
Strategic Representation

Vineet Nair 1 Ganesh Ghalme 2 Inbal Talgam-Cohen 1 Nir Rosenfeld 1

Abstract
Humans have come to rely on machines for reduc-
ing excessive information to manageable represen-
tations. But this reliance can be abused—strategic
machines might craft representations that manip-
ulate their users. How can a user make good
choices based on strategic representations? We
formalize this as a learning problem, and pursue
algorithms for decision-making that are robust to
manipulation. In our main setting of interest, the
system represents attributes of an item to the user,
who then decides whether or not to consume. We
model this interaction through the lens of strate-
gic classification (Hardt et al. 2016), reversed:
the user, who learns, plays first; and the system,
which responds, plays second. The system must
respond with representations that reveal ‘nothing
but the truth’ but need not reveal the entire truth.
Thus, the user faces the problem of learning set
functions under strategic subset selection, which
presents distinct algorithmic and statistical chal-
lenges. Our main result is a learning algorithm
that minimizes error despite strategic representa-
tions, and our theoretical analysis sheds light on
the trade-off between learning effort and suscepti-
bility to manipulation.

1. Introduction
There is a growing recognition that learning systems de-
ployed in social settings are likely to induce strategic inter-
actions between the system and its users. One promising
line of research in this domain is strategic classification
(Hardt et al., 2016), which studies learning in settings where
users can strategically modify their features in response to a
learned classification rule. The primary narrative in strategic
classification is one of self-interested users that act to ‘game’
the system, and of systems that should defend against this

1Technion – Israel Institute of Technology. 2Indian Institute
of Technology, Hyderabad. Correspondence to: Vineet Nair <vi-
neet@cs.technion.ac.il>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

form of gaming behavior. In this paper, we initiate the study
of reversed scenarios, in which it is the system that strategi-
cally games its users. We argue that this is quite routine: In
settings where users make choices about items (e.g., click,
buy, watch), decisions are often made on the basis of only
partial information. But the choice of what information to
present to users often lies in the hands of the system, which
can utilize its representation power to promote its own goals.
Here we formalize the problem of strategic representation,
and study how learning can now aid users in choosing well
despite strategic system behavior.

As a concrete example, consider a user browsing for a hotel
in an online booking platform. Hotels on the platform are
represented by a small set of images; as there are many im-
ages available for each hotel, the system must choose which
subset of these to display. Clearly, the choice of representa-
tion can have a significant effect on users’ decision-making
(whether to click the hotel, and subsequently whether to
book it), and in turn, on the system’s profit. The system may
well attempt to capitalize on the control it has over what
information is presented to the user—at the expense of the
user, who may be swayed to make sub-optimal decisions.
Given that users rely on system-crafted representations for
making decisions, choosing well requires users to account
for the strategic nature of the representations they face.

Our goal in this paper is to study when and how learning can
aid users in making decisions that are strategically robust.
We model users as deciding based on a choice strategy h
mapping represented items to binary choices, which can
be learned from the user’s previous experiences (e.g., ho-
tels stayed in, and whether they were worthwhile). Since
in reality full descriptions of items are often too large for
humans to process effectively (e.g., hundreds or thousands
of attributes), the role of the system is to provide users with
compact representations (e.g., a small subset of attributes).
We therefore model the system as responding to h with a
representation mapping ϕ, which determines for each item
x its representation z = ϕ(x), on which users rely for mak-
ing choices (i.e., h is a function of z). We focus on items
x that are discrete and composed of a subset of ground ele-
ments; accordingly, we consider representation mappings ϕ
that are lossy but truthful, meaning they reveal a cardinality-
constrained subset of the item’s full set of attributes: z ⊆ x
and k1 ≤ |z| ≤ k2 for some exogenously-set k1, k2.

Strategic Representation

Given that the system has representation power—how
should users choose h? The key idea underlying our formu-
lation is that the system and its users have misaligned goals.
A user wishes to choose items that are ‘worthwhile’ to her,
as determined by her valuation function v(x)—in our case, a
set function, which can reflect complex tastes (e.g., account
for complementarity among the attributes, such as ‘balcony’
and ‘ocean view’ in the hotel example). Meanwhile, the
system aims to maximize user engagement by choosing a
feasible representation z = ϕ(x) that will incite the user to
choose the item. Importantly, while values are based on the
true x, choices rely on representations z—which the sys-
tem controls. This causes friction: a representation may be
optimal for the system, but may not align with user interests.

The challenge for users (and our goal in learning) is there-
fore to make good choices on the basis of strategic represen-
tations. Note that this is not a simple missing value problem,
since which attributes will be missing depends on how users
choose, i.e., on their learned choice function h.1 Nor is this
a problem that can be addressed by mapping representations
to a categorical representation (with classes ‘0’,‘1’, and ‘un-
known’); to see this, note that given a subset representation
z, it is impossible to know which of the attributes that do
not appear in z are withheld—and which are truly missing.

Subset representations. We focus on subset represen-
tations since they provide a natural means to ensure that
representations reveal ‘nothing but the truth’ (but not nec-
essarily ‘the whole truth’). This is our primary modeling
concern, which stems from realistic restrictions on the sys-
tem (like consumer expectations, legal obligations, or busi-
ness practices). Subset representations cleanly capture what
we view as a fundamental tension between users and an
informationally-advantageous system—the ability to with-
hold information; examples include retail items described
by a handful of attributes; videos presented by several key
frames; and movie recommendations described by a select
set of reviews, to name a few.

Overview of our results. We begin by showing that users
who choose naı̈vely can easily be manipulated by a strategic
system (Sec. 3). We then proceed to study users who learn
(Sec. 4). Our main result is an efficient algorithm for learn-
ing h (Thm. 4.7), which holds under a certain realizability
assumption on v. The algorithm minimizes the empirical er-
ror over a hypothesis class of set-function classifiers, whose
complexity is controlled by parameter k, thus allowing users
to trade off expressivity and statsitical efficiency. The al-
gorithm builds upon several structural properties which we
establish for set-function classifiers. Our key result here is

1Consider the following subtlety: since users must commit to a
choice strategy h, the choice of how to handle missing features (a
part of the strategy) determines which features will be missing.

that ‘folding’ the system’s strategic response into the hypoth-
esis class results in an induced class having a simple form
that makes it amenable to efficient optimization (Thm. 4.6).

Building on this, we continue to study the ‘balance of power’
(Sec. 5), as manifested in the interplay between k (hypothe-
sis complexity, which reflects the power of the user) and the
range [k1, k2] (which determines the power of the system).
For fixed k1, k2, we analyze how the choice of k affects the
user’s classification error, through its decomposition into
estimation and approximation errors. For estimation, we
give a generalization bound (Thm. 5.9), obtained by ana-
lyzing the VC dimension of the induced function class (as
it relies on k). For approximation, we give several results
(e.g., Thm. 5.4) that link the expressivity of the user’s value
function v to the complexity of the learned h (again, as it
relies on k). Together, our results characterize how much is
gained versus how much effort is invested in learning as k
is varied. One conclusion is that even minimal learning can
help significantly (whereas no learning can be catastrophic).

From the system’s perspective, and for fixed k, we study
how the range [k1, k2] affects the system. Intuitively, we
would expect that increasing the range should be beneficial
to the system, as it provides more alternatives to choose
z from. However, perhaps surprisingly, we find that the
system can increase its payoff by ‘tying its hands’ to a lower
k2. This is because k2 upper-bounds not only the system’s
range but also the ‘effective’ k of the user (who gets nothing
from choosing k > k2), and the lower the k, the better it
is for the system (Lemma 5.10). The choice of k1 turns
out to be immaterial against fully strategic users, but highly
consequential against users that are not.

1.1. Relation to Strategic Classification

Our formalization of strategic representation shares a deep
connection to strategic classification (Hardt et al., 2016).
Strategic representation and strategic classification share an
underlying structure (a leading learning player who must
take into account a strategic responder), but there are impor-
tant differences. The first is conceptual: in our setting, roles
are reversed—it is users who learn (and not the system),
and the system strategically responds (and not users). This
allows us to pursue questions regarding the susceptibility of
users to manipulation, with different emphases and goals,
while maintaining the ‘language’ of strategic classification.

The second difference is substantive: we consider inputs
that are sets (rather than continuous vectors), and manipula-
tions that hide information (rather than alter it). Technically,
switching to discrete inputs can be done by utilizing the
cost function to enforce truthfulness constraints as a ‘hard’
penalty on modifications. But this change is not cosmetic:
since the system behaves strategically by optimizing over
subsets, learning must account for set-relations between

Strategic Representation

different objects in input space; this transforms the prob-
lem to one of learning set functions.2 From a modeling
perspective, subsets make our work compatible with classic
attribute-based consumer decision theory (Lancaster, 1966).

Overall, we view the close connection to strategic classi-
fication as a strength of our formalization, showing that
the framework of strategic classification is useful far be-
yond what was previously considered; and also that a fairly
mild variation can lead to a completely different learning
problem, with distinct algorithmic and statistical challenges.

1.2. Related Work (see also Appx. B)

Strategic classification. Strategic classification is a highly
active area of research. Recent works in this field include
statistical learning characterizations (Zhang & Conitzer,
2021; Sundaram et al., 2021; Ghalme et al., 2021), prac-
tical optimization methods (Levanon & Rosenfeld, 2021;
2022), relaxation of key assumptions (Ghalme et al., 2021;
Bechavod et al., 2022; Jagadeesan et al., 2021; Levanon
& Rosenfeld, 2022; Eilat et al., 2022), relations to causal
aspects (Miller et al., 2020; Chen et al., 2020a), and consid-
eration of societal implications (Milli et al., 2019; Hu et al.,
2019; Chen et al., 2020b; Levanon & Rosenfeld, 2021).

Two recent works are closely relate to ours: Zrnic et al.
(2021) consider a dynamic setting of repeated learning that
can change the order of play; in contrast, we switch the
roles. Krishnaswamy et al. (2021) consider information
withholding by users (rather than the system). They aim to
learn a truth-eliciting mechanism, which incentivizes the
second player to reveal all information (i.e., ‘the whole
truth’). Their mechanism ensures that withholding never
occurs; in contrast, our goal is to predict despite strategic
withholding (i.e., ‘nothing but the truth’).

Bayesian persuasion. In Bayesian persuasion (Kamenica &
Gentzkow, 2011), a more-informed player (i.e., the system)
uses its information advantage coupled with commitment
power to influence the choices of a decision maker (i.e., the
user). Works closest to ours are by Dughmi et al. (2015),
who upper bound the number of signaled attributes, and
by Haghtalab et al. (2021), who study strategic selection
of anecdotes. Both works consider the human player as a
learner (as do we). However, in our work, the order of play
is reversed—the decision-maker (user) moves first and the
more-informed player (system) follows. Bayesian persua-
sion also assumes that the system knows the user’s valuation,
and crucially relies on both parties knowing the distribution
D of items. In contrast, we model the user as having only

2This is a subtle point: Since sets can be expressed as binary
membership vectors, it is technically possible to use conventional
vector-based approaches to learn h. Nonetheless, these approaches
cannot account for strategic behavior; this is since ϕ implements a
set operation, which is ill-defined for continuous vector inputs.

sample access to D, and the system as agnostic to it.

2. A Formalization of Strategic Representation
We begin by describing the setting from the perspective of
the user, which is the learning entity in our setup. We then
present the ‘types’ of users we study, and draw connections
between our setting and others found in the literature.

2.1. Learning Setting

In our setup, a user is faced with a stream of items, and must
choose which of these to consume. Items are discrete, with
each item x ∈ X ⊆ 2E described by a subset of ground
attributes, E, where |E| = q. We assume all feasible items
have at most n attributes, |x| ≤ n. The value of items for
the user are encoded by a value function, v : X → R. We
say an item x is worthwhile to the user if it has positive
value, v(x) > 0, and use y = Y (x) = sign(v(x)) to denote
worthwhileness, i.e., y = 1 if x is worthwhile, and y = −1
if it is not. Items are presented to the user as samples drawn
i.i.d. from some unknown distribution D over X , and for
each item, the user must choose whether to consume it (e.g.,
click, buy, watch) or not.

We assume that the user makes choices regarding items by
committing at the onset to a choice function h that governs
her choice behavior. In principle, the user is free to chose
h from some predefined function class H; learning will
consider finding a good h ∈ H , but the implications of the
choice of H itself will play a central role in our analysis.
Ideally, the user would like to choose items if and only if
they are worthwhile to her; practically, her goal is to find
an h for which this holds with large probability over D.
For this, the user can make use of her knowledge regarding
items she has already consumed, and therefore also knows
their value; we model this as providing the user access to
a labeled sample set S = {(xi, yi)}mi=1 where xi ∼ D and
yi = sign(v(xi)), which she can use for learning h.

Strategic representations. The difficulty in learning h is
that user choices at test time must rely only on item represen-
tations, denoted z ∈ Z , rather than on full item descriptions.
Thus, learning considers choice functions that operate on
representations, h : Z → {±1}; the challenge lies in that
while choices must be made on the basis of representations
z, item values are derived from their full descriptions x—
which representations describe only partially.

The crucial aspect of our setup is that representations are
not arbitrary; rather, representations are controlled by the
system, which can choose them strategically to promote
its own goals. We model the system as acting through
a representation mapping, ϕ : X → Z , which operates
independently on any x, and can be determined in response
to the user’s choice of h. This mimics a setting in which a

Strategic Representation

fast-acting system can infer and quickly respond to a user’s
(relatively fixed) choice patterns.

We assume the system’s goal is to choose a ϕh that maxi-
mizes expected user engagement:

Ex∼D[1{h(ϕh(x)) = 1}]. (1)

Nonetheless, representations cannot be arbitrary, and we
require ϕh to satisfy two properties. First, chosen represen-
tations must be truthful, meaning that z ⊆ x for all x. Sec-
ond, representations are subject to cardinality constraints,
k1 ≤ |z| ≤ k2 for some predetermined k1, k2 ∈ N. We will
henceforth use Z to mean representations of feasible cardi-
nality. Both requirements stem from realistic considerations:
A nontruthful system which intentionally distorts item in-
formation is unlikely to be commercially successful in the
long run; intuitively, truthfulness gives users some hope of
resilience to manipulation. For k1, k2, we think of these as
exogenous parameters of the environment, arising naturally
due to physical restrictions (e.g., screen size) or cognitive
considerations (e.g., information processing capacity); if
k2 < n, we say representations are lossy.

Under these constraints, the system can optimize Eq. (1) by
choosing representations via the best-response mapping:

ϕh(x) = argmax
z∈Z

h(z) s.t. z ⊆ x, |z| ∈ [k1, k2] (2)

Eq. (2) is a best-response since it maximizes Eq. (1) for
any given h: for every x, ϕh chooses a feasible z ⊆ x
that triggers a positive choice event, h(z) = 1—if such a
z exists. In this way, k1, k2 control how much leeway the
system has in revealing only partial truths; as we will show,
both parameters play a key role in determining outcomes for
both system and user. From now on we overload notation
and by ϕh(x) refer to this best-response mapping.

Learning objective. Given function class H and a labeled
sample set S, the user aims to find a choice function h ∈
H that correctly identifies worthwhile items given their
representation, and in a way that is robust to strategic system
manipulation. The user’s objective is therefore to maximize:

Ex∼D[1{h(ϕh(x)) = y}] (3)

where ϕh is the best-response mapping in Eq. (2).

Note that since h is binary, the argmax of ϕh may not be
unique; e.g., if some z1 ⊆ x, z2 ⊆ x both have h(z1) =
h(z2) = 1. Nonetheless, the particular choice of z does
not matter—from the user’s perspective, her choice of h is
invariant to the system’s choice of best-response z (proof in
Appx. C):

Observation 2.1. Every best-response z ∈ ϕh(x) induces
the same value in the user’s objective function (Eq. (3)).

2.2. User Types

Our main focus throughout the paper will be on users that
learn h by optimizing Eq. (3). But to understand the poten-
tial benefit of learning, we also analyze ‘simpler’ types of
user behavior. Overall, we study three user types, varying
in their sophistication and the amount of effort they invest
in choosing h. These include:

• The naı̈ve user: Acts under the (false) belief that
representations are chosen in her own best interest.
This user type truthfully reports her preferences to the
system by setting h = v as her choice function.3

• The agnostic user: Makes no assumptions about the
system. This user employs a simple strategy that relies
on basic data statistics which provides minimal but
robust guarantees regarding her payoff.

• The strategic user: Knows that the system is strategic,
and anticipates it to best-respond. This user is willing
to invest effort (in terms of data and compute) in learn-
ing a choice function h that maximizes her payoff by
accounting for the system’s strategic behavior.

Our primary goal is to study the balance of power between
users (that choose) and the system (which represents). In
particular, we will be interested in exploring the tradeoff be-
tween a user’s effort and her susceptibility to manipulation.

2.3. Strategic Representation as a Game

Before proceeding, we give an equivalent characterization of
strategic representation as a game. Our setting can be com-
pactly described as a single-step Stackelberg game: the first
player is User, which observes samples S = {(xi, yi)}mi=1,
and commits to a choice function h : Z → {±1}; the sec-
ond player is System, which given h, chooses a truthful
ϕh : X → Z (note how ϕh depends on h). The payoffs are:

User: Ex∼D[1{h(ϕh(x)) = y}] (4)
System: Ex∼D[1{h(ϕh(x)) = 1}] (5)

Note that payoffs differ only in that User seeks correct
choices, whereas System benefits from positive choices.
This reveals a clear connection to strategic classification,
in which System, who plays first, is interested in accurate
predictions, and for this it can learn a classifier; and User,
who plays second, can manipulate individual inputs (at some
cost) to obtain positive predictions. Thus, strategic repre-
sentation can be viewed as a variation on strategic classifi-
cation, but with roles ‘reversed’. Nonetheless, and despite

3Note that while h takes values in X , v takes values in X .
Nonetheless, truthfulness implies that Z ⊆ X , and so v is well-
defined as a choice function over Z .

Strategic Representation

these structural similarities, strategic representation bears
key differences: items are discrete (rather than continuous),
manipulations are subject to ‘hard’ set constraints (rather
than ‘soft’, continuous costs), and learning regards set func-
tions (rather than vector functions). These differences lead
to distinct questions and unique challenges in learning.

3. Warm-up: Naı̈ve and Agnostic Users
The naı̈ve user. The naı̈ve user employs a ‘what you see is
what you get’ policy: given a representation of an item, z,
this user estimates the item’s value based on z alone, acting
‘as if’ z were the item itself. Consequently, the naı̈ve user
sets h(z) = sign(v(z)), even though v is truly a function of
x. The naı̈ve user fails to account for the system’s strategic
behavior (let alone the fact that z ⊆ x of some actual x).

Despite its naivety, there are conditions under which this
user’s approach makes sense. Our first result shows that
the naı̈ve policy is sensible in settings where the system is
benevolent, and promotes user interests instead of its own.

Lemma 3.1. If system plays the benevolent strategy:

ϕbenev
h (x) = argmax

z⊆x,|z|∈[k1,k2]

{1{h(z) = sign(v(x))},

then the naı̈ve approach maximizes user payoff.

Proof in Appx. D. The above lemma is not meant to imply
that naı̈ve users assume the system is benevolent; rather, it
justifies why users having this belief might act in this way.
Real systems, however, are unlikely to be benevolent; our
next example shows a strategic system can easily manipulate
naı̈ve users to receive arbitrarily low payoff.
Example 1. Let x1 = {a1}, x2 = {a1, a2}, x3 = {a2} with
v(x1) = +1 and v(x2) = v(x3) = −1. Fix k1 = k2 = 1,
and let D = (ε/2, 1− ε, ε/2). Note Z = {a1, a2} are the
feasible representations. The naı̈ve user assigns h = (a1) =
+1, h(a2) = −1 according to v. For x2, a strategic system
plays ϕ(x2) = a1. The expected payoff to the user is ε.

One reason a naı̈ve user is susceptible to manipulation is
because she does not make any use of the data she may have.
We next describe a slightly sophisticated user that uses a
simple strategy to ensure a better payoff.

The agnostic user. The agnostic user puts all faith in data;
this user does not make assumptions on, nor is she suscep-
tible to, the type of system she plays against. Her strategy
is simple: collect data, compute summary statistics, and
choose to either always accept or always reject (or flip a
coin). In particular, given a sample set S = {(xi, yi)}mi=1,
the agnostic user first computes the fraction of positive ex-
amples, µ̂ := 1

m

∑m
i=1 yi. Then, for some tolerance τ ,

sets for all z, h(z) = 1 if µ̂ ≥ 1/2 + τ , h(z) = −1 if
µ̂ ≤ 1/2− τ , and flips a coin otherwise. In Example 1, an

agnostic user would choose h = (−1,−1) when m is large,
guaranteeing a payoff of at least

√
m(1−ε/2)
2+

√
m

→ (1 − ε/2)

as m → ∞. Investing minimal effort, for an appropriate
choice of τ , this user’s strategy turns out to be quite robust.

Theorem 3.2. (Informal) Let µ be the true rate of positive
examples, µ = ED[Y]. Then as m increases, the agnostic
user’s payoff approaches max{µ, 1− µ} at rate 1/

√
m.

Formal statement and proof in Appx. A.1. In essence,
the agnostic user guarantee herself the ‘majority’ rate with
rudimentary usage of her data, and in a way that does not
depend on how system responds. But this can be far from
optimal; we now turn to the more elaborate strategic user
who makes more clever use of the data at her disposal.

4. Strategic Users Who Learn
A strategic agent acknowledges that the system is strategic,
and anticipates that representations are chosen to maximize
her own engagement. Knowing this, the strategic user makes
use of her previous experiences, in the form of a labeled data
set S = {(xi, yi)}mi=1, to learn a choice function ĥ from
some function class H that optimizes her payoff (given that
the system is strategic). Cast as a learning problem, this is
equivalent to minimizing the expected classification error
on strategically-chosen representations:

h∗ = argmin
h∈H

ED[1{h(ϕh(x)) ̸= y}]. (6)

Since the distribution D is unknown, we follow the conven-
tional approach of empirical risk minimization (ERM) and
optimize the empirical analog of Eq. (6):

ĥ = argmin
h∈H

1

m

m∑
i=1

h(ϕh(xi)) ̸= yi). (7)

Importantly since every zi = ϕh(xi) is a set, H must in-
clude set functions h : Z → {±1}, and any algorithm
for optimizing Eq. (7) must take this into account. In Sec-
tions 4.1 and 4.2, we characterize the complexity of a user’s
choice function and relate its complexity to that of v, and in
Section 4.3 give an algorithm that computes ĥ, the empirical
minimizer, for a hypothesis class of a given complexity.

4.1. Complexity Classes of Set Functions

Ideally, a learning algorithm should permit flexibility in
choosing the complexity of the class of functions it learns
(e.g., the degree of a polynomial kernel, the number of layers
in a neural network), as this provides means to trade-off run-
ning time with performance and to reduce overfitting. In this
section we propose a hierarchy of set-function complexity
classes that is appropriate for our problem.

Strategic Representation

Denote by Γk(z) all subsets of z having size at most k:

Γk(z) = {z′ ∈ 2E : z′ ⊆ z, |z′| ≤ k}.

We start by defining k-order functions over the representa-
tion space. These functions are completely determined by
weights placed on subsets of size at most k.

Definition 4.1. We say the function h : Z → {±1} is of
order k if there exists real weights on sets of cardinality at
most k, {w(z′) : z′ ∈ Γk(z)}, such that

h(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
.

Not all functions h(z) can necessarily be expressed as a
k-order function (for some k); nonetheless, in the context
of optimizing Eq. (7), we show that working with k-order
functions is sufficiently general, since any set function h
can be linked to a matching k-order function h′ (for some
k ≤ k2) through how it operates on strategic inputs.

Lemma 4.2. For any h : Z → {±1}, there exists k ≤ k2
and a corresponding k-order function h′ such that:

h(ϕh(x)) = h′(ϕh′(x)) .

Lem. 4.2 permits us to focus on k-order functions. The
proof is constructive (see Appx. E), and the construction it-
self turns out to be highly useful. In particular, the proof con-
structs h′ having a particular form of binary basis weights,
w(z) ∈ {a−, a+}, which we assume from now on are fixed
(∀k). Hence, every function h has a corresponding binary-
weighted k-order function h′, which motivates the following
definition of functions and function classes.

Definition 4.3. We say a k-order function h with basis
weights w is binary-weighted if:

w(z)

{
∈ {a−, a+} ∀z such that |z| = k

= a− ∀z such that |z| < k

for some fixed a− ∈ (−1, 0) and a+ >
∑

i∈[k]

(
n
i

)
.

A binary weighted k-order h determines a family of k-size
subsets, described by having weights as a+, such that for
any z ∈ Z with |z| ≥ k, h(z) = 1 if and only if z contains
a subset from the family (for z with |z| < k, h(z) = −1
always). This is made precise using the notion of lifted
functions in Lem. A.4 in Appx. A.2. Next, denote:

Hk = {h : h is a binary-weighted k-order function}.

The classes {Hk}k will serve as complexity classes for our
learning algorithm; the user provides k as input, and ALG
outputs an ĥ ∈ Hk that minimizes the empirical loss4. As

4Assuming the empirical error is zero.

we will show, using k as a complexity measure provides the
user direct control over the tradeoff between estimation and
approximation error, as well as over the running time.

Next, we show that the {Hk}k classes are strictly nested.
This will be important for our analysis of approximation
error, as it will let us reason about the connection between
the learned ĥ and the target function v (proof in Appx. E).
Lemma 4.4. For all k, Hk−1 ⊆ Hk and Hk \Hk−1 ̸= ∅.

Note that Hn includes all binary-weighted set functions, but
since representations are of size at most k2, it suffices to con-
sider only k ≤ k2. Importantly, k can be set lower than k1;
for example, H1 is the class of threshold modular functions,
and H2 is the class of threshold pairwise functions. The
functions we consider are parameterized by their weights,
w, and so any k-order function has at most |w| =

∑k
i=0

(
q
i

)
weights. In this sense, the choice of k is highly meaningful.
Now that we have defined our complexity classes, we turn
to discussing how they can be optimized over.

4.2. Learning via Reduction to Induced Functions

The simple structure of functions in Hk makes them good
candidates for optimization. But the main difficulty in op-
timizing the empirical error in Eq. (7) is that the choice of
h does not only determine the error, but also determines
the inputs on which errors are measured (indirectly through
the dependence of ϕh on h). To cope with this challenge,
our approach is to work with induced functions that already
have the system’s strategic response encoded within, which
will prove useful for learning. Additionally, as they operate
directly on x (and not z), they can easily be compared with
v, which will become important in Sec. 5.
Definition 4.5. For a class H , its induced class is:

FH ≜ {f : X → {±1} : ∃h ∈ H s.t. f(x) = h(ϕh(x))}

The induced class FH includes for every h ∈ H a corre-
sponding function that already has ϕh integrated in it. We
use Fk = FHk

to denote the induced class of Hk. For every
h, we denote its induced function by fh. Whereas h func-
tions operate on z, induced functions operate directly on
x, with each fh accounting internally for how the system
strategic responds to h on each x.

Our next theorem provides a key structural result: induced
functions inherit the weights of their k-order counterparts.
Theorem 4.6. For any h ∈ Hk with weights w:

h(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
,

its induced fh ∈ Fk can be expressed using the same
weights, w, but with summation over subsets of x, i.e.:

fh(x) = sign

(∑
z∈Γk(x)

w(z)

)
.

Strategic Representation

Thm. 4.6 is the main pillar on which our algorithm stands:
it allows us to construct h by querying the loss directly—
i.e., without explicitly computing ϕh—by working with the
induced fh; this is since:

1{h(ϕh(xi)) ̸= yi} = 1{fh(xi) ̸= yi}

Thus, through their shared weights, induced functions serve
as a bridge between what we optimize, and how.

4.3. Learning Algorithm

We now present our learning algorithm, ALG. The algorithm
is exact: it takes as input a training set S and a parameter k,
and returns an h ∈ Hk that minimizes the empirical loss (Eq.
(7)). Correctness holds under the realizabilility condition
Y ∈ Fk, i.e., Y is the induced function of some h ∈ Hk.5

The algorithm constructs h by sequentially computing its
weights, w = {w(z)}|z|≤k. As per Def. 4.3, only w(z) for
z with |z| = k must be learned; hence, weights are sparse,
in the sense that only a small subset of them are assigned a+,
while the rest are a−. Weights can be implemented as a hash
table, where w(z) = a+ if z is in the table, and w(z) = a−
if it is not. Our next result establishes the correctness of
ALG. The proof leverages a property that characterizes the
existence of an h ∈ Hk having zero empirical error (see
Lem. E.1). The proof of Lem. E.1 uses Thm. 4.6, which
enables the loss to be directly computed for the induced
functions using the shared weight structure.

Theorem 4.7. For any k ∈ [k2], if Y is realizable then ALG

returns an ĥ that minimizes the empirical error.

Proof in Appx. E. Note that our algorithm is exact: it returns
a true minimizer of the empirical 0/1 loss, assuming Y is
realizable. Additionally, ALG can be used to identify if
there exists an h ∈ Hk with zero empirical error; at Step
15, for each x ∈ S+ if there does not exist a z ∈ Zk,S or
z ∈ Z+ such that z ⊆ x then from Lem. E.1 in Appx. D
there does not exist an h with zero empirical error.

Lemma 4.8. Let n be the size of elements in X , m be the
number of samples, and k ≤ k2 be the user’s choice of
complexity. Then ALG runs in O(m

(
n
k

)
) time.

This runtime is made possible due to several key factors: (i)
only k-sized weights need to be learned, (ii) all weights are
binary-valued, and (iii) loss queries are efficient in induced
space. Nonetheless, when n and k are large, runtime may be
significant, and so k must be chosen with care. Fortunately,
our results in Sec. 5.1.1 give encouraging evidence that
learning with small k—even k = 1, for which runtime is
O((mn)2)—is quite powerful (assuming Y is realizable).

5Note that even for standard linear binary classification, find-
ing an empirical minimizer of the 0/1 in the agnostic (i.e., non-
realizable) case is NP-hard (Shalev-Shwartz & Ben-David, 2014).

Algorithm 1 ALG

1: Input: S = {(xi, yi)}i∈[m], k ∈ [k2]
2: Pre-compute:
3: S+ = {x ∈ S : y = +1},
4: S− = {x ∈ S : y = −1}
5: Zk,S = {z : |z| = k,∃x ∈ S z ⊆ x}
6: p̂(xi) =

1
m

∑
j∈[m] 1{xi = xj} ∀i ∈ [m]

7: Fix a− ∈ (−1, 0) and a+ >
∑

i∈[1,k]

(
n
i

)
8: Initialize:
9: Z+ = ∅, Z− = ∅, V = ∅, Sz = ∅ ∀z ∈ Zk,S

10: Run:
11: for x ∈ S− do
12: for z s.t. z ⊆ x and z ∈ Zk,S do
13: Z− = Z− ∪ {z}, Zk,S = Zk,S \ {z}
14: Sz = Sz ∪ {x}
15: end for
16: end for
17: for x ∈ S+ do
18: for z ⊆ x such that z ∈ Zk,S do
19: Z+ = Z+ ∪ {z}
20: end for
21: end for

22: Set w(z) =

{
a+ if z ∈ Z+ ▷ implemented
a− o.w. (implicitly) as hash table

23: Return ĥ(z) = sign(
∑

z′∈Γk(z)
w(z′)).

In the analysis, the m
(
n
k

)
is made possible only since

weights are sparse, and since ALG operates on a finite sam-
ple set of size m. Alternatively, if m is large, then this can
be replaced with

(
q
k

)
. This turns out to be necessary; in

Appx. A.3 we show that, in the limit,
(
q
k

)
is a lower bound.

5. Balance of Power
Our final section explores the question: what determines the
balance of power between system and users? We begin with
the perspective of the user, who has commitment power, but
can only minimize the empirical error. For her, the choice of
complexity class k is key in balancing approximation error—
how well (in principle) can functions h ∈ Hk approximate
v; and estimation error—how close the empirical payoff
of the learned ĥ is to its expected value. Our results give
insight into how these types of error trade off as k is varied
(here we do not assume realizability).

For the system, the important factors are k1 and k2, since
these determine its flexibility in choosing representations.
Since more feasible representation mean more flexibility, it
would seem plausible that smaller k1 and larger k2 should
help the system more. However, our results indicate differ-
ently: for system, smaller k2 is better, and the choice of k1
has limited effect on strategic users. The result for k2 goes

Strategic Representation

through a connection to the user’s choice of k; surprisingly,
smaller k turns out to be, in some sense, better for all.

5.1. User’s Perspective

We begin by studying the effects of k on user payoff. Recall
that users aim to minimize the expected error (Eq. (6)):

ε(h) = ED[1{h(ϕh(x)) ̸= sign(v(x))}],

but instead minimize the empirical error (Eq. (7)). For
reasoning about the expected error of the learned choice
function ĥ ∈ Hk, a common approach is to decompose it
into two error types—approximation and estimation:

ε(ĥ) = ε(h∗)︸ ︷︷ ︸
approx.

+ ε(ĥ)− ε(h∗)︸ ︷︷ ︸
estimation

, h∗ = argmin
h′∈Hk

ε(h′)

Approximation error describes the lowest error obtainable
by functions in Hk; this measures the ‘expressivity’ of Hk,
and is independent of ĥ. For approximation error, we define
a matching complexity structure for value functions v, and
give several results relating the choice of k and the complex-
ity of v. Estimation error describes how far the learned ĥ is
from the optimal h∗ ∈ Hk, and depends on the data size, m.
Here we give a generalization bound based on VC analysis.

5.1.1. USER APPROXIMATION ERROR

To analyze the approximation error, we must be able to
relate choice functions h (that operate on representations z)
to the target value function v (which operates on items x).
To connect the two, we will again use induced functions, for
which we now define a matching complexity structure.

Definition 5.1. A function f : X → {±1} has an induced
complexity of ℓ if exists a function g : Zℓ → {±1} s.t.:

f(x) =

{
1 if ∃z ⊆ x, |z| = ℓ and g(z) = 1

−1 o.w.

and ℓ is minimal (i.e., there is no such g′ : Zℓ−1 → {±1}).

We show in Lem. 5.2 and Cor. 5.3 that the induced complex-
ity of a function f captures the minimum k ∈ [1, n] such
that f is an induced function of an h ∈ Hk.

Lemma 5.2. Let k ≤ k2. Then for every h ∈ Hk, the
induced complexity of the corresponding fh is ℓ ≤ k.

Corollary 5.3. Let Fk = FHk
be the induced function class

of Hk, as defined in Def. 4.5. Then:

Fk = {f : X → {±1} : f has induced complexity ≤ k}.

Proof of Cor. 5.3 is in Appx. F. We now turn to considering
the effect of k on approximation error. Since the ‘worth-
whileness’ function Y (x) = sign(v(x)) operates on x, we

can consider its induced complexity, which we denote by ℓ∗

(i.e., Y ∈ Fℓ∗). The following result shows that if ℓ∗ ≤ k,
then Hk is expressive enough to perfectly recover Y .

Theorem 5.4. If ℓ∗ ≤ k then the approximation error is 0.

One conclusion from Thm. 5.4 is that if the user knows ℓ∗,
then zero error is, in principle, obtainable; another is that
there is no reason to choose k > ℓ∗. In practice, knowing
ℓ∗ can aid the user in tuning k according to computational
(Sec. 4.3) and statistical considerations (Sec. 5.1.2). Further
conclusions relate ℓ∗ and k2:

Corollary 5.5. If ℓ∗ ≤ k2 and the distribution D has full
support on X , then k = ℓ∗ is the smallest k that gives zero
approximation error.

Corollary 5.6. If ℓ∗ > k2, then the approximation error
weakly increases with k, i.e., ε(h∗

k) ≤ ε(h∗
k−1) for all k ≤

k2. Furthermore, if the distribution D has full support on
X then no k can achieve zero approximation error.

Proofs in Appx. F. In general, Cor. 5.6 guarantees only
weak improvement with k. Next, we show that increasing k
can exhibit clear diminishing-returns behavior, with most of
the gain obtained at very low k.

Lemma 5.7. Let D be the uniform distribution over X .
Then there is a value function v for which ε(h∗

k) diminishes
convexly with k.

The proof is constructive (see Appx. F). We construct a v
whose approximation error h∗

k ∈ Hk is upper bounded by

ε(h∗
k) ≤

1

4
(
q
n

) k2∑
ℓ=k

(
k2
ℓ

)(
q − k2
n− ℓ

)
.

The diminishing returns property of upper bound is illus-
trated in Fig. 1. Although Lem. 5.7 describes a special case,
we conjecture that this phenomena applies more broadly.

Our next result shows that learning k1-order functions can
be as powerful as learning subadditive functions; hence,
learning with k = k1 is highly expressive. Interestingly, the

Figure 1. Upper bound on approximation error showing diminish-
ing returns. Parameters: q = 400, n = 30 and k2 = 10.

Strategic Representation

connection between general (k-order) functions and subad-
ditive functions is due to the strategic response mapping, ϕ.

Lemma 5.8. Consider threshold-subadditive functions:

HSA = {sign(g(z)) : g is subadditive on subsets in Z}

Then for every threshold-subadditive hg ∈ HSA, there is an
h ∈ Hk1 for which h(ϕh(x)) = hg(ϕhg (x)) ∀x ∈ X .

5.1.2. USER ESTIMATION ERROR

For estimation error, we give generalization bounds based
on VC analysis. The challenge in analyzing functions in Hk

is that generalization applies to the strategic 0/1 loss, i.e.,
1{h(ϕh(x)) ̸= y}, and so standard bounds (which apply
to the standard 0/1 loss) do not hold. To get around this,
our approach relies on directly analyzing the VC dimension
of the induced class, Fk (a similar approach was taken in
Sundaram et al. (2021) for SC). This allows us to employ
tools from VC theory, which give the following bound.

Theorem 5.9. For any k and m, given a sample set S of
size m sampled from D and labeled by some v, we have

ε(ĥ)− ε(h∗) ≤

√
C(

(
q
k

)
log(

(
q
k

)
/ϵ) + log(1/δ)

m

w.p. at least 1 − δ over S, and for a fixed constant C.
In particular, ALG in Sec. 4.3, assuming Y is realizable,
returns an ĥ ∈ Hk for which:

ε(ĥ) ≤

√
C(

(
q
k

)
log(

(
q
k

)
/ϵ) + log(1/δ)

m

w.p. at least 1− δ over S, and for a fixed constant C.

The proof relies on Thm. 4.6; since h and fh share weights,
the induced Fk can be analyzed as a class of q-variate degree-
k multilinear polynomials. Since induced functions already
incorporate ϕ, VC analysis for the 0/1 loss can be applied.
Note that such polynomials have exactly

(
q
k

)
degrees of

freedom; hence the term in the bound.

5.2. System’s Perspective

The system’s expressive power derives from its flexibility
in choosing representations z for items x. Since k1, k2 de-
termine which representations are feasible, they directly
control the system’s power to manipulate; and while the sys-
tem itself may not have direct control over k1, k2 (i.e., if they
are set by exogenous factors like screen size), their values
certainly affect the system’s ability to optimize engagement.
Our next result is therefore unintuitive: for system, a smaller
k2 is better (in the worst case), even though it reduces the set
of feasible representations. This result is obtained indirectly,
by considering the effect of k2 on the user’s choice of k.

Lemma 5.10. There exists a distribution D and a value
function v such that for all k < k′ ≤ k2, system has higher
payoff against the optimal h∗

k ∈ Hk than against h∗
k′ ∈ Hk′ .

The proof is in Appx. F; it uses the uniform distribution,
and the value function from Thm. 5.7. Recalling that the
choice of k controls the induced complexity ℓ (Cor. 5.3),
and that users should choose k to be no greater than k2, we
can conclude the following (in a worst-case sense):

Corollary 5.11. For the system, lower k2 is better.

Proof in Appx. F. For k1, it turns out that against strate-
gic users—it is inconsequential. This is since payoff to
the strategic user is derived entirely from k, which is upper-
bounded by k2, but can be set lower than k1. This invariance
is derived immediately from how functions in Hk are de-
fined, namely that w(z) = a− for all z with |z| < k (Def.
4.3). This, however, holds when the strategic user chooses
to learn over Hk for some k. Consider, alternatively, a strate-
gic user that decides to learn subadditive functions instead.
In this case, Thm. 5.8 shows that k1 determines the users
‘effective’ k; the smaller k1, the smaller the subset of subad-
ditive functions that can be learned. Hence, for user, smaller
k1 means worse approximation error. This becomes even
more pronounced when facing a naı̈ve user; for her, a lower
k1 means that system now has a large set of representations
to choose from; if even one of them has v(z) = 1, the sys-
tem can exploit this to increase its gains. In this sense, as k1
decreases, payoff to the system (weakly) improves.

6. Discussion
Our analysis of the balance of power reveals a surprising
conclusion: for both parties, in some sense, simple choice
functions are better. For system, lower k improves its payoff
through how it relates to k2 (Corr. 5.11). For users, lower k
is clearly better in terms of runtime (Lem. 4.8) and estima-
tion error (Thm. 5.9), and for approximation error, lower k
has certain benefits—as it relates to ℓ∗ (Corr. 5.5), and via
diminishing returns (Thm. 5.7). Thus, and despite having
conflicting interests—to some degree, incentives align.

But the story is more complex. For users, there is no defini-
tive notion of ‘better’; strategic users always face a trade-off,
and must choose k to balance approximation, estimation,
and runtime. In principle, users are free to choose k at will;
but since there is no use for k > k2, a system controlling k2
de facto controls k as well. This places a concrete restriction
on the freedom of users to choose, and inequitably: for small
k2, users whose v has complexity ≤ k2 (i.e., having ‘simple
tastes’) are less susceptible to manipulation than users with
v of complexity > k2 (e.g., fringe users with eclectic tastes)
(Thm. 5.4, Corrs. 5.5, 5.6). In this sense, the choice of k2
also has implications on fairness. We leave the further study
of these aspects of strategic representation for future work.

Strategic Representation

References
Abboud, E., Agha, N., Bshouty, N. H., Radwan, N., and

Saleh, F. Learning threshold functions with small weights
using membership queries. In Proceedings of the twelfth
annual conference on Computational learning theory, pp.
318–322, 1999.

Abraham, I., Babaioff, M., Dughmi, S., and Roughgarden, T.
Combinatorial auctions with restricted complements. In
Proceedings of the 13th ACM Conference on Electronic
Commerce, pp. 3–16, 2012.

Angluin, D. Queries and concept learning. Machine learn-
ing, 1988.

Balcan, M.-F. and Harvey, N. J. Learning submodular func-
tions. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pp. 793–802, 2011.

Bechavod, Y., Podimata, C., Wu, Z. S., and Ziani, J. In
Proceedings of the 39th International Conference on Ma-
chine Learning (ICML), 2022.

Chen, Y., Wang, J., and Liu, Y. Linear classifiers
that encourage constructive adaptation. arXiv preprint
arXiv:2011.00355, 2020a.

Chen, Y., Wang, J., and Liu, Y. Strategic recourse in linear
classification. arXiv preprint arXiv:2011.00355, 2020b.

Chevaleyre, Y., Endriss, U., Estivie, S., and Maudet, N.
Multiagent resource allocation in k -additive domains:
preference representation and complexity. Ann. Oper.
Res., 163(1):49–62, 2008.

Conitzer, V., Sandholm, T., and Santi, P. Combinatorial
auctions with k-wise dependent valuations. In AAAI,
2005.

Dughmi, S., Immorlica, N., O’Donnell, R., and Tan, L.
Algorithmic signaling of features in auction design. In
Algorithmic Game Theory - 8th International Symposium,
SAGT, pp. 150–162. Springer, 2015.

Eilat, I., Finkelshtein, B., Baskin, C., and Rosenfeld, N.
Strategic classification with graph neural networks. arXiv
preprint arXiv:2205.15765, 2022.

Feige, U., Feldman, M., Immorlica, N., Izsak, R., Lucier,
B., and Syrgkanis, V. A unifying hierarchy of valuations
with complements and substitutes. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2015.

Feldman, V. On the power of membership queries in agnos-
tic learning. The Journal of Machine Learning Research,
10:163–182, 2009.

Ghalme, G., Nair, V., Eilat, I., Talgam-Cohen, I., and Rosen-
feld, N. Strategic classification in the dark. In Proceed-
ings of the 38th International Conference on Machine
Learning (ICML), 2021.

Haghtalab, N., Immorlica, N., Lucier, B., Mobius, M., and
Mohan, D. Persuading with anecdotes. Technical report,
National Bureau of Economic Research, 2021.

Hardt, M., Megiddo, N., Papadimitriou, C. H., and Wootters,
M. Strategic classification. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer
Science, 2016.

Hu, L., Immorlica, N., and Vaughan, J. W. The disparate ef-
fects of strategic manipulation. In Proceedings of the Con-
ference on Fairness, Accountability, and Transparency
(FAT*), pp. 259–268, 2019.

Jagadeesan, M., Mendler-Dünner, C., and Hardt, M. Alter-
native microfoundations for strategic classification. In
International Conference on Machine Learning, 2021.

Kamenica, E. and Gentzkow, M. Bayesian persuasion.
American Economic Review, 101(6), 2011.

Krishnaswamy, A. K., Li, H., Rein, D., Zhang, H., and
Conitzer, V. Classification with strategically withheld
data. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

Lancaster, K. J. A new approach to consumer theory. Jour-
nal of political economy, 74(2):132–157, 1966.

Levanon, S. and Rosenfeld, N. Strategic classification made
practical. In Proceedings of the 38th International Con-
ference on Machine Learning, ICML, 2021.

Levanon, S. and Rosenfeld, N. Generalized strategic classifi-
cation and the case of aligned incentives. In Proceedings
of the 39th International Conference on Machine Learn-
ing (ICML), 2022.

Miller, J., Milli, S., and Hardt, M. Strategic classification is
causal modeling in disguise. In International Conference
on Machine Learning, pp. 6917–6926. PMLR, 2020.

Milli, S., Miller, J., Dragan, A. D., and Hardt, M. The social
cost of strategic classification. In Proceedings of the Con-
ference on Fairness, Accountability, and Transparency
(FAT*), pp. 230–239, 2019.

Rosenfeld, N., Oshiba, K., and Singer, Y. Predicting choice
with set-dependent aggregation. In International Confer-
ence on Machine Learning, 2020.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Strategic Representation

Sundaram, R., Vullikanti, A., Xu, H., and Yao, F. Pac-
learning for strategic classification. In International Con-
ference on Machine Learning, pp. 9978–9988, 2021.

Zhang, H. and Conitzer, V. Incentive-aware pac learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 5797–5804, 2021.

Zrnic, T., Mazumdar, E., Sastry, S., and Jordan, M. Who
leads and who follows in strategic classification? Ad-
vances in Neural Information Processing Systems, 34,
2021.

Strategic Representation

A. Additional Results
A.1. Agnostic User

Theorem A.1 stated below is the formal version of Theorem 3.2 in Section 3. Theorem A.1 shows that given a a large
enough sample size m, an agnostic user’s payoff would approach max{µ, 1− µ}, where µ = ED[y].

Theorem A.1. Let 2
2+

√
m

≤ δ < 1/8 and τ = δ
2(1−δ) +

√
2 log(1/δ)

m , then agnostic user’s expected payoff guarantee is
given by 

≥ (1− δ)(1− µ) if µ̂ ≤ 1/2− τ

≥ (1− δ)µ if µ̂ ≥ 1/2 + τ

= 1/2 Otherwise

Before we prove the theorem, we state Hoeffding’s inequality, which is a well known result from probability theory.

Lemma A.2 (Hoeffding). Let Sm =
∑m

i=1 Xi be the sum of m i.i.d. random variables with Xi ∈ [0, 1] and µ = E[Xi] for
all i ∈ [m], then

P(
Sm

m
− µ ≥ ε) ≤ e−2mε2 and P(

Sm

m
− µ ≤ −ε) ≤ e−2mε2 .

We will use the following equivalent form of the above inequality. Let δ := e−2mε2 i.e. ε =
√

2 log(1/δ)
m and µ̂ = Sm

m . Then
we have with probability at-least (1− δ) we have

µ ≤ µ̂+

√
2 log(1/δ)

m
and (8)

µ ≥ µ̂−
√

2 log(1/δ)

m
(9)

Now we are ready to give the proof of Theorem A.1

Proof of Theorem A.1. We begin with the following supporting lemma.

Lemma A.3. Let 2
2+

√
m

≤ δ < 1/8, then τ < 1/2.

Proof. The proof follows from following sequence of inequalities,

2

2 +
√
m

< δ ⇐⇒ m > 4(1/δ − 1)2 =⇒ m > 4(1/δ − 1) log(1/δ) ⇐⇒ δ

2(1− δ)
>

2 log(1/δ)

m

Let γ = δ
2(1−δ) . We have τ = γ +

√
γ which is an increasing function of δ, so we the maximum is achieved at δ = 1/8 and

is given by 1/
√
14 + 1/14 < 1/2. This completes the proof of the lemma.

From Lemma A.3 we have that 1/2 + τ < 1, hence there is a non-trivial range i.e. µ̂ ∈ [1/2 + τ, 1] where user assigns
h(z) = +1 for all z with probability 1. Similarly, when µ̂ ∈ [0, 1/2− τ] user assigns h(z) = −1 for all z with probability
1. We will consider three cases separately.

Case 1 (µ̂ ∈ [1/2 + τ, 1]): From Hoeffding’s inequality (Eq. 9) we have that with probability at-least (1− δ),

µ ≥ µ̂−
√

2 log(1/δ)

m

=⇒ µ ≥ 1/2 +
δ

2(1− δ)
=

1

2(1− δ)

Hence, with probability at-least (1− δ) an agnostic user will get a payoff of µ. Hence, the expected payoff in this case is
at-least (1− δ)µ ≥ 1/2 ≥ (1− δ)(1− µ).

Strategic Representation

Case 2 (µ̂ ∈ [0, 1/2− τ]): Similar to Case 1 here we use the tail bound given by Hoeffding’s inequality (Eq. 8) to get with
probability at least (1− δ),

µ ≤ µ̂+

√
2 log(1/δ)

m

=⇒ µ ≤ 1/2− δ

2(1− δ)
=

1− 2δ

2(1− δ)
.

Hence, (1− µ) ≥ 1
2(1−δ) . The agnostic user guarantees a payoff of (1− µ) with probability at least (1− δ) in this case.

Hence we have the payoff of (1− δ)(1− µ) ≥ 1/2 ≥ (1− δ)µ in this case.

Case 3 (µ̂ ∈ (1/2− τ, 1/2 + τ)): Finally, in this case, the agnostic user chooses h(z) = 1 for all z ∈ Z with probability
1/2 and h(z) = −1 for all z ∈ Z with probability 1/2. Hence, the expected payoff is given by 1

2µ + 1
2 (1 − µ) = 1/2

irrespective of the true mean µ of positive samples.

A.2. Lifted Functions

The relation between choice functions and their induced counterparts passes through an additional type of functions that
operate on sets of size exactly ℓ. Denote Zℓ = {z ∈ 2E : |z| = ℓ}, and note that all feasible representations can be
partitioned as Z = Zk1

⊎ . . . ⊎ Zk2
. We refer to functions that operate on single-sized sets as restricted functions. Our next

result shows that choice functions in Hk can be represented by restricted functions over Zk that are ‘lifted’ to operate on the
entire Z space. This will allow us to work only with sets of size exactly k.

Lemma A.4. For each h ∈ Hk there exists a corresponding g : Zk → {±1} such that h = lift(g), where:

lift(g)(z) =


1 if k ≤ |z| and

∃z′ ⊆ z, |z′| = k s.t. g(z′) = 1

−1 o.w.

Proof. Let h ∈ Hk. Then there is a weight function w on sets of size at most k such that either w(z) ∈ (−1, 0) or
w(z) >

∑
i∈[k]

(
n
i

)
, and

h(z) = sign

(∑
z′:z′⊆z,|z′|≤k

w(z′)

)
Define g : Zk → {−1, 1} such that for a z ∈ Zk, g(z) = 1 if w(z) > 0 and g(z) = −1 otherwise. It is easy to see from the
choice of w(z) that h = lift(g).

A.3. A Lower Bound on the Running Time

As stated in Lemma 4.8, the running time of our algorithm is m(
(
n
k

)
). We argued in Section 4 that is made possible only

since weights are sparse, and since the algorithm operates on a finite sample set of size m. If m is large, then this expression
can be replaced with

(
q
k

)
. We now show that, in the limit (or under full information), the dependence on

(
q
k

)
is necessary.

The conclusion from Lemma A.5 is that to find the loss minimizer, any algorithm must traverse at least all such h; since
there exist

(
q
k

)
such functions, this is a lower bound. This is unsurprising; Hk is tightly related to the class of multilinear

polynomials, whose degrees of freedom are exactly
(
q
k

)
.

Lemma A.5. Consider a subclass of Hk composed of choice functions h which have w(z) = a+ for exactly one z with
|z| = k, and w(z) = a− otherwise. Then, for every such h, there exists a corresponding v, such that h is a unique minimizer
(within this subclass) of the error w.r.t. v.

Proof. Let z1 and z2 be distinct k size subsets, and let a− ∈ (0, 1) and a+ >
∑

i∈[1,k]

(
n
i

)
. Further, let wi, i ∈ [1, 2] be a

weight function that assigns a+ to zi and a− to all other subsets of size at most k. Let h1 and h2 be two function in Hk

defined by the binary weighted functions w1 and w2 respectively. Observe that for vi = fhi the approximation error (see
(Eq. (6))) of hi is zero. Hence, to prove the lemma it is sufficient to show that fh1 ̸= fh2 .

Suppose fh1 = fh2 . Since z1 ̸= z2, there exists an x ∈ X such that z1 ⊆ x but z2 ⊆ x. From Theorem 4.6 and the choice
of a+ and a−, this implies fh1(x) = 1 but fh2(x) = −1, and hence, a contradiction.

Strategic Representation

B. Additional Related Work
Learning set functions. Concept learning refers to learning a binary function over hypercubes (Angluin, 1988) through
a query access model. Abboud et al. (1999) provide a lower bound on membership queries to exactly learn a threshold
function over sets where each element has small integer valued weights. Our learning framework admits large weights
and has only a sample access in contrast with the query access studied in this literature. Feldman (2009) show that the
problem of learning set functions with sample access is computationally hard. However, we show (see Section 5) that the
strategic setting is more nuanced; a more complex representations are disadvantageous for both user and the system. In
other words, it is in the best interest of system to choose smaller (and much simpler) representations. A by-now classic
work in learning theory studies the learnability from data of submodular (non-threshold) set functions (Balcan & Harvey,
2011). Though we consider learning subadditive functions in this work, an extension to submodular valuations is a natural
extension. Learning set functions is in general hard, even for certain subcalsses such as submodular functions. Rosenfeld
et al. (2020) show that it’s possible to learn certain parameterized subclasses of submodular functions, when the goal is to
use them for optimization. But this refers to learning over approximate proxy losses; whereas in our work, we show that
learning is possible directly over the 0/1 loss.

Hierarchies of set functions. Conitzer et al. (2005) (and independently, Chevaleyre et al. (2008)) suggest a notion of
k-wise dependent valuations, to which our Definition 4.1 is related. We also allow up to k-wise dependencies, but our
valuations need not be positive and we focus on their sign (an indication whether an item is acceptable or not). Our set
function valuations are also over item attributes rather than multiple items. Despite the differences, the definitions have a
shared motivation: Conitzer et al. (2005) believe that this type of valuation is likely to arise in many economic scenarios,
especially since due to cognitive limitations, it might be difficult for a player to understand the inter-relationships between a
large group of items. Hierarchies of valuations with limited dependencies/synergies have been further studied by Abraham
et al. (2012); Feige et al. (2015) under the title ‘hypergraph valuations’. These works focus on monotone valuations that
have only positive weights for every subset, and are thus mathematically different than ours.

C. A Missing Proof from Section 2
Observation 2.1. Every best-response z ∈ ϕh(x) induces the same value in the user’s objective function (Eq. (3)).

Proof. The proof follows from the definition of best response (Eq. 2). Let z1, z2 ∈ ϕh(x). Then since ϕh consists of
only best response, we have either h(z1) = h(z2) = 1, or h(z1) = h(z2) = −1. Hence, h(z1) = v(x) if and only if
h(z2) = v(x) for any z1, z2 ∈ ϕh(x).

D. A Missing Proof from Section 3 and an Additional Example
Lemma 3.1. If system plays the benevolent strategy:

ϕbenev
h (x) = argmax

z⊆x,|z|∈[k1,k2]

{1{h(z) = sign(v(x))},

then the naı̈ve approach maximizes user payoff.

Proof. Since a naı̈ve user plays h(z) = sign(v(z)), for each x ∈ X the payoff of the user is maximized if in response
the system plays a z ⊆ x such that sign(v(z)) = sign(v(x)). Observe that, if there exists a z ∈ Z and z ⊆ x, such that
sign(v(z)) = sign(v(x)) then z ∈ ϕbenev

h (x) and consequently the user’s payoff is maximized for such an x. Conversely, if
there exists no z ∈ Z and z ⊆ x such that sign(v(z)) = sign(v(x)), then no truthful system can ensure more than zero
utility for such an x. Hence, a benevolent system maximizes the utility of a naı̈ve user.

We now present an additional example to show how a naı̈ve user’s choice function can be manipulated by the strategic
system and, as a consequence, the user may obtain arbitrarily small payoff against a strategic system.
Example 2. Let x1 = {a1, a2}, x2 = {a1, a3}, x3 = {a1, a4}, x4 = {a2, a3}, x5 = {a3, a4}} with sign(v(x1)) =
sign(v(x5)) = sign(v(a2)) = sign(v(a4)) = +1 and sign(v(x2)) = sign(v(x3)) = sign(v(x4)) = sign(v(a1)) =
sign(v(a3)) = −1. Further, let k1 = k2 = 1 with zi = ai as representations and a distribution D = (ε4 ,

ε
4 , 1 − ε, ε

4 ,
ε
4)

supported over (x1, x2, x3, x4, x5).

Strategic Representation

A unique truthful representation for this instance is h = (−1,+1,−1,+1). A strategic agent can manipulate a naı̈ve agent
into non-preferred choices by using a representation (a2, a1, a4, a2, a4) for (x1, x2, x3, x4, x5). Note here that a naı̈ve agent
expected z1 as a representation for x3 since h(z1) = sign(v(x3)) = −1 and h(z4) = +1 ̸= sign(v(x3)). However, a
strategic agent chose a4 as under given h we have h(a4) = 1. A naı̈ve users payoff in this case is reduced to ε which can be
arbitrarily small.

E. Missing Proofs from Section 4
Lemma 4.2. For any h : Z → {±1}, there exists k ≤ k2 and a corresponding k-order function h′ such that:

h(ϕh(x)) = h′(ϕh′(x)) .

Proof. Define k as follows: if h(z) = −1 for all z ∈ Z then k = k1, and otherwise

k = max
k′∈[k1,k2]

{∃z such that |z| = k′ and h(z) = 1, but for all z′ ⊂ z and z′ ∈ Z, h(z′) = −1}.

Define h′ as follows: For |z| < k, h′(z) = −1; for |z| ≥ k

h′(z) = 1 if ∃z′ : |z′| = k, z′ ⊆ z and h(z′) = 1;

h′(z) = −1 otherwise.

First, we argue that h′ defined as above satisfies h′(ϕh′(x)) = h(ϕh(x)) for all x ∈ X . Suppose h(ϕh(x)) = 1. Then
there exists z ∈ Z such that z ⊆ x and h(z) = 1. From the choice of k, we may assume without loss of generality that
|z| = k. Further, from the construction of h′, we have h′(z) = 1, and hence h′(ϕh′(x)) = h(ϕh(x)) = 1. Now suppose
h(ϕh(x)) = −1. Then for all z ⊆ x we have h(z) = −1. In particular, for all z ⊆ x such that |z| = k we have h(z) = −1.
This implies for all z ⊆ x such that |z| ≥ k we have h′(z) = −1. This is because if there exists z ⊆ x such that |z| ≥ k
and h′(z) = 1 then from the definition of h′ there exists a z′ ⊆ z ⊆ x such that |z′| = k, and h(z′) = 1 (a contradiction).
Additionally, from definition, for all z ⊆ x such that |z| < k we have h′(z) = −1. Hence, if h(ϕh(x)) = −1 then
h′(ϕh′(x)) = −1.

Now, we show that h′ is a k-order function. Let a− ∈ (−1, 0) and w(z) = a− for all z such that |z| ≤ k and h′(z) = −1.
Further, for all z such that |z| = k, if h′(z) = 1 then let w(z) = a+ >

∑
i∈[k]

(
n
i

)
. For all z ∈ Z , if |z| < k then by

construction of h′, we have h′(z) = −1, and since for all z′ ∈ Γk(z), w(z′) = a− < 0 we have
∑

z′∈Γk(z)
w(z′) < 0.

Hence, for all z ∈ Z , if |z| < k

h′(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
= −1.

Similarly, for all z ∈ Z , if |z| ≥ k then by construction of h′, we have h′(z) = 1 if and only if there exists a z′ ⊆ z, and
z′ = |k| such that h′(z) = h(z) = 1. In particular, if |z| ≥ k and h′(z) = 1 then there exists a z′ ⊆ z, and |z′| = k such
that w(z′) = a+. Since a+ >

∑
i∈[k]

(
n
i

)
, a− ∈ (−1, 0), and k2 ≤ n, we have if |z| ≥ k and h′(z) = 1 then

h′(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
= 1.

Finally, if |z| ≥ k and h′(z) = −1 then from the definition of h′ there does not exists a z′ ⊆ z, and |z′| = k such that
w(z′) = a+. Since a− ∈ (−1, 0), we have if |z| ≥ k and h′(z) = −1 then

h′(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
= −1.

Lemma 4.4. For all k, Hk−1 ⊆ Hk and Hk \Hk−1 ̸= ∅.

Strategic Representation

Proof. Arbitrarily choose u ⊂ E (recall E is the ground set) such that |u| = k, and let w(u) = ak,+ >
∑

i∈[k]

(
n
i

)
.6 Also

for all z ̸= u and |z| ≤ k, let w(z) = a− ∈ (−1, 0). Let h : Z → {±1} be defined as follows

h(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
From the definition of Hk, we have h ∈ Hk. We show that h ̸∈ Hk−1. First, observe that for all z ∈ Z h(z) = 1 if
and only if u ⊆ z. Suppose h ∈ Hk−1. Then there is a weight function w′ on sets of size at most k − 1 such that either
w′(z) = a− ∈ (−1, 0) or wz = ak−1,+ >

∑
i∈[k−1]

(
n
i

)
, and

h(z) = sign

(∑
z′∈Γk−1(z)

w′(z′)

)
Let z ∈ Z be such that u ⊆ z. This implies h(z) = 1. Hence there exist a u′ ⊆ z such that |u′| = k−1 and w′(u′) = ak−1,+.
Let z̃ ∈ Z be such that u′ ⊆ z̃ but u ̸⊆ z̃. Such a z̃ exists because u ∩ u′ ̸= u. Further, as u ̸⊆ z̃, we have h(z̃) = −1. But
since u′ ⊆ z̃, we have from the choice of ak−1,+ and a−∑

z′∈Γk−1(z̃)
w′(z′) > 0

⇒ sign

(∑
z′∈Γk−1(z̃)

w′(z′)

)
= h(z̃) = 1.

This gives a contradiction. Hence, h ̸∈ Hk−1.

Theorem 4.6. For any h ∈ Hk with weights w:

h(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
,

its induced fh ∈ Fk can be expressed using the same weights, w, but with summation over subsets of x, i.e.:

fh(x) = sign

(∑
z∈Γk(x)

w(z)

)
.

Proof. Since h ∈ Hk, w satisfies the following two properties (see Definition 4.3):

1. either w(z) = a− ∈ (−1, 0) or w(z) = a+ >
∑

i∈[k]

(
n
i

)
,

2. w(z) = a− for all z having |z| < k.

Further, from the definition of fh, we have fh(x) = h(ϕh(x)). This implies

fh(x) = 1 ⇐⇒ ∃z ∈ Z, z ⊆ x such that h(z) = 1 .

From the the above two properties of the weights function, we have

h(z) = 1 ⇐⇒ ∃z′ ⊆ z, |z′| = k such that w(z′) = a+ > 0 .

From the above two equations we conclude that

fh(x) = 1 ⇐⇒ ∃ z ⊆ x, |z| = k such that w(z) = a+ > 0 .

Finally, the two properties of w ensure that

fh(x) = sign

(∑
z∈Γk(x)

w(z)

)
.

6Here we wish to distinguish between a+ for k and k − 1 and hence we use ak,+ instead of a+.

Strategic Representation

Theorem 4.7. For any k ∈ [k2], if Y is realizable then ALG returns an ĥ that minimizes the empirical error.

Proof. Throughout, for ease of notation, we use x ∈ S to denote x ∈ {x1, . . . , xm}. Let Zk = {z : |z| = k,∃x ∈ S z ⊆
x}. Recall Zk,S is equal to Zk at the beginning of the algorithm. Also, for each z ∈ Zk, let Xz = {x ∈ S | z ⊆ x}. The
following lemma characterizes the training set for which there exists an h ∈ Hk with zero empirical error.

Lemma E.1. There exists an h ∈ Hk with zero empirical error if and only if for all x ∈ S+ there exists a z ∈ Zk and
z ⊆ x such that z ̸⊆ x′ for all x′ ∈ S−.

Proof. Suppose there exists an h ∈ Hk with zero empirical error. Since h ∈ Hk, from Lemma A.4 we have there exists a
g : Zk → {±1} such that h = lift(g). We state the following observation, and its proof follows from the definition of
lift(g).

Observation E.2. 1. For every z ∈ Z such that h(z) = 1 there is a z′ ∈ Zk such that z′ ⊆ z and g(z′) = 1,

2. For every z ∈ Z such that h(z) = −1, it must be that for every z′ ∈ Zk, z′ ⊆ z we have g(z′) = −1.

Further, as the empirical error for h is zero, we have the following observation.

Observation E.3. 1. For every x ∈ S+ there is a z ∈ Z and z ⊆ x such that h(z) = 1,

2. For every x ∈ S−, it must be that for every z ∈ Z , z ⊆ x we have h(z) = −1.

Proof. For every x ∈ S+, since the empirical error is zero, we have h(ϕh(x)) = 1. From the definition of ϕh, this implies
there is a z ∈ Z and z ⊆ x such that h(z) = 1. Similarly, for every x ∈ S−, since the empirical error is zero, we have
h(ϕh(x)) = −1. Again from the definition of ϕh, it must be that for every z ∈ Z , z ⊆ x we have h(z) = −1.

Hence, from Observations E.2 and E.3, we have for every x ∈ S+ there is a z ∈ Zk, z ⊆ x such that g(z) = 1. Similarly,
for every x ∈ S− it must be that for every z ∈ Zk, z ⊆ x we have g(z) = −1. Hence, for every x ∈ S+ there exists a
z ∈ Zk and z ⊆ x such that z ̸⊆ x′ for all x′ ∈ S−.

Conversely, suppose for every x ∈ S+ there exists a z ∈ Zk and z ⊆ x such that z ̸⊆ x′ for all x′ ∈ S−. Then define
g : Zk → {±1} as follows: a) for all z ∈ Zk such that z ⊆ x for an x ∈ S−, let g(z) = −1, b) for all z ∈ Zk, such
that z ⊆ x for an x ∈ S+ and z ̸⊆ x′ for an x′ ∈ S−, let g(z) = 1, c) for all z ∈ Zk, such that z ̸⊆ x for any x ∈ S,
let g(z) = −1. From the supposition, we have that for every x ∈ S+, there is a z ∈ Zk and z ⊆ x such that g(z) = 1.
Now define h = lift(g). To show that the empirical error of h is zero, it is sufficient to show that for every x ∈ S−

h(ϕh(x)) = −1, and for every x ∈ S+ h(ϕh(x)) = 1. Let x ∈ S−. From the definition of g, for every z ∈ Zk such that
z ⊆ x, g(z) = −1. Hence, from the definition of lift, we have for every z ∈ Z such that z ⊆ x, h(z) = −1. Now from
the definition of best response, we have h(ϕh(x)) = −1. Similarly, if x ∈ S+ from our supposition and the definition of g,
we have there exists a z ∈ Zk such that z ⊆ x and g(z) = 1. Hence, from the definition of lift, there exists a z ∈ Z such
that z ⊆ x and h(z) = 1. Finally, from the definition of best response , we have h(ϕh(x)) = 1.

Now, if Y ∈ Fk then there exists an h ∈ Hk such that the induced function of h is equal to Y , that is, fh = Y . This implies
there exists an h ∈ Hk which attains zero empirical error on the training set. Since empirical error is always non-negative,
such an h minimizes the empirical error in this case. Hence, from Lemma E.1, it follows that if Y is realizable then for all
x ∈ S+ at Step 17 of ALG there is either a z ∈ Z+ and z ⊆ x, or z ∈ Zk,S and z ⊆ x. Now, observe that at the beginning
of Step 22, set Z+ satisfies the following:

z ∈ Z+ ⇐⇒ ∃x ∈ S+ such that z ⊆ x and ̸ ∃x′ ∈ S− such that z ⊆ x′. (10)

Further, at Step 22, for a z ∈ Zk, w(z) = a+ if z ∈ Z+. This implies

w(z) = a+ ⇐⇒ ∃x ∈ S+ such that z ⊆ x and ̸ ∃x′ ∈ S− such that z ⊆ x′. (11)

Also, from Theorem 4.6, the induced function fĥ corresponding to the returned ĥ is given as

fĥ(x) = sign

(∑
z∈Γk(x)

w(z)

)
. (12)

Strategic Representation

To complete the proof of theorem, we show that fĥ(xi) = yi for every xi ∈ S. Suppose x ∈ S−. Then from Equations
and 10 and 11, for every z ⊆ x and |z| ≤ k we have w(z) = a− < 0, and hence from Equation 12 for fĥ we have
fĥ(x) = y = −1. Similarly, suppose x ∈ S+. Then from Equation 11, there exists z ⊆ x, |z| = k such that w(z) = a+.
Hence, from Equation 12, and noting that a+ >

∑
i∈[k]

(
n
i

)
and a− ∈ (−1, 0) we have fĥ(x) = y = 1.

Lemma 4.8. Let n be the size of elements in X , m be the number of samples, and k ≤ k2 be the user’s choice of complexity.
Then ALG runs in O(m

(
n
k

)
) time.

Proof. In the first two for loops, for each x ∈ S+ (or in S−) the internal for loop runs for O(
(
n
k

)
) time. Since |S| ≤ m, this

is a total of at most O(m
(
n
k

)
) operations. Similarly, Step 22 places weights on at most m

(
n
k

)
subsets, and hence runs in

O(m
(
n
k

)
) time. Hence, ALG runs in O(m

(
n
k

)
) time.

F. Missing Proofs from Section 5
Lemma 5.2. Let k ≤ k2. Then for every h ∈ Hk, the induced complexity of the corresponding fh is ℓ ≤ k.

Proof. Let ℓ = mink′∈[1,k]{there exists a g : Zℓ → {±1} such that h = lift(g)}. From Lemma A.4, we know ℓ ≤ k.
Further, assume g : Zℓ → {±1} is such that h = lift(g). Now, from the definition of fh, we have for all x ∈ X , fh(x) = 1
if and only if there exists a z ∈ Z such that z ⊆ x and h(z) = 1. Since h = lift(g), fh(x) = 1 if and only if there exists a
z ∈ Zℓ such that z ⊆ x and g(z) = 1. This implies the induced complexity of fh is ℓ ≤ k.

Corollary 5.3. Let Fk = FHk
be the induced function class of Hk, as defined in Def. 4.5. Then:

Fk = {f : X → {±1} : f has induced complexity ≤ k}.

Proof. From Lemma 5.2, we know that functions in Fk have induced complexity at most k. We show that if f has induced
complexity at most k then there is an h ∈ Hk such that f = fh. Let the induced complexity of f be equal to ℓ ≤ k. Then
there exists a g : Zℓ → {±1} such that

f(x) = 1 ⇐⇒ ∃z ∈ Zℓ such that z ⊆ x and g(z) = 1. (13)

Let h = lift(g). First we show that f(x) = fh(x) for all x ∈ X . Since h is a lift of g, if g(z′) = 1 for a z′ ∈ Zℓ then for
all z ∈ Z such that z′ ⊆ z, we have h(z) = 1.

h(z) = 1 ⇐⇒ ∃z′ ∈ Zℓ such that z′ ⊆ z and g(z′) = 1. (14)

Hence, from Equations 13 and 14 for all x ∈ X , f(x) = 1 if and only if there exists z ∈ Z such that z ⊆ x and h(z) = 1.
From the definition of induced function, this implies f(x) = fh(x) for all x ∈ X .

To show h ∈ Hk, we construct a weight function w on sets of size at most k. For z ∈ 2E and |z| < k, let w(z) = a− ∈
(−1, 0). For z ∈ Zk, let

w(z)

{
= a+ >

∑
i∈[1,k]

(
n
i

)
if ∃z′ ⊆ z, |z′| = ℓ and g(z) = 1

= a− o.w.

Now from Equation 14, h(z) = 1 if and only if there exists z′ ∈ Zℓ such that z′ ⊆ z and g(z′) = 1. Hence, from the
definition of w, h(z) = 1 if and only if there exists z′ ∈ Zℓ such that z′ ⊆ z and w(z′) = a+. In particular, since
a+ >

∑k
i=1

(
n
i

)
and a− ∈ (0, 1), we have

h(z) = sign

(∑
z′:z′⊆z,|z′|≤k

w(z′)

)
.

Theorem 5.4. If ℓ∗ ≤ k then the approximation error is 0.

Strategic Representation

Proof. Since the induced complexity of v is ℓ∗, there is a function g : Zℓ∗ → {±1} s.t.:

v(x) =

{
1 if ∃z ⊆ x, |z| = ℓ∗ and g(z) = 1

−1 o.w.

Let a+ >
∑

i∈[1,k]

(
n
i

)
and a− ∈ (0, 1), and define the weight function w on sets of size at most k as follows: a) if |z| < k

then let w(z) = a−, b) if |z| = k and there exists a z′ ⊆ z such that g(z′) = 1 then w(z) = a+, and c) if |z| = k and there
does not exist a z′ ⊆ z such that g(z′) = 1 then w(z) = a−. Now define h using w as follows:

h(z) = sign

(∑
z′∈Γk(z)

w(z′)

)
.

We now show that for each x ∈ X , h(ϕh(x)) = fh(x) = v(x) implying h∗
k = h. Suppose fh(x) = 1 for an x ∈ X . Then

there exists a z ∈ Z such that z ⊆ x and h(z) = 1. From Theorem 4.6, and the choice of a+ and a− we have that there
exists a z ⊆ x, |z| = k such that w(z) = a+. From the construction of w this implies there exists a z ⊆ x, |z| = ℓ∗ such
that g(z) = a+. But from the above definition of v this implies v(x) = 1. Similarly, we can argue, if fh(x) = −1 then
v(x) = −1 for any x ∈ X . Hence, h(ϕh(x)) = v(x) for each x ∈ X implying h∗

k = h and 0 approximation error for h.

Corollary 5.5. If ℓ∗ ≤ k2 and the distribution D has full support on X , then k = ℓ∗ is the smallest k that gives zero
approximation error.

Proof. In the proof of Theorem 5.4, we show that for k = ℓ∗, we have zero approximation error. Hence, to prove the
corollary it is sufficient to show that for a k < ℓ∗ the approximation error is not zero. Suppose there is an h ∈ Hk such
that ε(h) = 0 and k < ℓ∗. Since the distribution D has full support, this implies fh(x) = v(x) for all x ∈ X . Hence, the
induced complexity of v is at most k < ℓ∗ giving a contradiction.

Corollary 5.6. If ℓ∗ > k2, then the approximation error weakly increases with k, i.e., ε(h∗
k) ≤ ε(h∗

k−1) for all k ≤ k2.
Furthermore, if the distribution D has full support on X then no k can achieve zero approximation error.

Proof. The approximation error weakly decreases because Hk−1 ⊆ Hk for all k ≤ k2. Also, from the proof of Corollary
5.5, it is clear that no k can achieve zero approximation error.

Lemma 5.7. Let D be the uniform distribution over X . Then there is a value function v for which ε(h∗
k) diminishes convexly

with k.

Proof. We construct a v such that the approximation error for h∗
k ∈ Hk is as given below

ε(h∗
k) =

1

4
(
q
n

) k2∑
ℓ=k

(
k2
ℓ

)(
q − k2
n− ℓ

)
.

It is easy to see that ε(h∗
k) diminishes convexly with k (see Fig. 1). We choose k2 elements e1, e2, . . . , ek2 ∈ E (the ground

set), and let ze be the k2 size subset consisting of these k2 elements. For a v : X → R, let X+
v = {x ∈ X | sign(v(x)) = 1}

and X−
v = {x ∈ X | sign(v(x)) = −1}. We first show that there exists a v with the following two properties:

1. if x ∈ X+
v then there exists a z ⊆ ze such that z ⊆ x.

2. For k ∈ [1, k2], let Xk = {x ∈ X |∃z ⊆ ze, |z| = k, and z ⊆ x}. Then X+
v ∩ Xk = 3

4 (
∑k2

ℓ=k

(
k2

ℓ

)(
q−k2

n−ℓ

)
), for every

k ∈ [1, k2].

3. For every z ⊆ ze, let Xz = {x ∈ X | z ⊆ x}. Then |X+
v ∩ Xz| = 3

4

(
q−k
n−k

)
, where |z| = k.

We construct such a v iteratively. We begin by making the following observation.

Observation F.1. For each k ∈ [1, k2], |Xk| =
∑k2

ℓ=k

(
k2

ℓ

)(
q−k2

n−ℓ

)
.

Strategic Representation

Proof. Recall X consists of size n subsets of E. For a k ∈ [1, k2] we wish to choose n size subsets of E that contain a
z ⊆ ze, |z| = k. This equivalent to choosing a fixed ℓ ≥ k size subset of ze and then choosing the remaining n− ℓ elements
from the q − k2 elements (not part of ze) in E. For every ℓ ≥ k we can choose ℓ size subset of ze in

(
k2

ℓ

)
ways, and for each

such choice we can choose the remaining n − ℓ elements in
(
q−k2

n−ℓ

)
ways. Since, this holds for any ℓ ∈ [k, k2], we have

|Xk| =
∑k2

ℓ=k

(
k2

ℓ

)(
q−k2

n−ℓ

)
.

Constructing v: The idea is to iteratively add elements in X to X+
v , that is, iteratively determine the x ∈ X such that

sign(v(x)) = 1. In the first round, we arbitrarily choose 3
4

(
q−k2

n−k2

)
from Xk2

and add it to X+
v , and the remaining 1

4

(
q−k2

n−k2

)
are added to X−

v . At round k, assume we have constructed a v satisfying the above three properties for k′ > k, that is,

1. if x ∈ X+
v then there exists a z ⊆ ze such that z ⊆ x.

2. X+
v ∩ Xk′ = 3

4 (
∑k2

ℓ=k′

(
k2

ℓ

)(
q−k2

n−ℓ

)
), for every k′ ∈ [k + 1, k2].

3. For every z ⊆ ze, let Xz = {x ∈ X | z ⊆ x}. Then |X+
v ∩ Xz| = 3

4

(
q−k′

n−k′

)
, where |z| = k′ > k.

Hence, at round k, we have
(
k2

k

)(
q−k2

n−k

)
elements in Xk which are not yet in X+

v or X−
v . From these elements in Xk, for

every k size subset z ⊆ ze we arbitrarily choose 3
4

(
q−k2

n−k

)
elements containing z and add the remaining 1

4

(
q−k2

n−k

)
elements to

X−
v . Now, observe that v satisfies the first two properties for every k′ ∈ [k, k2] after this procedure. We argue v satisfies

the third property for any z ⊆ ze, such that |z| = k. The n size sets in X containing a z ⊆ ze, such that |z| = k, can be
partitioned into sets containing different ℓ >= k size subsets of ze. In particular, we have the following combinatorial
equality (

q − k′

n− k′

)
=

k2∑
ℓ=k′

(
k2 − k′

ℓ− k′

)(
q − k2
n− ℓ

)
In the above expression,

(
q−k2

n−ℓ

)
corresponds to the number of n size sets that contain only a a specific ℓ ≥ k′ size subset of

ze. Since our iterative procedure ensures from each such partition at least 3
4 fraction of x is added to X+

v , we have that v
satisfies the third property.

Optimal h∗ ∈ Hk: From the construction of v, it is clear that the optimal h∗ ∈ Hk for the above constructed v, for any
k ∈ [1, k2] satisfies the following: for every z ∈ Z , h∗(z) = 1 if and only if there exists a z′ ⊆ ze, |z′| = k, and z′ ⊆ z.
Further as D is the uniform distribution, for such an h∗:

ε(h∗
k) =

1

4
(
q
n

) k2∑
ℓ=k

(
k2
ℓ

)(
q − k2
n− ℓ

)
.

Lemma 5.8. Consider threshold-subadditive functions:

HSA = {sign(g(z)) : g is subadditive on subsets in Z}

Then for every threshold-subadditive hg ∈ HSA, there is an h ∈ Hk1
for which h(ϕh(x)) = hg(ϕhg

(x)) ∀x ∈ X .

Proof. Let h ∈ HSA with a corresponding g : Z → R such that h(z) = sign(g(z)) for all z ∈ Z . Choose an
a+ >

∑k1

i=1

(
n
i

)
, and a− ∈ (0, 1). Define a weight function w on sets of size at most k1 as follows:

w(z) =

{
a+ if |z| = k1, h(z) = 1

a− o.w.

Let h′ ∈ Hk1
be the function defined by the binary weight w as defined above. We argue that for every x ∈ X , if

h(ϕh(x)) = h′(ϕh′(x)). For every x ∈ X , h(ϕh(x)) = 1 if and only if there is a z ∈ Z and z ⊆ x such that h(z) = 1.
Since g is sub-additive, we have

0 ≤ g(z) ≤
∑

z′⊆z,z′ ̸=z,z′∈Z

g(z′) . (15)

Strategic Representation

A simple recursive argument implies h(ϕh(x)) = 1 if and only if there is a z ⊆ x such that |z| = k1 and h(z) = 1, and
hence w(z) = a+. Hence, from Theorem 4.6 this implies, h(ϕh(x)) = 1 if and only if h′(ϕh′(x)) = 1.

Theorem 5.9. For any k and m, given a sample set S of size m sampled from D and labeled by some v, we have

ε(ĥ)− ε(h∗) ≤

√
C(

(
q
k

)
log(

(
q
k

)
/ϵ) + log(1/δ)

m

w.p. at least 1− δ over S, and for a fixed constant C. In particular, ALG in Sec. 4.3, assuming Y is realizable, returns an
ĥ ∈ Hk for which:

ε(ĥ) ≤

√
C(

(
q
k

)
log(

(
q
k

)
/ϵ) + log(1/δ)

m

w.p. at least 1− δ over S, and for a fixed constant C.

Proof. We first argue that the VC dimension of Hk is at most
(
q
k

)
. Let d =

∑
i∈[1,k]

(
n
i

)
, index the vectors in {0, 1}d by

z ⊆ E (the ground set), such that |z| ≤ k. Then each z ∈ Z can be represented by a binary vector ez ∈ {0, 1}d, with
the entry indexed by a z′ being 1 if and only if z′ ⊆ z. Further, let w ∈ {a−, a+}d be a binary weighted vector with
a− and a+ as in Def. 4.3. Then from the definition of Hk, for each h ∈ Hk, there is a wh ∈ {a−, a+}d such that a)
h(z) = sign(⟨w, ez⟩) for all z ∈ Z, and b) the entry of w indexed by a z′ with |z′| < k is a−. From this we observe that the
VC dimension of Hk is at most

(
q
k

)
, since each h ∈ Hk is decided by the realization of binary weights on entries indexed

by the
(
q
k

)
sets. Now the first part of the theorem follows by noting that the first bound is the agnostic PAC generalization

guarantee for an algorithm minimizing the empirical error in the standard classification setting with VC dimension at most(
q
k

)
. To prove the second part, we have Y ∈ Fk, and hence the approximation error is zero, that is, ε(h∗) = 0 (from Lemma

E.1). Further, ALG minimizes the empirical error (Theorem 4.7), and returns an ĥ with zero empirical error.

Lemma 5.10. There exists a distribution D and a value function v such that for all k < k′ ≤ k2, system has higher payoff
against the optimal h∗

k ∈ Hk than against h∗
k′ ∈ Hk′ .

Proof. The v is constructed as in the proof Lemma 5.7. We recall notations from the proof of Lemma 5.7: ze is a k2 size
subset. Further, in the proof of Lemma 5.7 we argued that for k ∈ [1, k2], h∗

k is such that for all z ∈ Z , h∗(z) = 1 if and
only if there exists a k size z′ ⊆ z which is also a subset of ze.

Now let k, k′ ∈ [1, k2] such that k < k′. Since D is the uniform distribution, to show system’s utility is more for k compared
to k′ it is sufficient to show that ∑

x∈X
1{h∗

k(ϕh∗
k
(x)) = 1} >

∑
x∈X

1{h∗
k′(ϕh∗

k′ (x)) = 1}

From the proof of Lemma 5.7 and Theorem 4.6, it follows that

∑
x∈X

1{h∗
k(ϕh∗

k
(x)) = 1} =

∑
x∈X

1{fh∗
k
(x) = 1} =

k2∑
ℓ=k

(
k2
ℓ

)(
q − k2
n− ℓ

)
Similarly, ∑

x∈X
1{h∗

k′(ϕh∗
k′ (x)) = 1} =

k2∑
ℓ=k′

(
k2
ℓ

)(
q − k2
n− ℓ

)
Since k < k′, we have

∑
x∈X

1{fh∗
k
(x) = 1} =

k2∑
ℓ=k

(
k2
ℓ

)(
q − k2
n− ℓ

)
>

k2∑
ℓ=k′

(
k2
ℓ

)(
q − k2
n− ℓ

)
implying system’s utility is more for k compared to k′.

Corollary 5.11. For the system, lower k2 is better.

Strategic Representation

Proof. In Lemma 5.10, we showed there exists a user with v such that for all k, k′ ∈ [1, k2] and k < k′, the system has
better utility against the optimal choice function in Hk than in Hk′ . Since the choice of k the user can make is bounded by
k2, a lower k2 maximizes the worst-case payoff to the system.

