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Abstract

Neural Processes (NPs) are a popular class of ap-
proaches for meta-learning. Similar to Gaussian
Processes (GPs), NPs define distributions over
functions and can estimate uncertainty in their
predictions. However, unlike GPs, NPs and their
variants suffer from underfitting and often have
intractable likelihoods, which limit their appli-
cations in sequential decision making. We pro-
pose Transformer Neural Processes (TNPs), a new
member of the NP family that casts uncertainty-
aware meta learning as a sequence modeling
problem. We learn TNPs via an autoregressive
likelihood-based objective and instantiate it with a
novel transformer-based architecture. The model
architecture respects the inductive biases inherent
to the problem structure, such as invariance to the
observed data points and equivariance to the unob-
served points. We further investigate knobs within
the TNP framework that tradeoff expressivity of
the decoding distribution with extra computation.
Empirically, we show that TNPs achieve state-of-
the-art performance on various benchmark prob-
lems, outperforming all previous NP variants on
meta regression, image completion, contextual
multi-armed bandits, and Bayesian optimization.

1. Introduction

The goal of meta learning (Schmidhuber, 1987; Vanschoren,
2018) is to learn models that can adapt quickly to unseen
tasks with only a few labeled examples. Since the amount
of labeled data for any new task is limited, we ideally re-
quire the model to have both high accuracy and quantify
the uncertainty in its predictions. This is particularly impor-
tant within sequential decision making, e.g., for Bayesian
optimization (Mockus et al., 1978; Schonlau et al., 1998;
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Shahriari et al., 2015; Hakhamaneshi et al., 2021) and multi-
armed bandits (Cesa-Bianchi & Lugosi, 2006; Riquelme
et al., 2018), where the quantified uncertainty can guide
data acquisition. We call this paradigm uncertainty-aware
meta learning, which is the main focus of our paper.

Neural Processes (NPs) (Garnelo et al., 2018a;b) are a rich
class of models for such problems. NPs offer a flexible way
to modeling distributions over functions, and are trained via
a meta-learning framework that enables rapid adaptation to
new functions at test time. More specifically, NPs are struc-
tured similar to a Variational Autoencoder (VAE) (Kingma
& Welling, 2013) over datasets, wherein we employ a latent
variable model to estimate the conditional distribution over
the labels of the unlabeled (context) points given the set of
labeled (target) points. By amortizing the functional uncer-
tainty in the encoded latent variables, NPs can be quickly
adapted to a new task at test-time.

However, NPs and their variants suffer from two major
drawbacks. First, many NP variants often have intractable
marginal likelihoods due to the presence of latent variables
and instead optimize for a surrogate variational lower bound
of the log-likelihood. The standard justification for using
latent variables is that they can represent functional un-
certainty and improve the predictive performance in some
cases (Le et al., 2018). However, it is also known that
optimizing variational lower bounds of the log-likelihood
does not necessarily lead to a meaningful latent represen-
tation and can require non-trivial adjustments to the objec-
tive (Chen et al., 2016; Alemi et al., 2018). Second, it has
been observed that NPs tend to underfit to the data distribu-
tion. Attentive Neural Processes (ANPs) (Kim et al., 2019)
partly address this problem by incorporating attention mech-
anisms into the NP encoder-decoder architecture. While
ANPs provide a considerably improved fit, these models
tend to make overconfident predictions and have poor per-
formance on sequential decision making problems.

We propose Transformer Neural Processes (TNPs), a new
framework for uncertainty-aware meta learning derived
from a sequence modeling perspective. The learning ob-
jective for TNPs is to autoregressively maximize the con-
ditional log-likelihood of the target points (observed only
during training) conditioned on the context points (observed



Transformer Neural Processes

during training and testing). This removes the need for
latent variables and any variational approximations, while
allowing for an expressive parameterization of the predictive
distribution. We instantiate TNPs via a transformer-based
architecture with a causal mask, similar to GPT-x mod-
els (Radford et al., 2018; 2019; Brown et al., 2020). Such
models have led to state-of-the-art performance of a wide
variety of domains and modalities (Brown et al., 2020; Lu
et al., 2021; Chen et al., 2021). However, vanilla transform-
ers cannot be directly used to parameterize a Neural Process
as they lack invariance to the conditioned tokens and are
not equivariant to the ordering of the target points. We
propose suitable modifications to satisfy these desiderata
by removing positional embeddings, using a novel padding
and masking scheme for the context and target points, and
considering a Monte Carlo approximation to a symmetrized
predictive distribution that is equivariant by design.

Finally, we also propose two variants of TNPs, which can
tradeoff the expressivity of the autoregressive factoriza-
tion with computational tractability and exact equivariance.
These variants consider diagonal and Cholesky approxima-
tions to the covariance matrix of the output distribution. Em-
pirically, we evaluate TNPs on various benchmark problems
proposed in prior works, including meta regression, image
completion, contextual bandits, and Bayesian Optimization
(BO). While meta regression and image completion evalu-
ate the quality of predictions produced by TNPs, contextual
bandits and BO directly measure the performance of TNPs
on sequential decision making tasks. On all these problems,
we observe that TNPs outperform several attention (Kim
et al., 2019; Lee et al., 2020) and non-attention based vari-
ants (Garnelo et al., 2018a;b) of NPs by a large margin.

2. Background
2.1. Uncertainty-Aware Meta Learning

In meta learning, we assume an unknown distribution over
functions, say F. During training, we sample a fixed number
of functions from F and observe a finite set of evaluations
{x;,y;}¥, from each function f : X — ). At test time,
we evaluate the generalization ability of the model on a set
of unseen functions, assumed to be drawn from the same or
similar distribution as F. For each test function, we provide
a small set of labelled training points Dy, and test the
ability of the model to make predictions on a test set Dyeg.

Our focus in this work is on uncertainty-aware meta learning.
That is, we assume that the model outputs a joint predictive
distribution over the entire test set Dis. For example, if we
assume the predictive distribution is a multi-variate Gaus-
sian with a diagonal covariance, we output a mean f; and
standard deviation o; for each input x; € Dy Here, the
0;’s quantify the uncertainty in the model’s predictions.

2.2. Neural Processes

A Neural Process (NP) is a stochastic process that describes
the predictive distribution over a set of unlabelled points
(target) given a training set of labelled points (context) (Gar-
nelo et al., 2018a;b). Additionally, NPs incorporate a latent
variable z to represent the functional uncertainty. Formally,
the likelihood of the NP model is given as:

p(ym+1:N|wm+1:N7 C)

:/p(ym+1:N|9Cm+1:N,Z)p(z|C)dz,

z
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in which C = {z;,y;}7, and T = {@;, y;}}¥,, 4, is the
set of context and target pairs respectively. We note that
there also exists variants of neural processes with no latent
variables; we refer the reader to Section 5 for a detailed
review. As the likelihood is intractable, NPs maximize an
evidence lower bound (ELBO) of the log-likelihood instead:

Ing(ynH»l:N ‘szrlzN; C) >
Eyz1c.1) [log p(Ym+1:N|Tm+1:n3, 2)] — KL(q(2|C, T)HP(Z‘C)()Z)
Equivalently, we can view NPs as a VAE (Kingma &
Welling, 2013) over the target labels conditioned on the
context pairs and the target inputs. The encoder ¢(z|C,T)
is a permutation-invariant function which maps the context
pairs to a distribution over z. In practice, ¢ consists of an
MLP that maps each pair (z;,y;) to its representation, an
aggregator that combines these representations, and another
MLP that outputs the mean and variance of z. The decoder
Pt i1 2) = [T iy Py, 2) predicts the
label for each target independently given the inferred z.

2.3. Transformers

Transformers were proposed by Vaswani et al. (2017) as an
efficient architecture for modeling sequential data. Trans-
formers are composed of an encoder and an decoder, which
both consist of a stack of self-attention layers with residual
connections. The self-attention layer receives n embeddings
{eir}n_ . which are associated with n input tokens, and out-
puts n correspondlng embeddings {e"'}7_,. Each embed-
ding vector e} is first mapped to a key kq, query ¢;, and
value v; via hnear transformations. The output embedding

e?™ is a weighted linear combination of all the input values,
where the weights are given by the normalized dot-product
between its query g; and other keys k;:

out eXp Qz7k'>) .
Zz el by O

Before the first self-attention layer, each input token is
passed through a positional encoder, which incorporates
sequential information into the input sequence. This flexible
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architecture allows transformers to handle input sequences
of arbitrary lengths, and provides a simple yet efficient way
to model the relationships between input tokens. This ar-
chitecture has been the key to many recent breakthroughs
in language and vision (Radford et al., 2019; Dosovitskiy
et al., 2020; Chen et al., 2020; Brown et al., 2020). In
this paper, we study how transformers can be applied to
uncertainty-aware meta-learning problems.

3. Transformer Neural Processes

We propose to solve uncertainty-aware meta learning via the
lens of sequence modeling. In order to do so, we consider
each set of evaluations {x;,y; }¥, that the model observes
during training as an ordered sequence of /N data points.
Since we observe evaluations from multiple such functions,
we segregate a random subset of each training sequence as
the set of context pairs (1., y1.m) as few-shot condition-
ing for the sequence model. Thereafter, we autoregressively
model the predictive likelihood of the remaining (N — m)
target points and maximize the following objective:

,C(@) = Ewl:N,yLNﬂn [10gp9(ym+1:1v ‘ T1:N, ylzm)] “4)
N
Z logpo(yi | 1.4, y1:i-1) | - (5)

i=m-+1

=E

L1:NY1:N,M

Each conditional in the above objective is a univariate Gaus-
sian distribution. In practice, we optimize a Monte Carlo
approximation of the objective in Eq. 5, where we consider a
batch of training functions and their randomly sampled eval-
uations. We uniformly sample an index m that determines
the context and target points for each set of evaluations.
Next, we list the desiderata for the architectures that will be
used for parameterizing the sequence model.

Property 3.1. Context invariance. A model py is con-
text invariant if for any choice of permutation function ™
and m € [17 N — 1]» p@(ym+1:N | xm+1:N7x1:may1:m) =
Po(Ym+1:N | Tm+41:Ns Lr(1):7(m)s yw(l):ﬂ'(m))'

Property 3.2. Target equivariance. A model py is target
equivariant if for any choice of permutation function m
andm € [1,N — 1}, pg(Ym+1:N | Tmt1:N, T1im, Y1:m) =
po(yﬂ(m,-‘rl):w(]\/) | ifw(m+1)m(N),351;m,y1:m)-

Context invariance (Property 3.1) requires that for any un-
derlying function f, the predictions for the target points
should not change if we permute the context points. Tar-
get equivariance (Property 3.2) requires that whenever we
permute the target inputs {z;}~ ., the predictions are
permuted accordingly. We instantiate the objective in Eq. 5
with a transformer architecture as shown in Figure 1. Stan-
dard transformers such as GPT (Radford et al., 2018) em-
ploy a casual mask to enforce the autoregressive structure
needed for Eq. 5. However, this naive application of au-
toregressive transformers fails to satisfy the desiderata in

Property 3.1 and Property 3.2. Since this model treats x;
and y; as two separate tokens, we need to add them with a
positional embedding vector for the model to associate them
as a pair (z;,y;). This positional encoding, unfortunately,
makes the model’s output depend on the permutation of the
target points. Further, autoregressive transformers also vio-
late target equivariance as the ordering of points influences
their embeddings and hence, different orderings lead to non-
equivariant predictions. Next, we present Transformer Neu-
ral Processes (TNPs), a family of transformer-based neural
processes that mitigates the aforementioned challenges.

3.1. Autoregressive Transformer Neural Process

Our first attempt at TNPs builds on the autoregressive fac-
torization in Eq. 5. A vanilla transformer violates Property
3.1 due to its use of positional encodings. However, these
encodings are also useful for drawing associations between
x; and y;. To address this challenge, we first concatenate x;
and y; to form a single token, which allows us to remove
positional encodings and yet treat them as a pair. While
this scheme works well for the context points (z;, y;)™,,
we cannot apply it naively for any target point ¥;~.,, that
depends on previous pairs (z;, y])z;ll and its input z;. To
respect the autoregressive structure for such points, we in-
troduce auxiliary tokens consisting of x;~.,,, padded with a
dummy token (0 in our case) and append them to our origi-
nal sequence. Our padded sequence consists of IV real pairs
(zi,y:), and N — m padded pairs (z;,0)Y,

.., (zN,0)}. (6)

To preserve the autoregressive ordering in (5), we design a
masking mechanism in the attention layer such that:

(1) the context points (x;, y;)™, only attend to themselves;
(2) the target point (x;, y;) for (¢ > m) attends to all context
points and the previous target points (x;, y; )é-:m T

(3) the padded target point (z;,0) for ( > m) attends to all
context points and the previous target points (x;, y]);;in 1
We refer to this model as Autoregressive Transformer Neu-
ral Processes (TNP-A). Figure 1 illustrates the model, and
Figure 2 shows an example mask with N =5 and m = 2.
It satisfies Property 3.1 as a consequence of the masking
scheme described above. For satisfying Property 3.2, we
follow a symmetrization argument. Here, we note that any
function can be made equivariant to a group by averaging
the function evaluations over the entire group (Murphy et al.,
2018). Formally, let us denote our joint distribution of inter-
est as Pg (Ym+1:N | T1:N,Y1.m ). We define py in terms of a
base autoregressive model py as:

T = {(xlayl)v L) (IN7yN)a (xm+170)7

ﬁ@(ym—&-l:N‘Il:Nv yl:m)
=E- [pg (yﬂ'(m+1):ﬂ'(N) ‘xw(m+1):7r(N)a T1:m, ylm)] @)

Since the permutation group is intractable to enumerate,
we instead consider a Monte Carlo average over randomly
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Figure 1. Illustration of the TNP-A architecture. The architecture specifies a custom masking pattern between the contexts, targets, and
padded targets to respect autoregressive prediction order. For TNP-D and TNP-ND, we remove the targets from the input sequence.

- 00000000
- 00000000
~-=0O0000UO0D0
~=00000000
-=00000000
-~ 0000000
-~ 0000000
-~ 000000 JYy

Ty T2,Y2 T3Y3 TayYs TsYs 23,0 24,0 5,0

Figure 2. An example mask with N = 5 and m = 2. Each token
is allowed to attend to other filled tokens on its corresponding
row. The context points (x;,;)7—; attend to themselves. Each
target point (x;,y;) for ¢ > 2 attends to the context points and
the previous target points (;,y;)%—3. Bach padded target point
(z4,0) for ¢ > 0 attends to the context points and the previous
target points (x;, y; );;é This ensures the prediction for y; (¢ > 2)
only depends on the context and the previous target points.

sampled permutations to approximate pg. Even though the
use of Monte Carlo implies that we satisfy Property 3.2
only in the limit, we can compute the predictive distribution
tractably during training and evaluation. Next, we introduce
alternate decoders for TNPs that exactly satisfy Property 3.2

while trading off expressivity for computational tractability.

3.2. Diagonal Transformer Neural Process

We can simplify the objective in (5) by assuming that the
target points ¥,,+1.n are conditionally independent given

the context points and the inputs x,,1.. In other words,

we consider the factorization:

Hi\;m-ﬁ-l pﬁ(yz|$zv LT1:m, yl:m)-
®)

As the target points are independent, we remove

{(@;,y;),, 41} from the input sequence in (6) and only

p@(ym-&-l:N'xl:Nv yl:m) =

feed the sequence consisting of the context points and the
padded target points {(x;,0)/" . }. This decoding distri-
bution can be seen as a multivariate normal distribution with
a diagonal covariance matrix and hence, we refer to it as
Diagonal Transformer Neural Processes (TNP-D). Unlike
TNP-A, we do not need to average over permutations to
satisfy Property 3.2. However, for many scenarios, the inde-
pendence assumption between the target points can be very
strong for accurately modeling the underlying function.

3.3. Non-Diagonal Transformer Neural Process

Finally, we introduce Non-Diagonal Transformer Neural
Processes (TNP-ND), the third variant of TNPs that balances
between the tractability of TNP-D and the expressivity of
TNP-A while satisfying both Property 3.1 and Property 3.2.
We parameterize the decoding distribution as a multivariate
normal distribution with a non-diagonal covariance matrix:

p9(ym+1:N ‘ T1:N, yl:m)

:N(merl:N ‘ M@(xlzNyylzm)7Ze(ml:Nayl:m))- (9)
Similar to TNP-D, we remove {(z;,;)X,,,,} from the
input sequence as the target points are predicted jointly.
Since computing the full covariance matrix can be expensive,
we consider two approximations to parameterize >:

(1) Cholesky decomposition: ¥ = LL™, where L is a lower
triangular matrix with positive diagonal values; and

(2) Low-rank approximation: ¥ = exp(D) + AAT, where
D is a diagonal matrix and A is a low-rank matrix.

For the main experiments of this paper, we use the Cholesky
decomposition due to its computational convenience. The
results for the low-rank approximation are in Appendix A.1.

For a distribution with dimension n, we need a neural net-
work that outputs % values to represent the lower trian-
gular matrix L. In practice, the dimension of the distribution
depends on the number of the target points, which varies
during both training and evaluation. This means we cannot
simply use a neural network to directly output L. We in-
stead parameterize the decoder as follows. First, the output
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Table 1. Comparison of TNPs with the baselines on log-likelihood
of the target points on various GP kernels. We train each method
with 5 different seeds and report the mean and standard deviation.

Method RBF Matérn 5/2 Periodic
CNP 0.26 4+ 0.02 0.04 4+ 0.02 —1.40 £0.02
CANP 0.79 + 0.00 0.62 + 0.00 —7.61+0.16
NP 0.27 +£0.01 0.07 £ 0.01 —1.154+0.04
ANP 0.81 4+ 0.00 0.63 4 0.00 —5.024+0.21
BNP 0.38 +0.02 0.18+0.02 —0.96 &+ 0.02
BANP 0.82 +0.01 0.66 = 0.00 —-3.09+0.14
TNP-D 1.39 +0.00 0.95 +0.01 —3.53+0.37
TNP-A  1.63 £0.00 1.21 4 0.00 —2.26 £0.17
TNP-ND  1.46 £ 0.00 1.02 +0.00 —4.13+0.33

vectors z,,+1.n of the last masked self-attention layer are
fed to an MLP that produces the mean values ft,,41.n. We
then pass z,,+1.n through another head consisting of an ad-
ditional stack of self-attention layers, and a final projection
layer (an MLP) that outputs N — m vectors h,,1.5. Each
vector h; € RP, is projected to a dimension p. The lower
triangular matrix L is then computed as:

L=lower(HH"), H € R"*?, (10)

where H is the row-wise stack of {h;}, ., lower(L) re-
moves the upper triangular parts of L, and n = N —m is the
number of the target points. While this particular parameter-
ization does not universally represent all the possible lower
triangular matrices, it provides two main benefits. First, it
allows us to parameterize a multivariate normal distribution
with an arbitrary number of target points. Second, the space
complexity of this parameterization is only O(n) compared
to O(n?) if we directly output the components of L.

4. Experiments

‘We evaluate Transformer Neural Processes (TNPs) on sev-
eral tasks: regression, image completion, Bayesian opti-
mization, and contextual bandits. This set of experiments
has been used extensively to benchmark NP-based models
in prior works (Garnelo et al., 2018b; Kim et al., 2019; Lee
et al., 2020). We compare TNPs with other members of the
NP family, namely Conditional Neural Processes (CNPs)
(Garnelo et al., 2018a), Neural Processes (NPs) (Garnelo
et al., 2018b), and Bootstrapping Neural Processes (BNPs)
(Lee et al., 2020), as well as their attentive version (Kim
et al., 2019), which are CANPs, ANPs, and BANPs, respec-
tively. We have open-sourced the codebase for reproducing
our experiments.! The implementation of the baselines is
borrowed from the official implementation of BNPs.?

"https://github.com/tung-nd/INP-pytorch
https://github.com/juho-lee/bnp

Original Task BANP TNP-D TNP-A

TNP-ND

Figure 3. Completed images produced by the best baseline and
TNPs from 100 context points. Original images are drawn ran-
domly from EMNIST unseen classes. For stochastic models, we
sample multiple times and average the results.

4.1. 1-D Regression

Problem: Given a set of context points {x;,y;}, that
come from an unknown function f, we train the model to
make predictions for a set of target points {a;}, ., that
come from the same function (Garnelo et al., 2018b).

Training: In each epoch of training, we draw B different
functions from a Gaussian Process prior with an RBF ker-
nel: f; ~ GP(m,k), where m(z) = 0 and k(z,2’) =
o7 exp(— (r;f;)2 ). The hyperparameters of the GP (¢ and
o y) are randomized for each function, allowing the model
to learn from a more diverse set of functions. For each
fi, we choose IV random locations to evaluate, and sample
an index m that splits the sequence to context and target
points. For all methods, ¢ ~ 1/[0.6,1.0), 0, ~ 1/[0.1,1.0),
B =16, N ~U[6,50), m ~ U[3,47).

Evaluation: We test the trained models on unseen functions
that are drawn from GPs with RBF, Matérn 5/2 and Peri-
odic kernels. The number of evaluation points /N and the
number of context points m are generated from the same uni-
form distribution as in training. The evaluation set contains
48000 functions for each kernel. We evaluate all methods
on log-likelihood of the target points. We refer the readers
to Appendix B.1 for more evaluation metrics.

Results: Table 1 shows that TNPs outperform the other
methods on 2/3 kernels by a large margin. Even though
TNPs underperform on regressing functions from the pe-
riodic kernel, we show later in Section 4.4 that they can
optimize the same class of functions better than the base-
lines. As expected, among three variants of TNPs, TNP-A
achieves the best likelihood due to the use of an autoregres-
sive decoder, followed by TNP-ND, and finally TNP-D.

4.2. Image completion

Problem: The model observes a subset of pixel values of an
image and completes the rest. This can be cast as a 2-D meta-
regression problem, in which x denotes the coordinates of
a pixel, and y denotes the corresponding pixel value. Each
image can be thought of as a unique function that maps from
coordinate to pixel intensity (Garnelo et al., 2018b).
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Table 2. Comparison of TNPs with the baselines on log-likelihood of the target points on two datasets: EMNIST (left) and CelebA (right).
We train each method with 5 different seeds and report the mean and standard deviation.

EMNIST
Method CelebA Method Seen classes (0-9)  Unseen classes (10-46)
CNP 2.154+0.01 CNP 0.73 +0.00 0.49 +0.01
CANP 2.66 +£0.01 CANP 0.94 +£0.01 0.82 +£0.01
NP 2.48 £0.02 NP 0.79 +£0.01 0.59 +0.01
ANP 2.90 £0.00 ANP 0.98 +0.00 0.89 +0.00
BNP 2.76 £0.01 BNP 0.88 +£0.01 0.73 +£0.01
BANP 3.09 £0.00 BANP 1.01 +0.00 0.94 £0.00
TNP-D 3.89 £0.01 TNP-D 1.46 £ 0.01 1.31 £ 0.00
TNP-A  5.82 + 0.01 TNP-A 1.54 £+ 0.01 1.41 £+ 0.01
TNP-ND  5.48 +£0.02 TNP-ND 1.50 + 0.00 1.31 £ 0.00

. : :
1
\ . \ . \\\
4 4 - 4
-1 0 1 -1 0 1
-1 0 1

Figure 4. The wheel bandit problem with varying values of §.

Training: We use two datasets for this experiment: EM-
NIST (Cohen et al., 2017) and CelebA (Liu et al., 2018).
EMNIST contains black and white images of handwritten
letters, and CelebA contains colored images of celebrity
faces. We down-sample each image to 32 x 32. For EM-
NIST, we only use 10 classes for training. Similar to the
1-D regression experiment, we randomly select subsets of
pixels as context points and target points. For both datasets,
N ~ U[6,200),m ~ U[3,197). The x values are rescaled
to [—1, 1] and the y values are rescaled to [—0.5,0.5].

Evaluation: We evaluate each method on log-likelihood of
the target points on held-out datasets. The number of pixels
and the number of context points are generated from the
same uniform distribution as in training.

Results: Table 2 show significant improvements of TNPs
over the baselines. Similar to the 1-D regression, TNP-
A achieves the best likelihood, followed by TNP-ND and
TNP-D. For EMNIST, the performance of TNPs on unseen
classes is only slightly worse than on seen classes, indicat-
ing better generalization compared to the other methods.
Figure 3 shows that TNPs produce noticeably better com-
pleted images than the best baseline. We refer the readers to
Appendix B.2 for different samples produced by TNPs.

4.3. Contextual bandits

Problem: We compare TNPs with the baselines on the
wheel bandit problem introduced in Riquelme et al. (2018)

(Figure 4). In this problem, a unit circle is divided into a low-
reward region (blue area) and four high-reward regions (the
other four coloured areas). A scalar ¢ determines the size of
the low-reward region, and other regions have equal sizes.
The agent does not know the underlying ¢, and has to choose
among k = 5 arms given its coordinates X = (X1, X32)
within the circle. If || X|| < 4, the agent falls within the
low-reward region (blue). In this case the optimal action is
k = 1, which provides a reward r ~ N(1.2,0.012), while
all other actions only return r ~ A(1.0,0.012). If the agent
falls within any of the four high-reward region (|| X|| > 9),
the optimal arm will be one of the remaining four k = 2 — 5,
depending on the specific area. Pulling the optimal arm here
results in a high reward r ~ N(50.0,0.012), and as before
all other arms receive N(1.0,0.012) except for arm k = 1
which always returns A/ (1.2,0.012).

Training: We sample a dataset of B different wheel prob-
lems {&;} 2 |, which are drawn from a uniform distribution
d ~ U(0,1). For each problem, we sample N points to
evaluate and pick m points as context, in which each point
is a tuple (X, r) of the coordinates X and the correspond-
ing reward values r of all 5 arms. The training objective is
to regress the reward values from the coordinates. We set
B =8, N = 562, m = 512 in our experiments.

Evaluation: We test TNPs and the baselines on problems
with varying J values. We run with 50 different seeds for
each value of 9, and each run consists of 2000 steps. In
each step, the agent predicts the reward values of 5 arms
based on the coordinates X, chooses an arm according to
the Upper Confidence Bound (UCB) algorithm and receives
the ground-truth reward value for the chosen arm. We use
cumulative regret as the evaluation metric. See Appendix
B.3 for simple regret results.

Results: Table 3 shows that TNPs outperform all base-
lines by a large margin on all settings, especially for harder
problems (higher values of §). Moreover, the performance
of Transformers only slightly drops when the difficulty in-



Transformer Neural Processes

Table 3. Comparison of TNPs with the baselines on cumulative regret on contextual bandit problems with different values of 6. We run
each model 50 times for each value of § and report the mean and standard deviation.

Method 6=0.7 0=0.9 6 =0.95 0 =0.99 6 =0.995 0 = 0.999 Average

Uniform  100.00 +£1.18 100.00 £3.03 100.00 £4.16 100.00 +7.52 100.00 £8.11 100.00 £7.96 100.00 £ 5.97
CNP 4.08 £0.29 8.14 £0.33 8.01 £ 0.40 26.78 £0.85  38.25£1.01 93.17+£281  29.74 £ 30.85
CANP 8.08+£9.93 11.69 £11.96 24.49+£13.25 47.33+20.49 49.59£1787 33.29£5.05 29.08 £21.28
NP 1.56 £0.13 2.96 +£0.28 4.24 £0.22 18.00£0.42  25.53+£0.18 62.73+1.49 19.17+21.36
ANP 1.62 +0.16 4.05+0.31 5.39 £ 0.50 19.57 £0.67  27.65+£0.95 73.36+5.95 21.94+24.92
BNP 62.51 £1.07 57.49+£2.13 58224227 5891+£3.77 6250+485 T77.46+£6.18 62.85+7.78
BANP 4.23£16.58 12.42+£29.58 31.10+£36.10 52.59£18.11 49.55+14.52 45.45+£11.71 32.56 +29.43
TNP-D 1.18 +£0.94 1.70 £0.41 2.55+£0.43 3.57+1.22 4.68+1.09 9.56 £+ 0.44 3.87+291
TNP-A 3.67£4.88 4.04 £2.38 4.29 £+ 2.36 5.79 £5.27 9.29 £7.62 6.13 4 2.50 5.54 £ 4.98
TNP-ND 1.76 £ 0.61 1.41 £+£0.98 1.61+1.65 4.98 £2.84 7.22 £3.28 13.66 = 2.92 5.11+4.94
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Figure 5. Regret performance on 1D BO tasks. For each kernel, we generate 100 functions and report the mean and standard deviation.
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Figure 6. Regret performance on 2D and 3D BO tasks. For each function, we run BO for 100 times with different seeds and report the
mean and standard deviation.

creases, which is a significant improvement over the base-  attentive counterparts CNPs, NPs, and BNPs, respectively.
lines, as these methods barely work for hard problems. We
also note that for other NP-based methods, using attention 4.4, Bayesian Optimization

hurts the performance. This can be clearly seen from the ) o )
table, as CANPs, ANPs and BANP:s are inferior to the non- Problem: The goal of Bayesian optimization (BO) (Frazier,
20138) is to optimize a black-box function f(z) that we can
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evaluate but do not have access to the gradient information.
The BO process runs in a loop, where in each iteration, we
use a surrogate function to estimate the unknown function
f, and an acquisition function to choose the next point
to evaluate based on the estimation. We use TNPs and
the baselines as the surrogate function, and UCB as the
acquisition function. We consider both one-dimensional
(1D) and multi-dimensional (2D and 3D) settings.

Training: Training in the one-dimensional setting is identi-
cal to training in Section 4.1. When z is multi-dimensional,
we use GPytorch (Gardner et al., 2018) to generate train-
ing data from multivariate GPs with RBF kernel. We use
N ~ U[60,128),m ~ U[30,98) for the 2D setting, and
N ~ U[128,256), m ~ U[64,192) for the 3D setting.

Evaluation: In the 1D setting, the objective functions are
generated from GPs with RBF, Matérn 5/2, and Periodic
kernels. In the multi-dimensional setting, we use various
benchmark functions in the optimization literature (Kim &
Choi, 2017; Kim, 2020), and Botorch (Balandat et al., 2020)
is used as the implementation of the overall BO process (e.g.,
optimization and acquisition function). For each objective
function, we run BO for 100 iterations, and simple regret is
used as the evaluation metric.

Results: Figure 5 shows that TNPs outperform the baselines
significantly in all three kernels. This includes the Periodic
kernel, where TNPs were outperformed by other methods
for meta regression (Table 1), suggesting that simple meta
regression metrics may not be sufficient for model selec-
tion in online decision making. Figure 6 shows the results
for the multi-dimensional setting. All three TNP variants
outperform the baselines in at least 3/6 tasks: 2D Ackley,
3D Ackley, and 3D Cosine, and achieve competitive results
to the best baseline in 2D Dropwave and 2D Michalewicz.
TNP-ND is the best variant in this setting, which beats the
baselines in 5/6 tasks, followed by TNP-D, which outper-
forms the baselines in 4/6 tasks. TNP-A also performs well
and is competitive on all but the 3D Rastrigin task.

4.5. Memory and time complexity of TNPs

The major successes of Transformers in language (Brown
et al., 2020) and vision (Dosovitskiy et al., 2020) largely
attribute to the ability to scale to billions of parameters, thus
having unprecedented results. Similarly, one can claim that
the superior performance of TNPs is merely due to having
more parameters than the baselines. Therefore, we compare
the parameter counts, training and prediction time of TNPs
and the baselines in Table 4. All models are comparable,
barring TNP-A which as expected, incurs a higher prediction
time because of the autoregressive nature. This indicates that
scaling is not all we need, but the transformer architecture
itself is important too.

Table 4. Number of parameters, training time and prediction time
of TNPs and the baselines. We measure run time on the 1-D
regression task on an RTX2080Ti, with 1000 batches of size 16.

Method Prediction (s)

# Parameters  Training (s)

CNP 215682 11.20 0.76
CANP 331906 20.05 1.64
NP 232194 16.79 1.24
ANP 348418 21.07 2.15
BNP 248450 20.07 4.86
BANP 364674 24.07 16.72
TNP-A 222082 20.14 337.09
TNP-D 222082 20.13 2.75
TNP-ND 332821 26.89 4.05
5. Related Work

Neural Processes. The Conditional Neural Process (CNP)
(Garnelo et al., 2018a) was the first member of the NP fam-
ily. CNPs encode the context points to a deterministic latent
vector z and hence do not have a notion of functional un-
certainty. The Neural Process (NP) (Garnelo et al., 2018b)
was proposed to address these shortcomings by introducing
stochasticity in the form of latent variables. Le et al. (2018)
made a careful empirical examination of different objec-
tives and hyperparameter choices when training a Neural
Process. Since then, many extensions have been proposed
which improve NPs by building translation equivariance
(Gordon et al., 2019), incorporating attention to address
underfitting (Kim et al., 2019), using bootstrapping to over-
come the limitations of Gaussian assumption on the latent
variables (Lee et al., 2020), and modeling predictive corre-
lations (Bruinsma et al., 2021). In addition, many works
have also extended NPs to a wider range of problems, which
include modeling a sequence of stochastic processes (Singh
et al., 2019) and modeling stochastic physics fields (Holder-
rieth et al., 2021). Mathieu et al. (2021) recently proposed
a contrastive learning framework that replaces the recon-
struction objective in NP to learn a better representation. In
Xu et al. (2020), the authors proposed a meta-learner based
on CANP that achieved good results on large scale image
classification. Grover et al. provide a series of fine-grained
diagnostics for the uncertainty modeled via various neural
processes. Finally, Galashov et al. (2019) empirically stud-
ied the effectiveness of NPs as a meta-learner in various
sequential decision making problems.

Transformers. The transformer architecture was intro-
duced by Vaswani et al. (2017) for flexible modeling of
natural language. In recent years, transformers have made
breakthroughs in language (Devlin et al., 2018; Radford
et al., 2018; 2019; Brown et al., 2020) and vision (Dosovit-
skiy et al., 2020; Radford et al., 2021; Chen et al., 2020).
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Recent works (Lee et al., 2019; Kossen et al., 2021) have
also applied transformers to modeling the relationship be-
tween different data points, in addition to modeling inter-
actions between components of the same data point. Set
Transformers (Lee et al., 2019) are closely related to TNPs,
and were proposed to solve set-input problems, such as
finding the maximum number in a set or counting unique
characters. Set Transformers adopt the transformer architec-
ture to model the interactions between items of the same set
and remove positional encodings for permutation invariance.
However, our focus in this work is on uncertainty-aware
meta learning. For such tasks, TNPs incorporate important
architectural design choices such as the input representation
and masking mechanism. It is crucial for TNPs to model
the interaction between the inputs z’s as well as the rela-
tionship between x and y to accurately infer the underlying
function. Finally, Chen et al. (2021) proposed an autore-
gressive transformer based model for offline reinforcement
learning, which was extended to the online setting by Zheng
et al. (2022). Besides differences in the agent setup, this
work considers trajectories from a single task, unlike our
focus on meta-learning.

6. Discussion

Neural Processes offer a promising approach for learning
flexible stochastic processes directly from data. However,
it is unclear which aspects of their design are essential for
downstream applications in uncertainty-aware meta learn-
ing, such as regression and sequential decision making. Pop-
ular claims, such as the use of latent variables for represent-
ing functional uncertainty and diverse sampling, have mixed
empirical evidence (Garnelo et al., 2018b) and a determinis-
tic path between the encoder and decoder is important for
good performance (Le et al., 2018). Moreover, the stan-
dard evidence lower bounds for variational autoencoders
(including NPs) can completely ignore the latent code with
powerful decoders (Chen et al., 2016; Alemi et al., 2018).

In this regard, we proposed Transformer Neural Processes
(TNPs), an alternative framing of uncertainty-aware meta
learning via sequence modeling. TNPs optimize an autore-
gressive modeling objective and benefit from the use of a
transformer backbone (Vaswani et al., 2017; Radford et al.,
2018). While attention mechanisms have also previously
been used for parameterizing NPs (Kim et al., 2019), we
showed that replacing the entire architecture stack can drasti-
cally improve performance across various benchmark tasks.
We also showed these empirical benefits cannot be attributed
solely to the use of a more expressive decoding distribution
as in TNP-A, but can also be obtained to a good degree
via tractable and equivariant (but relatively less expressive)
parameterizations such as TNP-D and TNP-ND.

In the future, we are keen to further build on the merits of

the TNP architecture for scaling to high-dimensional prob-
lems beyond current benchmarks. We are also interested
in pursuing future work towards a clean separation of func-
tional and point uncertainties (as in GPs), potentially via
recent advances in stochastic transformers (Lin et al., 2020).

Acknowledgements

We would like to thank Hritik Bansal, Shashank Goel, Sid-
darth Krishnamoorthy, Satvik Mashkaria, and Tuan Pham
for the insightful discussions during the early development
of the paper. We also want to thank the IDRE’s Research
Technology group for the GPU computing resources on the
UCLA Hoffman2 Cluster.

References

Alemi, A., Poole, B., Fischer, 1., Dillon, J., Saurous, R. A.,
and Murphy, K. Fixing a broken elbo. In International
Conference on Machine Learning, pp. 159—168. PMLR,
2018.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B.,
Wilson, A. G., and Bakshy, E. Botorch: A framework for
efficient monte-carlo bayesian optimization. Advances in
neural information processing systems, 33, 2020.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Bruinsma, W. P, Requeima, J., Foong, A. Y., Gordon, J.,
and Turner, R. E. The gaussian neural process. arXiv
preprint arXiv:2101.03606, 2021.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X.,
Singh, A., Richemond, P. H., McClelland, J., DeepMind,
S., and Hill, F. Data distributional properties drive emer-
gent in-context learning in transformers. CoRR, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan,
D., and Sutskever, I. Generative pretraining from pixels.
In International Conference on Machine Learning, pp.
1691-1703. PMLR, 2020.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal,
P., Schulman, J., Sutskever, 1., and Abbeel, P. Variational
lossy autoencoder. arXiv preprint arXiv:1611.02731,
2016.



Transformer Neural Processes

Chung, Y., Char, 1., Guo, H., Schneider, J., and Neiswanger,
W. Uncertainty toolbox: an open-source library for assess-
ing, visualizing, and improving uncertainty quantification.
arXiv preprint arXiv:2109.10254, 2021.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
nist: Extending mnist to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp- 2921-2926. IEEE, 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Foong, A. Y., Bruinsma, W. P., Gordon, J., Dubois, Y.,
Requeima, J., and Turner, R. E. Meta-learning stationary
stochastic process prediction with convolutional neural
processes. arXiv preprint arXiv:2007.01332, 2020.

Frazier, P. I. A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Galashov, A., Schwarz, J., Kim, H., Garnelo, M., Saxton,
D., Kohli, P., Eslami, S., and Teh, Y. W. Meta-learning
surrogate models for sequential decision making. arXiv
preprint arXiv:1903.11907, 2019.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q.,
and Wilson, A. G. Gpytorch: Blackbox matrix-matrix
gaussian process inference with gpu acceleration. arXiv
preprint arXiv:1809.11165, 2018.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 1704-1713.
PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. arXiv preprint arXiv:1910.13556, 2019.

Grover, A., Tran, D., Shu, R., Poole, B., and Murphy, K.
Probing uncertainty estimates of neural processes.

Hakhamaneshi, K., Abbeel, P., Stojanovic, V., and Grover,
A. Jumbo: Scalable multi-task bayesian optimization us-
ing offline data. arXiv preprint arXiv:2106.00942, 2021.

Holderrieth, P., Hutchinson, M. J., and Teh, Y. W. Equiv-
ariant learning of stochastic fields: Gaussian processes
and steerable conditional neural processes. In Interna-
tional Conference on Machine Learning, pp. 4297-4307.
PMLR, 2021.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes. arXiv preprint arXiv:1901.05761, 2019.

Kim, J. Benchmark functions for bayesian opti-
mization. https://github.com/jungtaekkim/
bayeso-benchmarks, 2020.

Kim, J. and Choi, S. BayesO: A Bayesian optimization
framework in Python. https://bayeso.org, 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth,
T., and Gal, Y. Self-attention between datapoints: Going
beyond individual input-output pairs in deep learning.
arXiv preprint arXiv:2106.02584, 2021.

Le, T. A., Kim, H., Garnelo, M., Rosenbaum, D., Schwarz,
J., and Teh, Y. W. Empirical evaluation of neural pro-
cess objectives. In NeurIPS workshop on Bayesian Deep
Learning, 2018.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and
Teh, Y. W. Set transformer: A framework for attention-
based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning, pp. 3744-3753.
PMLR, 2019.

Lee, J., Lee, Y., Kim, J., Yang, E., Hwang, S. J., and Teh,
Y. W. Bootstrapping neural processes. arXiv preprint
arXiv:2008.02956, 2020.

Lin, Z., Winata, G. L., Xu, P, Liu, Z., and Fung, P. Varia-
tional transformers for diverse response generation. arXiv
preprint arXiv:2003.12738, 2020.

Liu, Z., Luo, P., Wang, X., and Tang, X. Large-scale celeb-
faces attributes (celeba) dataset. Retrieved August, 15
(2018):11, 2018.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Pretrained
transformers as universal computation engines. arXiv
preprint arXiv:2103.05247, 2021.

Mathieu, E., Foster, A., and Teh, Y. W. On contrastive
representations of stochastic processes. arXiv preprint
arXiv:2106.10052, 2021.

Mockus, J., Tiesis, V., and Zilinskas, A. The application
of bayesian methods for seeking the extremum. Towards
global optimization, 2(117-129):2, 1978.


https://github.com/jungtaekkim/bayeso-benchmarks
https://github.com/jungtaekkim/bayeso-benchmarks
https://bayeso.org

Transformer Neural Processes

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro,
B. Janossy pooling: Learning deep permutation-
invariant functions for variable-size inputs. arXiv preprint
arXiv:1811.01900, 2018.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding with unsupervised
learning. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020,
2021.

Riquelme, C., Tucker, G., and Snoek, J. Deep bayesian
bandits showdown: An empirical comparison of bayesian
deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universitit Miinchen,
1987.

Schonlau, M., Welch, W. J., and Jones, D. R. Global ver-
sus local search in constrained optimization of computer
models. Lecture Notes-Monograph Series, pp. 11-25,
1998.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148-175, 2015.

Singh, G., Yoon, J., Son, Y., and Ahn, S. Sequential neural
processes. arXiv preprint arXiv:1906.10264, 2019.

Vanschoren, J. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Xu, J., Ton, J.-F., Kim, H., Kosiorek, A., and Teh, Y. W.
Metafun: Meta-learning with iterative functional updates.
In International Conference on Machine Learning, pp.
10617-10627. PMLR, 2020.

Zheng, Q., Zhang, A., and Grover, A. Online decision
transformer. In ICML, 2022.



Supplementary Materials to Transformer Neural Processes

A. Implementation details

A.1. Non-Diagonal Transformer Neural Processes
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Figure 7. The decoder architecture of TNP-ND.

Figure 7 depicts the decoder architecture of TNP-NP presented in section 3.3, in which {2} .1 are the output of the last

transformer decoder. Given {h;}?_, ., the lower triangular matrix of the Multivariate Normal distribution is computed as:
L=lower(HH"), H € R"*?, (11)

in which lower(L) removes the upper triangular parts of L, and n = N — m is the number of the target points.

A.2. Contextual bandits

There is a crucial problem mismatch between training and evaluation. In training, we are given the reward values for all the
arms, while during test time, we can only observe the reward value for the arm that we actually select, and the reward for all
other arms will be drawn from a standard Gaussian distribution. To alleviate this problem, during training of TNPs, we
randomly drop reward values for some arms of the context points and make the model to regress the ground-truth of those
arms. This closes the gap between training and testing. We note that we also tried using this trick for other NP variants but it
did not improve the performance.

A.3. Hyperparameters

In this section we present the hyperparameters that we used to train TNPs in the experiments. For the baselines, we use the
hyperparameters reported in Lee et al. (2020).

1-D regression

¢ Model dimension: 64
* Number of embeddings layers: 4
¢ Feed forward dimension: 128

¢ Number of attention heads: 4
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* Number of transformer layers: 6

* (TNP-ND) Number of self-attention layers on {z;}}* . : 2
* (TNP-ND) Projection dimension: 20

e (TNP-ND) Number of projection layers: 4

* Dropout: 0.0

* Number of training steps: 100000

* Learning rate: 5e~* with Cosine annealing scheduler
Image completion

* Model dimension: 64

* Number of embeddings layers: 4

* Feed forward dimension: 128

* Number of attention heads: 4

* Number of transformer layers: 6

¢ (TNP-ND) Number of self-attention layers on {z;}}* . : 2
* (TNP-ND) Projection dimension: 20

e (TNP-ND) Number of projection layers: 4
* Dropout: 0.0

* Batch size: 100

* Number of training epochs: 200

* Learning rate: 5e~* with Cosine annealing scheduler
Contextual bandits

* Model dimension: 16

e Number of embeddings layers: 3

* Feed forward dimension: 64

* Number of attention heads: 1

e Number of transformer layers: 4

* (TNP-ND) Number of self-attention layers on {2} . : 2
* (TNP-ND) Projection dimension: 20

* (TNP-ND) Number of projection layers: 4

* Dropout: 0.0

* Number of training epochs: 100000

* Learning rate: 5e~* with Cosine annealing scheduler

* Drop rate of reward values during training: 0.5
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Bayesian optimization

* Model dimension: 64

* Number of embeddings layers: 4
* Feed forward dimension: 128

* Number of attention heads: 8

* Number of transformer layers: 6

(TNP-ND) Number of self-attention layers on {z; } Y 4102

* (TNP-ND) Projection dimension: 20

(TNP-ND) Number of projection layers: 4
* Dropout: 0.0
e Number of training steps: 100000

* Learning rate: 5e~* with Cosine annealing scheduler

B. Additional results

B.1. 1-D regression with additional metrics

We compare TNPs and the baselines on various metrics, which include root-mean-square error, calibration error, and
log-likelihood. The metrics are all computed on the predictions of the target points by using the Uncertainty Toolbox (Chung
etal., 2021).

Table 5 shows that three variants of TNPs outperform the baselines on all metrics in 2/3 kernels. There is an interesting
pattern among the NP-based methods: while using attention nearly always leads to better accuracy (CANPs, ANPs,
BANPs versus CNPs, NPs, BNPs), it often results in poorer calibration. TNPs have the best of both worlds, since they are
competitively accurate and calibrated in most tasks. The three variants achieve similar accuracy and degree of calibration,
while TNP-A is the best variant with respect to log-likelihood metric.
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Table 5. Comparison of TNPs with the baselines on various GP kernels and evaluation metrics. We train 5 instances with different seeds

for each method and report the mean and std.

Metric Method RBF Matérn 5/2 Periodic
CNP 0.278 £0.003 0.310 +0.003 0.652 £+ 0.001
CANP 0.193 £ 0.000 0.228 4+ 0.000 0.699 + 0.002
NP 0.282 £ 0.003 0.315 4+ 0.003 0.650 £ 0.002
ANP 0.193 £ 0.001 0.230 4 0.000 0.703 £+ 0.002
RMSE BNP 0.269 £ 0.003 0.301 +=0.003  0.649 + 0.002
BANP 0.192 £ 0.001 0.228 £ 0.001 0.701 £ 0.008
TNP-D 0.177 £ 0.001 0.222 £+ 0.000 0.664 £ 0.014
TNP-A 0.178 =0.000  0.222 4 0.000 0.660 & 0.002
TNP-ND  0.180 4 0.001 0.223 4+ 0.000 0.670 £ 0.009
CNP 0.078 +£0.002 0.051 4+ 0.000 0.143 +£0.002
CANP 0.232 £ 0.001 0.165 4+ 0.000 0.255 +0.004
NP 0.093 £+ 0.002 0.056 £+ 0.001 0.130 £ 0.007
ANP 0.235 £ 0.001 0.169 £ 0.001 0.265 £ 0.002
CE BNP 0.093 £+ 0.003 0.054 +0.002  0.115 & 0.004
BANP 0.236 £+ 0.002 0.171 £ 0.002 0.217 £ 0.005
TNP-D  0.043 £+ 0.000 0.045 =+ 0.000 0.129 £0.012
TNP-A 0.0454-0.000 0.044 4 0.000 0.119 4 0.008
TNP-ND  0.048 £ 0.001 0.050 £ 0.001 0.155 4 0.009
CNP 0.26 + 0.02 0.04 4+ 0.02 —1.40 £0.02
CANP 0.79 £ 0.00 0.62 + 0.00 —7.61+£0.16
NP 0.27 +£0.01 0.07 £ 0.01 —1.15+0.04
ANP 0.81 £ 0.00 0.63 = 0.00 —5.02+0.21
Log-Likelihood BNP 0.38 +£0.02 0.18 +0.02 —0.96 £+ 0.02
BANP 0.82 +0.01 0.66 4= 0.00 —3.09+0.14
TNP-D 1.39 £ 0.00 0.95+ 0.01 —3.53 £ 0.37
TNP-A 1.63 £+ 0.00 1.21 £ 0.00 —2.26 +£0.17
TNP-ND 1.46 +0.00 1.02 £ 0.00 —4.13+0.33

B.2. Image completion

Additional metrics We compare TNPs and the baselines on the metrics used in Section B.1, except for the Calibration
error which took too much time to compute. Tables 6 and 7 show the results for CelebA and EMNIST, respectively. It is
clear that three variants of TNPs outperform the baselines on both datasets on all 3 evaluation metrics. While three variants
are similar in terms of accuracy and sharpness, TNP-A is the best variant with respect to log-likelihood.

Table 6. Comparison of TNPs vs the baselines on CelebA dataset with various evaluation metrics. We train 5 instances with different

seeds for each method and report the mean and std.

Method RMSE Log-likelihood
CNP 0.137 £ 0.000 2.148 £ 0.008
CANP 0.116 £ 0.001 2.657 £ 0.010
NP 0.138 £ 0.001 2.480 £ 0.018
ANP 0.119 £ 0.000 2.904 £ 0.003
BNP 0.134 £ 0.000 2.764 £ 0.006
BANP 0.119 £ 0.000 3.087 £ 0.004
TNP-D 0.112 £ 0.000 3.891 £ 0.006

TNP-A 0.115+0.000 5.818 4 0.011
TNP-ND 0.111 +0.000 5.477+0.016
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Table 7. Comparison of TNPs vs the baselines on EMNIST dataset with various evaluation metrics. We train 5 instances with different

seeds for each method and report the mean and std. We evaluate on both seen and unseen classes.

Setting Method RMSE Log-likelihood
CNP 0.184 £ 0.001 0.733 £ 0.004

CANP 0.140 £ 0.002 0.935 £ 0.008

NP 0.185 £ 0.003 0.794 £ 0.010

Seen classes ANP 0.142 £ 0.000 0.984 £ 0.003
0-9) BNP 0.178 £ 0.002 0.876 £ 0.007
BANP 0.142 £ 0.001 1.008 £ 0.003

TNP-D 0.119 £ 0.002 1.461 £+ 0.010

TNP-A 0.122 +£0.001  1.537 + 0.005

TNP-ND 0.116 £ 0.000  1.497 4+ 0.002

CNP 0.225 £ 0.002 0.491 £ 0.010

CANP 0.163 £ 0.002 0.823 £ 0.010

NP 0.228 £ 0.003 0.591 £ 0.009

Unseen classes ANP 0.166 £ 0.001 0.887 £ 0.004
(10-46) BNP 0.219 £ 0.003 0.728 £ 0.008
BANP 0.161 £ 0.001 0.943 £ 0.003

TNP-D  0.139 +£0.001  1.308 £ 0.003

TNP-A 0.142+0.001  1.413 4 0.005

TNP-ND  0.140 £+ 0.001 1.314 4+ 0.004

Evaluation on full-image completion In Tables 2, 6, and 7, we computed the metrics on a target set, which is a subset of
the entire image. We additionally report the performance of TNP-D and BANP (the strongest baseline) when the target is
the entire image in Table 8, which shows that TNPs achieve a similarly better performance.

Table 8. Comparison of TNP-D and BANP on EMNIST unseen classes. We use 100 context points, and the target is the entire image.

Method RMSE Log-likelihood
BANP 0.144 £ 0.001 1.005 £ 0.003
TNP-D 0.117+£0.001 1.466 + 0.005

Comparison with Conv(C)NP ConvCNP and ConvNP (Gordon et al., 2019; Foong et al., 2020) build translation
equivariance into NPs, which should be helpful in specific domains such as images. However, table 9 shows that even in
image completion, TNPs still outperform Conv(C)NP by a large margin. For off-grid data, Conv(C)NP is only applicable
when z is one-dimensional, as they require a discretization step, limiting their application to high-dimensional BO and
contextual bandits.

Table 9. TNP vs Conv(C)NP on EMNIST image completion. We train 5 instances with different seeds for each method and report the
mean and std.

Method Seen classes (0-9) Unseen classes (10-46)
ConvCNP 1.02 £+ 0.00 0.92 + 0.00
ConvNP 1.154+0.00 1.10 £ 0.00
TNP-A 1.54 +0.01 1.41 +0.01
TNP-D 1.46 £ 0.01 1.31 £0.00
TNP-ND 1.50 + 0.00 1.31 £0.00
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Qualitative results We visualize the completion of randomly selected images produced by TNPs and the baselines for
both CelebA and EMNIST datasets.

Figures 8, 9, and 10 show the visualizations. It is clear from the visualizations that the variants of TNPs produce more
accurate images and with less artifacts. This is especially evident when we look at Figure 10 which shows the completed
images for unseen classes. TNPs are the only method that produced interpretable letters.
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Figure 8. Completed images produced by TNPs and the baselines. The number of context points is 100.
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Figure 9. Image completion on seen classes by TNPs and the baselines. The number of context points is 100.
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Figure 10. Image completion on unseen classes TNPs and the baselines. The number of context points is 100.
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B.3. Contextual bandit

Table 10. Comparison of TNPs with the baselines on simple regret on contextual bandit problems with different values of §. We run each

model 50 times for each value of ¢ and report the mean and standard deviation.

Method 0=0.7 6=0.9 6=20.95 0=0.99 6 =0.995 6 =0.999
Uniform  100.00 +20.77  100.00 &+ 34.60 100.00 & 50.34 100.00 +96.59 100.00 4 114.30  100.00 + 120.11
CNP 4.06 £4.15 8.13+9.44 8.06 &+ 9.46 28.05 +£19.91 39.50 £ 27.30 93.57 £ 64.70
CANP 1.25 £2.42 2.97+£5.39 8.82+14.01 41.01 £69.41 46.49 £+ 88.31 34.62 £ 115.25
NP 1.65+2.43 2.95+£4.07 4.45 £ 4.56 18.64 £1.87 26.14 £ 2.65 62.13£6.21
ANP 1.58 £2.22 3.92+£5.10 5.38 £ 5.66 19.69 +1.88 27.44 +£2.63 66.39 + 6.34
BNP 62.72+£15.44  57.224+25.55 5858 £37.25  63.02 £ 75.67 65.77 £+ 84.45 78.07 £ 94.31
BANP 3.32+£3.12 1131+ 14 34.19£28.13  65.60£91.17  59.33 £101.53 30.13 £ 71.82
TNP-D 0.67+3 1.41 +£2.86 2.24+5.46 3.13+1.21 4.31£1.75 9.16 & 3.86
TNP-A 1.17£1.73 2.53£5.03 247+6.83 2.12 + 5.66 3.53 +£13.42 5.07 £+ 2.98
TNP-ND 1.40 £2.33 0.78 4 2.30 0.63 4 0.26 3.22+1.25 4.86 £1.88 11.08 £ 4.36

C. TNPs vs other NP variants on sampling multiple functions

An advantage of using latent variables is the ability to sample diverse functions from the same set of context points. However,
we can also sample multiple functions using an autoregressive sequence model. In this section, we present how we obtain
samples from TNP-A, and qualitatively measure the sample diversity of TNP-A and the baselines on 1-D regression and
image completion tasks.

C.1. Sampling procedure of TNP-A

We sequentially sample the target points y,,, 1.5 given the target inputs 1.5 and the set of context points {x;, y; }™ ;.
Specifically, for each stepi = 1 to i = N — m, we:

1. Obtain the predictive distribution p(y7n+i | T1:m+is Y1:m, g7rz+1:7n+i—1)7 in which :’-)m—&-l:'m-i-i—l are Samples of the
previous target points.

2. Sample Frpi ~ P(Ymi | T1imti> Yioms Im+Limyi—1)-

3. Repeat

C.2. Sampling results

1-D regression Figure 11 and 12 show sample functions produced by NP, ANP, BNP, BANP, and TNP-A given 10 and 30
context points, respectively. Each method is tested on the same set of 4 underlying functions, which are sampled from a GP
with an RBF kernel. In the figures, each solid blue curve is a sample function, and the blue area around the curve represents
the variance of the predictive distribution over y. We can see that when the number of context points is 10, all methods can
produce different samples. However, TNP-A tends to have more diverse samples (more diverse solid curves), while the
other NP methods use the predictive variance to account for their uncertainty, which result in large blue areas. When there
are 30 context points, all methods produce consistent functions.
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(e) Samples functions produced by TNP-A.

Figure 11. Sample functions produced by TNPs and the baselines given 10 context points. Data is generated from a GP with an RBF
kernel. Each solid blue curve corresponds to one sample function, and the blue area around each curve represents the variance in the
predictive distribution.
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Figure 12. Sample functions produced by TNPs and the baselines given 30 context points. Data is generated from a GP with an RBF
kernel. Each solid blue curve corresponds to one sample function, and the blue area around each curve represents the variance in the
predictive distribution.
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Image completion Figure 13 show different completed images produced by NP, ANP, BNP, BANP, and TNP-A given 20
and 50 context points, respectively. When the number of context points is only 20, there are multiple possible digits that can
be generated from the same set of context points. TNP-A produces three samples that represent three different digits, while
the diversity of other NP methods is not clear. When the number of context points is 50, all methods produce consistent
samples that represent the digit 9.

(a) Samples produced by TNPs and the baselines given (b) Samples produced by TNPs and the baselines given
20 context points. 50 context points.

Context
Context

~

Sample 1

Sample2 Sample 1

Sample 2
v

Sample 2
Sample 2

BANP TNP-A

Figure 13. Sample images produced by TNPs and the baselines given the same set of context points. The original image is drawn randomly
from the test set.

D. Architectural ablation analysis

Before coming up with the final architectures of TNPs, we had experimented with other possible architectures. In this
section, we present these alternative design choices, and their performances compared to TNPs.

D.1. TNPs with alternative input representations

There are other input representations to TNPs in addition to concatenating x and y. We present these alternatives in this
section and show how they perform compared to TNPs. We show ablation for TNP-D only for simplicity.

Separate embedding layers for context and target points: The first idea is to use two different embedding layers, one for
the context points and one for the target points. The embedding layer for context points will take (z1.c, y1.c) as the input,
while the embedding layer for target points will only take 7., as the input. Figure 14 depicts this model.

P

‘ Transformer Decoder

f f f f

Embedc Embedc EmbedT EmbedT

z1,Y1 oo TZTm,Ym @ TR é

Figure 14. TNPs with two separate embedding layers for the context points and target points.

Cross attention: Another idea is to use cross-attention, which is depicted in Figure 15. Specifically, we first implement a
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stack of self-attention layers to learn the interaction between the z’s. The outputs of this module will serve as queries and
keys in a cross-attention layer, while the context labels y;.c serve as values. This eliminates the need of a mask because the

self-attention layer only computes the similarity of 2’s by using them as queries and keys.
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Figure 15. TNPs with cross attention.

Comparison: Table 11 compares the two alternative input representations with TNP-D. We see that TNP-D is slightly better
than Sep-emb, while Cross-att barely works for any evaluation kernel. This is because the model is not allowed to look
at pairs of context points (z;,y;)% , thus cannot infer the underlying distribution f, or in other words cannot tell which
realisation of GP these pairs come from. Therefore, the best thing it can do is to make a random guess with a very large
variance. This confirms that coupling x and y to form the input representation is crucial to the performance of TNP.

Table 11. Comparison of TNP-D vs. the alternative input representations.

Metric Method RBF Matérn 5/2 Periodic
TNP-D 0.177 £ 0.001 0.222 =+ 0.000 0.664 + 0.014
RMSE Sep-emb  0.177 4= 0.000 0.222 4+ 0.000 0.685 £ 0.006

Cross-att  0.304 +0.122 0.328 £0.112 0.668 = 0.050

TNP-D  0.043 + 0.000  0.045 £ 0.000 0.129 4 0.012
CE Sep-emb  0.045+0.001 0.044 £ 0.001 0.135 £ 0.008
Cross-att ~ 0.151 +0.055 0.117 £ 0.038 0.203 £ 0.081

TNP-D 1.388 £ 0.004 0.954 4+ 0.005 —3.525 £ 0.367
Log-Likelihood Sep-emb  1.375+0.004 0.954 + 0.003 —3.232 &+ 0.238
Cross-att  0.115+0.337  —0.012 £ 0.281 —2.989 £1.225

D.2. Autoregressive Transformer Neural Processes

There are other architectures that enable autoregressiveness in addition to what was presented in Section 3.1. We present
those architectures here, their differences with TNP-A, and their relative performances.

Figure 16 shows the two alternative architectures. In TNP-A-1 (Figure 16a), we encode the context points and the target
points separately, and then use a stack of masked self-attention, masked-cross attention, and cross-attention layers that allow
each target point to attend all the context points and the previous target points. In each masked layer, we ensure that the
component at position i** cannot attend positions j**, j > i. Note that in this model, there is no interaction between the

context points and the target points.

In the TNP-A-2 (Figure 16b), we allow this interaction by feeding all context points and target points into the same encoder.
In the encoder, we use a masking mechanism such that the context points do not attend the target points, as in evaluation we
do not have ground-truth but only predicted target. Similarly to TNP-A-2, the masked cross-attention module in Pure GPT 2

stops the component at position i*" from attending positions j*" with j > 1.
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Figure 16. The alternative architectures for TNP-A

Comparison: We compare the relative performances of TNP, TNP-A-1, and TNP-A-2 in the meta regression task. Table 12
shows the results.

Table 12. Comparison of TNP-A vs. the alternative autoregressive models.

Metric Method RBF Matérn 5/2 Periodic
TNP-A  0.178 £ 0.000 0.222 =4 0.000 0.660 £+ 0.002
RMSE TNP-A-1 0.182 £ 0.001 0.225 £ 0.000 0.673 £0.007

TNP-A-2  0.184 +0.002 0.223 £ 0.001 0.667 £ 0.008

TNP-A 0.045 + 0.000 0.044 £ 0.000 0.119 + 0.008
CE TNP-A-1 0.044 4+ 0.000  0.044 £ 0.000 0.147 £ 0.009
TNP-A-2  0.046 £0.002 0.042 #+ 0.001 0.168 £ 0.009

TNP-A  1.628 = 0.001 1.207 +0.003 —2.257 4= 0.168
Log-Likelihood TNP-A-1 1.477 £ 0.016 1.070 £ 0.018 —3.380 £ 0.314
TNP-A-2  1.577 +£0.024 1.167 £ 0.018 —4.607 £ 0.390

D.3. Low-rank approximation for TNP-ND

Projection

|
f f
|

Mx [ Self-attention

Figure 17. The decoder architecture of the low-rank version of TNP-ND.
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As mentioned in Section 3.3, we can use Low-rank approximation to parameterize the covariance matrix in the predictive
distribution N (y1.7 | po(zi.7, C), Xg(x}.p, C)). Figure 17 depicts the parameterization, which is similar to TNP-ND,
except that we have an additional MLP that outputs d,,+1.n. The covariance is computed as:

Y= HHT 4 exp(D), H € R"*P, D € R™*", (12)
in which D is a diagonal matrix formed by d,,,+1.n. This parameterization guarantees that ¥ is a positive definite matrix.

Results We compare TNP-ND with Cholesky decomposition vs TNP-ND with low-rank approximation in the 1-D
regression problem. Table 13 shows the results.

Table 13. Comparison of TNP-ND with Cholesky decomposition vs TNP-ND with low-rank approximation on various GP kernels and
evaluation metrics. We train 5 instances with different seeds for each model and report the mean and std.

Metric Method RBF Matérn 5/2 Periodic

TNP-ND-Cholesky 0.180 4 0.001 0.223 4+ 0.000 0.670 4 0.009
TNP-ND-Lowrank  0.186 = 0.001 0.225 £ 0.001 0.680 £ 0.010

TNP-ND-Cholesky ~ 0.048 £ 0.001 0.050 £ 0.001 0.155 £ 0.009
TNP-ND-Lowrank  0.043 + 0.001 0.044 £ 0.001 0.153 £ 0.019

TNP-ND-Cholesky 1.46 £ 0.00 1.02+£0.00 —4.13 + 0.33
TNP-ND-Lowrank  1.565 #+ 0.007 1.117 £ 0.003 —5.702 £ 0.509

RMSE

CE

Log-Likelihood

E. Pretraining TNPs

In the main results of the paper, we trained TNPs in a meta-training regime, where the model makes predictions for the
target points conditioning on the context. This was explicitly designed to match the evaluation setting. However, previous
studies (Brown et al., 2020; Chan et al., 2022) have shown that the capacity for in-context learning in transformer-based
models is emergent. That is, the model is capable of performing few-shot learning, without being explicitly trained to do so.
We conduct experiments to investigate this emergent in-context learning behavior of TNPs. Specifically, during training, the
model observes sequences of evaluations (x1.x, 1.5 ), and learns to predict each point given the preceding points:

N
‘C(e) - ]E;cl;N,y];N [1ng0(y1:N|x1:N)] - ]E:leN,yl;N Z 10gp0(2/m|371:m, yl:’m—l) (13)

m=1

We term the variant trained using this autoregressive objective TNP-A-Pretrained. During evaluation, we introduce the
notions of context and target via proper masking, where each target conditions on the context points and the preceding
predicted target points. This resembles TNP-A, and the only difference is in the training phase. We compare TNP-A-
Pretrained to TNP-A, TNP-D, and TNP-ND in all 4 meta-learning tasks below.
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E.1. 1D Regression

Table 14. Comparison of TNP-A-Pretrained vs three TNP variants with various evaluation metrics. We train 5 instances with different
seeds for each model and report the mean and std.

Metric Method RBF Matérn 5/2 Periodic

TNP-D 0.177 £+ 0.001 0.222 + 0.000 0.664 +0.014

RMSE TNP-A 0.178 £ 0.000 0.222 £+ 0.000 0.660 =+ 0.002
TNP-ND 0.180 £ 0.001 0.223 + 0.000 0.670 £ 0.009

TNP-A-Pretrained 0.180 4+ 0.001 0.224 + 0.001 0.679 £ 0.007
TNP-D 0.043 + 0.000 0.045 4 0.000 0.129 £ 0.012

CE TNP-A 0.045 + 0.000 0.044 + 0.000 0.119 4 0.008
TNP-ND 0.048 £ 0.001 0.050 £ 0.001 0.155 £ 0.009
TNP-A-Pretrained 0.043 £ 0.005 0.052 + 0.007 0.148 + 0.020
TNP-D 1.39 £ 0.00 0.95£0.01 —3.53 £ 0.37

Loe-Likelihood TNP-A 1.63 £+ 0.00 1.21 £ 0.00 —2.26 +£0.17
& TNP-ND 1.46 £ 0.00 1.02 £ 0.00 —4.134+0.33
TNP-A-Pretrained 1.63 £+ 0.01 1.19 +£0.03 —3.69 £ 0.92

E.2. Image Completion

Table 15. Comparison of TNP-A-Pretrained vs three TNP variants on CelebA dataset with various evaluation metrics. We train 5 instances
with different seeds for each model and report the mean and std.

Method RMSE Log-likelihood
TNP-D 0.112 £ 0.000 3.891 £ 0.006

TNP-A 0.1154+0.000 5.818 4 0.011
TNP-ND 0.111 4+ 0.000  5.477 £0.016

TNP-A-Pretrained  0.114 £+ 0.000 4.457 +£0.011

Table 16. Comparison of TNP-A-Pretrained vs three TNP variants on EMNIST dataset with various evaluation metrics. We train 5
instances with different seeds for each model and report the mean and std. We evaluate on both seen and unseen classes.

Setting Method RMSE Log-likelihood
TNP-D 0.119 £+ 0.002 1.461 £ 0.010

Seen classes TNP-A 0.122 4+ 0.001 1.537 & 0.005
(0-9) TNP-ND 0.116 + 0.000 1.497 4+ 0.002
TNP-A-Pretrained 0.130 4 0.000 1.497 £ 0.002

TNP-D 0.139 £+ 0.001 1.308 4+ 0.003

Unseen classes TNP-A 0.142 £+ 0.001 1.413 & 0.005
(10-46) TNP-ND 0.140 £ 0.001 1.314 + 0.004

TNP-A-Pretrained  0.159 £+ 0.000 1.256 £+ 0.008




Transformer Neural Processes

E.3. Contextual Bandits

Table 17. Comparison of TNP-A-Pretrained vs three TNP variants on cumulative regret on contextual bandit problems with different
values of §. We run each model 50 times for each value of § and report the mean and std.

Method 6=0.7 6=0.9 §=0.95 6 =0.99 6 =0.995 6 =0.999 Average
Uniform 100.00 £ 1.18 100.00 £ 3.03 100.00 £4.16 100.00 £7.52 100.00 +8.11 100.00 £ 7.96 100.00 £ 5.97
TNP-D 1.18 = 0.94 1.70 £ 0.41 2.55+0.43 3.57+1.22 4.68 +1.09 9.56 +0.44 3.87 +2.91
TNP-A 3.67 £4.88 4.04 £ 2.38 4.29 £+ 2.36 5.79 £5.27 9.29 £ 7.62 6.13 + 2.50 5.54 +4.98
TNP-ND 1.76 £ 0.61 1.41 +0.98 1.61 +1.65 4.98 +2.84 7.22 4+ 3.28 13.66 = 2.92 5.114+4.94
TNP-A-Pretrained 1.53 +0.09 4.96 +0.17 8.00£0.13 23.98 + 0.42 34.35+0.01 83.79+0.02 26.10 £ 28.22
E.4. Bayesian Optimization
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Figure 18. Regret performance on 1D BO tasks of TNP-A-Pretrained and the three

functions and report the mean and standard deviation.

TNP variants. For each kernel, we generate 100
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Figure 19. Regret performance on 2D and 3D BO tasks of TNP-A-Pretrained and the three TNP variants. For each function, we run BO
for 100 times with different seeds and report the mean and standard deviation.

Overall, TNP-A-Pretrained performs reasonably well in all tasks, but still lags behind the meta-trained TNPs, especially in
the two sequential decision making tasks. Improving this pretraining scheme to match the performance of the meta-trained
models is an interesting research direction for future work.



