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Abstract

A major challenge in studying robustness in deep
learning is defining the set of “meaningless” per-
turbations to which a given Neural Network (NN)
should be invariant. Most work on robustness
implicitly uses a human as the reference model
to define such perturbations. Our work offers
a new view on robustness by using another ref-
erence NN to define the set of perturbations a
given NN should be invariant to, thus general-
izing the reliance on a reference “human NN”
to any NN. This makes measuring robustness
equivalent to measuring the extent to which two
NN share invariances. We propose a measure
called STIR, which faithfully captures the extent
to which two NNs share invariances. STIR re-
purposes existing representation similarity mea-
sures to make them suitable for measuring shared
invariances. Using our measure, we are able to
gain insights about how shared invariances vary
with changes in weight initialization, architecture,
loss functions, and training dataset. Our imple-
mentation is available at: https://github.
com/nvedant07/STIR.

1. Introduction

As deep neural networks are increasingly deployed in real-
world scenarios, robustness of their automatically learned
feature representations has emerged as a key desideratum.
Prior works have defined many measures of robustness cor-
responding to different types of synthetically-generated or
naturally-occurring perturbations that can be applied to the
inputs and their distributions (e.g., adversarial inputs (Big-
gio et al., 2013; Szegedy et al., 2013; Papernot et al., 2016)
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or distributional shifts (Geirhos et al., 2018; Hendrycks &
Dietterich, 2019; Engstrom et al., 2019; Fawzi & Frossard,
2015; Taori et al., 2020)). The common property underlying
the different robustness measures is that they all attempt
to capture the extent to which the learned representations
remain invariant (i.e., unchanged) under some defined set
of perturbations.

In this paper, we propose a new way to study, understand,
and characterize robustness of neural networks. Our key
insight is that the set of input perturbations against which
a neural network’s robustness is measured, can itself be
defined by another reference neural network. Specifically,
given a reference neural network, we first obtain a set of
input perturbations that are imperceptible to the reference
network (i.e., find inputs with invariant reference represen-
tations), and then check the extent to which representations
of other neural networks are invariant to these perturbations.
Our proposal allows us to measure relative invariance of
two neural network representations and estimate the degree
to which the two neural networks share representational
invariance. Intuitively, our proposal generalizes the often
unstated, but implicit assumption behind all interesting sets
of perturbations used in robustness studies today: they are
perturbations that are imperceptible to a particular reference
neural network, the human brain.

Comparing representational invariance of two neural net-
works is an important aspect of determining their representa-
tional (or perceptual) alignment. Assessing representational
alignment is crucial for a future society with interacting
agents controlled by neural networks (e.g., cars driven by
different deep learning systems). Additionally, the ability
to measure relative invariance, and therefore robustness,
of deep neural network representations can offer insights
into interesting questions such as: when updating a model,
to what extent are invariances preserved (which may be
crucial to regulators for safety assurance)? How does rep-
resentational invariance vary with the choice of network
architectures, loss functions, random weight initialization,
and datasets used in the training process?

Our work is inspired by and builds upon previous stud-
ies investigating similarity between deep neural network
representations (Raghu et al., 2017; Morcos et al., 2018;
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Kornblith et al., 2019a; Nguyen et al., 2020). However,
we find that existing representational similarity literature
focuses narrowly on comparing two representations of data
samples drawn from a specific input distribution, ignoring
representations of data samples outside of the distribution
or changes in representation caused by input perturbations
for which one of the two representations remains invariant.
As such, existing measures of similarity between neural net-
work representations offer no insight into their robustness
and consequently, their alignment. Nevertheless, we retain
the compelling (axiomatic) properties of existing similarity
measures, by re-purposing them to measure relative invari-
ance. Specifically, for input perturbations imperceptible to
the reference neural network, we quantify the invariance in
representations of the other neural network using a popular
similarity index called Centered Kernel Alignment (CKA)
(Kornblith et al., 2019a).

To summarize, our key contributions are as follows:

* We propose a measure of shared invariances between
two representations that is based on the models which
generated them. We show that our measure faithfully
captures shared invariances between two models where
existing measures of representation similarity (such as
CKA) do not work adequately.

* Our proposal repurposes existing representation similarity
measures to measure shared invariance, thus preserving
all the (desirable) axiomatic properties of these measures.

» Using our measure we are able to derive novel insights
about the impact of weight initialization, architecture, loss
and training dataset on the shared invariances between
networks. Our initial results show that our measure is
a promising evaluation tool to better understand deep
learning.

* We find that typically the shared invariance between mod-
els reduces for later layers, however when trained using
adversarial training, the same models end up with higher
shared invariances even in later layers. We also see that
models with residual connections tend to have high shared
invariances among them than between other non-residual
models.

2. Measuring Representational Robustness

Robustness is defined as “perform(ing) without failure un-
der a wide range of conditions” (Merriam-Webster, 2022).
Applying the definition in the context of learning models,
we can disentangle two distinct requirements for a model
to be considered robust: i) the model must produce correct
outputs, i.e., have high accuracy, and ii) these outputs must
be produced consistently for a diverse set of inputs, i.e., the

outputs of the model must be invariant to irrelevant per-
turbations (changes) in the input. Extensive literature on
robust learning (Szegedy et al., 2013; Papernot et al., 2016;
Goodfellow et al., 2015) suggests that it is quite hard to train
models that achieve high accuracy on standard benchmark-
ing datasets and high invariance to irrelevant (adversarially-
generated or naturally-occurring) perturbations simultane-
ously (Tsipras et al., 2018; Madry et al., 2019; Zhang et al.,
2019). Reconciling correctness and invariance requirements
remains a topic of active research.

Here, we investigate the robustness of neural network rep-
resentations that are learned in the process of generating
outputs. Specifically, we attempt to quantify the invariance
of learned neural network representations to irrelevant per-
turbations in the inputs. Intuitively, a high representational
invariance is a necessary (though not sufficient) condition
for a neural network model to be robust.

2.1. A Relative Invariance Framework

In order to quantify the invariance of a neural network’s rep-
resentations to irrelevant perturbations to inputs, we need
to first define the set of irrelevant input perturbations. We
begin by assuming the availability of some reference neural
network model. We then define the set of irrelevant input
perturbations as those changes that do not cause any change
in the reference model’s representation (i.e., perception)
of the inputs. Finally, we quantify how invariant the neu-
ral network’s representations are to these irrelevant input
perturbations.

Our framework effectively quantifies invariance of one
neural network’s representation relative to another refer-
ence neural network. Our use of a reference neural net-
work model is inspired by how human perception is used
as a reference to determine which adversarial perturba-
tions (Szegedy et al., 2013) or image corruptions (Geirhos
et al., 2018; Hendrycks & Dietterich, 2019) or image trans-
formations (Engstrom et al., 2019; Fawzi & Frossard, 2015)
do not alter the perception of inputs and are, hence, con-
sidered irrelevant perturbations. Next, we provide a more
formal description of our framework.

2.2. Problem Setting

Given a reference neural network m; : R™ — R% and n
samples (X € R™*™) from a given data distribution (D),
our goal is to define a measure of how invariant a given
target network mo : R™ +— R92 is to perturbations of
samples X that are imperceptible by m1, i.e., do not change
their representations according to mj.

Invariant input perturbations for a reference model (X")
In our framework, the invariances that are desirable are
determined with respect to a reference model, m. To this



end, we introduce the notion of Identically Represented
Inputs (IRIs). For any given input data point x and a given
reference model m, IRIs is the set of all data points that are
mapped to the same representation as x by m. Formally,

IRIstrict(I;ml) = {l’/ | ml(xl) = ml(x)} (1)

In other words, m is invariant to and cannot perceive any
difference between x and any =’ € IRI(x; m). In practice,
exact equality is hard to achieve, and thus we relax this
formulation so that = and z’ are almost indistinguishable
for my, i.e.,, for a small enough 4,

—my(z)

x [lma ()
[Ima (2)]|2

IRIrelax(x; ml) = {1' ||2 < (5} (2)

Going forward we use the relaxed formulation of IRIs and
thus omit the subscript. For each of the n input points = €
X, if we pick a 2’ from IRI(xz; mq ), we get a corresponding
batch of n samples X’ such that m;(X') ~ m;(X).

This however raises a key question: how to sample ' from
an infinitely large set IRI(x;m4)? We argue that there are
two key ways to do this: arbitrarily or adversarially. We
can randomly choose a sample from IRI(x; m1 ), in which
case we get arbitrary IRIs, or we can pick x’ adversarially
with respect to ms, such that the representations ms (x’) and
mq(z) are farthest apart, in which case we get adversarial
IRIs. We discuss this in more detail in section 2.3 and pro-
pose two invariance measures corresponding to these two
choices in section 3.1. We also show in Table 1 that take-
aways about shared invariance can vary greatly depending
on the choice of arbitrary or adversarial IRIs.

Measuring invariance of the target model on (X, X”)
Once we obtain X and X', our key idea is to capture the
extent to which m; and ms share invarances, by measuring
the degree to which representations assigned by mgo to X
and X' are similar. Specifically, we want to quantify the de-
gree of similarity between two sets of n data representations
Y =my(X) € R and Z = my(X') € R"*92, To this
end, we can make use of any of the existing representation
similarity measures (.5;-), such as CKA (Kornblith et al.,
2019a), and variants of CCA (Morcos et al., 2018; Raghu
et al., 2017) as they’re designed specifically to measure sim-
ilarity between two sets of representations. This yields a
shared invariance measure, S;, which can now be formally
defined as:

Si(ma|my, X, X', S;) = Si(ma(X), ma(X"))  (3)

Note that while the traditional use of S,, ie.,,
Sy (m1(X), ma(X)) does not measure shared invariance

between m, and mo (we give concrete arguments for the
same in Section 3.2), our proposed measure (Eq 3) shows
how existing S, measures can be repurposed to measure
shared invariance.

It’s important to note that our measure is a directional one
since IRIs are defined relative to the reference model m.
Other than the reference and target models m; and mo, our
measure takes given input points X and a representation
similarity measure (.S,.) as inputs. We discuss the concrete
instantiations of S; used in this work in Section 3.1. First,
however, we describe how to construct X’ given X.

2.3. Generating IRIs

Arbitrary IRI Operationalizing S; as defined in Eq 3 re-
quires sampling X' for a given X. Here, we provide a
simple way to empirically estimate X’ given X (wrt. m1).

We leverage the key insight that m; can map multiple differ-
ent inputs to the same representation (since m; is a highly
non-linear deep neural network) which can be found us-
ing representation inversion (Mahendran & Vedaldi, 2014).
For a given set of inputs typically drawn from the training
distribution X = [x;...x,] and a reference model m1, we
generate X’ = [z...a} ] that are all mapped to similar rep-
resentations as X by my, i.e,, m1(X) & m;(X"). Note that
X and X', are, by construction IRIs. This is achieved by
performing the following optimization:

argmin ., £(X'), 4)

where L(X') = ||m1(X") — m1(X)]]2.

This can be approximated using gradient descent by repeat-
edly performing the following update (where « is the step
size):

X' =X"+axVx/L. 5)

A key consideration in solving this optimization is that we
must start with some initial value of X", i.e., we must choose
aseed X’ from which to start the gradient descent. Different
seeds can lead to different solutions of X’. We find that in
practice randomly picked seeds give fairly stable estimates'.
Since this scheme only optimizes for similar representation
of z and ’ on m; (Vx € X) and starts from a random initial
value of 2/, it simulates a random sample from the (possibly
infinitely) large set IRI(xz; mq).

Adversarial IRIs We can alter the way we find X’ such
that the resulting (X, X”) are still, by definition IRIs but
are optimized to generate very distinct outputs on ms, the
model for which we’re measuring shared invariance. This
can be achieved by using exactly the same procedure as in

ISince we deal with images we sample each pixel value as a
random integer from 0 — 255 with uniform probabilities.



Eqgs 4 and 5, except we now change L to:

‘Cadv = Hml(X/) - ml(X)H2_
|lma2(X") — ma(X)||2.

Solving for X’ using L4, ensures that the inputs are still
similarly represented as X on m; and thus (X, X’) are IRIs.
However this ensures that any measure of \S; on such IRIs
will be a worst case estimate. Such IRIs have been referred
to as controversial stimuli (Golan et al., 2020) in existing
literature.

3. Measuring Shared Invariances
3.1. STIR, an instantiation of S;

Using Eqs 4&5 we can generate k different (X, X'), by
repeatedly sampling X k times from a given distribution
(typically the training distribution of m;, e.g., the train or
test set). Now, we define STIR(mz|mq, X, S;) as follows:

1
STIR(mz|m1, X, S,) = T Z S (ma2(X), ma(X)).
X/
(6)

Here, we find X’ using representation inversion as described
in Section 2.3. We call this measure Similarity Through
Inverted Representations — STIR.

When all X’ are chosen in an adversarial manner (i.e.,using
L .40 as described in Section 2.3), we can estimate the worst
case STIR as:

1
STIRadv(m2|mlaX7 Sr) = % Z Sr(mQ(X)va(X/))'
X/

adv

(N
Both Equations 6&7 are parametrized by S,.. For our pur-
pose we use linear Centered Kernel Alignment (CKA) (Ko-
rnblith et al., 2019a) as the similarity measure, i.e.,S, =
Linear CKA. CKA has been adopted by the community
as the standard measure for representation similarity and
has been used by many subsequent works to derive im-
portant insights about deep learning (Nguyen et al., 2020;
Raghu et al., 2021; Neyshabur et al., 2020). CKA also has
certain desirable axiomatic properties such as invariance
to isotropic scaling and orthogonal transformations, which
other methods such as SVCCA (Raghu et al., 2017) and
PWCCA (Morcos et al., 2018) do not possess. Importantly,
CKA is not invariant to every invertible linear transforma-
tion, which is not true of SVCCA or PWCCA. We refer to
the paper (Kornblith et al., 2019a) for an extensive discus-
sion on why these are desirable properties for any similarity
measure. While CKA, as proposed, can work with any ker-
nel function, results show that Linear CKA works just as
well as RBF CKA, so for simplicity we use Linear CKA for

all our experiments. Definitions of the similarity metrics
listed above can be found in Appendix A.

3.2. Why Existing Representation Similarity (S;.)
Measures Cannot Measure Shared Invariance

While at first glance a representation similarity measure
(RSM) such as CKA (Kornblith et al., 2019a) or one of the
others mentioned in section 3.1 might look appealing to
measure shared invariance, these measures are in fact not
suitable for this task, for several reasons.

First, current RSMs are not designed for capturing in-
variance. Their goal is to measure the degree of correlation
between sets of points generated by two different models,
that are transformed to be as aligned as possible under cer-
tain constraints. Measuring invariance, however, requires
capturing the degree of difference between points generated
by the same model, which should be the same.

Second, RSMs don’t interact with the model. All existing
RSMs are evaluated in a two-step process, by first obtaining
collections of representations Y = my(X), Z = mo(X)
from two models and then computing similarity based on
those representations as S,(Y, Z), without using the mod-
els further. From a causal perspective, an invariance is
an intervention on a model’s input that does not lead to a
change in the model’s output. However, a central result
in the causality literature is that the effect of interventions
cannot be determined from observational data alone (Pearl,
2009). Therefore, any metric that aims to make meaningful
statements about model invariance needs to interact with the
model to make interventions. STIR does this via the pro-
cess of representation-inversion, however, existing RSMs
are purely observational and therefore cannot properly de-
termine invariances.

Third, sharing invariance between two models is direc-
tional. If model m; is constant, it will share all of model
ms’s invariances, but not vice versa if ms is not constant it-
self. Existing RSMs are not directional and therefore cannot
express these relationships.

3.3. STIR Faithfully Measures Shared Invariance

Training two models (m; and mo) with different random
initializations (holding all other things like architecture, loss
and other hyperparameters constant), leads to very “similar”
representations on the penultimate layer, as measured by
instantiations of S,. such as CKA (Kornblith et al., 2019a).
We consider two variants of this experiment, where we train
two ResNet18 models (on CIFAR10) from different ran-
dom initializations (keeping everything else same) with 1.)
the standard crossentropy loss (mVanilla) -y (Vanilla) )y “and



RESNETI18 VANILLA (m1),
RESNET18 VANILLA (m2)

RESNETI18 AT (m3),
RESNET18 AT (m2)

RESNETI18 AT (my),
RESNET18 VANILLA (m32)

m1|m2 m2|m1 ma ‘mg m2|m1 m1|m2 m2|m1
STIR 0.605+0.013  0.56210.023 | 0.934+0.003 0.939+0.002 | 0.405+0.020 0.509+0.011
STIR 4dv 0.085+0.004  0.064+0.004 | 0.096+0.007 0.078+0.005 | 0.054+0.004 0.070+0.004
CKA 0.967+0.000 0.937+0.000 0.536+0.000
Acc(mi(X'), ma(X')) | 0.52140.061  0.34710.020 | 0.89140.007 0.901+0.002 | 0.140+0.028 0.555+0.012

Table 1. [STIR faithfully estimates shared invariance] Here the two ResNet18s in each column are trained on CIFAR10 with different
random initializations, holding every other hyperparameter constant. 1.) For two such models trained using the vanilla crossentropy loss
(left), interestingly, we find that STIR highlights a lack of shared invariance, whereas CKA overestimates this value; 2.) when both models
are trained using adversarial training (Madry et al., 2019) (middle) STIR faithfully estimates high shared invariance; 3.) Finally STIR is
able show how having a directional measure can bring out the differences when comparing a model trained with vanilla loss and adv
training (right), whereas CKA being unidirectional cannot derive these insights. All numbers are computed over 1000 random samples

from CIFAR10 training set and averaged over 5 runs.

2.) with adversarial training (m?;, m“Dy) 2. Through-
out the paper STIR is measured over CIFARI10 training
samples with S,. = Linear CKA. Thus, to simplify the no-
tation, we use STIR(mq|mz) to mean STIR(my|ma, X ~
CIFARI10, LinearCKA).

STIR provides insights into shared invariance where
CKA fails. Both (m®illy, M)y and D,
mD,) achieve a high similarity score (as measured
by CKA, on the penultimate layer of both mod-
els). However, we find that such a similarity mea-
surement would be an overestimation of shared invari-
ances between m™ill). and mVanilld, which are much
lower when measured as STIR (m™illd) ;| yyVanilla)) ) apd
STIR (mVanilla), | yyVanilla) ) “a5 shown in Table 1. Two mod-
els trained using adversarial training (m“";, m“Dy) should
intuitively have more shared invariances since these models
were explicitly trained to be invariant to ¢ perturbations. In-
deed, we see that these two models have much higher values
of STIR(mAD; | m“Dy,) and STIR (m“Dy | mAD ).

Sanity Checks for STIR For high values of STIR, intu-
itively we would expect the representations of the model
we’re evaluating (mg) to have similar representations on
IRIs, i.e., ma(X) ~ mo(X’). Since IRIs, by construction,
have similar representation on the reference model (m1), we
expect the predictions of ms on X’ (pred(ms (X)) to agree
with predictions of m; on X’ (pred(m;(X’)). Similarly,
for low STIR values, we’d expect less agreement between
pred(mi(X")) and pred(mz(X’)). We see that this relation-
ship holds as lower STIR values for mV"ld); and m(Vanilla),,
also correspond to less agreement in their predictions on X'
and higher STIR values for m“D; and m™“", correspond
to higher agreement in their predictions (as shown in the
right of each row of Table 1). To further corroborate that the

*trained using £ threat model with ¢ = 1.0, see (Madry et al.,
2019) for more details

estimate of shared invariance given by STIR is justified in
being lower for (mVaa);  mVanilla), ) than (mAD |, mAD,),
we generate controversial stimuli (Golan et al., 2020) for
both pairs of models. Details of how to generate these can
be found in the Appendix C. We find that indeed it’s signifi-
cantly easier to generate controversial stimuli for (m V2"
mVaillD),) than for (m“P;, mAD,) (see Appendix C for
the results).

STIR, 4, shows that in the worst case, there are almost
no shared invariances. When measuring shared invari-
ance in the worst case (using STIR,4,, Eq 7), we see that
even in the case of m®D; and m“"), the shared invariance
drops close to 0. This is shown in the second row of Ta-
ble 1. Thus, for the rest of the paper we focus on STIR
measured using arbitrary IRIs, since STIR,4, gives a very
pessimistic estimate of shared invariance and thus is not
useful in comparing models.

STIR brings out nuance through directionality. When
comparing across training types, e.g., (mD;, mManilla),)
we find that directionality of STIR is able to show that in-
variances of m!®, are not well captured by m“"; (indi-
cated by the low value of STIR (m™*il1®; | m*D,)) How-
ever, STIR(m“Dy | m™ailld) ) js much higher. We posit
that models trained using AT have a “superior” set of in-
variances and do not posses “bad” invariances that models
trained using the vanila loss exhibit. Thus, when evaluating
IRIs from a Vanilla model on a model trained using AT —
one can expect lower shared invariance than in the other
direction. STIR is able to capture these nuances in compari-
son between models because of its directionality. Measures
of representation similarity (.5,.) like CKA do not offer any
such insights, since they’re not directional.



AT AT
VANILLA
IT=10 IT=1
AT 1T1=10 0,93+ 051
ROB: 51.5+40.6 — ( ) 0‘01) ( . 0401)
CLEAN: 80.440.4 0.89+0.02 0.560.01
AT 1T1=1 0.864 0504
ROB: 34.610.6 ( ’ 0‘02) _ ( . 0.01)
CLEAN: 87245, | 595002 0.640.00
VANILLA
0.41%0.02 | 0.34=%0.05
ROB: 0.0+0.0 ( ) ( ) _
CLEAN: 95.040., | \-P6%001/ | 10-64£0.00

Table 2. ITERS is the number of iterations in the inner loop of
Adversarial Training (AT). Each cell shows STIR(m|m;) where
m; is the model on the column and m; is the model on the row.
CKA numbers are shown in (). The three models have robust
accuracies (measured under /2, € = 1) such that AT, IT = 10 >
AT, IT =1 > Vanilla.

4. Using STIR to Analyze Model Updates

One motivation for a shared invariance measure like STIR,
as mentioned in Section 1, is to monitor how different mod-
els “align” with each other. This can then be used to analyze
if updates to a model leads to preservation of invariances
learned before the update. We first show that STIR can
capture relative differences between model invariances and
then use STIR to analyze a simulated model update scenario
where we incrementally add more training data.

4.1. STIR Captures Relative Robustness

We demonstrate that STIR can capture differences between
models of varying degrees of robustness. We know that
increasing adversarial robustness increases invariance to £,
ball perturbations. Thus, by construction, if a model m; has
higher adversarial robustness than another model ms, then
invariances of m; should be “superior” to those of ms and
hence we should see STIR(mg|my) > STIR(mq|ms). To
empirically test this, we construct three models with varying
degrees of adversarial robustness: a model trained using the
vanilla crossentropy loss (0%), a model trained using adver-
sarial training (AT) with the usual 10 iterations used to solve
the inner maximization of AT (Madry et al., 2019) (51.5%),
and a model trained using AT but with only 1 iteration in
the inner maximization loop, which gives adversarial ro-
bustness somewhere in the middle (34.6%). Table 2 shows
comparison between these three models and confirms that
STIR(mga|m1) > STIR(mq|msz) if adversarial robustness
mq > me (measured here by robust accuracy).

4.2. Updating Models With More Data

Models deployed in the real world are continuously updated
with more data. In such cases, it may be crucial to under-
stand how a model update at a given timestep shares invari-

ance with the model at the previous timestep. To simulate
such a scenario, we train a ResNet18 on CIFAR10 where at
each timestep, we add 5k training samples, i.e.,, at timesteps
t=0,1,...,T, we train the model on 5k, 10k, ..., 45k sam-
ples (we keep 5k samples for a holdout validation set). At
each timestep we train for 100 epochs. Figure 1 shows how
STIR (m¢|m—1) (and STIR(m;—1|m;)) changes as we pro-
gressively add more data. Here m, is the model at a given
timestep and m,_1 is the model on the previous timestep.
For both AT and Vanilla loss we see STIR(m,|m;—1) and
STIR(m—1|m¢) increase as we add more data. We also see
that after a certain amount of data the STIR scores plateau
— thus indicating that adding more data has diminishing re-
turns for shared invariance.

5. Evaluating the Impact of Design Choices on
Shared Invariance using STIR

A lot of research effort been dedicated towards finding archi-
tectures, training schemes and datasets that produce more
correct (i.e., accurate) models. However, the effect that these
design choices have on the relative invariance of models is
still not properly understood. In this section, we leverage
STIR to investigate the effect that the various choices in the
training pipeline have on shared invariances between mod-
els. All evaluations of STIR in this section are performed
using the CIFAR10 dataset. See Appendix B for additional
details.
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Figure 2. [Role of Random Initialization; CIFAR10] For models trained using the Vanilla crossentropy loss, we find that only initial
layers have high shared invariances. However, when the training procedure explicitly introduces invariances (e.g.,adversarial training),
then all layers converge to having similarly high shared invariances. Similar trends also hold for deeper variants of ResNet and VGG

(results in Appendix D).

5.1. Role of Different Random Initialization, Different
Training Datasets

Random Initializations (Kornblith et al., 2019b) find that
the same architecture trained from two different random
initializations should converge to highly similar represen-
tations, i.e., layer k in both models has high similarity. We
find that this is not necessarily the case for shared invari-
ances. Fig. 2 shows results for two ResNet18 (different
random initialization) and two VGG16 (different random
initialization) models trained on CIFAR10 using the vanilla
crossentropy loss and adversarial training. We see that mod-
els trained with vanilla loss (Fig. 2a & 2c¢), later layers have
lower shared invariances than initial layers, indicated by a
negative slope of lines of best fit. However, with adversarial
training, both initial and final layers converge to (almost)
similarly high levels of shared invariances (indicated by
flatter lines of fit in Fig. 2b & 2d). Thus, we conclude that
when training from different random initializations, train-
ing procedures that explicitly introduce invariance (such
as adversarial training) make each layer of two differently
initialized models converge to similar shared invariances.

Datasets For the same architecture (ResNet18) trained on
different datasets (CIFAR10 and CIFAR100), we evaluate
the shared invariances between each of the corresponding
layers. We find that in general, initial layers tend to have
higher shared invariances, as indicated by the negative slope
of the line of best fit in Fig. 3. Interestingly, (Kornblith et al.,

2019a) also had a similar observation when measuring simi-
larity for models trained on different datasets. Additionally,
we see that shared invariance increases substantially (for
all layers) when these models are trained using adversar-
ial training, similar to the random initilaization case, even
though the training here is performed on different datasets.
We see similar trends for other architectures too (results in
Appendix D).

5.2. Different Architectures, Penultimate Layer

We train ResNet18, ResNet34, VGG16 and VGG19 with
two different random seeds and using both the vanilla loss
and adversarial training (AT). We then compute the shared
invariances across all these configurations of models (for
the penultimate layer of each model) as shown in Fig. 4.

We find that in general, architectures with residual connec-
tions (ResNetl18 and ResNet34) have high shared invari-
ances amongst themselves, as indicated by high values of
STIR amongst ResNets (for both vanilla and AT).

5.3. Different Adversarial Training Methods

As observed in Fig. 4, models trained with AT generally
have higher values of STIR amongst them than models
trained using the vanilla loss. This raises a natural ques-
tion: does high STIR between models hold for any kind of
training that makes models robust to £,, ball perturbations?
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Figure 3. [Different Datasets; ResNet18 on CIFAR10 and CI-
FAR100] Similar to the finding of (Kornblith et al., 2019a) we
find that across datasets, initial layers tend to have more shared in-
variances. However, we also find that shared invariances increases
substantially for all layers with adversarial training (AT).
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Figure 4. [Different Architectures, Penultimate Layer Shared
Invariances; CIFAR10] We find that in general ResNets have
high shared invariances when trained using the same loss, but this
shared invariance drops across training types. We also see that
with AT, even models with different architectures converge to high
shared invariances.

To test this, we train a ResNet18 on CIFAR10 using 3 dis-
tinct training losses, all of which have been shown to be

highly robust to £, ball perturbations: Adversarial Training
(AT) (Madry et al., 2019), TRADES (Zhang et al., 2019)
and MART (Wang et al., 2019). TRADES and MART con-
tains an additional hyperparameter 3 that is used to trade
off between accuracy and adversarial robustness. We use
B = 0.1 for our experiments, and additional details can be
found in Appendix B. All 3 of these ResNets achieve similar
clean and robust accuracy.

Surprisingly, we find that models trained using these meth-
ods only have mild levels of shared invariance, as indicated
by lines of best fit around 0.5 (see Fig. 5). This is in contrast
to the case of two ResNet18s trained using AT (see Fig. 2b)
which leads to very high shared invariance. This shows that
the differences shown in Fig. 5 are not due to stochasticity
in training but rather due to the training methods themselves.
Thus, while all of these methods achieve the same goal of ro-
bustness in an £, ball, they achieve so in very different ways.
We see similar trends for other architectures too (results in
Appendix D).

In summary, we find that shared invariance between models
tends to decrease with increasing layer-depth and adver-
sarial training significantly increases the degree of shared
invariance. Models with architectures using residual connec-
tions exhibit a higher degree of shared invariance, whereas
different methods of adversarial training do not necessarily
lead to models with the same shared invariances.

6. Related Work

6.1. Comparing Representations

A number of papers have proposed methods for measuring
the similarity of representations in deep neural networks
(Laakso & Cottrell, 2000; Li et al., 2016; Wang et al., 2018;
Raghu et al., 2017; Morcos et al., 2018; Kornblith et al.,
2019a). Our invariance measure leverages CKA (Korn-
blith et al., 2019a), however, we discuss in Sections 3.2
and 3.3 why the existing metrics themselves are unsuitable
for measuring shared invariances between models. Recent
work has identified lack of consistency between existing
similarity measures and proposed a measure that is consis-
tent (Ding et al., 2021). However, their proposed measure
also measures similarity and does not take into account the
invariances. It can thus be used in conjunction with our pro-
posed measure, but not replace it for measuring invariance.
There has been work on measuring shared invariance be-
tween NN representations and (black box) humans (Feather
et al., 2019; Nanda et al., 2021), however, we consider a
different problem of shared invariances between two NNs.

6.2. Understanding Representations

A lot of work on scrutinizing representations has been
geared towards improving the interpretability of neural net-
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Figure 5. [Different Types of Adversarially Robust Training; ResNet18 on CIFAR10] Comparing same model trained using 3 different
adversarial training variants: AT (Madry et al., 2019), TRADES (Zhang et al., 2019) and MART (Wang et al., 2019). While these methods
are geared towards the same goal of achieving invariance to ¢, perturbations, we find that other than TRADES and AT, these methods in
fact do not have very high shared invariance (as opposed to similarity between two ResNet18s trained using AT, which have much higher
values of shared invariance as shown in Fig. 2b). This shows that these methods achieve resistance to £, ball attacks in very different ways.

works (Mahendran & Vedaldi, 2014; Olah et al., 2017; Kim
et al., 2018; Dosovitskiy & Brox, 2016a;b). We’re partic-
ularly inspired by representation inversion (Mahendran &
Vedaldi, 2014; Dosovitskiy & Brox, 2016b) which is a key
component of our proposed measure. However, while the
goals of all of these works is to be able to make a neu-
ral network more interpretable to humans, i.e., to enable
qualitative judgements about the network’s behavior, our
goal is to instead measure the degree of shared invariance
between any two models, i.e., to make quantitative state-
ments. Recent work has used model stitching to compare
representations (Bansal et al., 2021), but it is focused on
better understanding of learned representations, rather than
measuring robustness. Higgins et al. (2018) define disentan-
glement in representation learning by leveraging the concept
of invariance. Their work, however, only provides a defini-
tion of disentanglement and no measure for the degree of
invariance.

6.3. Robustness

Our work takes inspiration from many works on adversar-
ial (Szegedy et al., 2013; Madry et al., 2019; Zhang et al.,
2018; Ilyas et al., 2019), natural (Hendrycks & Dietterich,
2019; Geirhos et al., 2018) and distributional (Taori et al.,
2020; Recht et al., 2019; Koh et al., 2021) robustness. How-
ever, in all these works, the reference model is (implicitly)
assumed to be a human and the goal is to make a neural
network follow the invariances of a human. In our work
we explicitly characterize the reference model, which can
be another neural network, that allows us to unify all the
different notions of robustness.

7. Conclusion

We proposed a directional measure of shared invariance
between representations that takes into account the invari-
ances of the model that generated these representations. We

showed how our measure faithfully estimates shared invari-
ances where existing representation similarity methods may
fail. Furthermore, we showed how our measure can be used
to derive interesting insights about deep learning. It will be
interesting to explore this direction further in future work,
revisiting earlier analysis based on previous representation
similarity approaches (Nguyen et al., 2020; Raghu et al.,
2021). Another interesting avenue to explore is how our
measure can be used during training to encourage one model
to follow similar invariances to another. This could be help-
ful to update a neural network in safety-critical applications
by ensuring that the new network maintains the invariances
of the original model.
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A. Representation Similarity Measures

A recent line of work has studied measures for the simi-
larity of representations in deep neural networks. Given
two models m; and mo and a set Z of input points to
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both, all of these measures quantify the degree of repre-
sentational similarity between two sets of representations
X = mi(Z2) € R4 and Y = my(Z) € R" % ag
S;(X,Y) and are defined as follows:

SVCCA (Raghu et al., 2017) is computed via the following
steps:

1. Compute X', Y’ by pruning X, Y using SVD to only
retain the first k1 and ko principal components that are
necessary to retain 99% of the variance, respectively.

2. Perform Canonical Correlation Analysis CCA(X’,Y”)
yielding k& = min(kq, ko) correlation coefficients

PLyee s Pl
3. Return S, (X,Y) = %Zf:l Pi

PWCCA (Morcos et al., 2018) is computed via the follow-
ing steps:

1. Perform Canonical Correlation Analysis CCA(X,Y")
yielding k& = min(dy,ds) correlation coefficients
P1,- -, pr and CCA vectors hy, ..., hg

2. Compute weights a; = Z?;l

z;’s are the d; columns of X

|(hi, z;)|, where the

k .
3. Return S, (X, Y) = Zaz1o

(Linear) CKA (Kornblith et al., 2019a) is computed via the
following steps:

1. Compute similarity matrices K = XX, L =YY"

2. Compute normalized versions K/ = HKH, L' =
HLH of the similarity matrix using centering matrix
H=1I,—-111"

n

3. Return CKA(X,Y) = HSIC(K,L)
. ’ \/HSIC(K,K)HSIC(L,L) "

HSIC(K, L) = ;- flatten(K”) - flatten(L')

where

B. Model Architecture, Hardware, Training,
and Other Details

We use ResNetl8, ResNet34 (He et al., 2016), VGG16
and VGG19 (Simonyan & Zisserman, 2014) trained on CI-
FAR10/100 (Krizhevsky et al., 2009) using the standard
crossentropy loss and other adversarially robust training
methods such as AT, TRADES and MART. All of our ex-
periments are performed on standard models and datasets
that can fit on standard GPUs. We also attach our code to
reproduce the numbers. For all purposes of adversarial train-
ing we use the /5 threat model with ¢ = 1.0 (see (Madry
et al., 2019) for details). Additionally TRADES and MART

require another hyperparameter /3 (that balances adversarial
robustness and clean accuracy) which we set to 1.0 for our
experiments.

C. STIR Faithfully Measures Shared
Invariance

To confirm that STIR is correct in assigning different scores
to two (same) models trained from different initializa-
tions, we generate controversial stimuli (Golan et al., 2020)
for all configurations in Table 3: (m(Vanilld), p(Vanilla),)
(m®D;, m“@D,) and (m™ilD m®D,) Such stimuli are
generated by solving the following optimization for a train-
ing data point z and any two models mjand my:

argmin,,  ||m(x) —mi(zc)|2—[|ma(z) —ma(z:)|l2 (8)

Here we assume mq(.) and my(.) are penultimate layer
representations of the respective models. This process gen-
erates z. for every point = such that ||m(z) — mq(z.)||2
is low and ||mqa(x) — ma(z.)||2 is high. Since these z.
are “perceived” very differently by the two models (wrt the
original x), they are called controversial stimuli. We use
the empirical mean of the amount of perturbation needed
(i.e,6 = Ey_.[||z — z.||2]) as a measure of ease of gen-
erating controversial stimuli 3. For a pair of models (m;,
ms) where it’s easy to generate such z., the shared invari-
ance should be low. We see that this is indeed the case as
indicated by numbers in Table 3.

D. Experiments: Insights using STIR

D.1. Role of Different Random Initialization, Different
Training Datasets

Fig 6&7 shows results for different random initializations
and different datasets respectively. We see similar trends
hold for deeper models such as ResNet34 and VGG19.

D.2. Different Architectures, Penultimate Layer

Fig 8 shows that trends for STIR hold across different choice
of seeds. We also see that in contrast CKA assigns high
value across the board and is thus not a faithful measure of
shared invariance.

D.3. Different Adversarial Training Methods

Fig 9 shows results on VGG16. These are much higher
than values for ResNet18, thus showing that these meth-
ods achieve robustness differently across architectures. For

3High(er) values of § indicate it was hard(er) to generate con-
troversial stimuli



RESNET18 VANILLA (m1), RESNETI18 AT (m1), RESNETI18 AT (m1),
RESNET18 VANILLA (ms2) RESNET18 AT (m3) RESNET18 VANILLA (m2)

m1|m2 m2|m1 m1|m2 m2|m1 m1|m2 m2|m1
STIR 0.605+0.013  0.562+0.023 0.934+0.003 0.939+0.002 0.405+0.020  0.509+0.011
STIR 44w 0.085+0.004  0.064+0.004 0.096+0.007 0.078+0.005 0.054+0.004  0.070+0.004

CKA 0.967+0.000 0.937+0.000 0.536+0.000

Acc(mi(X'), m2(X")) | 0.52110.061  0.34740.020 | 0.891+0.007 0.90140.002 0.14040.028  0.555+0.012
A (=23 IX — X'||2) | 8.588+0.401 8.570+0.474 | 17.1061+3204 16.210+2.103 | 19.270+2.202  7.3680.602

Table 3. [STIR faithfully estimates shared invariance] Here the two ResNet18s in each column are trained on CIFAR10 with different
random initializations, holding every other hyperparameter constant. 1.) For two such models trained using the vanilla crossentropy loss
(left), interestingly, we find that STIR highlights a lack of shared invariance, whereas CKA overestimates this value; 2.) when both models
are trained using adversarial training (Madry et al., 2019) (middle) STIR faithfully estimates high shared invariance; 3.) Finally STIR is
able show how having a directional measure can bring out the differences when comparing a model trained with vanilla loss and adv
training (right), whereas CKA being unidirectional cannot derive these insights. All numbers are computed over 1000 random samples
from CIFARIO training set and averaged over 5 runs. Additionally we show A between original inputs (X) and controversial stimuli (X)
for a given configuration of m; and m2. We see that controversial stimuli are “hard” to generate for higher STIR scores. Here hardness is
indicated by the amount of /5 perturbation needed to generate controversial stimuli.
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Figure 6. [Role of Random Initialization; CIFAR10] For models trained using the Vanilla crossentropy loss, we find that only initial
layers have high shared invariances. However, when the training procedure explicitly introduces invariances (e.g.,adversarial training),
then all layers converge to having similarly high shared invariances. We see similar trends for ResNet34 and VGG19 here.

AT and MART, we see lower shared invariances even for
VGGl6.s
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Figure 7. [Different Datasets; ResNet34, VGG16 and VGG19 on CIFAR10 and CIFAR100] Similar to the finding of (Kornblith et al.,
2019a) we find that across datasets, initial layers tend to have more shared invariances. However, we also find that shared invariances
increases substantially for all layers with adversarial training (AT).
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Figure 8. [Different Architectures, Penultimate Layer Shared Invariances; CIFAR10] We find that in general ResNets have high
shared invariances when trained using the same loss, but this shared invariance drops across training types. We also see that with AT, even
models with different architectures converge to high shared invariances. Here additionally we show comparison with CKA which does not
provide any faithful estimate of shared robustness and is unformly high for similarly trained models. We also see that this trend holds even

when different seeds are used to generate X',
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Figure 9. [Different Types of Adversarially Robust Training; VGG16 on CIFAR10] We se much high levels of shared invariance for

VGG16 than for ResNet18. Even for VGG16, AT and MART achieve ell,, ball robustness in different ways.




