearson Coef.
  = -0.21

(b) Btight(I).

5 0 5 10
Error rate reduction

4

2

0

2

4

6

8

10

Lo
we

r b
ou

nd
 re

du
ct

io
n

Pearson Coef.
  = 0.991

(c) Lemma 3.1 Btight(E).

Figure K.9: CoLA task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.16 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 15.6%.
LB(s0) by Btight(E): 2.6%. LB(s0) by Btight(I): 2.6%. LB(s0) by B(I): −2.1%.
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Figure K.10: CoLA task. The change in ensemble quantities when the number of models N is changed. Each figure shows
a specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.16: CoLA task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 15.6%. LB(s0)
by Btight(E): 2.6%. LB(s0) by Btight(I): 2.6%. LB(s0) by B(I): −2.1%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP -1.2±1.3 5.6±2.2 7.5±1.6 5.2±2.5 -0.9±1.2 5.1±2.1 8.1±1.6 4.7±2.3 42±3 48±3
Bagging 0.5±1.5 2.5±1.5 5.9±1.2 -2.0±2.3 0.4±1.3 2.1±1.4 6.9±1.6 -1.8±2.1 59±3 66±3
Random-Seed 3.9±0.5 6.6±1.7 10.4±0.5 5.8±1.0 3.4±0.4 5.9±1.6 10.8±1.1 5.2±0.9 49±3 55±3
Hetero-DNNs -5.4±3.0 6.8±0.9 8.7±1.0 5.6±2.0 -4.8±2.5 6.2±0.9 8.6±0.7 5.0±1.9 42±1 47±1

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.252) 100 0 0 0 0 0 100

Random-HyP 98.6±1.8 108.1±3.2 112.8±2.6 107.4±3.6 77.1±2.6 66.0±2.3 4.53±0.38 3.89±0.52 3.58±0.25 3.94±0.55 11.1±3.5
Bagging 100.6±2.0 103.4±2.2 110.9±2.5 97.1±3.2 84.6±0.5 71.7±0.2 6.14±0.16 5.96±0.29 5.45±0.44 6.37±0.12 12.9±0.5
Random-Seed 105.3±0.6 109.3±2.5 117.1±1.6 108.3±1.5 100.0±0.0 88.2±0.3 4.80±0.22 4.53±0.32 4.01±0.17 4.61±0.33 11.8±0.3
Hetero-DNNs 92.4±4.0 109.8±1.4 113.6±1.1 107.9±3.0 80.7±0.4 69.7±0.4 4.88±0.23 3.72±0.08 3.47±0.05 3.84±0.18 11.0±0.6
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(a) Lemma 2.3 B(I).
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Figure K.11: CosmosQA task. Correlations between error rate reductions and lower bound reductions. Each figure uses
different type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is
the average over the eight tasks. See Table K.17 for the real value of each point. We used the 16 ensemble systems described
in Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 28.2%.
LB(s0) by Btight(E): 6.2%. LB(s0) by Btight(I): 6.2%. LB(s0) by B(I): 2.0%.
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Figure K.12: CosmosQA task. The change in ensemble quantities when the number of models N is changed. Each figure
shows a specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight
tasks. i denotes per-model metric values defined as: i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.17: CosmosQA task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the
model generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s.
Each quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each
column (brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 28.2%. LB(s0)
by Btight(E): 6.2%. LB(s0) by Btight(I): 6.2%. LB(s0) by B(I): 2.0%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 8.7±1.0 10.4±1.0 10.7±1.4 10.3±0.6 7.5±0.9 8.9±0.8 9.2±1.1 9.0±0.5 248±7 837±34
Bagging 3.2±0.8 4.8±0.2 4.7±0.3 4.2±0.7 2.7±0.7 4.0±0.2 3.9±0.2 3.6±0.6 302±3 1022±20
Random-Seed 10.6±1.1 11.7±0.3 11.9±0.6 9.1±2.8 9.1±1.0 10.0±0.3 10.2±0.6 7.9±2.2 246±1 827±7
Hetero-DNNs 15.6±1.3 18.4±0.7 17.3±0.7 19.9±1.2 13.8±1.1 16.2±0.6 15.2±0.6 17.6±1.1 277±5 935±9

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as: i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.683) 100 0 0 0 0 0 100

Random-HyP 110.8±1.2 112.9±1.3 113.3±1.8 112.9±0.9 91.5±1.9 60.6±1.6 23.57±0.47 23.43±0.54 23.40±0.56 23.43±0.51 31.0±2.5
Bagging 103.9±1.0 105.8±0.3 105.6±0.4 105.1±0.9 82.7±0.4 46.4±0.3 29.41±0.27 29.28±0.33 29.29±0.30 29.33±0.36 36.3±0.5
Random-Seed 113.1±1.3 114.5±0.3 114.7±0.7 111.4±3.3 100.0±0.0 69.3±0.4 23.16±0.46 23.07±0.39 23.06±0.42 23.28±0.25 30.7±0.4
Hetero-DNNs 119.9±1.8 123.3±1.1 122.0±1.0 125.5±1.8 82.6±0.7 48.8±0.0 25.84±0.66 25.61±0.76 25.70±0.77 25.47±0.70 33.8±0.8
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Figure K.13: MNLI task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.18 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 18.6%.
LB(s0) by Btight(E): 3.7%. LB(s0) by Btight(I): 3.7%. LB(s0) by B(I): −1.1%.
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Figure K.14: MNLI task. The change in ensemble quantities when the number of models N is changed. Each figure shows
a specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.18: MNLI task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 18.6%. LB(s0)
by Btight(E): 3.7%. LB(s0) by Btight(I): 3.7%. LB(s0) by B(I): −1.1%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 6.2±3.0 5.8±3.4 5.1±1.8 5.8±1.8 4.9±2.9 4.7±3.4 5.0±2.3 5.8±2.0 247±20 1172±52
Bagging 11.2±3.8 10.5±3.9 10.1±3.8 7.2±3.0 9.9±3.9 9.2±3.7 9.3±3.4 6.4±2.6 278±21 1324±103
Random-Seed 8.3±1.4 10.8±0.6 6.2±2.2 9.7±4.2 7.1±1.3 9.3±0.3 6.2±1.0 9.2±3.9 229±22 1092±137
Hetero-DNNs 4.4±2.0 8.7±2.8 6.2±1.4 6.5±3.3 3.1±2.1 7.5±2.6 5.8±1.1 7.1±2.4 257±13 1226±116

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.681) 100 0 0 0 0 0 100

Random-HyP 104.3±2.6 104.2±3.0 104.4±2.1 105.1±1.8 95.6±0.5 74.2±1.2 14.47±1.26 14.48±1.28 14.46±1.21 14.41±1.13 21.4±1.3
Bagging 108.8±3.4 108.2±3.3 108.2±3.1 105.7±2.3 95.4±0.6 72.1±1.7 16.05±0.97 16.09±1.05 16.09±1.01 16.26±1.24 23.3±1.8
Random-Seed 106.3±1.1 108.3±0.2 105.5±0.9 108.1±3.5 100.0±0.0 79.6±1.4 13.27±1.38 13.14±1.39 13.32±1.44 13.15±1.61 20.4±1.4
Hetero-DNNs 102.7±1.9 106.7±2.3 105.2±1.0 106.3±2.1 81.0±0.8 58.9±1.0 15.19±0.83 14.93±0.83 15.03±0.89 14.96±0.93 22.0±1.3
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(c) Lemma 3.1 Btight(E).

Figure K.15: MRPC task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.19 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 13.6%.
LB(s0) of Btight(E): 2.6%. LB(s0) of Btight(I): 2.6%. LB(s0) of B(I): −4.0%.
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Figure K.16: MRPC task. The change in ensemble quantities when the number of models N is changed. Each figure shows
a specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as: i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.19: MRPC task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 13.6%. LB(s0)
of Btight(E): 2.6%. LB(s0) of Btight(I): 2.6%. LB(s0) of B(I): −4.0%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 7.7±3.7 6.4±2.3 6.7±3.8 6.3±2.5 7.3±3.7 5.4±2.3 7.1±3.7 5.5±2.4 63±4 58±4
Bagging 5.0±4.5 5.6±3.0 6.3±3.2 3.0±2.4 4.4±4.2 4.9±3.0 6.5±2.6 2.2±2.2 72±4 66±5
Random-Seed 12.0±3.2 4.3±2.5 7.0±2.0 6.0±2.1 11.2±3.0 3.5±2.2 8.6±2.5 5.2±1.9 67±6 62±6
Hetero-DNNs 15.7±2.1 18.0±2.2 16.0±4.3 11.3±5.6 14.9±2.1 17.2±2.3 16.0±4.7 10.5±6.1 71±2 66±4

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as: i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.336) 100 0 0 0 0 0 100

Random-HyP 108.5±4.1 106.3±2.6 108.3±4.1 106.5±3.0 99.5±1.7 87.9±1.5 4.37±0.50 4.51±0.52 4.38±0.49 4.50±0.41 11.6±2.3
Bagging 105.3±5.1 105.8±3.6 107.8±3.2 102.6±2.6 90.1±1.9 77.8±1.5 5.30±0.20 5.26±0.23 5.13±0.27 5.48±0.55 12.3±2.4
Random-Seed 113.1±3.2 104.1±2.6 110.1±2.6 106.1±2.2 100.0±0.0 88.0±0.5 4.42±0.67 5.02±0.72 4.62±0.70 4.89±0.69 12.0±0.5
Hetero-DNNs 117.5±2.7 120.3±3.1 118.9±5.9 112.5±7.4 90.1±1.4 77.8±1.2 4.45±0.24 4.26±0.14 4.35±0.12 4.78±0.19 12.3±1.9
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Figure K.17: QQP task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.20 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 14.0%.
LB(s0) of Btight(E): 2.1%. LB(s0) of Btight(I): 2.1%. LB(s0) of B(I): −2.9%.
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Figure K.18: QQP task. The change in ensemble quantities when the number of models N is changed. Each figure shows a
specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as: i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.20: QQP task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 14.0%. LB(s0)
of Btight(E): 2.1%. LB(s0) of Btight(I): 2.1%. LB(s0) of B(I): −2.9%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 2.5±2.7 1.1±4.3 0.6±3.7 2.5±1.5 2.1±2.9 0.6±4.6 -0.2±4.0 1.9±1.7 93±17 80±16
Bagging 5.8±6.0 5.8±7.1 5.3±5.4 4.9±6.0 5.9±6.7 5.6±7.7 5.3±5.9 4.3±6.5 101±3 86±2
Random-Seed 8.2±0.3 7.3±1.4 1.6±0.4 7.8±1.7 8.2±0.3 6.8±1.4 0.8±0.4 7.3±1.8 102±15 87±14
Hetero-DNNs -5.1±1.8 -2.2±1.1 -3.6±4.0 -0.3±2.5 -5.6±1.9 -2.7±0.6 -4.4±4.0 -1.0±2.7 104±11 89±11

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as: i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.343) 100 0 0 0 0 0 100

Random-HyP 102.0±2.8 100.6±4.4 99.9±3.8 101.8±1.6 91.0±1.6 78.5±1.8 5.66±1.12 5.76±0.97 5.81±0.99 5.68±1.14 12.5±2.4
Bagging 105.6±6.4 105.4±7.3 105.1±5.7 104.1±6.2 93.1±2.5 80.2±2.4 5.91±0.42 5.92±0.49 5.94±0.38 6.01±0.32 12.9±3.5
Random-Seed 107.6±0.5 106.4±1.4 100.7±0.3 106.8±1.7 100.0±0.0 87.0±1.0 5.81±0.95 5.89±1.02 6.27±0.98 5.86±1.05 13.0±1.0
Hetero-DNNs 94.8±1.7 97.5±0.6 95.9±3.6 99.1±2.4 85.7±1.3 72.6±0.6 6.78±0.74 6.61±0.81 6.71±0.71 6.50±0.87 13.1±1.5
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(c) Lemma 3.1 Btight(E).

Figure K.19: SciTail task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.21 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 5.7%.
LB(s0) of Btight(E): 1.2%. LB(s0) of Btight(I): 1.2%. LB(s0) of B(I): −5.2%.
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Figure K.20: SciTail task. The change in ensemble quantities when the number of models N is changed. Each figure shows
a specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as: i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.21: SciTail task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 5.7%. LB(s0)
of Btight(E): 1.2%. LB(s0) of Btight(I): 1.2%. LB(s0) of B(I): −5.2%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 18.2±1.1 18.7±1.1 19.5±2.3 15.4±1.5 17.2±1.3 16.4±1.8 16.7±2.6 15.5±1.5 95±2 23±0
Bagging 12.5±1.5 17.0±2.5 17.3±2.7 10.2±2.6 12.4±1.4 14.2±2.9 14.5±3.1 9.2±2.6 125±2 30±0
Random-Seed 14.8±1.4 22.1±0.5 20.9±0.9 14.2±0.7 14.8±1.6 19.1±0.5 18.3±0.7 13.6±0.4 104±4 25±1
Hetero-DNNs 20.9±2.0 26.7±1.0 25.3±2.2 17.8±4.5 20.9±2.0 24.2±1.1 23.1±2.2 17.1±4.3 114±2 27±1

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as: i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.641) 100 0 0 0 0 0 100

Random-HyP 104.5±0.4 104.3±0.5 104.3±0.7 104.0±0.4 88.8±1.8 80.5±1.8 1.35±0.03 1.36±0.01 1.36±0.02 1.38±0.03 8.3±2.5
Bagging 103.2±0.4 103.7±0.7 103.8±0.8 102.4±0.7 96.2±0.3 87.4±0.3 1.95±0.01 1.92±0.03 1.91±0.04 2.01±0.04 8.8±0.5
Random-Seed 103.8±0.4 105.0±0.2 104.8±0.2 103.6±0.1 100.0±0.0 91.5±0.1 1.55±0.07 1.47±0.08 1.49±0.08 1.57±0.08 8.5±0.1
Hetero-DNNs 105.4±0.5 106.3±0.3 106.0±0.6 104.5±1.1 94.8±0.5 86.1±0.5 1.62±0.08 1.56±0.07 1.58±0.09 1.68±0.12 8.6±0.7
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(c) Lemma 3.1 Btight(E).

Figure K.21: SST task. Correlations between error rate reductions and lower bound reductions. Each figure uses different
type of lower bound. Each point in the figures shows a quantity of a specific ensemble system s and the quantity is the
average over the eight tasks. See Table K.22 for the real value of each point. We used the 16 ensemble systems described in
Section 4.2. Each system s used N = 15 models. The baseline values in (8) and (9) were the followings: ER(s0): 15.7%.
LB(s0) of Btight(E): 2.3%. LB(s0) of Btight(I): 2.3%. LB(s0) of B(I): −3.0%.
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Figure K.22: SST task. The change in ensemble quantities when the number of models N is changed. Each figure shows a
specific quantity. The ensemble systems used the SVM model combination. Each value is an averages of the eight tasks. i
denotes per-model metric values defined as: i{relev, redun, combloss} = I{relev, redun, combloss}/N .
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Table K.22: SST task. Statistics of ensemble systems described in Section 4.2. The rows and columns list the model
generation and combination methods of Table 2, respectively. Each cell shows a quantity of a specific system s. Each
quantity is the average over the eight tasks. Each system contains N = 15 models. Color shows the rank within each column
(brighter is better).

(a) Error rate reductions and lower bound reductions. The baseline values used in (8) and (9) were the followings. ER(s0): 15.7%. LB(s0)
of Btight(E): 2.3%. LB(s0) of Btight(I): 2.3%. LB(s0) of B(I): −3.0%.

Error rate reductions (8) Lower bound reductions (9)

Voting LogR SVM RForest Lemma 3.1 Btight(E) Btight(I) Lemma 2.3
B(I)Voting LogR SVM RForest

Random-HyP 4.8±7.4 10.5±3.4 8.2±2.9 4.7±7.6 4.7±7.3 10.3±3.5 8.0±2.8 4.6±7.5 166±28 58±11
Bagging 15.1±7.7 12.8±6.1 16.2±10.8 13.8±9.9 15.2±8.1 12.5±6.3 16.6±11.0 13.7±10.2 177±28 62±11
Random-Seed 9.4±5.8 8.1±2.8 9.4±5.8 8.2±2.8 9.5±6.1 7.7±2.8 9.8±5.6 8.2±2.9 146±16 51±6
Hetero-DNNs -3.5±4.5 7.0±1.8 1.1±5.8 0 -3.7±4.5 6.6±1.8 1.8±6.1 -0.3±1.9 186±14 65±7

(b) Breakdown of ensemble strength defined in (7). We show per-model metric values defined as: i{relev, redun, combloss} =
I{relev, redun, combloss}/N . Thus, E = (irelev − iredun − icombloss) × N holds. For intuitive understanding, all the values are normalized
by the ensemble strength of baseline Es0 , for example, Irelev = Îrelev/Es0 × 100 where Îrelev is the raw value.

E(O, Y, Ŷ ) Per-model metric values

irelev iredun
icombloss irelev − iredunVoting LogR SVM RForest Voting LogR SVM RForest

Baseline (s0) 100 (the raw value is 0.705) 100 0 0 0 0 0 100

Random-HyP 101.6±2.5 103.5±1.2 102.8±0.9 101.6±2.6 97.7±0.5 87.2±0.2 3.76±0.72 3.63±0.63 3.68±0.67 3.76±0.60 10.5±0.6
Bagging 105.3±2.8 104.3±2.2 105.8±3.9 104.8±3.6 98.4±1.2 87.6±0.6 3.78±0.53 3.84±0.58 3.74±0.45 3.81±0.50 10.8±1.4
Random-Seed 103.2±2.1 102.7±1.0 103.4±1.9 102.8±0.9 100.0±0.0 90.0±0.3 3.16±0.23 3.19±0.39 3.15±0.24 3.19±0.29 10.0±0.3
Hetero-DNNs 98.7±1.5 102.3±0.7 100.7±2.1 99.9±0.7 87.7±0.6 76.7±0.3 4.41±0.27 4.17±0.34 4.28±0.31 4.33±0.33 11.0±0.6


