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Abstract
While message-passing graph neural net-
works have clear limitations in approximating
permutation-equivariant functions over graphs
or general relational data, more expressive,
higher-order graph neural networks do not scale
to large graphs. They either operate on k-order
tensors or consider all k-node subgraphs, imply-
ing an exponential dependence on k in memory
requirements, and do not adapt to the sparsity
of the graph. By introducing new heuristics for
the graph isomorphism problem, we devise a
class of universal, permutation-equivariant graph
networks, which, unlike previous architectures,
offer a fine-grained control between expressivity
and scalability and adapt to the sparsity of the
graph. These architectures lead to vastly reduced
computation times compared to standard higher-
order graph networks in the supervised node- and
graph-level classification and regression regime
while significantly improving standard graph
neural network and graph kernel architectures in
terms of predictive performance.

1. Introduction
Graph-structured data is ubiquitous across application do-
mains ranging from chemo- and bioinformatics (Barabasi
& Oltvai, 2004; Jumper et al., 2021; Stokes et al., 2020)
to image (Simonovsky & Komodakis, 2017) and social-
network analysis (Easley & Kleinberg, 2010). To develop
successful machine-learning models in these domains, we
need techniques that exploit the rich information inherent
in the graph structure and the feature information within
nodes and edges. In recent years, numerous approaches have
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been proposed for machine learning with graphs—most no-
tably, approaches based on graph kernels (Borgwardt et al.,
2020; Kriege et al., 2020) or using graph neural networks
(GNNs) (Chami et al., 2020; Gilmer et al., 2017; Grohe,
2021; Morris et al., 2021). Here, graph kernels based on
the 1-dimensional Weisfeiler–Leman algorithm (1-WL) (We-
isfeiler & Leman, 1968), a simple heuristic for the graph
isomorphism problem, and corresponding GNNs (Morris
et al., 2019; Xu et al., 2019) have recently advanced the
state-of-the-art in supervised node- and graph-level learning.
However, the 1-WL operates via simple neighborhood aggre-
gation, and the purely local nature of the related approaches
misses important patterns in the given data. Moreover, they
are only applicable to binary structures and therefore cannot
deal with general structures containing relations of higher
arity, e.g., hypergraphs. A more powerful algorithm for
graph isomorphism testing is the k-dimensional Weisfeiler–
Leman algorithm (k-WL) (Babai, 1979; Cai et al., 1992).1

The algorithm captures more global, higher-order patterns
by iteratively computing a coloring or labeling for k-tuples
defined over the set of nodes of a given graph based on a
certain notion of adjacency between tuples. See (Kiefer,
2020b) for a survey and more background. However, since
the algorithm considers all nk many k-tuples of an n-node
graph, it does not scale to large real-world graphs. Moreover,
the cardinality of the considered neighborhood is always
k ·n. Hence, a potential sparsity of the input graph does not
reduce the running time.

New neural architectures that possess the same power as the
k-WL in terms of separating non-isomorphic graphs (Az-
izian & Lelarge, 2020; Geerts, 2020; Maron et al., 2019b)
suffer from the same drawbacks, i.e., their memory require-
ment is lower-bounded by nk for an n-node graph, and they
have to resort to dense matrix multiplication. Recently, Mor-
ris et al. (2020b) introduced the local variant (δ-k-LWL) of
the k-WL considering only a subset of the neighborhoods in
k-WL. However, like the original algorithm, the local variant
operates on the set of all possible k-tuples, again resulting
in the same (exponential) memory requirements, rendering
the algorithm not practical for large, real-world graphs.

1In (Babai, 2016), László Babai mentions that he introduced
the algorithm in 1979 together with Rudolf Mathon.
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Present work To address the described drawbacks, we
introduce a new set of heuristics for the graph isomorphism
problem, denoted (k, s)-LWL, which only considers a subset
of all k-tuples, namely those inducing subgraphs with at
most s connected components. We study the effect of k and
s on the expressive power of the heuristics. Specifically, we
show that the (k, 1)-LWL induces a hierarchy of provably
expressive heuristics for the graph isomorphism problem,
i.e., with increasing k, the algorithm becomes strictly more
expressive. Additionally, we prove that the (k, 2)-LWL is
strictly more expressive than the (k, 1)-LWL. Further, we
separate the (k, 2)-LWL and (k, k)-LWL by showing that the
(k, k)-LWL is strictly more expressive than the (k, 2)-LWL.
Building on these combinatorial insights, we derive cor-
responding provably expressive, permutation-equivariant
neural architectures, denoted (k, s)-SpeqNets, which of-
fer a more fine-grained trade-off between scalability and
expressivity compared to previous architectures based on
the k-WL, see Figure 1 for a high-level overview of the
theoretical results. Empirically, we show how our architec-
tures offer vastly reduced computation times while beating
baseline GNNs and other higher-order graph networks in
terms of predictive performance on well-known node- and
graph-level prediction benchmark datasets.

1.1. Related work

In the following, we review related work from graph kernels,
GNNs and graph theory, see Appendix A for an extended
discussion.

Graph kernels Historically, kernel methods—which im-
plicitly or explicitly map graphs to elements of a Hilbert
space—have been the dominant approach for supervised
learning on graphs. Important early work in this area in-
cludes random-walk based kernels (Gärtner et al., 2003;
Kashima et al., 2003; Kriege et al., 2017) and kernels based
on shortest paths (Borgwardt & Kriegel, 2005). More re-
cently, developments in the field have emphasized scala-
bility, focusing on techniques that bypass expensive Gram
matrix computations by using explicit feature maps, see,
e.g., (Shervashidze et al., 2011). Morris et al. (2017) devised
a local, set-based variant of the k-WL and a corresponding
kernel. However, the approach is (provably) weaker than
the tuple-based algorithm. Further, Morris et al. (2020a)
proposed kernels based on the δ-k-LWL.

Yanardag & Vishwanathan (2015a) successfully employed
Graphlet (Shervashidze et al., 2009), and Weisfeiler–Leman
kernels within frameworks for smoothed (Yanardag & Vish-
wanathan, 2015a) and deep graph kernels (Yanardag &
Vishwanathan, 2015b). Other recent work focuses on
assignment-based (Johansson & Dubhashi, 2015; Kriege
et al., 2016; Nikolentzos et al., 2017), spectral (Kondor
& Pan, 2016; Verma & Zhang, 2017), graph decomposi-

tion (Nikolentzos et al., 2018), randomized binning ap-
proaches (Heimann et al., 2019), and the extension of ker-
nels based on the 1-WL (Rieck et al., 2019; Togninalli et al.,
2019). For a theoretical investigation of graph kernels,
see (Kriege et al., 2018), and for a thorough survey of graph
kernels, see (Borgwardt et al., 2020; Kriege et al., 2020).

GNNs Recently, GNNs (Gilmer et al., 2017; Scarselli
et al., 2009) emerged as an alternative to graph kernels. No-
table instances of this architecture include, e.g., (Duvenaud
et al., 2015; Hamilton et al., 2017; Veličković et al., 2018),
which can be subsumed under the message-passing frame-
work introduced in (Gilmer et al., 2017). Also, approaches
based on spectral information were introduced in, e.g., (Def-
ferrard et al., 2016; Bruna et al., 2014; Kipf & Welling,
2017; Monti et al., 2017)—all of which descend from early
work in (Kireev, 1995; Baskin et al., 1997; Micheli & Ses-
tito, 2005; Merkwirth & Lengauer, 2005; Micheli, 2009;
Sperduti & Starita, 1997; Scarselli et al., 2009).

Limits of GNNs and more expressive architectures Re-
cently, connections of GNNs to Weisfeiler–Leman type algo-
rithms have been shown (Azizian & Lelarge, 2020; Barceló
et al., 2020; Chen et al., 2019b; Geerts et al., 2020; Geerts,
2020; Maehara & NT, 2019; Maron et al., 2019a; Morris
et al., 2019; Xu et al., 2019). Specifically, (Morris et al.,
2019; Xu et al., 2019) showed that the expressive power of
any possible GNN architecture is limited by the 1-WL in
terms of distinguishing non-isomorphic graphs.

Triggered by the above results, a large set of papers pro-
posed architectures to overcome the expressivity limitations
of the 1-WL. Morris et al. (2019) introduced k-dimensional
GNNs (k-GNN) which rely on a message-passing scheme
between subgraphs of cardinality k. Similar to (Morris
et al., 2017), the paper employed a local, set-based (neu-
ral) variant of the k-WL. Later, this was refined in (Maron
et al., 2019a; Azizian & Lelarge, 2020) by introducing k-
order folklore graph neural networks (k-FGNN), which
are equivalent to the folklore or oblivious variant of the
k-WL (Grohe, 2021; Morris et al., 2021) in terms of distin-
guishing non-isomorphic graphs. Subsequently, Morris et al.
(2020b) introduced neural architectures based on the δ-k-
LWL, which only considers a subset of the neighborhood
from the k-WL, taking sparsity of the underlying graph (to
some extent) into account. Although more scalable, the
algorithm reaches computational exhaustion on large-scale
graphs since it considers all nk tuples of size k. Chen et al.
(2019b) connected the theory of universal approximations
of permutation-invariant functions and the graph isomor-
phism viewpoint and introduced a variation of the 2-WL.
See (Morris et al., 2021) for an in-depth survey on this
topic.

Recent works have extended the expressive power of GNNs,
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Figure 1. Overview of the expressive power of the proposed algorithms and neural architectures. The green and red nodes represent
algorithms proposed in the present work. Forward arrows point to more powerful algorithms or neural architectures. ∗—Proven in (Morris
et al., 2020b). A @ B (A ≡ B): algorithm A is strictly more powerful than (equally powerful as) B.

e.g., by encoding node identifiers (Murphy et al., 2019; Vi-
gnac et al., 2020), leveraging random features (Abboud et al.,
2020; Dasoulas et al., 2020; Sato et al., 2020), subgraph in-
formation (Bevilacqua et al., 2021; Bouritsas et al., 2020;
Cotta et al., 2021; Papp et al., 2021; Thiede et al., 2021;
You et al., 2021; Zhang & Li, 2021; Zhao et al., 2021), ho-
momorphism counts (Barceló et al., 2021; NT & Maehara,
2020), spectral information (Balcilar et al., 2021), simpli-
cial and cellular complexes (Bodnar et al., 2021b;a), random
walks (Tönshoff et al., 2021), graph decompositions (Ta-
lak et al., 2021), distance (Li et al., 2020) and directional
information (Beaini et al., 2020).

However, all of the above approaches mentioned in the previ-
ous paragraph only overcome limitations of the 1-WL, 2-WL,
or 3-WL, and do not induce a hierarchy of provably pow-
erful, permutation-equivariant neural architectures aligned
with the k-WL hierarchy.

See Appendix A for an overview of the properties of k-WL.

2. Preliminaries
We briefly describe the Weisfeiler–Leman algorithm and,
along the way, introduce our notation, see Appendix B for
details. We let [n] := {1, . . . , n} ⊂ N for n ≥ 1, and use
{{. . . }} to denote multisets. We also use standard concepts
from graph theory (such as graphs, directed graphs, neigh-
bors, trees, and so on). The vertex and the edge set of a graph
G are denoted by V (G) and E(G), respectively. The neigh-
borhood of v in V (G) is δ(v) = {u ∈ V (G) | (v, u) ∈
E(G)}. We say that two graphs G and H are isomorphic
(G ' H) if there exists a bijection ϕ : V (G) → V (H)
preserving the adjacency relation, i.e., (u, v) is in E(G) if
and only if (ϕ(u), ϕ(v)) is in E(H), call ϕ an isomorphism
from G to H . If the graphs have vertex or edges labels, the
isomorphism is additionally required to match these labels.
Let v be a tuple in V (G)k for k > 0, then G[v] is the sub-
graph induced by the elements of v, where the nodes are
labeled with integers from {1, . . . , k} corresponding to their
positions in v. A connected component of a graph G is an
inclusion-wise maximal subgraph of G in which every two
nodes are connected by paths.

2.1. Node-refinement algorithms

In the following, we review the Weisfeiler–Leman algorithm
and related variants (Morris et al., 2020b). Let k be a fixed
positive integer and let V (G)k denote the set of k-tuples
of nodes of the graph G. A coloring of V (G)k is a map-
ping C : V (G)k → N, i.e., we assign a number (color) to
every tuple in V (G)k. The initial coloring C0 of V (G)k is
specified by the atomic types of the tuples, i.e., two tuples v
and w in V (G)k have the same initial color iff the mapping
vi 7→ wi induces an isomorphism between the labeled sub-
graphsG[v] andG[w]. Note that, given a tuple v in V (G)k,
we can upper-bound the running time of the computation
of this initial coloring for v by O(k2). A color class corre-
sponding to a color c is the set of all tuples colored c, i.e.,
the set C−1(c).

For j in [k] and w in V (G), let φj(v, w) be the k-tuple
obtained by replacing the jth component of v with the node
w. That is, φj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk). If
w = φj(v, w) for some w in V (G), call w a j-neighbor
of v. The neighborhood of v is the set of all w such that
w = φj(v, w) holds for some j in [k] and a w in V (G).

The refinement of a coloring C : V (G)k → N, denoted by
Ĉ, is a coloring Ĉ : V (G)k → N defined as follows. For
each j in [k], collect the colors of the j-neighbors of v in
a multiset Sj = {{C(φj(v, w)) | w in V (G)}}. Then, for a
tuple v, define

Ĉ(v) := (C(v),M(v)),

where M(v) is the k-tuple (S1, . . . , Sk). For consistency,
the strings Ĉ(v) thus obtained are lexicographically sorted
and renamed as fresh integers, i.e., ones that have not been
used in previous iterations. Observe that the new color
Ĉ(v) of v is solely dictated by the color histogram of the
neighborhood of v. In general, a different mapping M(·)
could be used, depending on the neighborhood information
that we would like to aggregate. We will refer to such M(·)
as aggregation maps.

k-dimensional Weisfeiler–Leman For k ≥ 2, the k-WL
computes a coloring C∞ : V (G)k → N of a given graph
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G, as follows.2 To begin with, the initial coloring C0 is
computed. Then, starting with C0, successive refinements
Ci+1 = Ĉi are computed until convergence. That is,

Ci+1(v) = (Ci(v),Mi(v)),

where

Mi(v) :=
(
{{Ci(φ1(v, w)) | w ∈ V (G)}}, . . . ,
{{Ci(φk(v, w)) | w ∈ V (G)}}

)
.

The successive refinement steps are also called rounds or
iterations. Since the color classes form a partition of V (G)k,
there must exist a finite ` ≤ |V (G)|k such that C` = Ĉ`,
i.e., the partition induced by C` is not refined further. The
k-WL outputs C` as the stable coloring C∞.

The k-WL distinguishes two graphs G and H if, upon run-
ning the k-WL on their disjoint union G ∪̇H , there exists a
color c in N in the stable coloring such that the correspond-
ing color class Sc satisfies

|V (G)k ∩ Sc| 6= |V (H)k ∩ Sc|,

i.e., the numbers of c-colored tuples in V (G)k and V (H)k

differ. Two graphs distinguished by the k-WL must be
non-isomorphic, because the algorithm is defined in an
isomorphism-invariant way.

Local δ-k-dimensional Weisfeiler–Leman algorithm
Morris et al. (2020b) introduced a more efficient modi-
fication of the k-WL, namely the local δ-k-dimensional
Weisfeiler–Leman algorithm (δ-k-LWL). In contrast to the
k-WL, the δ-k-LWL considers only a subset of the entire
neighborhood of a node tuple. Let the tuple w = φj(v, w)
be a j-neighbor of v. We say that w is a local j-neighbor
of v if w is adjacent to the replaced node vj . Otherwise,
the tuple w is a global j-neighbor of v. The δ-k-LWL
considers only local neighbors during the neighborhood ag-
gregation process, and discards any information about the
global neighbors. Formally, the δ-k-LWL algorithm refines
a coloring Ck,δi , obtained after i rounds of δ-k-LWL, via the
aggregation map,

Mδ
i (v) :=

(
{{Ck,δi (φ1(v, w)) | w ∈ δ(v1)}}, . . . ,

{{Ck,δi (φk(v, w)) | w ∈ δ(vk)}}
)
,

hence considering only the local j-neighbors of the tuple v
in each iteration. The coloring function for the δ-k-LWL is
then defined by

Ck,δi+1(v) := (Ck,δi (v),Mδ
i (v)).

2We define the 1-WL in the next subsection.

We define the 1-WL to be the δ-1-LWL, which is commonly
known as Color Refinement or Naive Node Classification.3

Hence, we can equivalently define

C1,δ
i+1(v) = (C1,δ

i (v), {{C1,δ
i (w) | w ∈ δ(v)}}).

for a node v in V (G). Morris et al. (2020b) also defined the
δ-k-LWL+, a minor variation of the δ-k-LWL. Formally, the
δ-k-LWL+ refines a coloring Ci (obtained after i rounds) via
the aggregation function Mδ,+(v) =(
{{(Ck,δi (φ1(v, w)),#

1
i (v, φ1(v, w))) | w ∈ δ(v1)}}, . . . ,

{{(Ck,δi (φk(v, w)),#
k
i (v, φk(v, w))) | w ∈ δ(vk)}}

)
,

instead of the δ-k-LWL aggregation defined in Equation (4).
Here, we set

#j
i (v,x) :=

∣∣{w : w ∼j v, Ck,δi (w) = Ck,δi (x)}
∣∣,

where w ∼j v denotes that w is a j-neighbor of v, for j
in [k]. Essentially, #j

i (v,x) counts the number of (local
or global) j-neighbors of v which have the same color as
x under the coloring Ci (i.e., after i rounds). Morris et al.
(2020b) showed that the δ-k-LWL+ is slightly more powerful
than the k-WL in distinguishing non-isomorphic graphs.

Comparing k-WL variants Let A1 and A2 denote two
node-refinement algorithms. We write A1 v A2 if A1

distinguishes between all non-isomorphic pairs that A2 dis-
tinguishes, and A1 ≡ A2 if both A1 v A2 and A2 v A1

hold. The corresponding strict relation is denoted by @.
For example, following Morris et al. (2020b), it holds that
δ-k-LWL+ @ k-WL.

The Weisfeiler–Leman hierarchy and permutation-
invariant function approximation The Weisfeiler–
Leman hierarchy is a purely combinatorial algorithm
for testing graph isomorphism. However, the graph
isomorphism function, mapping non-isomorphic graphs to
different values, is the hardest to approximate permutation-
invariant function. Hence, the Weisfeiler–Leman hierarchy
has strong ties to GNNs’ capabilities to approximate
permutation-invariant or equivariant functions over graphs.
For example, Morris et al. (2019); Xu et al. (2019)
showed that the expressive power of any possible GNN
architecture is limited by 1-WL in terms of distinguishing
non-isomorphic graphs. Azizian & Lelarge (2020) refined
these results by showing that if an architecture is capable
of simulating k-WL and allows the application of universal

3Strictly speaking, the 1-WL and Color Refinement are two dif-
ferent algorithms. That is, the 1-WL considers neighbors and non-
neighbors to update the coloring, resulting in a slightly higher ex-
pressivity when distinguishing nodes in a given graph, see (Grohe,
2021) for details. For brevity, we consider both algorithms to be
equivalent.
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neural networks on vertex features, it will be able to
approximate any permutation-equivariant function below
the expressive power of k-WL; see also (Chen et al., 2019b).
Hence, if one shows that one architecture distinguishes
more graphs than another, it follows that the corresponding
GNN can approximate more functions.

Kernels based on node-refinement algorithms After
running the k-WL (and the other node-refinement algo-
rithms), the concatenation of the histogram of colors in
each iteration can be used as a feature vector in a kernel
computation. Specifically, in the histogram, for every color
c in N, an entry contains the number of nodes or k-tuples
colored c.

3. The (k, s)-LWL algorithm
Since both k-WL and its local variant δ-k-LWL consider all
k-tuples of a graph, they do not scale to large graphs for
larger k. Specifically, for an n-node graph, the memory
requirement is in Ω(nk). Further, since the k-WL considers
the graph structure only at initialization, it does not adapt
to its sparsity, i.e., it does not run faster on sparser graphs.
To address this issue, we introduce the (k, s)-LWL. The
algorithm offers more fine-grained control over the trade-off
between expressivity and scalability by only considering
a subset of all k-tuples, namely those inducing subgraphs
with at most s connected components. This combinatorial
algorithm will be the basis of the permutation-equivariant
neural architectures of Section 4.

Let G be a graph. Then #com(G) denotes the number
of (connected) components of G. Further, let k ≥ 1 and
1 ≤ s ≤ k, then

V (G)ks := {v ∈ V (G)k | #com(G[v]) ≤ s}

is the set of (k, s)-tuples of nodes, i.e, k-tuples which induce
(sub-)graphs with at most s (connected) components.

In contrast to the algorithms of Appendix B.1, the
(k, s)-LWL colors tuples from V (G)ks instead of the entire
V (G)k. Hence, analogously to Appendix B.1, a coloring
of V (G)ks is a mapping Ck,s : V (G)ks → N, assigning a
number (color) to every tuple in V (G)ks . The initial col-
oring Ck,s0 of V (G)ks is defined in the same way as be-
fore, i.e., specified by the isomorphism types of the tu-
ples, see Appendix B.1. Subsequently, the coloring is up-
dated using the δ-k-LWL aggregation map, see Equation (4).
Hence, the (k, s)-LWL is a variant of the δ-k-LWL consid-
ering only (k, s)-tuples, i.e., Equation (4) is replaced with
M δ,k,s
i (v) :=(
{{Ck,si (φ1(v, w)) | w ∈ δ(v1) and φ1(v, w) ∈ V (G)ks}},

. . . ,{{Ck,si (φk(v, w)) | w ∈ δ(vk) and φk(v, w) ∈ V (G)ks}}
)
,

i.e., M δ
i (v) restricted to colors of (k, s)-tuples. The stable

coloring Ck,s∞ is defined analogously to the stable coloring
Ck∞. In the following two subsections, we investigate the
properties of the algorithm in detail. Analogously to the
δ-k-LWL+, we also define the (k, s)-LWL+, see Appendix B
for details.

3.1. Expressivity

Here, we investigate the expressivity of the (k, s)-LWL, i.e.,
its ability to distinguish non-isomorphic graphs, for differ-
ent choices of k and s. In Section 4, we will leverage these
results to devise universal, permutation-equivariant graph
networks. We start off with the following simple observa-
tion. Since the (k, k)-LWL colors all k-tuples, it is equal to
the δ-k-LWL.

Observation 1. Let k ≥ 1, then

(k, k)-LWL ≡ δ-k-LWL, and
(1, 1)-LWL ≡ δ-k-LWL ≡ 1-WL.

The following result shows that the (k, 1)-LWL form a hi-
erarchy, i.e., the algorithm becomes more expressive as k
increases.

Theorem 1. Let k ≥ 1, then

(k + 1, 1)-LWL @ (k, 1)-LWL.

Moreover, we also show that the (k, 2)-LWL is more expres-
sive than the (k, 1)-LWL.

Proposition 2. For k ≥ 2, it holds that

(k, 2)-LWL @ (k, 1)-LWL.

Further, the following theorem yields that increasing the
parameter s results in higher expressivity. Formally, we
show that the (k, k)-LWL is strictly more expressive than
the (k, 2)-LWL.

Theorem 3. For k ≥ 2, it holds that

(k, k)-LWL @ (k, 2)-LWL.

See Appendix C.1 for an analysis of the asymptotic running
time of the (k, s)-LWL, showing that it only depends on k, s,
and the sparsity of the graph. In particular, the running time
of the (k, s)-LWL on an n-vertex graph of bounded degree
is Õ(ns) instead of the usual Õ(nk) for the k-WL, for fixed
k and s.

4. SpeqNets
We can now leverage the above combinatorial insights to
derive sparsity-aware, permutation-equivariant graph net-
works, denoted (k, s)-SpeqNets. Given a node-labeled
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graph G, let each (k, s)-tuple v in V (G)ks be annotated
with an initial feature f (0)(v) determined by its (labeled)
isomorphism type, e.g., a one-hot encoding. Alternatively,
we can also use some application-specific, real-valued fea-
ture. In each layer t > 0, we compute a new feature f (t)(v)
as

fW1
mrg

(
f (t−1)(v), fW2

agg

((
{{f (t−1)(φi(v, w)) |

w ∈ δ(vi) and φi(v, w) ∈ V (G)ks}}
)
i∈[k]

))
,

(1)

in R1×e, where W (t)
1 and W

(t)
2 are learnable parameter

matrices from Rd×e.4 Here, fW2
mrg and fW1

agg are arbitrary
differentiable functions, responsible for merging and aggre-
gating the relevant feature information, respectively. Note
that we can naturally handle discrete node and edge labels
as well as directed graphs. The following result demon-
strates the expressive power of (k, s)-SpeqNets, in terms of
distinguishing non-isomorphic graphs.
Theorem 4. Let (V,E, `) be a labeled graph, and let k ≥ 1
and s in [k]. Then, for all t ≥ 0, there exists a sequence of
weights W(t) such that

Ck,st (v) = Ck,st (w) ⇐⇒ f (t)(v) = f (t)(w).

Hence, for all k ≥ 1, the following holds:

(k, s)-SpeqNet ≡ (k, s)-LWL.

Note that it is not possible to come up with an architecture
and weight assignments of fW1

mrg and fW2
agg , such that it be-

comes more powerful than the (k, s)-LWL, see (Morris et al.,
2019). However, all results from the previous section can be
lifted to the neural setting. Analogously to GNNs, the above
architecture can naturally handle continuous node and edge
labels. By using the tools developed in (Azizian & Lelarge,
2020), it is straightforward to show that the above architec-
ture is universal, i.e., it can approximate any continuous,
bounded, permutation-invariant function over graphs up to
an arbitrarily small additive error.

4.1. Node-, edge-, and subgraph-level learning tasks

The above architecture computes representations for (k, s)-
tuples, making it mostly suitable for graph-level learning
tasks, e.g., graph classification or regression. However, it
is also possible to derive neural architectures based on the
(k, s)-LWL for node- and edge-level learning tasks, e.g.,
node or link prediction. Given a graph G, to learn a node
feature for node v, we can simply pool over the features
learned for (k, s)-tuples containing the node v as a com-
ponent. That is, let t > 0, then we consider the multisets

mt(v)i = {{f (t−1)(t) | t ∈ V (G)ks and ti = v}} (2)

4For clarity of presentation, we omit biases.

for i in [k]. Hence, to compute a vectorial representation of
the node v, we compute a vectorial representation ofmt(v)i
for i in [k], e.g., using a neural architecture for multi-sets,
see (Wagstaff et al., 2021), followed by learning a joint
vectorial representation for the node v. Again, by (Azizian
& Lelarge, 2020), it is straightforward to show that the
above architecture is universal, i.e., it can approximate any
continuous, bounded, permutation-equivariant function over
graphs up to an arbitrarily small additive error. Note that
the above approach can be directly generalized to learn
subgraph representations on an arbitrary number of vertices.

5. Experimental evaluation
Here, we aim to empirically investigate the learning perfor-
mance of the kernel, see Appendix B.1, and neural architec-
tures, see Section 4, based on the (k, s)-LWL, compared with
standard kernel and (higher-order) GNN baselines. Con-
cretely, we aim to answer the following questions.

Q1 Do the (k, s)-LWL-based algorithms, both kernel and
neural architectures, lead to improved classification
and regression scores on real-world, graph-level bench-
mark datasets compared with dense algorithms and
standard baselines?

Q2 How does the (k, s)-SpeqNet architecture compare to
standard GNN baselines on node-classification tasks?

Q3 To what extent does the (k, s)-LWL reduce computa-
tion times compared with architectures induced by the
k-WL?

Q4 What is the effect of k and swith respect to computation
times and predictive performance?

The source code of all methods and evaluation pro-
cedures is available at https://www.github.com/
chrsmrrs/speqnets.

Datasets To compare the (k, s)-LWL-based kernels,
we used the well-known graph-classification benchmark
datasets from (Morris et al., 2020a), see Table 3 for
dataset statistics and properties.5 To compare the
(k, s)-SpeqNet architecture with GNN baselines, we used
the ALCHEMY (Chen et al., 2019a) and the QM9 (Ra-
makrishnan et al., 2014; Wu et al., 2018) graph regression
datasets, again see Table 1 for dataset statistics and prop-
erties. Following (Morris et al., 2020b), we opted for not
using the 3D-coordinates of the ALCHEMY dataset to solely
show the benefits of the (sparse) higher-order structures con-
cerning graph structure and discrete labels. To investigate
the performance of the architecture for node classification,

5All datasets are publicly available at www.
graphlearning.io.

https://www.github.com/chrsmrrs/speqnets
https://www.github.com/chrsmrrs/speqnets
www.graphlearning.io
www.graphlearning.io
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we used the WEBKB datasets (Pei et al., 2020), see Table 4
for dataset statistics and properties.

Kernels We implemented the (k, s)-LWL and (k, s)-LWL+

for k in {2, 3} and s in {1, 2}. We compared our kernels to
the Weisfeiler–Leman subtree kernel (1-WL) (Shervashidze
et al., 2011), the Weisfeiler–Leman Optimal Assignment
kernel (WLOA) (Kriege et al., 2016), the graphlet kernel
(GR) (Shervashidze et al., 2009), and the shortest-path ker-
nel (Borgwardt & Kriegel, 2005) (SP). Further, we imple-
mented the higher-order kernels δ-k-LWL, δ-k-LWL+, δ-k-
WL, and k-WL kernel for k in {2, 3} as outlined in (Morris
et al., 2020b). All kernels were (re-)implemented in C++11.
For the graphlet kernel, we counted (labeled) connected
subgraphs of size 3. We followed the evaluation guidelines
outlined in (Morris et al., 2020a).

Neural architectures We used the GIN-ε and Gin-ε-JK
architectures (Xu et al., 2019) as neural baselines. For data
with (continuous) edge features, we used a 2-layer MLP
to map them to the same number of components as the
node features and combined them using summation (GINE
and GINE-ε). For the evaluation of the (k, s)-SpeqNet
neural architectures of Section 4, we implemented them
using PYTORCH GEOMETRIC (Fey & Lenssen, 2019),
using a Python-wrapped C++11 preprocessing routine to
compute the computational graphs for the higher-order
GNNs. We used the GIN-ε layer to express fW1

mrg and
fW2

agg of Equation (1). For the GNN baseline for the QM9
dataset, following (Gilmer et al., 2017), we used a com-
plete graph, computed pairwise `2 distances based on the
3D coordinates, and concatenated them to the edge features.
We note here that our intent is not the beat state-of-the-
art, physical knowledge-incorporating architectures, e.g.,
DimeNet (J. Klicpera, 2020) or Cormorant (Anderson et al.,
2019), but to solely show the benefits of the local, sparse
higher-order architectures compared to the corresponding (1-
dimensional) GNN. For the (k, s)-SpeqNet architectures, in
the case of the QM9 dataset, to compute the initial features,
for each (k, s)-tuple, we concatenated the node and edge
features, computed pairwise `2 distances based on the 3D
coordinates, and a one-hot encoding of the (labeled) isomor-
phism type. Finally, we used a 2-layer MLP to learn a joint,
initial vectorial representation. For the node-classification
experiments, we used mean pooling to implement Equa-
tion (2) and a standard GCN or GIN layer for all experi-
ments, including the (k, s)-SpeqNet architectures. Further,
we used the architectures (SDRF) outlined in (Topping et al.,
2021) as baselines.

For the kernel experiments, we computed the (cosine) nor-
malized Gram matrix for each kernel. We computed the
classification accuracies using the C-SVM implementation
of LIBSVM (Chang & Lin, 2011), using 10-fold cross-

validation. We repeated each 10-fold cross-validation ten
times with different random folds and report average accu-
racies and standard deviations.

Following the evaluation method proposed in (Mor-
ris et al., 2020a), the C-parameter was selected from
{10−3, 10−2, . . . , 102, 103} using a validation set sampled
uniformly at random from the training fold (using 10% of
the training fold). Similarly, the numbers of iterations of
the (k, s)-LWL, (k, s)-LWL+, 1-WL, WLOA, δ-k-LWL, δ-k-
LWL+, and k-WL were selected from {0, . . . , 5} using the
validation set. Moreover, for the (k, s)-LWL+ and δ-k-LWL+,
we only added the label function # on the last iteration to
prevent overfitting. We report computation times for the
(k, s)-LWL, (k, s)-LWL+, WLOA, δ-k-LWL, δ-k-LWL+, and
k-WL with five refinement steps.

All kernel experiments were conducted on a workstation
with 791GB of RAM using a single core. Moreover, we
used the GNU C++ Compiler 4.8.5 with the flag -O2.

For comparing the kernel approaches to GNN baselines, we
used 10-fold cross-validation and again used the approach
outlined in (Morris et al., 2020a). The number of compo-
nents of the (hidden) node features in {32, 64, 128} and
the number of layers in {1, 2, 3, 4, 5} of the GIN and GIN-ε
layer were again selected using a validation set sampled
uniformly at random from the training fold (using 10% of
the training fold). We used mean pooling to pool the learned
node embeddings to a graph embedding and used a 2-layer
MLP for the final classification, using a dropout layer with
p = 0.5 after the first layer of the MLP. We repeated each
10-fold cross-validation ten times with different random
folds and report the average accuracies and standard devi-
ations. Due to the different training methods, we do not
provide computation times for the GNN baselines.

For the larger molecular regression tasks ALCHEMY and
QM9, we closely followed the hyperparameters found
in (Chen et al., 2019a) and (Gilmer et al., 2017), respec-
tively, for the GINE-ε layers. That is, we used six layers
with 64 (hidden) node features and a set2seq layer (Vinyals
et al., 2016) for graph-level pooling, followed by a 2-layer
MLP for the joint regression of the twelve targets. We used
the same architecture details and hyperparameters for the
(k, s)-SpeqNet. For the ALCHEMY, we used the subset of
12 000 graphs from (Morris et al., 2020b). For both datasets,
we uniformly and at random sampled 80% of the graphs
for training, and 10% for validation and testing, respec-
tively. Moreover, following (Chen et al., 2019a; Gilmer
et al., 2017), we normalized the targets of the training split
to zero mean and unit variance. We used a single model to
predict all targets. Following (J. Klicpera, 2020, Appendix
C), we report mean standardized MAE and mean standard-
ized logMAE. We repeated each experiment five times and
report average scores and standard deviations. We used
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Table 1. Classification accuracies in percent and standard deviations, OOT— Computation did not finish within one day, OOM— Out of
memory.

Method
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI MUTAG NCI1 PROTEINS PTC MR REDDIT-BINARY

B
as

el
in

e GR 29.9 ±0.8 59.3 ±0.9 39.2 ±0.6 72.5 ±1.7 66.2 ±0.2 71.5 ±0.5 56.6 ±1.3 59.7 ±0.5
SP 40.3 ±0.9 58.7 ±0.6 39.7 ±0.3 81.7 ±1.5 74.1 ±0.2 75.8 ±0.7 59.6 ±1.5 84.5 ±0.2
1-WL 50.6 ±1.2 72.5 ±0.8 50.0 ±0.8 75.9 ±2.0 84.4 ±0.3 73.1 ±0.6 59.3 ±2.1 73.4 ±0.9
WLOA 57.1 ±0.8 73.2 ±0.4 49.8 ±0.4 83.4 ±1.2 85.2 ±0.2 73.0 ±0.9 60.3 ±1.9 88.3 ±0.4

G
N

N Gin-ε 38.7 ±1.5 72.9 ±0.7 49.7 ±0.7 84.1 ±1.4 77.7 ±0.8 72.2 ±0.6 55.2 ±1.7 89.8 ±0.4
Gin-ε-JK 39.3 ±1.6 73.0 ±1.1 49.6 ±0.7 83.4 ±2.0 78.3 ±0.3 72.2 ±0.7 56.0 1.3± 90.4 ±0.4

k
-W

L

2-WL 37.0 ±1.0 68.1 ±1.7 47.5 ±0.7 85.7 ±1.6 66.9 ±0.3 75.2 ±0.4 60.5 ±1.1 OOM

3-WL 42.3 ±1.1 67.1 ±1.5 46.8 ±0.8 85.4 ±1.5 OOT OOT 59.0 ±2.0 OOM

δ-2-LWL 55.9 ±1.0 73.0 ±0.7 50.1 ±0.9 85.6 ±1.4 84.6 ±0.3 75.1 ±0.5 61.7 ±2.4 89.4 ±0.6
δ-2-LWL+ 53.9 ±1.4 75.6 ±1.0 62.7 ±1.4 84.1 ±2.1 91.3 ±0.3 79.2 ±1.2 61.6 ±1.3 91.4 ±0.4
δ-3-LWL 58.2 ±1.2 72.6 ±0.9 49.0 ±1.2 84.1 ±1.6 83.2 ±0.4 OOM 60.7 ±2.2 OOM

δ-3-LWL+ 56.5 ±1.4 76.1 ±1.2 64.3 ±1.2 85.4 ±1.8 82.7 ±0.4 OOM 61.5 ±1.8 OOM

(k
,s
)-

LW
L

(2, 1)-LWL 53.7 ±1.7 73.5 ±0.8 50.8 ±0.7 84.2 ±1.7 82.8 ±0.3 73.2 ±0.6 55.9 ±2.4 76.9 ±0.6
(2, 1)-LWL+ 51.6 ±1.8 73.7 ±1.1 55.4 ±0.9 79.6 ±3.4 81.9 ±0.3 76.0 ±0.9 60.2 ±2.1 94.7 ±0.3
(3, 1)-LWL 53.4 ±1.4 74.6 ±1.0 51.3 ±0.6 85.3 ±2.4 81.4 ±0.5 72.9 ±1.1 60.2 ±1.7 OOM

(3, 1)-LWL+ 57.0 ±1.9 87.1 ±0.6 67.1 ±1.1 79.2 ±1.5 89.8 ±0.4 81.2 ±0.8 59.2 ±2.0 OOM

(3, 2)-LWL 56.4 ±0.7 73.5 ±0.5 49.7 ±0.6 86.4 ±2.6 84.9 ±0.4 75.1 ±0.9 61.9 ±2.4 OOM

(3, 2)-LWL+ 55.8 ±1.7 78.1 ±1.4 59.5 ±1.0 84.5 ±1.9 89.4 ±0.3 78.8 ±0.6 62.3 ±3.3 OOM

the provided ten training, validation, and test splits for the
node-classification datasets. All neural experiments were
conducted on a workstation with one GPU card with 32GB
of GPU memory.

To compare training and testing times between the (2, 1)-
SpeqNet, (2, 2)-SpeqNet, GINE-ε architectures, we trained
all three models on ALCHEMY (10K) and QM9 to conver-
gence, divided by the number of epochs, and calculated the
ratio with respect to the average epoch computation time of
the (2, 1)-SpeqNet (average computation time of dense or
baseline layer divided by average computation time of the
(2, 1)-SpeqNet). Contrary to the kernel timing experiments,
we did not take into account the time of the preprocessing
routine to compute the computational graphs to focus purely
on the neural component of the architecture. Clearly, the
time for the preprocessing of (k, s)-SpeqNet with small s
is much smaller than that of, e.g., the δ-k-WL.

5.1. Results and discussion

In the following, we answer questions Q1 to Q4.

A1 Kernels See Table 1. The (k, s)-LWL for k, s in {2, 3}
significantly improves the classification accuracy compared
to the k-WL and the δ-k-WL, and the other kernel baselines,
while being on par with or better than the δ-2-LWL and
δ-3-LWL. The (k, s)-LWL and (k, s)-LWL+ achieve a new
state-of-the-art on five out of eight datasets. Our algorithms
also perform vastly better than the neural baselines.

Neural architectures See Table 2. On both datasets, all

(k, s)-SpeqNet architectures beat the GNN baseline. On the
ALCHEMY dataset, the (2, 2)-SpeqNet and (3, 1)-SpeqNet
perform best, while on the QM9 dataset, the (2, 2)-SpeqNet
performs best by a large margin.

A2 See Table 2. Over all three datasets, the
(k, s)-SpeqNet architectures improve over the GCN base-
line. Specifically, over all datasets, the (2, 1)-SpeqNet and
the (2, 2)-SpeqNet lead to an increase of at least 7% in ac-
curacy. For example, both architectures beat the GCN and
GIN baseline by at least 17% on the WISCONSIN dataset.
Further, the (k, s)-SpeqNet architectures lead to better accu-
racies compared to the SDRF architecture, e.g., improving
on it by more than 10% on the CORNELL dataset. Hence,
node-level tasks also benefit from higher-order information.
However, increasing k more does not result in increased
accuracies.

A3 Kernels See Table 5. Clearly, for the same k and
s < k, the (k, s)-LWL improves over the k-WL and its
(local) variants. For example, on the ENZYMES dataset,
the (2, 1)-LWL is more than 20 times faster in terms of
computation times compared to the δ-2-LWL. The speed
up is even more significant for the non-local 2-WL. This
speed-up factor increases more as k increases, e.g., the
(3, 1)-LWL is more than 1 700 times faster compared to the
3-WL, whereas the (3, 2)-LWL is still more than 87 times
faster, while giving better accuracies. Similar speed-up
factors can be observed over all datasets.

Neural architectures See Table 6. The (2, 1)-SpeqNet
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Method
Dataset

ALCHEMY (10K) QM9

GINE-ε 0.180 ±0.006 -1.958 ±0.047 0.079 ±0.003 -3.430 ±0.080

(2, 1)-SpeqNet 0.169 ±0.005 -2.010 ±0.056 0.078 ±0.007 -2.947 ±0.171
(2, 2)-SpeqNet 0.115 ±0.001 -2.722 ±0.054 0.029 ±0.001 -4.081 ±0.058

(3, 1)-SpeqNet 0.180 ±0.011 -1.914 ±0.097 0.068 ±0.003 -3.397 ±0.086
(3, 2)-SpeqNet 0.115 ±0.002 -2.767 ±0.079 OOT

(a) Mean MAE (mean std. MAE, logMAE) on large-scale (multi-
target) molecular regression tasks.

Method
Dataset

CORNELL TEXAS WISCONSIN

GCN 56.5 ±0.9 58.2 ±0.8 50.9 ±0.7
GIN 51.9 ±1.1 55.3 ±2.7 48.4 ±1.6
SDRF + Undirected 57.5 ±0.3 70.4 ±0.6 61.6 ±0.9

(2, 1)-SpeqNet 63.9 ±1.7 66.8 ±0.9 67.7 ±2.2
(2, 2)-SpeqNet 67.9 ±1.7 67.3 ±2.0 68.4 ±2.2
(3, 1)-SpeqNet 61.8 ±3.3 68.3 ±1.3 60.4 ±2.8

(b) Classification accuracies and standard deviations for node
classification.

Table 2. Additional experimental results for graph regression and node classification.

severely speeds up the computation time across both
datasets. Specifically, on the ALCHEMY dataset, the
(2, 1)-SpeqNet is 1.3 times faster compared to the
(2, 2)-SpeqNet, while requiring twice the computation time
of the GINE-ε but achieving a lower MAE. More interest-
ingly, on the QM9 dataset, the (2, 1)-SpeqNet is 3.4 times
faster compared to the (2, 2)-SpeqNet, while also being 1.3
times faster compared to the GINE-ε. The speed-up over
GINE-ε is most likely due to the latter considering the com-
plete graph to compute all pairwise `2 distances, whereas
the (2, 1)-SpeqNet only considers connected node pairs.

A4 See Tables 1 and 2. The (2, 1)-LWL, (2, 1)-LWL+, and
(3, 1)-LWL+ beat the 1-WL on six out of eight datasets. Go-
ing from the (3, 1)-LWL to the (3, 2)-LWL often leads to a
slight increase in accuracy, e.g., on the ENZYMES and MU-
TAG datasets, while sometimes leading to a drop in accuracy,
e.g., on the IMDB-BINARY dataset. Hence, a better under-
standing of the model’s generalization performance with
respect to s needs to be investigated in future work. The ef-
fect is less pronounced for the neural architectures; however,
all higher-order models beat the GNN baseline. Reducing s
leads to a vast reduction in computation time. For example,
on the ENZYMES dataset, going from the (3, 2)-LWL to the
(3, 1)-LWL leads to a speed-up factor of more than 18, while
only inducing a small drop in terms of accuracy, whereas
the (3, 1)-LWL+ beats the (3, 2)-LWL while only increasing
the computation time by one second. Similar observations
can be made across all datasets.

Increasing s often leads to a better performance on the
graph regression tasks. For example, on the ALCHEMY
dataset, going from a (2, 1)-SpeqNet to a (2, 2)-SpeqNet
architecture reduces the MAE by 0.054. Similar effects can
be observed for the QM9 dataset, and when going from
a (3, 1)-SpeqNet to a (3, 2)-SpeqNet architecture. On the
node-classification datasets, reducing s leads to a slight drop
in accuracy, between 0.5 and 4%, while increasing k beyond
2 often results in a drop in accuracy.

6. Conclusion
To circumvent the exponential running time requirements
of k-WL, we introduced a new heuristic for the graph iso-
morphism problem, namely the (k, s)-LWL. By varying the
parameters k and s, the (k, s)-LWL offers a tradeoff between
scalability and expressivity and, unlike the k-WL, takes into
account the potential sparsity of the graph. Based on these
combinatorial insights, we designed provably expressive
machine-learning architectures, (k, s)-SpeqNets, suitable
for node-, subgraph-, and graph-level prediction tasks. Em-
pirically, we showed that such architectures lead to state-of-
the-art results in node- and graph-level classification regimes
while obtaining promising results on graph-level regression
tasks. We believe that this principled approach paves the
way for designing new permutation-equivariant architec-
tures to overcome the limitation of current graph neural
networks.
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On Weisfeiler-Leman invariance: Subgraph counts and
related graph properties. In International Symposium
on Fundamentals of Computation Theory, pp. 111–125,
2019.

Atserias, A. and Maneva, E. N. Sherali-adams relaxations
and indistinguishability in counting logics. SIAM Journal
on Computing, 42(1):112–137, 2013.

Atserias, A., Mancinska, L., Roberson, D. E., Sámal, R.,
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Appendix

A. Related work (extended)
In the following, we review related work from graph theory.

Theory The Weisfeiler–Leman algorithm constitutes one of the earliest and most natural approaches to isomorphism
testing (Weisfeiler, 1976; Weisfeiler & Leman, 1968), having been heavily investigated by the theory community over the last
few decades (Grohe, 2017). Moreover, the fundamental nature of the k-WL is evident from a variety of connections to other
fields such as logic, optimization, counting complexity, and quantum computing. The power and limitations of k-WL can be
neatly characterized in terms of logic and descriptive complexity (Babai, 1979; Immerman & Lander, 1990), Sherali-Adams
relaxations of the natural integer linear program for the graph isomorphism problem (Atserias & Maneva, 2013; Grohe &
Otto, 2015; Malkin, 2014), homomorphism counts (Dell et al., 2018), and quantum isomorphism games (Atserias et al.,
2019). In their seminal paper, Cai et al. (1992) showed that, for each k, there exists a pair of non-isomorphic graphs of
size O(k) that are not distinguished by the k-WL. (Kiefer, 2020a;b) gives a thorough survey of these results. For k = 1,
the power of the algorithm has been completely characterized (Arvind et al., 2015; Kiefer et al., 2015). Moreover, upper
bounds on the running time (Berkholz et al., 2017) and the number of iterations for k = 1 (Kiefer & McKay, 2020) and
for the folklore k = 2 (Kiefer & Schweitzer, 2016; Lichter et al., 2019) have been shown. For k in {1, 2}, Arvind et al.
(2019) studied the abilities of the (folklore) k-WL to detect and count fixed subgraphs, extending the work of Fürer (2017).
The former was refined in (Chen et al., 2020). Kiefer et al. (2019) showed that the folklore 3-WL completely captures the
structure of planar graphs. The algorithm (for logarithmic k) plays a prominent role in the recent result of (Babai, 2016)
improving the best-known running time for the graph isomorphism problem. Recently, Grohe et al. (2020) introduced the
framework of Deep Weisfeiler–Leman algorithms, which allow the design of a more powerful graph isomorphism test than
Weisfeiler–Leman type algorithms. Finally, the emerging connections between the Weisfeiler–Leman paradigm and graph
learning are described in two recent surveys (Grohe, 2020; Morris et al., 2021).

B. Preliminaries
As usual, let [n] := {1, . . . , n} ⊂ N for n ≥ 1, and we use {{. . . }} to denote multisets, i.e., the generalization of sets
allowing for multiple instances for each of its elements.

Graphs A graph G is a pair (V (G), E(G)) with finite sets of nodes V (G) and edges E(G) ⊆ {{u, v} ⊆ V | u 6= v}.
If not otherwise stated, we set n := |V (G)|. For ease of notation, we denote the edge {u, v} in E(G) by (u, v) or (v, u).
In the case of directed graphs, E ⊆ {(u, v) ∈ V × V | u 6= v}. A labeled graph G is a triple (V,E, `) with a label
function ` : V (G) ∪ E(G) → N. Then `(v) is a label of x for x in V (G) ∪ E(G). The neighborhood of v in V (G) is
denoted by δ(v) = {u ∈ V (G) | (v, u) ∈ E(G)} and the degree of a node v is |δ(v)|. Let S ⊆ V (G) then G[S] = (S,ES)
is the subgraph induced by S, where ES = {(u, v) ∈ E(G) | u, v ∈ S}. A connected component of a graph G is an
inclusion-wise maximal subgraph of G in which every two nodes are connected by paths. A tree is a connected graph
without cycles. A rooted tree is an oriented tree with a designated node called root, in which the edges are directed away
from the root. Let p be a node in a rooted tree. Then we call its out-neighbors children with parent p. We denote an
undirected cycle on k nodes by Ck. Given two graphs G and H with disjoint node sets, we denote their disjoint union by
G ∪̇H .

Two graphs G and H are isomorphic and we write G ' H if there exists a bijection ϕ : V (G) → V (H) preserving the
adjacency relation, i.e., (u, v) is in E(G) if and only if (ϕ(u), ϕ(v)) is in E(H). Then ϕ is an isomorphism between G and
H . Moreover, we call the equivalence classes induced by' isomorphism types, and denote the isomorphism type ofG by τG.
In the case of labeled graphs, we additionally require that `(v) = `(ϕ(v)) for v in V (G) and `((u, v)) = `((ϕ(u), ϕ(v)))
for (u, v) in E(G). Let v be a tuple in V (G)k for k > 0, then G[v] is the subgraph induced by the multiset of elements of
v, where the nodes are labeled with integers from {1, . . . , k} corresponding to their positions in v.

Equivariance For n > 0, let Sn denote the set of all permutations of [n], i.e., the set of all bijections from [n] to itself.
For σ in Sn and a graph G such that V (G) = [n], let Gσ = σ ·G be the graph such that V (σ ·G) = {vσ−1(1), . . . , vσ−1(n)}
and E(Gσ) = {(vσ−1(i), vσ−1(j)) | (vi, vj) ∈ E(G)}. That is, applying the permutation σ reorders the nodes. Hence, for
two isomorphic graphs G and H on the same vertex set, i.e., G ' H , there exists σ in Sn such that σ ·G = H .
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Let G denote the set of all graphs, and let Gn denote the set of all graphs on n nodes. A function f : G → R is invariant if
for every n > 0 and every σ in Sn and graph G, f(σ ·G) = f(G). A function f : G 7→ G is equivariant if for every n > 0,
f(Gn) ⊆ Gn and for every σ in Sn, f(σ ·G) = σ · f(G).

Kernels A kernel on a non-empty set X is a symmetric, positive semidefinite function k : X × X → R. Equivalently, a
function k : X × X → R is a kernel if there is a feature map φ : X → H to a Hilbert spaceH with inner product 〈·, ·〉, such
that k(x, y) = 〈φ(x), φ(y)〉 for all x and y in X . A graph kernel is a kernel on the set G of all graphs.

B.1. Node-refinement algorithms (extended)

In the following, we briefly describe the Weisfeiler–Leman algorithm and related variants (Morris et al., 2020b). Let k be a
fixed positive integer. There exist two definitions of the k-WL, the so-called oblivious k-WL and folklore or non-oblivious
k-WL, in literature, see, e.g., (Grohe, 2021). There is a subtle difference in how they aggregate neighborhood information.
Within the graph learning community, it is customary to abbreviate the oblivious k-WL as k-WL, a convention that we follow
in this paper.

We proceed to the definition of the k-WL. Let V (G)k denote the set of k-tuples of nodes of the graph G. A coloring of
V (G)k is a mapping C : V (G)k → N, i.e., we assign a number (color) to every tuple in V (G)k. The initial coloring C0

of V (G)k is specified by the atomic types of the tuples, i.e., two tuples v and w in V (G)k have the same initial color iff
mapping vi 7→ wi induces an isomorphism between the labeled subgraphs G[v] and G[w]. Note that, given a tuple v in
V (G)k, we can upper-bound the running time of the computation of this initial coloring for v by O(k2). A color class
corresponding to a color c is the set of all tuples colored c, i.e., the set C−1(c).

For j in [k] and w in V (G), let φj(v, w) be the k-tuple obtained by replacing the jth component of v with the node w.
That is, φj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk). If w = φj(v, w) for some w in V (G), call w a j-neighbor of v. The
neighborhood of v is the set of all w such that w = φj(v, w) for some j in [k] and a w ∈ V (G).

The refinement of a coloring C : V (G)k → N, denoted by Ĉ, is a coloring Ĉ : V (G)k → N defined as follows. For each j
in [k], collect the colors of the j-neighbors of v in a multiset Sj = {{C(φj(v, w)) | w ∈ V (G)}}. Then, for a tuple v, define

Ĉ(v) := (C(v),M(v)),

where M(v) is the k-tuple (S1, . . . , Sk). For consistency, the strings Ĉ(v) thus obtained are lexicographically sorted and
renamed as integers, not used in previous iterations. Observe that the new color Ĉ(v) of v is solely dictated by the color
histogram of the neighborhood of v. In general, a different mapping M(·) could be used, depending on the neighborhood
information that we would like to aggregate. We will refer to a mapping M(·) as an aggregation map.

k-dimensional Weisfeiler–Leman For k ≥ 2, the k-WL computes a coloring C∞ : V (G)k → N of a given graph G, as
follows.6 To begin with, the initial coloring C0 is computed. Then, starting with C0, successive refinements Ci+1 = Ĉi are
computed until convergence. That is,

Ci+1(v) = (Ci(v),Mi(v)),

where
Mi(v) =

(
{{Ci(φ1(v, w)) | w ∈ V (G)}}, . . . , {{Ci(φk(v, w)) | w ∈ V (G)}}

)
. (3)

The successive refinement steps are also called rounds or iterations. Since the disjoint union of the color classes form a
partition of V (G)k, there must exist a finite ` ≤ |V (G)|k such that C` = Ĉ`, i.e., the partition induced by C` cannot be
refined further. The k-WL outputs C` as the stable coloring C∞.

The k-WL distinguishes two graphs G and H if, upon running the k-WL on their disjoint union G ∪̇H , there exists a color c
in N in the stable coloring such that the corresponding color class Sc satisfies

|V (G)k ∩ Sc| 6= |V (H)k ∩ Sc|,

i.e., there the numbers of c-colored tuples in V (G)k and V (H)k differ. Two graphs that are distinguished by the k-WL must
be non-isomorphic, because the algorithm is defined in an isomorphism-invariant way.

6We define the 1-WL in the next subsection.
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Finally, the application of different aggregation maps M(·) yield related versions of k-WL. For example, setting M(·) to be

MF (v) = {{
(
C(φ1(v, w)), . . . , C(φk(v, w))

)
| w ∈ V (G)}},

yields the so-called folklore-version of k-WL (see e.g. (Cai et al., 1992)). It is known that the oblivious version of the k-WL
is as powerful as the folklore version of the (k−1)-WL (Grohe, 2021).

Local δ-k-dimensional Weisfeiler–Leman algorithm Morris et al. (2020b) introduced a more efficient variant of the
k-WL, namely the local δ-k-dimensional Weisfeiler–Leman algorithm (δ-k-LWL). In contrast to the k-WL, the δ-k-LWL
considers only a subset of the entire neighborhood of a node tuple. Let the tuple w = φj(v, w) be a j-neighbor of v. We say
that w is a local j-neighbor of v if w is adjacent to the replaced node vj . Otherwise, the tuple w is a global j-neighbor of v.
The δ-k-LWL considers only local neighbors during the neighborhood aggregation process, and discards any information
about the global neighbors. Formally, the δ-k-LWL algorithm refines a coloring Ck,δi (obtained after i rounds of δ-k-LWL)
via the aggregation function,

Mδ
i (v) =

(
{{Ck,δi (φ1(v, w)) | w ∈ δ(v1)}}, . . . , {{Ck,δi (φk(v, w)) | w ∈ δ(vk)}}

)
, (4)

hence considering only the local j-neighbors of the tuple v in each iteration. The coloring function for the δ-k-LWL is then
defined by

Ck,δi+1(v) = (Ck,δi (v),Mδ
i (v)). (5)

We define the 1-WL to be the δ-1-LWL, which is commonly known as Color Refinement or Naive Node Classification.7

Hence, we can equivalently define

C1,δ
i+1(v) = (C1,δ

i (v), {{C1,δ
i (w) | w ∈ δ(v)}}). (6)

for a node v in V (G).

Morris et al. (2020b) also defined the δ-k-LWL+, a minor variation of the δ-k-LWL. Formally, the δ-k-LWL+ refines a coloring
Ci (obtained after i rounds) via the aggregation function

M δ,+(v) =
(
{{(Ck,δi (φ1(v, w)),#

1
i (v, φ1(v, w))) | w ∈ δ(v1)}}, . . . ,

{{(Ck,δi (φk(v, w)),#
k
i (v, φk(v, w))) | w ∈ δ(vk)}}

)
,

(7)

instead of the δ-k-LWL aggregation defined in Equation (4). Here, we set

#j
i (v,x) :=

∣∣{w : w ∼j v, Ck,δi (w) = Ck,δi (x)}
∣∣, (8)

where w ∼j v denotes that w is a j-neighbor of v, for j in [k]. Essentially, #j
i (v,x) counts the number of j-neighbors

(local or global) of v which have the same color as x under the coloring Ci (i.e., after i rounds). Morris et al. (2020b)
showed that the δ-k-LWL+ is slightly more powerful than the k-WL in distinguishing non-isomorphic graphs.

C. The (k, s)-LWL algorithm (extended)
Since both k-WL and its local variant δ-k-LWL consider all k-tuples of a graph, they do not scale to large graphs for larger
k. Specifically, for an n-node graph, the memory requirement is Ω(nk). Further, since the k-WL considers the graph
structure only at initialization, it does not adapt to its sparsity, i.e., it does not run faster for sparser graphs. To address this
issue, we introduce the (k, s)-LWL. The algorithm offers more fine-grained control over the trade-off between expressivity
and scalability by only considering a subset of all k-tuples, namely those inducing subgraphs with at most s connected
components. This combinatorial algorithm will be the basis of the permutation-equivariant neural architectures of Section 4.

Formally, let G be a graph, then #com(G) denotes the number of (connected) components of G. Further, let k ≥ 1 and
1 ≤ s ≤ k, then

V (G)ks := {v ∈ V (G)k | #com(G[v]) ≤ s}
7Strictly speaking, the 1-WL and Color Refinement are two different algorithms. That is, the 1-WL considers neighbors and non-

neighbors to update the coloring, resulting in a slightly higher expressivity when distinguishing nodes in a given graph, see (Grohe, 2021)
for details. For brevity, we consider both algorithms to be equivalent.



SpeqNets: Sparsity-aware permutation-equivariant graph networks

is the set of (k, s)-tuples of nodes, i.e, k-tuples which induce (sub-)graphs with at most s (connected) components.

In contrast to the algorithms of Appendix B.1, the (k, s)-LWL colors tuples from V (G)ks instead of the entire V (G)k. Hence,
analogously to Appendix B.1, a coloring of V (G)ks is a mapping Ck,si : V (G)ks → N for i ≥ 0, assigning a number (color)
to every tuple in V (G)ks . The initial coloring Ck,s0 of V (G)ks is defined in the same way as before, i.e., specified by the
isomorphism types of the tuples. Subsequently, the coloring is updated using the δ-k-LWL aggregation map, see Equation (4).
Hence, the (k, s)-LWL is a variant of the δ-k-LWL considering only (k, s)-tuples, i.e., Equation (4) is replaced with

M δ,k,s
i (v) :=

(
{{Ck,si (φ1(v, w)) | w ∈ δ(v1) and φ1(v, w) ∈ V (G)ks}},

. . . ,{{Ck,si (φk(v, w)) | w ∈ δ(vk) and φk(v, w) ∈ V (G)ks}}
)
,

(9)

i.e., Mδ
i (v) restricted to colors of (k, s)-tuples. The stable coloring Ck,s∞ is defined analogously to the stable coloring Ck∞.

In the following two subsections, we investigate the properties of the algorithm in detail.

Analogously to the δ-k-LWL+, we also define the (k, s)-LWL+ using

Mδ,+(v) =
(
{{(Ck,si (φ1(v, w)),#

1
i,s(v, φ1(v, w))) | w ∈ δ(v1) and φ1(v, w) ∈ V (G)ks}}, . . . ,

{{(Ck,si (φk(v, w)),#
k
i,s(v, φk(v, w))) | w ∈ δ(vk) and φk(v, w) ∈ V (G)ks}}

)
,

where the function
#j
i,s(v,x) =

∣∣{w : w ∼j v, Ck,si (w) = Ck,si (x) and w ∈ V (G)ks}
∣∣,

restricts #j
i (v,x) to (k, s)-tuples.

Here, we investigate the expressivity of the (k, s)-LWL, i.e., its ability to distinguish non-isomorphic graphs, for different
choices of k and s. In Section 4, we will leverage these results to devise universal, permutation-equivariant graph networks.
We start off with the following simple observation. Since the (k, k)-LWL colors all k-tuples, it is equal to the δ-k-LWL.

Observation 2. Let k ≥ 1, then

(k, k)-LWL ≡ δ-k-LWL and (1, 1)-LWL ≡ δ-k-LWL ≡ 1-WL.

The following result shows that the (k, 1)-LWL form a hierarchy, i.e., the algorithm becomes more expressive as k increases.

Theorem 5. Let k ≥ 1, then
(k + 1, 1)-LWL @ (k, 1)-LWL.

Moreover, we also show that the (k, 2)-LWL is more expressive than the (k, 1)-LWL.

Proposition 6. For k ≥ 2, it holds that
(k, 2)-LWL @ (k, 1)-LWL.

Further, the following theorem yields that increasing the parameter s results in higher expressivity. Formally, we show that
the (k, k)-LWL is strictly more expressive than the (k, 2)-LWL.

Theorem 7. For k ≥ 2, it holds that
(k, k)-LWL @ (k, 2)-LWL.

See Appendix C.1 for an analysis of the asymptotic running time of the (k, s)-LWL, showing that it only depends on k, s,
and the sparsity of the graph. In particular, the running time of the (k, s)-LWL on an n-vertex graph of bounded degree is
Õ(ns) instead of the usual Õ(nk) for the k-WL, for fixed k and s.

C.0.1. PROOFS OF THEOREMS 1 AND 3 AND PROPOSITION 2

To prove Theorem 1, we introduce the (k, s)-tuple graph. It essentially contains all (k, s)-tuples as nodes, where each node
vt is labeled by the isomorphism type of the (k, s)-tuple t. We join two nodes by an edge, labeled j, if the underlying (k, s)-
tuples are j-neighbors. The formal definition of the (k, s)-tuple graph is as follows. Recall that τ denotes an isomorphism
type.
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Figure 2. Illustration of the unrolling operation around the node a for i = 2.

Definition 8. Let G be a graph and let k ≥ 1, and s in [k]. Further, let s and t be tuples in V (G)ks . Then the directed,
labeled (k, s)-tuple graph T ks (G) = (VT , ET , `T ) has node set VT = {vt | t ∈ V (G)ks}, and

(vs, vt) ∈ ET ⇐⇒ t = φj(s, w) holds for some j in [k] and some w in V (G). (10)

We set `T ((vs, vt)) := j if t is a local j-neighbor of s, and let `T (vs) := τG[s].

Given a graph G and the corresponding (k, s)-tuple graph T ks (G), we define a variant of the 1-WL, which takes into account
edge labels. Namely, for vt in VT , the new algorithm uses the colorings C1,δ,∗

0 (vt) = τG[t] and

C1,δ,∗
i+1 (vt) = (C1,δ,∗

i (vt), {{(C1,δ,∗
i (vs), `(vt, vs)) | vs ∈ δ(vt)}} (11)

for i > 0. Note that the 1-WL, see Equation (6), and the variant defined via Equation (11) have the same asymptotic running
time. The following lemma states that the (k, s)-LWL can be simulated on the (k, s)-tuple graph using the above variant of
the 1-WL.
Lemma 9. Let G be a graph, k ≥ 1, and s in [k]. Then

Ck,si (t) = Ck,si (u) ⇐⇒ C1,δ,∗
i (vt) = C1,δ,∗

i (vu),

for all i ≥ 0, and all (k, s)-tuples t and u in V (G)ks .

Proof sketch. Induction on the number of iterations using Definition 8.

The unrolling of a neighborhood around a node of a given graph to a tree is defined as follows, see Figure 2 for an illustration.

Definition 10. Let G = (V,E, `) be a labeled (directed) graph and let v be in V . Then U iG,v = (Wi, Fi, li) for i ≥ 0
denotes the unrolled tree G around v at depth i, where

Wi =

{
{v(0,v)} if i = 0

Wi−1 ∪ {u(i,w(i−1,p)) | u ∈ δ(w) for w(i−1,p) ∈Wi−1} otherwise,

and

Fi =

{
∅ if i = 0

Fi−1 ∪ {(w(i−1,p), u(i,w)) | u ∈ δ(w) for w(i−1,p) ∈Wi−1} otherwise.

The label function is defined as li(u(j,p)) = `(u) for u in V , and li(u(j,w)) = `((w, u)). For notational convenience, we
usually omit the subscript i.

In the following, we use the unrolled tree for the above defined (k, s)-tuple graph. For k ≥ 2 and s in [k], we denote the
directed, unrolled tree of the (k, s)-tuple graph of G around the node vt at depth i for the tuple t in V (G)ks by Ui

Tk
s (G),vt

.
For notational convenience, we write Ui

T,vt
for Ui

Tk
s (G),vt

. Further, for two (k, s)-tuples t and u, we write

Ui
T,vt 'vt→vu Ui

T,vu (12)
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(a) (b)

Figure 3. The graphs Ak+2 and Bk+2 for k = 4.

if there exists a (labeled) isomorphism ϕ between the two unrolled trees, mapping the (root) node vt to vu. Moreover, we
need the following two results.

Theorem 11 ((Busacker & Saaty, 1965; Valiente, 2002)). The 1-WL distinguishes any two directed, labeled non-isomorphic
trees.

Using the first result, the second one states that the (k, s)-LWL can be simulated by the variant of the 1-WL of Equation (11)
on the unrolled tree of the (k, s)-tuple graph, and hence can be reduced to a tree-isomorphism problem.

Lemma 12. Let G be a connected graph, then the (k, s)-LWL colors the tuples t and u in V (G)ks equally if and only if the
corresponding unrolled (k, s)-tuple trees are isomorphic, i.e.,

Ck,si (t) = Ck,si (u) ⇐⇒ Ui
T,vt 'vt→vu Ui

T,vu ,

for all i ≥ 0.

Proof sketch. First, by Lemma 9, we can simulate the (k, s)-LWL for the graph G using the (k, s)-tuple graph T ks (G).
Secondly, consider a node vt in the (k, s)-tuple graph T ks (G) and a corresponding node in the unrolled tree around vt.
Observe that the neighborhoods for both nodes are identical. By definition, this holds for all nodes (excluding the leaves)
in the unrolled tree. Hence, by Lemma 9, we can simulate the (k, s)-LWL for each tuple t by running the 1-WL in the
unrolled tree around vt in the (k, s)-tuple graph. Since the 1-WL decides isomorphism for trees, see Theorem 11, the result
follows.

The following lemma shows that the (k + 1, 1)-LWL is strictly more expressive than the (k, 1)-LWL for every k ≥ 2.

Lemma 13. Let k ≥ 2. Let G := C2(k+2) and H := C(k+2) ∪̇C(k+2). Then, the graphs G and H are distinguished by
(k + 1, 1)-LWL, but they are not distinguished by (k, 1)-LWL.

Proof. We first show that the (k+1, 1)-LWL distinguishes the graphs G and H . Let v in V (G)k+1
1 be a tuple (v1, . . . , vk+1)

such that v1, . . . , vk+1 is a path of length k in G. Let w in V (H)k+1
1 be a tuple (w1, . . . , wk+1) such that w1, . . . , wk+1 is

a path of length k in H . By the structure of H , there exists a vertex wk+2 in V (H) such that w1, . . . , wk+2 forms a cycle of
length k + 2. We claim that v does not have any local 1-neighbor x in V (G)k+1

1 such that x is non-repeating, i.e., every
vertex in x is distinct. This holds because replacing the first vertex of v with any other vertex of G will yield a disconnected
tuple. On the other hand, w admits a non-repeating, local 1-neighbor, obtained by replacing the first vertex w1 by wk+2.
Hence, the (k + 1, 1)-LWL distinguishes G and H .

Next, we show that the (k, 1)-LWL does not distinguish the graphs G and H . Indeed, for every j in [k], every k-tuple x in
V (G)k1 or V (H)k1 has exactly two local j-neighbors, corresponding to the two neighbors y, z of the vertex xj . The exact
number of local j-neighbors of x which additionally lie in V (G)k1 (or V (H)k1) depends only on the atomic type of x, since
the length of cycles in G and H is at least k + 2. Hence, the (k, 1)-LWL neighborhood of every tuple in G or H depends
only on its atomic type. This implies that the (k, 1)-LWL does not refine the initial coloring for G as well as H , and hence it
does not distinguish G and H .

Although Lemma 13 already implies Theorem 1, the construction hinges on the fact that the graphs G and H are not
connected. To address this, for k ≥ 2, we introduce two connected graphs Ak+2 and Bk+2 defined as follows. The graph
Ak+2 has 2(k + 2) nodes and 2(k + 2) + 1 edges, and consists of two disjoint cycles on k + 2 nodes connected by a single
edge. The graph Bk+2 also has the same number of nodes and edges, and consists of two cycles on k + 3 nodes, each,
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sharing exactly two adjacent nodes. See Figure 3 for an illustration of the graphs Ak+2 and Bk+2 for k = 4. We obtain the
following result for the two graphs.

Lemma 14. For k ≥ 2, the (k, 1)-LWL does not distinguish the graphs Ak+2 and Bk+2, while the (k + 1, 1)-LWL does.

Proof. We first show the second part, i.e., that the (k + 1, 1)-LWL distinguishes the graphs Ak+2 and Bk+2. Without
loss of generality, assume that V (Ak+2) = {a1, . . . , a2(k+2)} and that E(Ak+2) consists of the edges (ai, ai+1) for
1 ≤ i ≤ k+1, (a1, a(k+2)), (ai, ai+1) for (k+3) ≤ i ≤ 2(k+2)− 1, and (ak+3, a2(k+2)). The two cycles are connected
by the edge (a(k+2), a(k+3)) in E(Ak+2). Further, assume V (Bk+2) = {b1, . . . , b2(k+2)} where (bi, bi+1) in E(Bk+2) for
1 ≤ i ≤ 2(k+ 2)− 1 and (b1, b2(k+2)+2) in E(Bk+2). Finally, the edge (b1, bk+3) ∈ E(Bk+2) is shared by the two cycles
of length k + 3 each.

Now, let t = (a1, . . . , ak+1) in V (Ak+2)
k+1
1 . Observe that the tuple (a1, . . . , ak+2) is a (k + 1)-neighbor of the tuple t,

inducing a graph on k + 1 nodes. Further, since the two cycles in the graph Bk+2 have length k + 3, there is no tuple
without repeated nodes that has a (k + 1)-neighbor without repeated nodes. Hence, the two graphs are distinguished by
(k + 1, 1)-LWL.

We now show that the (k, 1)-LWL does not distinguish the graphs Ak+2 and Bk+2. First, we construct a bijection
θ : V (Ak+2)→ V (Bk+2) as induced by the following coloring:

. . . . . . . . . . . .

Based on the bijection θ, we define the bijection θk : V (Ak+2)
k
1 → (AB+2)

k
1 , by applying θ component-wise to (k, s)-tuples.

Observe that G[s] ' G[θk(s)] for s in V (Ak+2)
k
1 .

Claim 15. Let s be a tuple in V (G)k1 and t = θk(s) in V (H)k1 . Let Nj(s) and Nj(t) be the j-neighbors of the tuple s
and t, respectively, for j in [k]. Then θk yields a one-to-one correspondence between Nj(s) and Nj(t). Consequently,
G[u] ' G[θk(u)] for u in Nj(s) and θk(u) in Nj(t).

Proof. The desired claim follows by observing that the bijective map θ : V (Ak+2)→ V (Bk+2) preserves neighborhoods,
i.e. for every x in V (Ak+2), θ(NF (x)) = NK(θ(x)).

We now again leverage the above claim to show that Ck,si (s) = Ck,si (θk(s)) for i ≥ 0, implying the required result. By a
straightforward inductive argument, using Claim 15, we can inductively construct a tree isomorphism between the unrolled
trees around the node vs and vt in the corresponding (k, s)-tuple graph such that Ui

T,vs
'vs→vt Ui

T,vt
. By Lemma 12, this

implies Ck,si (s) = Ck,si (θ(t)) for i ≥ 0. This shows that the (k, s)-LWL does not distinguish Ak+2 and Bk+2.

Hence, Theorem 1 directly follows from Lemma 14. Moreover, we also show that the (k, 2)-LWL is more expressive than
the (k, 1)-LWL.

Proposition 16. Let k ≥ 2. Then
(k, 2)-LWL @ (k, 1)-LWL.

Proof. As in Lemma 13, let G := C2(k+2) and H := C(k+2) ∪̇C(k+2). By Lemma 13, G and H are not distinguished by
the (k, 1)-LWL for k ≥ 2. We claim that the (k, 2)-LWL distinguishes G and H for k = 2 already. Since the (k, 2)-LWL is
at least as powerful as the (2, 2)-LWL, this yields the desired claim.

With respect to the (2, 2)-LWL, observe that the (2, 2)-tuple graph T 2
2 (H) consists of four connected components while the

(2, 2)-tuple graph T 2
2 (G) consists of a single connected component. More precisely, there exist two connected components

of T 2
2 (H) that consist only of 2-tuples containing two non-adjacent nodes which are in the same connected component of the

graph H . Note that none of these 2-tuples is adjacent to any 2-tuples in V (H)21. Moreover, there exists no such connected
component in T 2

2 (G). Also, note that the number of neighbors of each 2-tuple of the graphs is exactly 4, excluding self
loops. Hence, the (2, 2)-LWL will distinguish the two graphs.
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Moreover, the following result shows that increasing the parameter s results in higher expressivity. Formally, we show that
the (k, k)-LWL is strictly more expressive than the (k, 2)-LWL. Note that we use vertex-colored graphs (rather than simple
undirected graphs) in our proofs.

Theorem 17. Let k ≥ 2, then
(k, k)-LWL @ (k, 2)-LWL.

For the proof of Theorem 17, we modify the construction employed in (Morris et al., 2020b), Appendix C.1.1., where they
provide an infinite family of graphs (Gk, Hk)k∈N such that (a) k-WL does not distinguish Gk and Hk, although (b) δ-k-LWL
distinguishes Gk and Hk. Since our proof closely follows theirs, let us recall some relevant definitions from their paper.

Construction of Gk and Hk. Let K denote the complete graph on k + 1 vertices (without any self-loops). The vertices of K
are indexed from 0 to k. Let E(v) denote the set of edges incident to v in K: clearly, |E(v)| = k for all v in V (K). We call
the elements of V (K) base vertices, and the elements of E(K) base edges. Define the graph Gk as follows:

1. For the vertex set V (Gk), we add

(a) (v, S) for each v in V (K) and for each even subset S of E(v),
(b) two vertices e1, e0 for each edge e in E(K).

2. For the edge set E(Gk), we add

(a) an edge {e0, e1} for each e in E(K),
(b) an edge between (v, S) and e1 if v in e and e in S,
(c) an edge between (v, S) and e0 if v in e and e not in S,

For every v in K, the set of vertices of the form (v, S) is called the vertex cloud for v. Similarly, for every edge e in E(K),
the set of vertices of the form {e0, e1} is called the edge cloud for e.

Define a companion graph Hk, in a similar manner to Gk, with the following exception: in Step 1(a), for the vertex 0 in
V (K), we choose all odd subsets of E(0). Counting vertices, we find that |V (G)| = |V (H)| = (k + 1) · 2k−1 +

(
k+1
2

)
· 2.

This finishes the construction of the graphs G and H . We set Gk := G and Hk := H .

Distance-two-cliques. A set S of vertices is said to form a distance-two-clique if the distance between any two vertices in S
is exactly 2. The following results were shown in (Morris et al., 2020b).

Lemma 18 ((Morris et al., 2020b)). The following holds for the graphs Gk and Hk defined above.

• There exists a distance-two-clique of size (k + 1) inside Gk.

• There does not exist a distance-two-clique of size (k + 1) inside Hk.

Hence, Gk and Hk are non-isomorphic.

Lemma 19 ((Morris et al., 2020b)). The δ-k-LWL distinguishes Gk and Hk. On the other hand, k-WL does not distinguish
Gk and Hk.

We are ready to present the proof of Theorem 17.

Proof of Theorem 17. Observe that the (k, k)-LWL is the same as the δ-k-LWL. Hence, it suffices to show an infinite family
of graphs (Xk, Yk), k in N, such that (a) (k, 2)-LWL does not distinguish Xk and Yk, although (b) δ-k-LWL distinguishes
Xk and Yk.

Let Xk be the graph obtained from the graph Gk as follows. First, for every base vertex v in V (K), every vertex of V (Gk)
in the vertex cloud for v receives a color Redv. Hence, vertex clouds form color classes, where each such class has a
distinct color. Similarly, for every base edge e in E(K), every vertex of V (Gk) in the edge cloud for e receives a color
Bluee. Finally, let ∆ > 3k. Then, we replace every edge e in Gk by a path of length ∆, such that every vertex on this path
is colored with the color ({c, c′}), where c and c′ are the colors of the endpoints of e in Gk. We call such path vertices
auxiliary vertices. The graph Yk is obtained from Hk by an identical construction.

First, we show that the (k, 2)-LWL does not distinguish the graphs Xk and Yk. We use a modified version of the bijective
k-pebble game (Grohe, 2017): (a) we enforce the k pebbles to form at most two components at any point during the game,
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and (b) when the Spoiler and Duplicator pick the ith pebble from each graph, the Duplicator is required to exhibit a bijection
only between the position-i local neighbourhoods of the two pebbling configuration tuples x ∈ Xk

k and y ∈ Y kk , instead of
a bijection between the vertex sets of Xk and Yk. Observe that there can be at most two vertices out of k + 1 vertices in
V (K) such that the corresponding vertex clouds contain a tupled vertex, by our choice of ∆. Hence, in the usual parlance of
Cai-Fürer-Immerman games (Cai et al., 1992), the twisted edge can always be hidden among the remaining (k − 1) vertices
of K. This ensures that for all i ∈ [k], a partial isomorphism between x\xi and y\yi can always be extended to a bijective
mapping between the i-local-neighborhoods of x and y. Hence, the Duplicator cannot win this pebble game and therefore,
(k, 2)-LWL cannot distinguish the graphs Xk and Yk.

Next, we show that the δ-k-LWL distinguishes the graphs Xk and Yk. Our proof closely follows the corresponding proof in
(Morris et al., 2020b). Instead of showing a discrepancy in the number of distance-two-cliques, we instead use colored-
distance-(2∆+ 1)-cliques defined as follows. Let S be a set of vertices belonging to the vertex clouds. The set S is said
to form a colored-distance-(2∆ + 1)-clique if any two vertices in S are connected by a path of exactly 2∆ + 1 vertices,
of which 2∆ are auxiliary vertices and one vertex is a vertex from an edge cloud. Analogously to their proof, it can be
shown that (a) there exists a colored-distance-(2∆ + 1)-clique of size (k + 1) inside Xk, and (b) there does not exist a
colored-distance-(2∆ + 1)-clique of size (k + 1) inside Yk, and hence, (c) Xk and Yk are non-isomorphic. Finally, we
claim that the δ-k-LWL is powerful enough to detect colored-distance-(2∆+ 1)-cliques. The proof is analogous to (Morris
et al., 2020b, Appendix C.1.1, Proof of Lemma 9). This yields that the δ-k-LWL distinguishes the graphs Xk and Yk.

C.1. Asymptotic running time

In the following, we bound the asymptotic running time of the (k, s)-LWL. Due to Lemma 9, we can upper-bound the
running time of the (k, s)-LWL for a given graph by upper-bounding the time to construct the (k, s)-tuple graph and running
the 1-WL variant of Equation (11) on top. Proposition 21 establishes an upper bound on the asymptotic running time for
constructing the (k, s)-tuple graph from a given graph. Thereto, we assume a d-bounded-degree graph G, for d ≥ 1, i.e.,
each node has at most d neighbors.

To prove the proposition, we define (k, s)-multisets. Let G be a graph, k ≥ 1, and s in [k], then the set of (k, s)-multisets

S(G)ks = {{{v1, . . . , vk}} | v ∈ V (G)ks}

contains the set of multisets inducing subgraphs of G on at most k nodes with at most s components. The following results
upper-bounds the running time for the construction of S(G)ks .

Algorithm 1 Generate (k, s)-multisets

Input: Graph G, k, s, and S(G)ss
Output: (k, s)-multiset S(G)ks

1: Let R be an empty set data structure
2: for M ∈ S(G)ss do
3: Let S be a queue data structure containing only (M, s)
4: while S not empty do
5: Pop (T, c) from queue S
6: if c+ 1 ≤ k then
7: for t ∈ T do
8: for u ∈ δ(t) ∪ {t} do
9: Add (T ∪ {u}, c+ 1) to S

10: else
11: Add T to R
12: return R

Proposition 20. Let G be a d-bounded-degree graph, k ≥ 2, and s in [k − 1]. Then Algorithm 1 computes Sks (G) in time
Õ(ns · kk−s(d+ 1)k−s).

Proof. Let c < k and let T ′ be an element in S(G)c+1
s . By definition of S(G)cs and S(G)c+1

s , there exists a c-element
multiset T in S(G)cs such that T ′ = T ∪ {v} is in S(G)c+1

s for a node v in V (G). Since s is fixed, v is either in the
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neighborhood δ(w) for w in T or v = w′ for w′ in T . Hence, lines 7 to 9 in Algorithm 1 generate S(G)c+1
s from S(G)cs.

The set data structure R makes sure that the final solution will not contain duplicates. The running time follows directly
when using, e.g., a red–black tree, to represent the set R.

Based on the above result, we can easily construct T ks (G) from Sks (G), implying the following result.
Proposition 21. Let G be a d-bounded-degree graph, k ≥ 3, and s in [k − 1]. Then we can compute T ks (G) in time
Õ(ns · kk−s(d+ 1)k−s+1 · k! · k).

Proof. The running time follows directly from Proposition 20. That is, from Sks (G), we can generate the set V ks (G) by
generating all permutations of each element in the former. By iterating over each resulting (k, s)-tuple and each component
of such (k, s)-tuple, we can construct the needed adjacency information.

Hence, unlike for the k-WL, the running time of the (k, s)-LWL does not depend on nk for an n-node graph and is solely
dictated by s, k, and the sparsity of the graph.

Moreover, observe that the upper bound given in Proposition 21, by leveraging Lemma 9, also upper-bounds the asymptotic
running time for one iteration of the (k, s)-LWL.

D. SpeqNets: Sparse, permutation-equivariant graph networks
We can now leverage the above combinatorial insights to derive sparsity-aware, permutation-equivariant graph networks,
denoted (k, s)-SpeqNet. Given a labeled graph G, let each (k, s)-tuple v in V (G)ks be annotated with an initial feature
f (0)(v) determined by its (labeled) isomorphism type, e.g., a one-hot encoding of τG[v]. Alternatively, we can also use
some application-specific, real-valued feature. In each layer t > 0, we compute a new feature f (t)(v) as

fW1
mrg

(
f (t−1)(v), fW2

agg

(
{{f (t−1)(φ1(v, w)) | w ∈ δ(v1) and φ1(v, w) ∈ V (G)ks}}, . . . ,

{{f (t−1)(φk(v, w)) | w ∈ δ(vk) and φk(v, w) ∈ V (G)ks}}
))
,

in R1×e, where W (t)
1 and W (t)

2 are learnable parameter matrices from Rd×e for some d, e > 0. Here, fW2
mrg and fW1

agg are
arbitrary differentiable functions, responsible for merging and aggregating the relevant feature information, respectively.
Note that we can naturally handle discrete node and edge labels as well as directed graphs. The following result demonstrates
the expressive power of the (k, s)-SpeqNet, in terms of distinguishing non-isomorphic graphs.

Theorem 22. Let (V,E, `) be a labeled graph, and let k ≥ 1 and s in [k]. Then for all t ≥ 0, there exists weights W (t)
1 and

W
(t)
2 such that

Ck,st (v) = Ck,st (w) ⇐⇒ f (t)(v) = f (t)(w).

Hence, the following holds for all k ≥ 1:

(k, s)-SpeqNet ≡ (k, s)-LWL.

Proof sketch. First, observe that the (k, s)-LWL can be simulated on an appropriate node- and edge-labeled graph,
see Lemma 9. Secondly, following the proof of (Morris et al., 2019, Theorem 2), there exists a parameter matrix W (t)

2 such
that we can injectively map each multiset in Equation (1), representing the local j-neighbors for j in [k], to a d-dimensional
vector. Moreover, we concatenate j to each such vector to distinguish between different neighborhoods. Again, by (Morris
et al., 2019, Theorem 2), there exists a parameter matrix W (t)

1 such that we can injectively map the set of resulting k vectors
to a unique vector representation. Alternatively, one can concatenate the resulting k vectors and use a multi-layer perceptron
to learn a joint lower-dimensional representation.

It is not possible to come up with an architecture, i.e., instantiations of fW1
mrg and fW2

agg such that it becomes more powerful
than the (k, s)-LWL, see (Morris et al., 2019). However, all results from the previous section can be lifted to the neural
setting, see also Section 2.1. Analogously to GNNs, the above architecture can naturally handle continuous node and edge
labels. By using the tools developed in (Azizian & Lelarge, 2020), it is straightforward to show that the above architecture is
universal, i.e., it can approximate any possible permutation-invariant function over graphs up to an arbitrarily small additive
error.
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E. Additional experimental results

Table 3. Dataset statistics and properties for graph-level prediction tasks, †—Continuous vertex labels following (Gilmer et al., 2017), the
last three components encode 3D coordinates.

Dataset
Properties

Number of graphs Number of classes/targets ∅ Number of nodes ∅ Number of edges Node labels Edge labels

ENZYMES 600 6 32.6 62.1 3 7
IMDB-BINARY 1 000 2 19.8 96.5 7 7
IMDB-MULTI 1 500 3 13.0 65.9 7 7
MUTAG 188 2 17.9 19.8 3 7
NCI1 4 110 2 29.9 32.3 3 7
PTC FM 349 2 14.1 14.5 3 7
PROTEINS 1 113 2 39.1 72.8 3 7
REDDIT-BINARY 2 000 2 429.6 497.8 7 7

ALCHEMY 202 579 12 10.1 10.4 3 3

QM9 129 433 12 18.0 18.6 3(13+3D)† 3(4)

Table 4. Dataset statistics and properties for node-level prediction tasks.

Dataset
Properties

Number of nodes Number of edges Number of node features

CORNELL 183 295 1 703
TEXAS 183 309 1 703
WISCONSIN 251 490 1 703
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Table 5. Overall computation times for selected datasets in seconds (Number of iterations for WL-based methods: 5), OOT—Computation
did not finish within one day (24h), OOM—Out of memory.

Graph Kernel
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI MUTAG NCI1 PTC MR

1-WL <1 <1 <1 <1 1.9 <1

G
lo

b. 2-WL 225.9 91.2 38.3 4.3 1 127.8 10.7
3-WL 55 242.7 17 565.2 4 977.1 259.8 OOT 1324.2

L
oc

al

δ-2-LWL 25.2 27.3 19.8 <1 82.2 1.1
δ-2-LWL+ 25.6 26.1 18.5 <1 108.3 1.2
δ-3-LWL 3 519.0 3 560.3 1957.5 36.5 15 207.3 89.9
δ-3-LWL+ 3 674.9 3 636.5 2162.3 43.6 15 945.6 111.1

(k
,s
)-

LW
L

(2, 1)-LWL 1.6 12.0 11.0 <1 5.8 <1
(2, 1)-LWL+ 1.7 12.6 11.0 <1 6.7 <1
(3, 1)-LWL 51.1 1 040.2 1112.2 1.4 111.3 1.9
(3, 1)-LWL+ 52.1 1 049.4 1238.7 1.6 120.1 2.0
(3, 2)-LWL 937.9 2 571.1 2252.6 19.0 3 502.6 29.6
(3, 2)-LWL+ 1 046.1 2 937.8 2572.2 22.4 3 888.7 34.4

Table 6. Average speed-up ratios over all epochs (training and testing).

Method
Dataset

ALCHEMY (10K) QM9

GINE-ε 0.5 1.3
(2, 1)-SpeqNet 1.0 1.0
(2, 2)-SpeqNet 1.3 3.4


