Generative Trees: Adversarial and Copycat

Richard Nock ! Mathieu Guillame-Bert

Abstract

While Generative Adversarial Networks (GANs)
achieve spectacular results on unstructured data
like images, there is still a gap on tabular data,
data for which state of the art supervised learn-
ing still favours decision tree (DT)-based models.
This paper proposes a new path forward for the
generation of tabular data, exploiting decades-old
understanding of the supervised task’s best com-
ponents for DT induction, from losses (proper-
ness), models (tree-based) to algorithms (boost-
ing). The properness condition on the supervised
loss — which postulates the optimality of Bayes
rule — leads us to a variational GAN-style loss
formulation which is tight when discriminators
meet a calibration property trivially satisfied by
DTs, and, under common assumptions about the
supervised loss, yields “one loss to train against
them all” for the generator: the 2. We then in-
troduce tree-based generative models, generative
trees (GTs), meant to mirror on the generative side
the good properties of DTs for classifying tabular
data, with a boosting-compliant adversarial train-
ing algorithm for GTs. We also introduce copycat
training, in which the generator copies at run time
the underlying tree (graph) of the discriminator
DT and completes it for the hardest discriminative
task, with boosting compliant convergence. We
provide experiments on tasks including fake/real
distinction and missing data imputation.

1. Introduction

Generative Adversarial Networks have early established a
gold standard for both neural networks as generative mod-
els and the loss to train generative models via a variational
measure-based distortion (Goodfellow et al., 2014; Nowozin
et al., 2016; Nock et al., 2017). While they have achieved
spectacular results on a variety of unstructured data (Ni

'Google Research. Correspondence to: Richard Nock

<richardnock@google.com>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

et al., 2021), the quality of outcomes on tabular data is still
lagging behind with the sentiment that new approaches are
needed (Camino et al., 2020). This is an important prob-
lem: recently, tabular data was still representing the most
prevalent data type in real world Al (Chui et al., 2018, pp.
15). Interestingly, this chasm separating astonishing gen-
eration on unstructured data to suboptimal generation on
tabular data mirrors another one, on the supervised side,
where neural nets can achieve superhuman recognition on
unstructured data (Linsley et al., 2021) but require massive
amounts of sophistication to compete against standard li-
braries using decision-tree (DT) based models on tabular
data (Arik & Pfister, 2021). DT induction has been perfected
over decades, starting with core supervised loss functions
known as proper (Savage, 1971; Reid & Williamson, 2011),
using particularly fit and simple graph-based tree models
(Breiman et al., 1984; Quinlan, 1993), and culminating with
a powerful algorithmic machinery to learn them, boosting
(Kearns & Mansour, 1996; Friedman et al., 2000; Schapire
& Singer, 1998). One would expect that potential generative
approaches for tabular data would “mirror” those three key
components on the generative side, but to our knowledge,
none has been achieved. Such is our objective, and our
paper thus contains three main technical contributions:

On losses, the GAN approach formulates the generator’s
loss from a variational measure-based divergence, unveiling
the discriminator’s loss (Nowozin et al., 2016). Instead, we
start from the discriminator’s side and a general proper loss,
i.e. aloss for which Bayes prediction is optimal, which is
standard for DT induction since Breiman et al. (1984). We
relate the corresponding information (De Groot, 1962) to a
GAN-style formulation which provides us with the genera-
tor’s loss. A difference with GANs’ variational formulation
is there is no slack in the characterisation if the discrimina-
tor meets a calibration condition trivially satisfied by DTs:
unlike e.g. Nowozin et al. (2016, Ineq. (4)), we get identi-
ties all the way through. A surprising corollary follows. If
the discriminator’s partial losses meet a property that most
popular choices meet, then to minimize the generator’s loss,
it is sufficient to minimize the y? between real and fake data:
we get one loss to “train generators against them all”. This
first contribution is not specific to DTs as it holds for all
calibrated discriminators in the properness framework.

On models, we introduce generative trees (GTs). In the
same way as generator and discriminator in GANs include

Generative Trees: Adversarial and Copycat

ground truth

randGauss

abalone

v lv]
L= &

Figure 1. 2D density plots for our generative trees (us) vs CTGANS
on 2 UCI + 1 simulated domain. See Section 6 for details. Note
how GTs improve on CTGANS.

us ctgan

. petal length || whole weight

a similar functional form (a neural net), our GTs include a
tree (graph) structure like DTs, differences being stochastic
activations at the arcs and leaf-dependent data generation.
On algorithms, we propose a top-down induction algorithm
to adversarially train GTs with provable boosting-compliant
geometric convergence of the y?, the weak generative learn-
ing assumption being a weak statistical dependence between
the generator and discriminator. We propose a second way
to train generative trees, extremely efficient and that we
think has no equivalent yet in neural networks. In this set-
ting, that we nickname copycat, the generator tracks and
copies the discriminator’s tree (graph) at training time, and
completes it for the hardest generative model given the dis-
criminator!. The geometric convergence in density ratio
loss of the generator (Menon & Ong, 2016) directly follows
from a seminal result of Kearns & Mansour (1996).

From an experimental standpoint, we have performed four
main series of experiments on missing data imputation, train-
ing from generated data, fake/real discrimination and gen-
erated data augmentation, against each experiment’s state
of the art contender (van Buuren & Groothuis-Oudshoorn,
2011; Xu et al., 2019). Figure 1 provides a glimpse of
generated data’s quality for three domains, against neural
nets (CTGANS, Xu et al. (2019)). The domains we used
included simulated domains and domains from the UCI,
Kaggle and the Stanford Open Policing project. The exper-
iments display that GTs can be very efficient contenders
against sophisticated state of the art methods: on training
from generated data, fake/real discrimination and generated
data augmentation, GTs tend to get better results than neural
nets, sometimes with tiny models relative to domain size; on
missing data imputation, GTs can beat on low-dimensional
problems the mice approach (van Buuren & Groothuis-
Oudshoorn, 2011), even when mice relies on tree-based

'For the informed reader, the generator learns boosting’s bal-
anced distribution of Kearns & Mansour (1996).

l—p -
\ () other debtors in {none}

(7) Other debtors in {none}
P /,

Illse// N\ True 0.1 False // AN True!
' @ -
Number existing credits <=2 () [01] Number existing credits <=2 ()
False True False True

Figure 2. Decision tree (left) and generative tree (right) with the
same underlying tree, for the UCI german credit domain.

imputation using thousands+ of tree models — against a GT
essentially relying on a single one. Experiments are given in
extenso in an Appendix (App), also containing all proofs.

2. Basic definitions

VEk € Ny, we let [k] = {1,2,...,k}. X denotes a domain,
8 = {x; : i € [m]} < X is a sample of real observations.
The associated supervised learning problem is a binary la-
beled problem where labels Y = {—1,1} = {fake,real}
distinguish between a fake (=generated) and a real obser-
vation. The objective of the supervised problem is to learn
a posterior computing P[Y = 1|X], denoted n € [0, 1]%.
With slight variations, many notations follow from (Reid &
Williamson, 2011). m = P[Y = 1] is the prior. In the gen-
erative game, the prior is user-fixed. (X, P) and (X, N) are
measure spaces for ’positive/real’ and 'negative/fake’ obser-
vations respectively — to avoid notation overloads, we leave
implicit the o-algebra. (X x {—1, 1}, D) is the product mea-
sure space of labeled examples following the (supervised)
binary task (r,P,N) Reid & Williamson (2011, Section 4);
we let B = (7, P, N) for short. We also have the mixture
space (X, M) with M = 7 - P + (1 — 7) - N. A posterior is
particularly interesting for B, Bayes posterior, which is:
dp
dM

and is optimal for proper losses (more on this in Section 4).

n o=)

3. Models

We present the tree-based models we use as architectures
for both the discriminator and the generator.
Architectures: we start by the commonpoint between both,
that we denote a tree for short.

Definition 3.1. A free is a rooted, directed binary tree
whose internal nodes are labeled with binary tests over
observation variables and outgoing arcs are labeled with
truth values. For any internal node, the left outgoing arc is
labeled with truth value false and the right outgoing arc
is labeled with t rue. Leaves are blank nodes.

Definition 3.2. A decision tree (DT) is a tree with leaves
labeled in [0, 1]. A generative tree (GT) is a tree in which
truth values at arcs are associated to Bernoulli events B(.).

Figure 2 presents examples of DT and GT with the same
underlying tree. We assume without loss of generality that

Generative Trees: Adversarial and Copycat

trees are binary but our definitions could trivially be ex-
tended to trees of any arity. Hereafter, low caps like h are
used to represent DTs while high-caps like G are used to
represent GTs. A(.) denotes the set of leaves of a tree.
Access routines: an important routine needed for a DT h
is, for any observation x, the leaf A(x) € A(h) reached by
a. This is the leaf whose path from the root involves tests
satisfied by x. If x contains no unknown feature values,
this path is unique. The main access routine for a GT G
is the generation of an observation. To do so, we simply
stochastically traverse the tree using the Bernoulli events at
the internal nodes. Once a leaf A € A(G) is reached, sam-
pling an observation is done by a uniform sampling in the
complete domain that satisfies the tests traversed to reach \.
In Figure 2, the center leaf A of the GT G is reached with
probability ¢ = 0.1-0.5 = 0.05. If we do reach it, according
to the UCI german credit data domain (Dua & Graff,
2021), then we sample uniformly at random an observation
for which attribute *Number existing credits’ is in {0, 1, 2}
and *Other debtors’ is in {co-applicant, guarantor} and all
other attributes are chosen uniformly at random in their full
domain, since they do not appear in the path to \.

Remark 3.3. Uniform sampling imposes a finite length do-
main for real or integer features, which is a reasonable
assumption for standard features like e.g. age, salary. Alle-
viating the constraint can be done using specific transforma-
tions, such as the Box-Muller transform, generating Normal
deviates from uniform distributions (Box & Muller, 1958).

4. Loss functions involved

Departing from (W)GAN-style approaches, we design the
losses involved from the discriminator’s.

Calibrated posteriors: for any function f € R* and mea-
sure Q over measurable space (X, (2), Q is the restriction
of Q to the sub-o-algebra 2 induced by the level set of f.
A similar notation Q ; with identical definition is used in van
Erven & Harremoés (2014, Section II). It can be interpreted
as the marginal of Q on the subset of events of {), each of
which is a union of events from €2 having the same f-value.
We now define a property of a posterior for class probability
estimation that shall be fundamental to analyse our losses.

Definition 4.1. Posterior 1 is said calibrated with task B
(or just calibrated for short) iff i = m - s and we let

aM;
Bﬁ = (7‘(‘7Pﬁ,Nﬁ).

There are three important examples of calibrated posteriors:
(i) the constant posterior ., = m is (the only constant)
calibrated (posterior). To see it, it yields Q= {&J, X}.
The RHS in Def. (4.1) gives 7 - dPy, _(X)/dM,, _(X) = 7 -
§o dP/§,.dM = 7-1/1 = m and we have for this posterior
PIY|X] = P[Y|X € X] = n, = m; (ii) Bayes posterior n*
is calibrated; it follows from (1); (iii) let h be a DT. Any
DT induces a partition of X at its leaves, {Xy : A € A(h)};

Loss 01 (u) ‘ £%(p),p=0

Eq. cvx N\,

Log —logy(1 — u) log, (1 - %) v v
Square g L. (1 1) v
Matusita et % v Y
N S N R I
KL 2 (2106 (385) +3) ¢ v
Normalized* x> 2. ﬁ % v

Table 1. Differentiable partial losses for class —1 for symmetric
losses, along with their corresponding £°* and its properties (see
text; cvx = convex). (*) add +2 to Pearson x? to have £_; (0) = 0.

suppose without loss of generality that all leaves’ predictions
are different, and consider Q;, = {J} U {X : A e A(h)}.
Without further correction, the posterior prediction at a leaf
A of h is classically computed as the ratio of the total weight
of real observations reaching A\ over the total weight of
observations reaching A. In mathematical form, we have
here P[Y|X] = P[Y|X reaches A] = wdPj,/dM},, which is
by definition the prediction of 1 at A\ and shows that the
posterior prediction of any DT is calibrated. We note that
(i) is a particular case of (iii) when & is reduced to its root,
and if the domain X is finite, then (ii) is a particular case of
(iii) for h being any complete (finite) DT. Hereafter, a tilda
like 1 denotes a calibrated posterior. Notation 1 denotes
any posterior, disregarding eventual additional properties.
Losses for class probability estimation: a loss for class
probability estimation, £ : Y x [0,1] — R, is expressed as

Uy,u) = [y=1] li(u) + [y =—-1] l-1(u), ()

where [.] is Iverson’s bracket (Knuth, 1992). Functions
£1,0_1 are called partial losses. A loss is symmetric when
O (u) = -1(1 — u),Yu € [0,1] (Nock & Nielsen, 2008)
and differentiable when both partial losses are differen-
tiable. Table 1 presents examples partial losses of sym-
metric losses. The pointwise conditional risk of poste-
rior 1 € [0,1] with respect to ground truth n* € [0,1]
is L") = Ey B [L(Y,M)] ice

L") = n"-aMm+1-n")-La(m). 3

B(.) denotes a Bernoulli for picking label Y = 1. The
associated (pointwise) Bayes risk is

L) = infL(n.n"). 4)

The interesting case is when the argument of the inf re-
duces to {n*}, because then minimizing (3) for n *encour-
ages’ to pick ground truth n*. Formally, when (i) L(n) =
L(m,m),¥n € [0,1] and (ii) L(n,n*) > L(n*),¥n # 0",
we say that the loss is strictly proper, and proper when (i)
holds. The population version of (3), when both n,n* €
[0,1]%, is the (full) risk (Reid & Williamson, 2011, pp 747),

LM, M) = Ex.m[LM(X),n*(X)]. ()

Generative Trees: Adversarial and Copycat

We now assume that all losses for class probability esti-
mation used hereafter are strictly proper, symmetric and
differentiable (SPSD) and satisfy the additional technical
assumption that £_1 (0) = 0 (all but Jeffreys in Table 1 are
SPSD), which makes n* Bayes posterior in (1).

Definition 4.2. The information of calibrated 7\ € [0,1]*
is: AL(ﬁaM) iL(ﬂmﬂmM) _L(ﬁ 7ﬁ ,M) :L(ﬂ-) _L(ﬁ 7ﬁ7M)'
This definition is a convenient restriction to calibrated poste-
riors of the original definition in De Groot (1962, Eq. (2.2))
and Reid & Williamson (2011, Eq. (20)). It represents
how much ’information’ 1 brings compared to the constant
calibrated posterior 1. Decision tree induction would tradi-
tionally maximize AL(f, M) via the minimisation of some
L(R, M, M), where 1 is the calibrated posterior at the leaves
of the decision tree: CART’s uses the square loss (Breiman
et al., 1984), C4.5 uses the log-loss (Quinlan, 1993), etc. .
Losses for measure estimation and binary task informa-
tion: a substantial body of work has tightened the GAN loss
to variational f-divergences (Nowozin et al., 2016; Nock
et al., 2017). Here, we are also interested in such a formula-
tion but for a very specific set of f introduced decades ago
(Osterreicher & Vajda, 1993, Theorem 2):

70 = L) - e+ 1-m) - L

it

— | ,VteR
7rt+1—7r>’ *

which involves prior 7 (controlled in the generative game).

Definition 4.3. The information of binary task B =
(m,P,N), I(B), is the f™-divergence

I(B) = I;(P,N),

=/ (av) AN
Given [(B), we could directly dig into the variational for-
mulation of the f™-divergence to design the generative mod-
elling game and loss at the expense of an eventual slack due
to the variational argument (Nowozin et al., 2016, Ineq. (4)).
We avoid the slack via a trick using calibrated posteriors.
Losses for the adversarial generative game: we need to
define two additional functions, for any posterior 1:
| ; Qil'l s (7N
n p ™
We call p the density ratio and p the likelihood ratio, fol-
lowing conventions in Reid & Williamson (2011, pp 746)>.
To take an example, if we consider Bayes posterior n* in
(1), then it follows ¢* = dP/dN, justifying the name. Let
f*(2) = sup,{zt — f(t)} denote the convex conjugate of f.
We note that for any SPSD loss ¢, f™ is differentiable.

Definition 4.4. Let B and o be any binary task and likeli-

(6)

where we recall]Ifﬂ (P,N)

hood ratio. Let Gy(z) = (f™)* o f™'(2) and
Gi(Nle) = —Ex~x[Ge(o(X))], (8)
De(oB) = — (Ex~p [f™ 00(X)] +Ge(Nlo)) (9

*Names can otherwise vary in the literature.

respectively denote the generator and discriminator risks.

For any f-divergence, we have the f-GAN defining inequal-
ity (Nowozin et al., 2016, egs. (4-6)) similar to -(9):

I;(P,N) > SUP{EX~P [fo0(X)]
so both (8) and (9) define the corresponding functions to
minimise for the generator and discriminator in this vari-
ational inequality after the change f — f”. While the
change is anecdotical with respect to the inequality (10), it
conceptually operates a radical shift with respect to classical
(f-)GANSs: the generator’s loss is completely determined
in our case by the loss of the discriminator as it appears in
f™, aloss whose design heavily relies on properness. The
change also has a key fortunate mathematical consequence:
we can replace the inequality (10) by a chain of equalities
involving all key risks, as we now show.

Theorem 4.5. For any SPSD loss ¢, any binary task B, any
calibrated posterior | whose likelihood ratio is denoted 0,

the following holds:
AL, My) = —Dy(2|Bg) (11)

Furthermore, we have the expression for function Gy in

Definition 4.4 (with (°%(p) = ¢_1 (1/(1 + p))):
Giulo) = (1 =m)-£%(p),

and the transformation ¢ < p is obtained via (7).

=1(Bg).

—L(m) + (12)

The proof (in Appendix, Section I.1) also provides the con-
jugate (f™)*, of potential independent interest.

Remark 4.6. Since f-divergences satisfy the data process-
ing inequality, we also have for any calibrated posterior 1,
I(Bg) < I(B). Together with (11), this gives a precise way
of how the GAN game operates with calibrated posteriors
and proper losses: training a discriminator to maximise its
statistical information AL(1, My), e.g. as done with DT in-
duction algorithms, increases as well the information of the
binary task 1(Bg). On the other hand, training in turn the
generator to minimize Go(Ng|.) reduces the information of
the binary task 1(Bg). In the case of DT algorithms, as the
tree grows, its calibrated posterior 1| converges to an "em-
pirical Bayes’ best posterior (based on training real data).
Disregarding generalisation issues, as long as the generator
'stands’ the growth of the discriminator by keeping 1(Bg)
small enough, it is guaranteed to improve with iterations.

A generative loss ’to learn against them all’ (almost) Ta-
ble 1 shows that /°* has several invariant properties for the
losses shown. We formalise some of them.

Lemma 4.7. For any ¢ proper symmetric and differentiable,
(i) €°* is decreasing and (ii) £ is convex p orin 1/p, Vp.

Proof in Appendix, Section [.2. In the examples of Table
1, the ’or’ in Lem. 4.7 is in fact an ’and’. Convexity is

— Exn[f*of'o0(X)]}, (10)

Generative Trees: Adversarial and Copycat

important because it yields a single loss to efficiently train
the generator against any ’proper’ trained discriminator: the

X2, i.e. the f-divergence whose generator is f(t) = (t—1)2.

Lemma 4.8. For any SPSD loss { for which £} is convex,
any binary task B, calibrated posterior 1 (likelihood ratio
= 0), the following bound holds on the generator’s risk Gy:

Nil2)

<7ﬁr>—<1—w>-el(

™

1+<1—w>-x2<Nﬁ|Pﬁ>9‘”

Proof in Appendix, section I.3. For any SPSD loss, ¢_1 is
increasing (Cf proof of Theorem 4.5). Therefore, if we train
the generator to reduce x?(Nj||P5), it reduces the RHS in
(13) and provides a smaller bound on the generator’s risk,
regardless of the proper loss used as long as ¢°* is convex.

Gy
<

(
L

5. Training / and G

One way to train both the DT & and the GT G would be to
proceed as in generative adversarial networks (Goodfellow
et al., 2014). The DT can be trained using any commercial
package (Breiman et al., 1984; Quinlan, 1993) or more gen-
erally any greedy induction of a tree minimizing a SPSD loss
with convex ¢°*. We can then train the adversarial GT by
minimizing x?(N5||P7) and alternate between phases of
training the DT and training the GT. We call this setting
“adversarial’ for short. Due to the architecture of the mod-
els, there is a more specific training available for generative
trees, more constrained than the adversarial setting but with
a straightforward implementation and direct convergence
guarantees coming from the convergence of the DT training.
In this case, the GT copies the tree architecture of the DT
and fits the probabilities to keep x*(Ng||P7) = 0. We call
this setting the *copycat’ setting. We detail them.

5.1. Adversarial training of the generator

We adopt a greedy induction of the GT. The current
calibrated posterior of the generator h is 1. Let A denote
a general leaf of h. © denotes the current sampling node
at the generator GG that we are going to split to create a
subtree with two sampling leaves and associated Bernoulli
probability p to compute the new arcs at . Figure 3
provides an overview of the process, pointing to a new
variable, 7, which is the local (relative) proportion of
examples generated from the right sub-domain at the
candidate split. For any A € A(h) in the discriminator and
candidate split at leaf ©® € A(T) in the generator, we define:
— py, the total weight of real examples reaching);

— ny = Sx(") dN35, the theoretical proportion of fake
examples reaching A, where X(A) is the subset of X of
observations that reach A in h;

— n?\, the total weight of fake examples reaching A\ but

generated by A(G)\{®} — these weights do not change
after the split at ©);

— nl/\, the total weight of fake examples reaching A,
generated by © and whose value for attribute X; (the one
considered for the split) is in X';

— nj, the total weight of fake examples reaching A,
generated by © and whose value for attribute X; (the one

considered for the split) is in X".

It is worth noticing that ny,n{, nY, n% can all be calculated

exactly from the trees of h and G. After the split, *only’ the
proportions in Ux{n}} Uy {n}} are potentially changed by
the split. We can compute 7 as a function of these quantities:

nh
S 2xeA(n) A (14)

: .
2ea(n) My 14
Define three more quantities:

l r
0 T L U
_T,r)\zn)\Jr—T 10N =1x —).

These quantities are interpretable as follows: [, would be
the new n) after split if we were to pick p = 0; r)\ would
be the new n) after split if we were to pick p = 1 and
quantifies the difference in generation between these two
extreme strategies. These strategies are extreme because for
example if we choose p = 0, then we discard the support
at © covering observations whose value for X; is in X".
Some coefficients are particularly important to compute p:

‘ 3 . r3 ‘
He = 2 7§NRR: Z IT/\”JLR: Z

AeA(h) AeA(h) AeA(h)

hra s
Pa

These are also interpretable: if we let x? (N% (p)] \Pﬁ> de-

note the new 2 after the split at @ with Bernoulli p, then
e =14+ (NG (0)1IP), e = 1+ X2 (Ny(1)]|Py),
and g R is a correlation between both strategies. The
proof of Lemma 4.8 shows those identities. Algorithm
TD-GEN summarizes the steps to split one leaf, without
giving specific constraint on the choice of leaf to split ®),
feature 4, and split parameters (X', X"). We leave these
open because general convergence rates can be obtained
for TD-GEN that do not constraint those choices. Function
CLAMP(z) is defined as CLAMP(z) = max{min{z, 1}, 0}.
We have two different regimes for the convergence of the 2,
depending on whether p € (0,1) or p € {0, 1} (that latter
case means that we discard support for the generation of
examples). We give those results in two different Theorems.
For our first Theorem, let Is = [0,5) denote a range of
"acceptable’ values for the y2s. The question we ask is what
is the guaranteed convergence rate when we are not in this
favorable case, that is, when the XQS (before and after up-
date) are not in Is, a situation we refer to as TD-GEN being

Generative Trees: Adversarial and Copycat

q q
% xt Txr xt Txr
O O O O
(A) (B) ©)

q
, »B®))
1— ,, P X, [l — p,Faisel X’f");
Xt X
-7 71
0 O Ll
- Xi
(D) E)

Figure 3. Splitting a sampling leaf in G to create a subtree with two new sampling leaves. (A) we pick a current leaf and decide on a
variable X; whose local density (therefore uniform, in dark gray) is going to be split in two at the new leaves. (B) a potential split creates
two local intervals X!, X", and we can compute the relative local proportion of examples that would be generated from X () and from
X 1 - 1), (). Finally, we compute Bernoulli’s p (D). Note that 7 does not appear after split (E), it is just used to compute p.

Algorithm 1 TD-GEN(G, h)

Input: current generator G, current discriminator h;
Output: G with a new split;

Step 1 : pick ® € A(G), i € [d]; // leaf and variable for
the current split

Step 2 : choose (X!, X") and compute 7; // split choice
Step 3 : compute p as

HLL — HLR) . (16)
HLL + URR — 2R

p o« CLAMP(

Step 4 : replace © by a split as designed in Steps 1,2 w/
Bernoulli probability p as in (16);

“outside regime Is*. We show TD-GEN exhibits geometric
convergence rate related to 6 and the proximity of p to 7.

Theorem 5.1. Suppose p € (0,1). Foranye > 0,6 > 0, if
(i) TD-GEN is outside regime 15 and (ii) p in Step 3 satisfies
|7 — p| = &, then after one iteration of TD-GEN, we have:

1

—_— . 2 ~ ~
gz X (NallPa) . (17)

X2 (N5 (p)|IP7) <

Condition (ii) does make sense because if p = 7, then there
is no change in the x? as x? (N% (T)HPﬁ) = x% (N;||P7)-
To cover the case p € {0, 1}, we need an additional assump-
tion that mirrors the weak learning assumption that governs

the convergence of the discriminator h in the boosting frame-
work. We call it a weak generating assumption.

Definition 5.2. (0-WGA) Let 6 > 0 be a constant. We say
that the split at @ meets the 5-Weak Generating Assumption
iff woo = &-max{pr, prr}, where ipp = X5cp () 82 /px.
Theorem 5.3. Suppose p € {0,1} and the 5-WGA holds.
Then after one iteration of TD-GEN, we have:

, 1
X2 (Nﬁ(p)HPﬁ) < 1+ 6(7. + (1 _ 27’)]))2

Remark 5.4. Definition 5.2 is 'weak’ in a generative
sense. Indeed, the only case where upp = 0 is when

x* (N3||P3).

nh /(1 — 1) = nt /7, VX € A(h), which brings after solving
for T, the relationships n% /(n’, + nl) = nf,/(n%, + nl,)
for any two leaves in A(h), and after simplifying, n’ -nl, =
nb -n%,, YA, N € A(h). Filling any 2x2 contingency table
with ’destination’ leaves in the discriminator (\, \') versus
‘provenance’ in the generator (I, r) immediately leads to a
Pearson’s x?> = 0. What the WGA prevents is thus the ex-
treme independence where the generator’s examples would

be randomly attributed to the leaves in the discriminator.

5.2. Copycat training of the generator

Algorithm: when using a (decision) tree as discriminator,
both the GT and DT have an underlying tree (graph). Copy-
cat training takes advantage of this scenario as the GT G
copies the tree of the DT h as it is learned: if & involves
the usual top-down induction scheme, after each of the new
splits in h, the generative tree G replicates the same split in
its tree, computing the Bernoulli probabilities in such a way
that the new proportion of fake observations is going be the
same as that of real observations at the new leaves of h. In
other words, after the update of GG, the new h performs as
badly as a fair coin.

We see two substantial downsides to copycat vs adversarial
training: the generator *peeks’ in the discriminator’s tree,
which can be a problem for privacy or fairness issues, and it
has zero freedom to grow its own tree. There is, however,
a major upside of copycat training over adversarial train-
ing: it requires no additional expensive computation for the
new Bernoulli’s p in G. Denote m the number of positive
examples at the leaf A € A(h) to be split in h, and m}, the
number of positive examples ending up in its right sub-leaf
after split. Then in G we have at the same A: p = m}/m.
Convergence: there is another benefit of copycat training:
in the boosting model of Kearns & Mansour (1996, Section
5.1), the convergence rates for G towards the distribution of
observed real data directly follow from the boosting rates of
h on the supervised task. To show this, we proceed in two
steps: the first introduces and conveniently decomposes a
risk quantifying the discrepancy between measures in the

Generative Trees: Adversarial and Copycat

density ratio model (Menon & Ong, 2016) — for this objec-
tive, we introduce indexes in notations, and let h1 denote
the generator h after 7" splits, so that hg is the single-root DT.
Similarly, we let 1 denote the corresponding calibrated
posterior and P” denote the measure induced on X by P
and hp by (i) ensuring it is locally uniform at each leaf and
(ii) it locally sums to the local weight of P. In equation, it
satisfies, U denoting the uniform measure,

dpT dpP
T = o
au [, dU

Va reaching . (18)

Denote py = §, dP and uy = §, dU. For differentiable
and convex ' : R — R, the Bregman divergence with
generator F'is Bp(z|2') = F(2) — F(2') — (z = 2")F'().
Given function g : R — R, the generalized perspective
transform of F' given g is (Maréchal, 2005a;b; Nock et al.,

2016) F(2) = g(z) - F (

Definition 5.5. The Likelihood ratio risk of PT with re-
spect to P for SPSD loss L is (with g(z) = z + (1 — 7)/7):

) e (O)]
Risks expressed as in Def. 5.5 have a history in density ratio

estimation (Menon & Ong, 2016) (and references within).

Lemma 5.6. V/ spsp loss ¢ and DT hr, (~L)
convex and By (P, PT) =1 (P,U) — 1

ﬁ). g is implicit in notation F'.

is strictly
fr (PﬁT7 UﬁT)'

The proof is given in Appendix, Section 1.5. Strict convexity
is crucial: in such a case a Bregman divergence zeroes iff its
two arguments are equal, implying at the risk level in Def.
5.5 that By (P, PT) = 0 iff P = P almost everywhere.
I4=(P,U) is a constant and the data processing inequality
satisfied by f-divergences brings 0 = I;~(Py,, Us,) <
. < Ip=(Pap, Usp) < ..o < Iy« (P, U), so regardless of
the top-down induction algorithm used for ~, Lemma 5.6
shows a form of convergence of P7 towards P as accounted
by the likelihood ratio risk By (P, P”). The last part of
copycat training’s convergence is to make those inequali-
ties strict with guaranteed slack: this is achieved using the
boosting analysis of Kearns & Mansour (1996) as is.
We do not put iteration indexes in GG, assuming the one we
consider is the one after the update of the last discriminator
hr. Denote A a leaf to be split in h and P, Uy the distri-
butions conditioned to reaching A; we denote as "uniformly
generated’ the observations sampled from U). Define the
local mixture My = 7-P) + (1 — 7) - U, and the balanced
mixture, M}, is defined as My = (1/2) - Py + (1/2) - U
Let t denote the predicate value of a split chosen for \.
Definition 5.7. (Kearns & Mansour, 1996) Fix 6 > 0. Pred-
icate t at leaf X satisfies the b-Weak Hypothesis Assumption
(WHA) iff Pryp, [£(X) # Y] <1/2-6.
It turns out that the balanced mixture is the one against
which each new split in h, is evaluated after the generator

is updated in copycat training (the modifications at G are
local since the underlying tree defines a partition of X).
We use the WHA to ensure that the split chosen at any
leaf during copycat training complies with Definition 5.7.
Using a result of Kearns & Mansour (1996), this brings
guaranteed rates for the maximisation of the information of
its calibrated posterior (Definition 4.2). Theorem 4.5 then
directly yields rates for the maximisation of Iy~ (P5,, Us),
and Lemma 5.6 translates them to convergence for P7 =
G towards P, where G denotes the measure induced by
generator G (equality P7 = G is guaranteed by copycat
training). We make those convergence rates explicit for the
boosting-optimal splitting criterion, Matusita’s loss (Table
1), for which L(u) = 24/u(1 — u). For any € € [0, 1], we
abbreviate LE(B) =c-L(m) (1—-¢)-L(n*,n* M)

Theorem 5.8. Define the binary task B = (m,P,U), M
Suppose SPSD loss { is Matusita’s loss and the WHA is
satisfied at each split of h.. Then for any € € [0, 1], if the

32

number of splits in h_satisfies T > (ﬁ) 672’ then the
likelihood ratio risk achieved by generator G with respect
to the distribution of real observations satisfies By (P, G) <
eI~ (P,U).

The proof directly follows from the proof of Kearns & Man-
sour (1996, Theorem 10), using Defns in (4.2), (5.5), Thm
4.5 and Lem. 5.6 to calibrate the bound that is needed on
the information of 17 to guarantee the bound on B, (P, G).

6. Experiments

We carried out experiments on four topics: missing data
imputation, training on generated data (training on fakes vs
training on real), fake-real discrimination (distinguishing
fakes from real) and generated augmentation (adding fakes
to real for training) on a total of 11 readily available datasets,
from the UCI (Dua & Graff, 2021), Kaggle and the Stan-
ford Open Policing project, to which we added 4 simulated
datasets. For simplicity, all GT experiments use copycat
training, implemented in Java. Due to the lack of space,
we refer to App, Section II for all details. To get the sim-
ple 2D heatmaps in Figure 1, we trained generative models
with the full domain (1K epochs for neural nets, 10K splits
for GTs) and generated the same amount of data as in the
training sample. An interesting observation, quite intuitive
considering copycat training’s properties and visible on all
2D heatmaps (see also App), is the virtual absence of mode
collapse during training: modes that appears gets refined
during induction but do not disappear at some point.

6.1. Missing data imputation CIMPUTE’)

Objective and experimental setting A GT G is not just
useful to generate data: it can trivially be used for missing
data imputation (Muzellec et al., 2020). For this, we con-

Generative Trees: Adversarial and Copycat

Us vs Mice| NORM CART RF
#trees p. fold | N/A 10 1000
(@=)5% o U(0.003) U U(0.07)

10% 5 | v03) U0.002) U(0.007)

20% S | U©000s) U0 U.001)

50% o | U0.04) U U

CART RF CART RF
35 3500 125 12 500
U U M U

) U M N U M

S| voos) U g | M
M(0.02) M(0.06) M(0.01) M(0.07)

Table 2. Best method (U(s) vs M(ice); p-values shown if p < 0.1) on IMPUTE. circGauss: domain (green dots) vs imputed data (red).

TRAIN-GEN GEN-DISCRIM
0) 10% ‘ 300 ‘ 1Kx* 10 ‘ 300 ‘ 1K
10 17772 | 37473 | 27375 | 77472 | 67572 | 67572
300 S7171 | 87171 | 4/5/1 | 8/4/1 | 87372 | 87372
MAX S7171 | 87171 | 77271 | 87471 | 87372 | 87372

Table 3. TRAIN-GEN (left table) & GEN-DISCRIM (right table):
statistical wins / ties / statistical losses for us (U()) vs CTGAN(C()).
Statistical = significant for p < 0.01. For example, a / b/ c means
we statistically win a times, lose ¢ times and there is no statistical
difference b times. On TRAIN-GEN, each red star (x) indicates
a domain for which the related technique performed statistically
worse than uniform sampling (UNIF) for p < 0.05.

strain the support of the tree to the observed variables and
then sample in region(s) of maximal density. This costs no
more than O(|A(G)|) per observation. We compared against
a few powerful alternatives (mostly tree-based) from the R
mice package (van Buuren & Groothuis-Oudshoorn, 2011).
Such methods rely on round-robin prediction of missing val-
ues: after having initialized them, one circles several times
(5 in our experiments) through predicting each column from
all others using trained models from a specific mnet hod. We
used method € {NORM, CART, RF} (RF = random forests
with 100 trees each, CART learns regression / decision trees
(Breiman et al., 1984)). It is important to realise that even
on a domain like 1ed24 with 25 variables, 5 round-robin
iterations with RF implies using no less than 12 500 trees
per fold when we rely on 1 in our GT. We grow the GT
to its MAX size (limit: 10 000 nodes) and prevent splits
with p € {0, 1}, thus avoiding discarding support for data
generation. We generate Missing Completely At Random
(MCAR, van Buuren (2018)) data by removing a fixed pro-
portion ¢ € {5%, 10%, 20%, 50%}, embedded in a 5-fold
cross validation for each ¢g. Imputing a complete dataset
on each fold, we judge imputation’s quality with optimal
transport’s Wasserstein’s W22 (Muzellec et al., 2020).
Results Table 2 summarises 3 domains (more in App) giv-
ing a good panorama of our observations, the first of which
being the fact that our simple approach can in fact beat
mice on problems with restricted number of variables (but
the picture is reversed on domains with large number of
variables, App). Imputations’ quality wrt mice is clear
from Table 2 (¢ = 20%). While our objective was not to
beat such fit-for-purpose imputation methods relying on a
comparatively huge number of models, we remark that our
results can serve as basis for using GTs in more sophisti-
cated approaches.

6.2. Training on generated data CTRAIN-GEN’)

Objective and experimental setting In this basic experi-
ment, we seek to answer whether generated data can be
used in lieu of the original data to solve the original data’s
supervised / regression problem (e.g. predicting the variety
for iris). We use a 5-folds CV experiment where on each
fold a supervised classifier is trained on fake or real data
and then used to classify the (fresh) real data’s fold. Fake
data is obtained from a generator trained on the training
data, then sampled for the same data size. We consider 3
GTs with different sizes, with 10, 300 and up to MAX splits
(same as in Section 6.1). Our contender is the state of the
art CTGAN(Xu et al., 2019), trained for a number of epochs
in {10, 300, 1K}; the original data’s supervised problem is
then solved by training RFs and gradient boosted decision
trees (GBDT) on real or fake data, and comparing the output
accuracy / RMSE (details in App, Section I1.3).

Results Table 3 (left) provides a summary of the results
on the 10 total domains considered, from which it emerges
that when GTs have 600+ nodes (300+ splits), we tend to
beat neural networks (NNs, regardless of the number of
epochs considered). What is worse for NNs is that in a
total of 4 cases, they are statistically beaten by a uniform
sampling of the training data, which means they fail at learn-
ing the domain’s characteristics. This never happens to
GTs. Detailed 2D plots display that GTs tend to better learn
domain-specific features. Also, the final size of the GT can
be tiny compared to the training data, e.g. less than 0.5% on
dna and open policing (see App, Section I1.6).

6.3. Fake-real discrimination GEN-DISCRIM’)

Objective and experimental setting While the objective
fits in a simple question (can the generated data look like
real data ?), its treatment necessitated a complex pipeline, in
particular to avoid rewarding generators whose output would
be a mere copy their training sample. The complete pipeline
is detailed in App (Section I1.7); very briefly, it starts by
shuffling a 3-partition of the training data in a 3! = 6-fold
CV and ends up with supervised RF / GBDT classifiers (same
as in Section 6.2) for a 2-class supervised problem of fakes
vs real distinction. The smaller their accuracy, the better is
the generator. We use CTGANS as contenders; all parameters
(GTs, CTGANS) are the same as in Section 6.2.

Results Table 3 (right) provides a summary of the results
on 13 total domains considered. They display that GTs
(regardless of their sizes) achieved a better job at fooling

Generative Trees: Adversarial and Copycat

UCI dna I

% synth used

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy (higher is better)

*+UCl house-votes]

% synth used

0.4 | . [e o 4
; '
0.2 g T N I“I B
oL . file Ul 19 il Al

L
0.4 0.5 0.6 0.7 0.8 0.9
Accuracy (higher is better)

led24

% synth used

0.2 0.3 0.4 0.5 0.6 0.7

Accuracy (higher is better)

UCI aba‘lone‘

% synth used

3 3.5 4 4.5 5 5.5 6
RMSE (lower is better)

:VUCI winewhite ‘ Aligs?

IL

L 1 i 1 1 1
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
RMSE (lower is better)

% synth used

0.8 ':‘UCI ‘wine‘red | s

.
=+
‘ A‘
®l 4
)) | IK;
W 5 7 PP
0.85 0.9 0

.95 1

% synth used

o b koo

0.6 0.65 0.7 0.75 0.8
RMSE (lower is better)

Table 4. Experiment GEN-AUG: detailed results on six domains (more in App, Section IL.8). On the left pane, the metric is accuracy
(higher = better); on the right pane, the metric is RMSE (lower = better). In each plot, the x value of a vertical bar indicates a method’s
metric and the height along the y axis indicates the % of real data that represents generated data used to train the final classifier (up to

100%). Green filled circles are GTs results, the size of the circle indicating the number of splits in the GTs (- = 10,

=300, ® = 10K).

Red filled diamonds are CTGANS results, the size of the diamond indicating the number of epochs (. = 10, « = 300, ¢ = 1K). Finally, empty
pink squares () are UNIF’s results and filled blue squares (m) are those of COPY (the “optimal” reference from the standpoint of the task).

classifiers than neural nets. Much more interesting is per-
haps the fact that GTs managed, on 3 (simulated) datasets,
to better fool classifier than the original real data itself. This
never happened for CTGANs. However, there is still a gap
to fill for all techniques: CTGANSs do a statistically worse
job at fooling classifiers than uniformly generated data on 6
domains while GTs do statistically worse on 3 domains.

6.4. Generated augmentation GEN-AUG’)

Objective and experimental setting Supplementing real
data with generative data is a particular case of data aug-
mentation, and this setting is a variation on the TRAIN-
GEN experiment. Two key factors under control are (i) the
technique used to supplement the additional data and (ii)
the proportion of additional data with respect to the training
set size. In the case of (i), we do not just include data gen-
erated by our technique or GANs but also consider adding
purely UNIFormly generated data and also adding real data
from COPY itself. A generative model is all the better as its
performances come closer to the COPY metrics.

Results Table 4 displays results on 6 domains, with a clear
advantage to GTs on 5 out of the 6. On dna, GTs im-
prove CTGANS by up to more than 50% accuracy, as neural
nets clearly overfit the domain, being beaten by UNIF; on
house-votes, CTGANS trained with the largest number
of epochs get good results, though GTs are the only one
managing to beat COPY with 5% or 10% additional real
data. On 4 out of 6 domains, more training neural nets
does not improve results, while learning bigger GTs does
improve results in general, as well as does training with
more generated data. Such experiments tend to indicate that
training GTs can be quite resilient to overfitting.

7. Discussion and Conclusion

Our contributions have different application spectra: while
our models are tree-based, our contribution on losses has
wider applicability to any calibrated classifiers. While copy-
cat training is specific to a tree vs tree training procedure,
our adversarial algorithm could be used to train generative
trees against any calibrated classifier. GTs have advantages
that neural nets do not necessarily have: they provide us with
an exact and cheap to compute expression of the measure
learned, they can easily be used for missing data imputation,
and they also collect many benefits of DTs: interpretability
(of the measure); they can be trained using various feature
types (numeric, nominal, ordinal, etc.); and they can be
trained from data with missing values. They also share
some downsides of DTs, such as the fact that the underlying
tree graph induces an axis-parallel partition of the measure’s
support. Tricks used to alleviate DTs downsides could also
be used for GTs, though maybe in a non-trivial way (Heath
et al., 1993). Important open problems include scaling the
benefits of generative trees to ensembles of generative trees.
We believe our work brings new tools for models, losses
and algorithms to train powerful generative models tailored
to tabular data, and hope it contributes to fill the gap in data
generation quality for tabular data noted in recent work.

Acknowledgments

The authors thank Ehsan Amid, Sercan Arik, Olivier Bous-
quet, Julie Josse, Yishay Mansour, Aditya Krishna Menon,
Madeleine Udell, Jean-Philippe Vert, Manfred Warmuth,
Bob Williamson and the reviewers for many comments,
suggestions and stimulating discussions.

Generative Trees: Adversarial and Copycat

References

Arik, S.-O. and Pfister, T. TabNet: Attentive interpretable
tabular learning. In AAAI’21, pp. 6679-6687, 2021.

Box, G.-E.-P. and Muller, M.-E. A note on the generation
of random normal deviates. Annals of Mathematical
Statistics, 29(2):610-611, 1958.

Breiman, L., Freidman, J. H., Olshen, R. A., and Stone, C. J.
Classification and regression trees. Wadsworth, 1984.

Camino, R.-D., State, R., and Hammerschmidt, C.-A. Over-
sampling tabular data with deep generative models: Is
it worth the effort? 1In I Can’t Believe It’s Not Better
Workshop (ICBINB@ NeurIPS 2020), 2020.

Chui, M., Manyika, J., Miremadi, M., Henke, N., Nel, R.
C. P, and Malhotra, S. Notes from the Al frontier. McK-
insey Global Institute, 2018.

De Groot, M.-H. Uncertainty, information, and sequential
experiments. Annals of Mathematical Statistics, 33(2):
404-419, 1962.

Dua, D. and Graff, C. UCI machine learning repository,
2021. URL http://archive.ics.uci.edu/ml.

Dumoulin, V., Belghazi, 1., Poole, B., Lamb, A., Arjovsky,
M., Mastropietro, O., and Courville, A.-C. Adversarially
learned inference. In ICLR’17. OpenReview.net, 2017.

Friedman, J., Hastie, T., and Tibshirani, R. Additive Logistic
Regression : a Statistical View of Boosting. Ann. of Stat.,
28:337-374, 2000.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NIPS*27, pp. 2672-2680,
2014.

Heath, D., Kasif, S., and Salzberg, S. Learning oblique de-
cision trees. In Proc. of the 13 " International Joint Con-
ference on Artificial Intelligence, pp. 1002—-1007, 1993.

Kearns, M. and Mansour, Y. On the boosting ability of
top-down decision tree learning algorithms. In Proc. of
the 28 th ACM STOC, pp. 459468, 1996.

Knuth, D.-E. Two notes on notation. The American Mathe-
matical Monthly, 99(5):403-422, 1992.

Linsley, J.-W., Linsley, D.-A., Lamstein, J., Ryan, G., Shah,
K., Castello, N.-A., Oza, V., Kalra, J., Wang, S., Tokuno,
Z., Javaherian, A., Serre, T., and Finkbeiner, S. Superhu-
man cell death detection with biomarker-optimized neural
networks. Science Advances, 7(50):eabf8142, 2021.

Maréchal, P. On a functional operation generating convex
functions, part 1: duality. J. of Optimization Theory and
Applications, 126:175-189, 2005a.

Maréchal, P. On a functional operation generating convex
functions, part 2: algebraic properties. J. of Optimization
Theory and Applications, 126:375-366, 2005b.

Menon, A. and Ong, C.-S. Linking losses for density ratio
and class-probability estimation. In 33"¢ ICML, pp. 304—
313, 2016.

Muzellec, B., Josse, J., Boyer, C., and Cuturi, M. Missing
data imputation using optimal transport. In 37" ICML,
volume 119, pp. 7130-7140, 2020.

Ni, Y., Koniusz, P., Hartley, R., and Nock, R. Manifold
learning benefits GANs. CoRR, abs/2112.12618, 2021.

Nock, R. and Nielsen, F. On the efficient minimization
of classification-calibrated surrogates. In NIPS*21, pp.
1201-1208, 2008.

Nock, R., Menon, A.-K., and Ong, C.-S. A scaled Bregman
theorem with applications. In NIPS*29, pp. 19-27, 2016.

Nock, R., Cranko, Z., Menon, A.-K., Qu, L., and
Williamson, R.-C. f-GANs in an information geometric
nutshell. In NIPS*30, 2017.

Nowozin, S., Cseke, B., and Tomioka, R. f-GAN: training
generative neural samplers using variational divergence
minimization. In NIPS*29, pp. 271-279, 2016.

Osterreicher, F. and Vajda, I. Statistical information and
discrimination. /IEEE Trans. IT, 39(3):1036-1039, 1993.

Quinlan, J. R. C4.5 : programs for machine learning. Mor-
gan Kaufmann, 1993.

Reid, M.-D. and Williamson, R.-C. Information, divergence
and risk for binary experiments. JMLR, 12:731-817,
2011.

Rob, P. and Coronel, C. Database systems - design, imple-
mentation, and management. Boyd and Fraser, 1995.

Rockafellar, R. T. Convex Analysis. Princeton University
Press, 1970.

Savage, L.-J. Elicitation of personal probabilities and ex-
pectations. J. of the Am. Stat. Assoc., pp. 783-801, 1971.

Schapire, R. E. and Singer, Y. Improved boosting algorithms
using confidence-rated predictions. In 9 * COLT, pp. 80—
91, 1998.

Sypherd, T., Nock, R., and Sankar, L. Being properly im-
proper. In 39" ICML, 2022.

http://archive.ics.uci.edu/ml

Generative Trees: Adversarial and Copycat

van Buuren, S. Flexible Imputation of Missing Data. Chap-
man & Hall / CRC, 2018.

van Buuren, S. and Groothuis-Oudshoorn, K. mice: Multi-
variate Imputation by Chained Equations in R. Journal
of Statistical Software, 45(3):1-67, 2011.

van Erven, T. and Harremoé€s, P. Rényi divergence and
kullback-leibler divergence. IEEE Trans. IT, 60:3797-
3820, 2014.

Xiao, C., Zhong, P., and Zheng, C. BourGAN: Generative
networks with metric embeddings. In NeurIPS’18, pp.
2275-2286, 2018.

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. Modeling tabular data using conditional
GAN. In NeurIPS*32, pp. 7333-7343, 2019.

Yoon, J., Jordon, J., and van der Schaar, M. GAIN: missing
data imputation using generative adversarial nets. In 35"
ICML, volume 80, pp. 5675-5684, 2018.

Generative Trees: Adversarial and Copycat

Appendix

Abstract

This is the Appendix to Paper "Generative Trees: Adversarial and Copycat” by R. Nock and M. Guillame-Bert,
appearing in ICML’22. To differentiate with the numberings in the main file, the numbering of Theorems is

letter-based (A, B, ...).

Table of contents

Supplementary material on proofs

< Proof of Theorem 4.5

Pg 13

Pg 13

< Proof of Lemma 4.7

< Proof of Lemma 4.8

Pg 16
Pg 17

< Proof of Theorems 5.1 and 5.3

Pg 18

< Proof of Lemma 5.6

Pg 21

Supplementary material on experiments

Pg 23

— Examples of generative trees

Pg 23

< Domains

Pg 23

— Data generation experiments

Pg 25

— ’Missing data imputation’ experiments (IMPUTE)

Pg 35

— ’Training on generated data’ experiment (TRAIN-GEN)
— ’Fake-real discrimination’ experiment (GEN-DISCRIM)

Pg 38
Pg 42

— ’Generated augmentation’ experiment (GEN-AUG)

Pg 44

Generative Trees: Adversarial and Copycat

I. Appendix on proofs
L.1. Proof of Theorem 4.5
We proceed in several steps.

= Proof of the identity between the external elements in (11) — We write, as in Reid & Williamson (2011, Appendix
A.3), the second equality of

I(By) = Ip=(Pq,Nyg)
dP;
A R
- L~ [, (19)
= L(m) — Ex<m, [L(7)]
L(m) — Exm, [LA(X),A(X))] (20)
L(r) — L(A,7, M) 1)
= AL(~3MT~1)7 (22)

where (19) holds because 1 is calibrated and (20) holds because the loss is proper and 1} matches Bayes posterior on Bx.

> Proof of the rightmost identity in (11) — We first prove several helper results. We first remark that ¢ being strictly
proper differentiable implies f™ strictly convex and differentiable. We show these results for completeness, starting by
showing L strictly concave: otherwise, we write L(N1.2) = (1/2) - (L(n1) + L(n2)) forni.o = (1/2) - (M1 + 12). If we
had both

LMi,M1:2) > L(Mu2,Mi2) = LMi2) = (1/2) - (LM1) + L(n2)), (23)
L(n2,M1:2) > LM1:2,M1:2) = LMi2) = (1/2) - (L(M1) + L(m2)), 24)

then making the average of both yields (1/2) - (L(n1) + L(n2)) > (1/2) - (L(M1) + L(n2)), a contradiction, and yielding
for example L (11,M1.2) < L(N1.2,1M1.2), contradicting the strict properness of the loss in 11.o. Strict concavity of L implies
strict convexity of f™ from its definition in (6). Also, the differentiability of the partial losses imply the differentiability of

fr

For any strictly convex differentiable function f, we have f*(z) = zf'~'(z) — f(f'~'(2)) and (f*)' = /"', and if it is
lower semicontinuous then f** = f. We check that f™ is indeed lower semicontinuous. Because L is continuous (Sypherd
et al., 2022, Lemma 3.1), we study the set

I(a) = {t:(mﬁ+17r)~L<7Tt>>L(7r)a}, (25)

mt+1—m

for & € R. Denote for short g(¢t) = (7t + 1 —7) - L

mt+l—m)°

(2011, Appendix A.3). Recalling Br(z|2') = F(z) — F(2') — (z — 2’) F’(2’) the Bregman divergence with generator F.

(“7’5) which is continuous and also concave Reid & Williamson

We have
70 = =i T E ()
- o (-0 (57=) - (=) 0 (1)) @
_ rB, (1 ﬂffﬁ) @7)

7t
- 0 __ 28
T 1(71'254—1—71')7 (%)

which, since ¢1(1) = 0, shows lim o ¢’ = 0%; g being concave, ¢’ is decreasing (which also shows ¢; decreasing and
¢_1 increasing). To conclude, g is increasing; hence, (when it is not empty) J(«) = [t,,, +00) for some finite ¢,, and so

Generative Trees: Adversarial and Copycat

J(a) = (=00, t,) is open, showing the closedness of J(c) and the closedness of {¢ : f™(t) < a}, and we get e.g. from
Rockafellar (1970, Theorem 7.1, point (b)) that f7 is lower semicontinuous and thus (f™)** = f™. We complete the proof
of the identities: (26) holds because ¢_1(0) = 0 implies L(0) = 0-¢1(0) + 1-£_1(0) = 0 and because ¢ is also symmetric,
then L(1) =1-41(1)+0-£_1(1) = ¢1(1) = £_1(0) = 0. Hence, L(0) = L(1) = 0. We state (28) as a standalone Lemma.

Lemma A. Suppose { is proper differentiable and satisfies £_1(0) = ¢1(1) = 0. Then

L (0f|u)

B_ f_l(u).
By (1u)

fl(u)

Proof: The following two relationships hold because ¢ is proper, Yu € [0, 1] (using (4)):

L(u) w- b (u) + (1 —u) - l_q1(u), (29)
w-ly(u) + (1 —u)-£_;(u) = 0. (30)
The second identity expresses the fact that properness implies (from (3)),
a—vL(v,u) - = 0 G
We derive Yu € [0, 1], using L(0) = 0,
B_p (0lfu) = L(u) —uL'(u)
w-Ly(u) + (1= u) - Loy (u) = u- (G () +u- £ (u) = Lo (u) + (1= u) - £ (u))
= wu-l(u)+ (1 —u) L_q(u)—u-(l(u) —~L_1(u))
= (. (u)a
as anticipated. We also have Vu € [0, 1], using L(1) = 0,
B_p (ffu) = L(u)+ (1 —u)L'(u)
L(u) —uL'(u) + L'(u)
= u-l(u)+1—u)-lq(u)—u-((u) —L_1(uw) + £1(u) —l_1(u)
= E_l(u) +€1(U) 76_1(U)
= 0 (u)a
which completes the proof of the Lemma. O
We now finish the proof of (11). Since 1 is calibrated, then the corresponding likelihood satisfies
. n 1—m
R et (32)
-1 T
B T Iy 1—m
- dN5
(1—m)- sz, T
dP;
= . (33)

Generative Trees: Adversarial and Copycat

Putting all this together, we get:

—De(0|By) = Exep, [/™ 0 0(X)] = Ex~n, [G(3(X))]
= Exep, [/™ 0 0(X)] = Exn, [(f7)* o f™ 0 (X)]

= j;:f (jﬁ)dw—ﬂf’f) f’“()dN~ (34)
(e () o (R

- [(EE e () - oo um (R avs

- [(j§:>dNn

(@)

= I;=(Pg,Ng)
= I(By),

as claimed. The key to avoiding the inequality (10) is (34), which holds only because when the o-algebras of the measures
involved are coarsened with the level set of a calibrated posterior, it becomes Bayes posterior in the measure spaces obtained.
This ends up the proof of (11).

= Proofs of (12) and expression of (f™)*(z) — We now compute (f™)*(z). Let
p(1 —m)

t = m (35)

sup{tz—L(w)Hm“‘”)'L(m>}

t=0 mt+1—m

‘We have:

(f7)" (=)

t=0 mt+1—7

- _L(rx su p(l—w)'z 1—71'.
a U)+pe[01,)1]{(1—P)7T " 1-p L(p)}

1— - L
S L+ T {ZW(M}
[0,1]

™

We see that (f™)* is unbounded if z > 0. Otherwise, we have

@(pzﬂf-/l(m> (z+7-L'(p)(L—p)+(pz+7-L(p))
op 1—p (1—-p)?
z+m-(L(p)+(1=p)L (p)
(1-p)?
z+m-(—=L(1) = (=L (p) — (1 —=p)(=L) (p)
(1-p)?

z+m- By (1]p)
(1-p)?
z+m-l1(p)

(1-p2 ~’

where we have used the fact that L (1) = £_;(0) = 0 and. Zeroing the derivative, we thus seek p,(z) such that

z

blp=(2) = —-, (36)

™

Generative Trees: Adversarial and Copycat

and since ¢ is strictly proper, ¢; is invertible and we get

pe(z) = 1 (=2). 37)
and so
() = b+ T 2 IR)
—px(2) - B (1p=(2)) + L (p=(2))
- tmramm = pel2)
= —L(m+(1—m)- —px(2) - L (pr(2)) —pw(Z)l(l;fErZ()Z)) L' (pr(2)) + L (p=(2))
= —L(m) + (L =) (L(p=(2)) = px(2)L (pr(2)))
= —L(m)+ A=) (=L(0) = (=L) (px(2)) = (0 = px(2)(—=L)' (p=(2)))
= —L(m) + (L =m) B (0]px(2))
= —L(m) + (1 —m) - L1(px(2))
= LM+ (-m) Lol (<),

This shows the expression of (f™)*(z). To compute (f™)* o f™'(z), letting = 7z/(7z + 1 —), we observe

_f”’(v) _ I Tz N 1—m Y Tz
s T \mz+1—m7 mz+1—7m — \mz+1-—m

= Ln)+@Q-n)-L(n
= (=L)(1) = (=L)(n) = (1 =n)-(=L) (n)
= B_p(1]n)

= li(n), (38)
hence
(f) o f(z) = —L(m)+Q—m)-l1(n) (39)
= —-L (1-— 40
L() ™) (ﬂ'z +1- 7r> “0)
= —L (1- 41
£+ (=m0 (s) @
and we remark that when z = p is a likelihood ratio,
1—7
= P (42)
Tz
a density ratio, as claimed.
L.2. Proof of Lemma 4.7
From the chain rule and change of variablen = 1/(1 + p), we get
dl_1(n)
0y = 43
1'(n) an (43)
_1(1/(1
dn dp
1 DR
=) (45)

= —(1+p)*-(p). (46)

Generative Trees: Adversarial and Copycat

(28) shows that /; is decreasing and by symmetry, /_; is increasing. So, /_;'(n) > 0 and (46) shows then £**'(p) < 0,
thereby proving ¢°® is decreasing. We get from (30) after working all parameters using 46,

1 1 ? DR/ 1 P 2 DR/
Tvo 1+5 s o) = m'—(1+9) L7 (p), (47)
which becomes after simplification
1
oY (p) = p*-(p),¥p = 0. (48)
Fix p,e > 0, we also have
1
e () = G e,)
From which we get
o) — 1 1 1 1 1
(p +€) (p) _ . (3 'EDR/ <) _ 3 ‘EDR, ()> . (50)
€ e \p o (p+e) p+e

Suppose the LHS is < 0, which indicates a secant with negative slope at the right of p. From the RHS, we then get the first

inequality of
o (1) o PP .
p) 7 (p+e)? p+e

1
> V[— 51
(5+2) s

and the second is due to the fact that /°*(.) < 0. Letting p’ = 1/(p + €) and &’ = £/(p(p + €)), we then get
EDRI (p/ 4 6/) _ EDRI (p/)

!/

0, (52)
&

which indicates a secant with positive slope at the right of p’ or equivalently at the left of 1/p. Taking the limits for ¢ — 0,
we see that if the right derivative at p is negative, then the left derivative at 1/p is positive. Switching ¢ < 0 from (50)
switches the directional derivatives and shows that if /"’ is not convex in p, then it is convex in 1/p.

1.3. Proof of Lemma 4.8

The proof follows from Jensen’s inequality: if £°® is convex then we have by definition of g:

1

Ge(Nglg) = L(m)—(1—m) -En;, lq m (53)
= dP5
_ o (1 —m dNj
— L(m) - (1-7) B, [z (s dpﬁ)]
DR 1—m dNﬁ
< Lm)—(1—m) -4 (- -lENﬁ[dPﬁD, (54)

and we check that

ANz [/AN 2
ENﬁ[dPﬁ] - (dPﬁ>1

dNz\ 2 dNdP- dPs \ 2
= E 1 —2.Fp | — | +E u 1
P (dpﬁ)l P[dp2]* Pl<dpﬁ) 1*

dNz — dP:\?
- Ep|(=—n 1 1
; (dPy >]+

= x> (N3l|Pg) + 1, (55)

Generative Trees: Adversarial and Copycat

from which we get

W(lmeNﬁ [31;]) B eDR(IW“(x?(NﬁHPﬁ)H))

(56)

and obtain the lowerbound of (13) after combining with (54).

1.4. Proof of Theorems 5.1 and 5.3

We start by a simple technical Lemma.

Lemma B. Let f(u) = au® + bu + ¢; suppose f(u) = 0,Yu € R, implying a > 0,4ac — b*> > 0. Consider u* =
argming f(u) = —b/(2a). Let Q = (4ac — b?)/4a. For any ¢ > 0 and any v € R,

1

* *
v—u*|>e = f(u)gm'

f). (57)

Proof: Fix 0 € [0,1). We want to compute the vs such that f(u*) < (1 — §) f(v). Equivalently, we want

b? — 4éac
2 _— >
av + bv + =da = 0. (58)

‘We have the discriminant

b2 —4dac 6(4ac — b?)
= 2 — =
A b s =5 (59

and we have A > 0 because of the constraints on f. The vs we seek therefore satisfy

) dac — b2
J— * .
v —u*| > \/1 3 (1a > (60)

Solving the RHS= ¢ for ¢ thus yields that if |[v — u*| > € then

1
* —_— 61
where @ is defined in the statement of the Lemma. O
We have the expressions related to split of © using feature X:
n'S =nd n =nk- 1=r nh =n}. L (62)
A S A D A by

and n, = n' 2 +n' lA +n'y, nx = nY + nl + nf. Figure 4 gives an example of the way the scaling factors are obtained

on a simple example. These come from scaling the densities after the split (which partitions further the support) and the

computation of the associated Bernoullis B(p) (which defines the stochastic activation of the generative tree). Since this

process does not change the way the support is split by the discriminator, the weights — integrals of these densities — are
scaled by the same factors as depicted in (62). We recall notations

l T T l

l,\in?\—i— D\ ; SR W (5,\'ﬂ— oY

1—7 T T 1—7

=7“,\—l>\.

Generative Trees: Adversarial and Copycat

1 leaf = uniform sampler

150,100 X; > 60 160 80) 80, 100]
\D 0, GO)
. LI
=[0,100] g
X =1[0,80] 0
| X; [
0 100 0 80100 0 60 80100
an, _ 1 V
dz 100
dn _ 1 06 106
& = Too-mm - %% =Too-02 %
T
dn; 1-04-0.5
T =0.01
dn; _ 1-04 — 0.005 dz ~100-08-02 = 0
dz ~ 100-0.8
dni _ 10405 oo
dz — 100-08-0.75

Figure 4. Explanation of (62) on a 1D example: two splits on the same variable in a generative tree creating a piecewise constant but non

uniform density for the variable.

For any p € [0, 1], the new x? after split of © using feature X admits the simplified expression using (62) and p =

Dixea(n) A/Pas 1D = Xisen(n) 03/Pas 1D = Znea(n) IA0A/Pa-
2
0 I, 1-p r . P
(p/_”x_nx'ﬁ_nx?>
X (Nip)IIPs) = D]
AeA(R) PA
2
oy (e)
AeA(h) DA
- 1+ Y (Ix + pdy)
AeA(h) Px

—1 + puL + 2ppo + P pop,

where we put p in parameter of N% (). Note we can also take a fork at (65) and write instead:

14 Z —p)(SA)Q

AeA(h) Px

7“)\—

X* (N5 (0)[P7)
Three values of p are of interest:

e forp = 7, we get
X (

and there is no change in x? after split.

N;(D)[IPa) = x* (Nal[Ps),

* for p = 0, we get
x* (N5(0)]|Py)

which corresponds to discarding support on X" and yields n, = [);

=—-1+ HLL,

e forp =1, we get
X (NG (D)][Pg) =

which corresponds to discarding support on X! and yields ny = 7.

-1+ HRR;

—1 4 pre — 2(1 — p)pro + (1 — p)kop-

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Generative Trees: Adversarial and Copycat

Case 1 — suppose upp > 0. Define f as in Lemma B using (64), with a = upp,b = 2u.p,c = pL — 1. We have

Wt o= Mo HMLL — HLR (70)

UDD ML + MRR — 2/LR

Case 1.1 — suppose in addition g > pig and prr = pr. We have ©* € [0, 1] and fix p = u* . For the choice v = T,
Lemma B says that

1
IT—plze = X° (N5 (0)[|Pg) < 11220 x> (N3[|Pg), (71)
with
—1) — u? 2
0 - poo(puL — 1) —pip _ oy — Mo 72)
DD HDD

We also remark that with the value of p as in (70), x? (NQ1 (p)| |Pﬁ> turns out to be

2
X (Nz(Ps) = _1+/~LLL_2'@‘,ULD+ (MLD) pop = Q. (73)
HUDD MDD

Hence, for any & > 0, as long as x?2 (N:ﬁ ()HPﬁ) > §, whenever |7 — p| = ¢, one step of TD-GEN achieves geometric
convergence with rate 1/(1 + 8¢2).
Case 1.2 — suppose now p | < ju R, which implies u* < 0. Pick p = 0. From (68), (67) and (64), to get x? (N% (0)] |Pﬁ) <
(1/(1 +¢)) - x* (N7||P5), we equivalently need
7 upp + 2T — e+ = 0, (74)
which, expressed using the fact that upp = prr + pLL — 2R and pp = pLr — pLL, yields:
(72 =27 —)L + T prr + 27(1 — T)ur +e = 0, (75)

The Weak Generative Assumption, upp = & - max{p, urr} implies prr = 2u1r — L + 6 - gL, and with Case 1.2°s
assumption, g g > pie, yields prr = 20 — pr + 0 - pe = (14 8) - e, so we get

(72 =21 —)L + TPurr + 27(1 = Tr +¢ > (72 =27 — &) + (1 +8)7% - piw
+27’(1 — T)MLL +e
= (672 —¢) - L + e (76)

Fixing ¢ = &72 thus brings (74) and we conclude with

(N&[Pq) - (77)

1
2 (N%(0)[[Ps) < ——— 2

Case 1.3 — suppose now urr < HLr, Which implies u* > 1 (the denominator of u* is always > 0). Pick p = 1. From (69),
(67) and (66), to get x?2 (N%(l)”Pﬁ) < (1/(1 +¢)) - x* (N7||Ps), we equivalently need
(1= 7)*upp —2(1 = T)urop —eprr +¢ = 0. (78)
Using upp = #RR + pLL — 2ur and grp = URR — MLR, We break this down to:
(I=7uL— Q-7 +e)urr + 271 —T)r +¢ = 0, (79)

The Weak Generative Assumption yields this time £ > 2 r — #rr + 0 - #RR, Which, together with Case 1.3’s assumption,
HLR > URR, Yields g = (1 +9) - urr, so we get this time

(1*7')2,ULL*(1*72+5)HRR+27(1*T)HLR+5 > (177’)2(14»5)~HRR7(17’T2+E)MRR
+27(1 — T)urr + €
= (8(1=7)* —¢) - prr +&. (80)

Generative Trees: Adversarial and Copycat

Fixing ¢ = §(1 — 7)? thus brings (74) and we conclude with

1

2 (NL(0)||Ps) € ———— -2 (N;||P5). 1
X (n(O)H ‘1) 1+6(177')2 X (ﬂ|| T]) (8)
Cases 1.2 and 1.3 can be summarised as
1
2 (N (p)||Ps) < “x* (N;||P5 1}. 82
X (n(p)H Tl) 1+6(T+(1—27)p)2 X (T]H ﬂ)7pe{07 } ()

Case 2 — suppose jipp = 0. We remark in this case that the optimal p to minimize > (N]’i (»)| |Pﬁ) as in (64) or (66) is in

{0, 1}, which brings us to the case where the Weak Generative Assumption holds and therefore make that Case 2 does not
happen for the analysis of TD-GEN.

1.5. Proof of Lemma 5.6

We note that we have for any A € A(hr) and @ reaching A,

ndP ' DX
- _ 83
mdPT + (1 — w)dU(m) x4+ (1 —7m)uy’ (83)

where we recall p) = S A dP and u) = S A dU. We get from the scaled Bregman Theorem (Nock et al., 2016, Theorem 1)

that since g is affine, the perspective transform (—L) is convex and the first equality holds in:

7 By [B(—VL) (SE Hﬁ)]

ap £ | %
= - g<>'BL —dU__].qUu
Joo (0 S | g (47)

du
wdP
_ Jx(de + (1 =m)dU) - (-L) (de Y- ﬂ)dU>
™
wdPT
- L(de + (1 =m)dU) - (=L) (der F(1— w)dU)
=B

wdP ndP’ ! mdp!

_ L(de + (1 —7)dU) - AP+ (1—m)dU =dPT + (1= w)dU) (1) (deT + (1 - 7r)dU>7
=C

and the second equality follows from the definition of Bregman divergences. Since leaves in h7 induce a partition of X, C'
simplifies to:

o = 3 () - e [a-maw)

- 2 (ai) ()

—_——
=0

Generative Trees: Adversarial and Copycat

z
g(z) Z—M
g(z+9)

|
I
I ~]
I
I
I
I
I

!

Figure 5. Depiction of the two Bregman divergences in (85).

We can also reformulate A — B:

A-B = L(x) - L(de + (1 -mdU)- L (de +7E(11P— w)dU>

(-3 -5

AeA(hr) mpa + (1 = m)uy

= I« (P,U) = L= (Pqg, Usgp),

which leads to the statement of the Lemma.

Remark: there is a simple argument to show the strict convexity of (—L) that relates its derivative to negative a Bregman
divergence:

: Bb(l\g)

because in our case we have (—L) (1) = 0. Let for short g(z) = z + K for K > 0. We have g(z) > z and so for any 6 > 0,

z+46 B z+6 - z
g(z+08) g(z)+6 g(2)’

(84)
and since L is strictly concave and z/g(z) < 1 for z > 0, Bregman divergences lead to:

i) < ()

-\ / -/
(See Figure 5 for a depiction of the quantities), hence <7L) (z+9) > (7L> (z), showing the derivative of the perspective
transform of negative the pointwise Bayes risk is strictly increasing and the function is therefore strictly convex.

Generative Trees: Adversarial and Copycat

#1:root]
-[0.0489, [lng (CONTINUOUS) in [-76.8665, -72.71671; |-1|-1|] 1--[#2]
-[0.0366, [search vehicle (NOMINAL) in {TRUE}; |-1|-1|]]--[#100
|-[0.1212, [lat (CONTINUOUS) in [40.7067, 41.7329]; |-1|-1|]]--[#3010 (sampling)]
\-[0.8788, [lat (CONTINUOUS) in [41.7329, 42.3426]; |-1[-1|]]--[#3011]
|-10.8276, [lat (CONTINUOUS) in [41.7329, 41.8060]; |-1|-1|]]--[#3338)
| |-[0.8333, [warning_issued (NOMINAL) in {FALSE}; |-1|-1|]]--[#3756]
| | |-[0.9500, [raw_subject_race code (NOMINAL) in {W, B}; [-1|-1|]]--[#4184]
| | | |-10.2632, [reason_for_stop (NOMINAL) in {TrafficControlSignal, Other}; |-1|-1|]]--[#4380 (sampling)]
| | | \-[0.7368, [reason_for_stop (NOMINAL) in {StopSign, DefectiveLights, CellPhone, SuspendedLicense, Registration, MovingViolation, WindowTint, DisplayofPlates, Seatbelt,
[|-[0.5000, [district (NOMINAL) in {BARRYSQUARE, NORTHMEADOWS}; |-1|-1|]]--[#5788]
0 | |-r0.4286, [subject age (INTEGER) in {14, 15, ..., 29}; |-1|-1|]]--[#9118 (sampling)]
[0 | \-[0.5714, [subject_age (INTEGER) in {30, 31, ..., 94}; |-1|-1|]]--[#9119 (sampling)]
| | | \-[0.5000, [district (NOMINAL) in {SOUTHWEST, ASYLUMHILL, PARKVILLE, FROGHOLLOW, BEHT 5 Y cL o , NORTHEAST,
| | \-[0.0500, [raw_subject race_code (NOMINAL) in {A, I}; |-1|-1|]]--[#4185 (sampling)]
| \-[0.1667, [warning_issued (NOMINAL) in {TRUE}; |-1|-1|]]--[#3757 (sampling)]
\-[0.1724, [lat (CONTINUOUS) in [41.8060, 42.3426]; |-1|-1|]]--[#3339 (sampling)]
\-[0.9634, [search vehicle (NOMINAL) in {FALSE}; |-1|-1|]]--[#101
|-[0.0265, [raw_search authorization code (NOMINAL) in {C, I}; |-1|-1|]]--[#102]
| |-r0.0870, [lat (CONTINUOUS) in [40.7067, 41.6730]; |-1|-1|]]--[#4928 (sampling)]
| \-[0.9130, [lat (CONTINUOUS) in [41.6730, 42.3426]; |-1|-1|]]--[#4929]
#1:root]
-[0.2736, [export_ administration_act_south africa (NOMINAL) in {n}; |-1|-1|]]--[#2
-[0.2101, [religious_groups_in_schools (NOMINAL) in {n}; |-1|-1|]]--[#16]
-[0.8400, [duty free exports (NOMINAL) in {y}; [-1|-1|]]--[#88]
-[0.8095, [superfund right to_sue (NOMINAL) in {n}; |[-1|-1]]]--[#96]
-[0.9412, [handicapped infants (NOMINAL) in {y}; |-1|-1|] 1--[#100]
-[0.8750, [mx missile (NOMINAL) in {y}; |-1|-1|]]--[#102]
|-[0.0714, [crime (NOMINAL) in {y}; |-1|-1|]]--[#112 (sampling)]
\-[0.9286, [crime (NOMINAL) in {n}; |-1|-1|]]--[#113]
|-[0.9231, [education spending (NOMINAL) in {n}; |-1|-1|]]--[#124]
| |-10.0833, [anti_satellite test ban (NOMINAL) in {n}; |-1|-1|]]--[#142 (sampling)]
| \-[0.9167, [anti_satellite test_ban (NOMINAL) in {y}; |-1|-1|] 1--[#143]
| 1-00.0909, [physician fee freeze (NOMINAL) in {y}; |-1|-1|]]--[#154 (sampling)]
| \-[0.9091, [physician_fee freeze (NOMINAL) in {n}; |-1|-1|]]--[#155]
| |-[0.1000, [label (NOMINAL) in {republican}; |-1|-1|]]--[#170 (sampling)]
| \-[0.9000, [label (NOMINAL) in {democrat}; |[-1|-1|]]--[#171]
| |-[0.3333, [immigration (NOMINAL) in {y}; |[-1|-1|]]--[#192]
| | |-[0.3333, [water_project cost_sharing (NOMINAL) in {y}; |-1|-1|]]--[#542 (sampling)]
| | \-[0.6667, [water project cost sharing (NOMINAL) in {n}; |-1|-1|]]--[#543]
| | |-10.5000, [adoption of_the_budget_resolution (NOMINAL) in {n}; |-1|-1|]]--[#642 (sampling)]
| | \-[0.5000, [adoption udget_resolution (NOMINAL) in {y}; |-1|-1|]]--[#643 (sampling)]
i N Rt Oy 3 0= P RN T OV,

Figure 6. Generative trees (crop) learned on a fold of Stanford open policing data for Hartford (top) and UCI house votes
(bottom).

I1. Appendix on experiments

I1.1. Examples of generative trees

Figure 6 provides examples of subsets of generative trees learned on Stanford open policing data and UCI house
votes. Each node takes the form

[prob value, [variable (nominal) in {set of nominal values}]; ...]-—-[#node name]
[prob value, [variable (continuous) in [continuous interval]]l; ...]--[#node name]
[prob value, [variable (integer) in {int value n, n+l, ..., m}]; ...]-—[#node name]

prob value is the Bernoulli probability associated to the arc pointing to the node. If a node appears as
[...]-—[#node name (sampling)]

then it is a leaf (sampling) node. The rest of the Figures should be self-explanatory. In open policing, notice sampling
nodes #9118, #9119, inducing a higher probability of sampling a young person (age within 14 and 29) in the related part
of the domain.

I1.2. Domains

ringGauss is the seminal 2D ring Gaussians appearing in numerous GAN papers (Xiao et al., 2018); those are eight (8)
spherical Gaussians with equal covariance, sampling size and centers located on sightlines regularly spaced (2-2 angular
distance) and at equal distance from the origin. gridGauss was generated as a decently hard task from (Dumoulin et al.,
2017): it consists of 25 2D mixture spherical Gaussians with equal variance and sampled sizes, put on a regular grid.
circGauss is a Gaussian mode surrounded by a circle, from (Xiao et al., 2018). randGauss is a substantially harder
version of ringGauss with 16 mixture components, in which covariance, sampling sizes and distances on sightlines from
the origin are all random, which creates very substantial discrepancies between modes.

I1.3. Algorithms configuration and choice of parameters

GTs We only report comparisons with the copycat approach in which the discriminator is Kearns & Mansour (1996)’s
greedy induction algorithm optimising Matusita’s loss; our implementation is in Java. The input of our algorithm to train a
generator is a .csv file containing the training data without any further information. In particular, each feature’s domain is
learned from the training data only; while this could surely and trivially be replaced by a user-informed domain for improved

Generative Trees: Adversarial and Copycat

Domain Source Missing data ? m d | # Nom. | # Num.
iris UCI No 150 5 1 4
*ringGauss - No 1 600 2 - 2
*circGauss - No 2200 2 - 2
*gridGauss - No 2500 2 - 2
house-votes’84 ucCl Yes 435 16 16 -
*randGauss - No 3800 2 - 2
led UCI No 1 000 8 - 8
tictactoe UcCI No 958 9 9 -
winered UCI No 1599 12 1 11
led24 - No 1000 | 25 - 25
abalone ucCI No 4177 9 1 3
winewhite UCI No 4 898 12 1 11
sigma-cabs Kaggle Yes 5000 13 5 8
open-policing SOP** Yes 18419 | 20 16 4
dna UCI No 3186 | 181 181 -

Table A5. Public domains considered in our experiments (m = total number of examples, d = number of features), ordered in increasing
m x d. ’Nom.” is a shorthand for nominal / ordinal / binary; "Num.” stands for integers / reals. (*) = simulated, (** = Hartford data from
the Stanford Open Policing Project, https://openpolicing.stanford.edu/) (see text).

results (e.g. indicating a proportion’s domain as [0%, 100%], informing the complete list of socio-professional categories,
etc.) — and is in fact standard in some ML packages like weka’s ARFF files, we did not pick this option to alleviate all side
information available to the GT learner. Technical details are:

1. features’ domains are computed from training data; our software automatically recognizes three types of variables:
nominal, integer and floating point represented”;

2. the discriminator’s training follows the top-down induction blueprint in Kearns & Mansour (1996);

3. we do not accept splits that will incur a branching probability p € {0, 1} to prevent discarding support; leaves are split
from the heaviest first; when a real examples with missing values branch in the decision tree on one of its missing
values, the probability of following the left / right arc is not 1/2 but takes into account the length of the left / right
domains of the variable at the split (for example, if the left branch’s variable domain is { A, B, C'} and the right one is
{D} for a nominal variable, then the left branching probability is 3/4);

4. we consider three basic sizes of GTs, corresponding to 10, 300 and a MAX = 10 000 nodes splits (thus with total number
of nodes equal to 21, 601 and no more than 20 001). In the IMPUTE experiment, we only use the MAX size. Note that
the MAX size usually is smaller than 20 001 on small datasets because of the support constraint in [2].

mice We have used the R mice package V 3.13.0 with three choices of methods for the round robin (column-wise)
prediction of missing values: cart (Breiman et al., 1984), norm and random forests (rf) (van Buuren & Groothuis-
Oudshoorn, 2011). In that last case, we have replaced the default number of trees (10) by a larger number (100) to get better
results. We use the default number of round-robin iterations (5).

CTGAN We have used the Python implementation* with default values.

TENSORFLOW To learn the additional Random Forests and Gradient Boosted Decision Trees involved in experiments
TRAIN-GEN, GEN-DISCRIM and GEN-AUG, we used Tensorflow Decision Forests library”. The important points are:

3This is a difference with mice for which categorical variables need to be explicitly stated.
‘nttps://github.com/sdv-dev/CTGAN

5https ://github.com/google/yggdrasil-decision—-forests/blob/main/documentation/learners.
md

https://openpolicing.stanford.edu/
https://github.com/sdv-dev/CTGAN
https://github.com/google/yggdrasil-decision-forests/blob/main/documentation/learners.md
https://github.com/google/yggdrasil-decision-forests/blob/main/documentation/learners.md

Generative Trees: Adversarial and Copycat

 for Random Forests, we use 300 trees with max depth 16. Attribute sampling: sqrt(number attributes) for classification
problems, number attributes / 3 for regression problems (Breiman rule of thumb);

« for Gradient Boosted Decision Trees, we use max 300 trees, with 10% of the training dataset for validation and early
stopping. Max depth is 6 and there is no attribute sampling;

* in both cases, the min #examples per leaf is 5, we use CART to find splits on numerical and categorical features (i.e.
we don’t use one-hot encoding for categorical features). Induction is top-down.

Computers used We ran part of the experiments on a Mac Book Pro 16 Gb RAM w/ 2 GHz Quad-Core Intel(R) Core
i5(R) processor, and part on a desktop Intel(R) Xeon(R) 3.70GHz with 12 cores and 64 Gb RAM.

I1.4. Data generation experiments

Figures 7, 8,9, 10, 11, 12, 13, 14, 15 present 2D heatmap of density learned by generative trees with shown total number
of nodes. We have run a simple 10-fold CV experiment, each plot being the generator that minimizes over all folds an
empirical x? between the training data and a set of generated data. For UCI domains, the variables plotted are indicated and
we indicate the number (m') of examples generated to build the plots.

Warning: each of those plots records 1-of-10 results minimizing an empirical x? given the current size of the GT, so the
related GT could be different between any two iterations: sudden changes in densities do not stem from any instability of
training GTs but just from different GTs being selected. For example, in Figure 8, the GTs kept in the pairs of #nodes =7
and 11, or #nodes = 35 and 39, or #nodes = 55 and 59, are different from each other (e.g. densities do not suddenly rotate
by £90° after few iterations).

Generative Trees: Adversarial and Copycat

L
101 201 301 401 target

Figure 7. Results on the randGauss simulated data (target in the bottom-right, m = 3800; colors indicate sampled density), for copycat
training. Numbers are the total number of nodes of the generators; generators sampled for m’ = 4000 points each, each plot shows results
for one of the ten generators in the CV folds (not necessarily from the same fold); training method = copycat.

Generative Trees: Adversarial and Copycat

#*

target

Figure 8. Results on the gridGauss simulated data (with m = 2500, m’ = 4000), convention follows Fig. 7. Check the warning in
Section 1.4 for an accurate interpretation of the plots (any two can refer to different generative trees).

Generative Trees: Adversarial and Copycat

101 target

Figure 9. Results on the circGauss simulated data (with m = m’ = 2200), convention follows Fig. 7.

Generative Trees: Adversarial and Copycat

MO =«
301 target

Figure 10. Results on the ringGauss simulated data (with m = 1500, m’ = 4000), convention follows Fig. 7.

Generative Trees: Adversarial and Copycat

107 157 | " target

Figure 11. Results on UCI iris domain (with m = 150, m’ = 150) for the 2D plane petal-length X petal-width, convention
follows Fig. 7.

Generative Trees: Adversarial and Copycat

target

Figure 12. Results on UCI i ris domain (with m = 150, m’ = 4000) for the 2D plane sepal-length x sepal-width, convention
follows Fig. 7.

Generative Trees: Adversarial and Copycat

7 11 15 19
S ® o) ©
23 27 31 35 39
43 47 51 55 59
® o & »
201 301 401 501 ‘ target

Figure 13. Results on UCI winered domain (withm = m’ = 1599) for the 2D plane residual-sugar x chlorides, convention

follows Fig. 7.

Generative Trees: Adversarial and Copycat

1 m T
o . = :‘
— om
r g 7 11
4 o
23 | 27 31
E I
||
43 ‘ 47 51 55 59
201 | 301 401 : 501 target

Figure 14. Results on UCI winered domain (with m = m’ = 1599) for the 2D plane residual-sugar x density, convention
follows Fig. 7. The discontinuous strip-look is due to the huge difference in scales for the variables.

Generative Trees: Adversarial and Copycat

target

Figure 15. Results on UCI sigma-cabs domain (with m = m' = 5000) for the 2D plane trip-distance x
life-style—index, convention follows Fig. 7.

Generative Trees: Adversarial and Copycat

IL.5. Missing data imputation experiments (IMPUTE)

Objective Imputing missing values in data is an important process (Muzellec et al., 2020). Classically, imputation methods
are specifically designed for the task (van Buuren, 2018), even when they rely on generative models (Yoon et al., 2018). In
our case, a general purpose GT G can trivially be used for missing data imputation: we constrain the support of the tree to
the observed variables and then sample in the region(s) of maximal density, for a process that takes no more than O(|A(G)))
per observation. We have tested this simple procedure against the state of the art tree-based methods in the mice R package
(van Buuren & Groothuis-Oudshoorn, 2011) (and one non-tree based but known to be a good fit for normal data). The
methods we have considered in mice all have a commonpoint: they carry out round-robin imputation (Muzellec et al.,
2020). After having imputed the missing values with an initial guess, they circle round the attributes, repeatedly updating
the prevision of one attribute by predicting it from all the current others. Notice the potentially huge number of classifiers
used. In our case, on a domain like dna with 181 variables, the default number of iterations (5) with random forests of 100
trees each means imputing a dataset necessitates no less than 90 500 trees. In comparison, we rely on a single tree-based
model to simultaneously impute all values. In particular on such domains, we cannot hope to beat such approaches, but
our approach was rather to compare with SOTA over ranges of problem complexity, variable diversity and have specific
simulated domains to further scrutinise differences for GTs used as ’basic’ components of imputation methods.

Experimental setting We consider copycat training against a discriminator minimizing Matusita’s loss (Kearns & Mansour,
1996). We grow the GT to a MAX size (with limit 10 000 nodes, see Section I1.6) and prevent splits with p € {0, 1}, thus
avoiding discarding support for data generation. For each domain, we generate data that is Missing Completely At Random
(MCAR, van Buuren (2018)) by removing a fixed proportion of modalities g € {5%, 10%, 20%, 50%}, embedded in a
5-fold cross validation for each ¢q. In each fold, we thus impute a complete dataset and compare the resulting imputations to
the observed values. In such a setting, classical per-observation metrics like RMSE are not necessarily the best choices: if
after removing MCAR features two observations were then the same for the resulting features, a perfect imputation of
the missing values resulting in a permutation of the observations in the dataset would incur non-zero RMSE, yet would
arguably be correct. Similarly to Muzellec et al. (2020), we have thus opted for an optimal transport metric, Wasserstein’s
W2. We use mice with met hod oracles in {CART, NORM, RANDOM FORESTS (RF) (100 trees)}. NORM is not tree-based
but a good alternative on normal data (van Buuren, 2018). Notice that we have not used the default number of trees for
random forests (10), which we considered too small for our purpose. Due to the difficulty of aggregating different types
of variables to compute the Wasserstein distance without accidentally dimming the contribution of some to the total, we
consider here only domains for which all variables have the same or closely-related types (e.g. categorical with a close
number of modalities). We compute our metric using the squared errors normalized to the variable domain for continuous
variables, and the error (0/1 loss, multiclass single valued) of prediction for nominal variables (in all cases, the contribution
to the distance of each variable is in [0, 1]).

Results A key part of our experiments was to compare approaches on simulated data since we then know the ground truth,
including data with non-trivial structure. Table A6 provides all results on our simulated domains. Several conclusions dan be
drawn: first, our GTs appear to be winning on at least half of the total domain x MCAR% combinations, regardless of the
mice contender, even when heavy disparities appear depending on the domain. On gridGauss for example, we become
competitive for large % MCAR (though not statistically significantly) while on circGauss we statistically significantly
beat all mice contenders on all but one run. We can also notice the quality of the imputations from the plots: NORM in
mice is clearly failing to impute mostly on the heavy dense regions of the domain. Our results are visually much closer
to those of CART and RF. We suspect that our method has a different imputation ’quality’ pattern vs CART and RF: such
methods typically successfully impute near the modes while we can get a more balanced allocation of data among modes.
On domains like circGauss, we suspect this is the source of our better results. We then have tested what happens when
the number of variables increases: to assess this, we used different kind of data (boolean / trinary valued) and domains with
an increasing number of variables (from 8 to 181). Results are in Table A7, from which it comes that we are competitive on
problems on up to 25 variables and while we are significantly beaten by mice on the largest problem, one has to keep in
mind that on dna, we compete on imputation with a single tree model per fold when random forests aggregate 90 500 of
them to do the same task. On may expect that this has impact as well on the time to complete the task. This turns out to
be true: on dna, it takes less than 5 minutes to impute a fold with GTs (taking into account the training of the GT), while
mice requires more than two hours for the same task on random forests. The implementations of our algorithms (Java) and
mice’s (R) require caution in comparing times, but we can safely say that on such domains with relatively large number of

Generative Trees: Adversarial and Copycat

Us vs Mice|[NORM CART RF
#trees [N/A 10 1 000

a 5%m M M

§ 10%M M M

© 20%m M M

o) 50%(u U U

US vs Mice|[NORM CART RF
#trees |[N/A 10 1000

a 5%|U Uoon M

g 0%u U M

> 20%M U U

i 50%Mm M M(0.08)

Us vs Mice|[NORM CART RF
#trees [N/A 10 1 000

a 5%[Uoosy U U0.09

g 10%|U0.0s) U(o.0003)U(0.0007):z

o 20%[U.001) U@.001) U.002) |,

o 50%[U004) Uwos) Uwos)

US vs Mice|[NORM CART RF
#trees |[N/A 10 1 000

A 5%|U U U

3 10%m U©.02 U

? 20%|m M M T ‘*g

© 50%|u M M mice[NORM | | :mic?e!”CAiny

Table A6. Experiments IMPUTE on simulated domains gridgauss, ringgauss, circgauss and randgauss: comparison of
copycat GT induction with maximal size (us) vs mice (van Buuren & Groothuis-Oudshoorn, 2011) with three prediction methods:
NORM, CART and Random Forests. Left table: for each % of missing completely at random (MCAR) variables (in {5, 10, 20, 50}), we
indicate which of us (U) or mice (M) achieves the lowest average Wasserstein metric W. Bold faces indicate when a Student paired
t-test returns a p-val < 0.1, in which case the p-values is indicated in parenthesis. Right plots: examples imputation results (red dots) on
top of the domain’s data (green) for 50% MCAR.

variables, our approach takes much less time to complete the task. Finally, mice is specifically designed for imputation

while our GTs can be used for other purposes than just imputation itself.

Generative Trees: Adversarial and Copycat

US Vs MiCe||[CARTRF US vs MiCe||[CARTRF Us vs Mice||CARTRF US vs Mice||CART RF
#trees |40 4000 Ftrees |45 4500 Htrees [125 12500 #trees (905 90 500
5%[Uoos U g 5%|U M0.07) 5%M U 5%|M.03) M©.02)
g 10%[Uw.04 M Jg 10%|u M § 10%(U M s 10%[M0.02) M0.004)
— 20%(u U 2 20%Mm Moos) @ 20%|u M T 20% M 0.001) M(0.002)
50%|m U i 50%|u M 50% M .01y M(0.07) 50% M 0.002) M(0.001)

Table A7. Experiments IMPUTE on binary/trinary valued domains led, tictactoe, 1ed24, dna, with increasing number of nominal
description variables. Notations follow Table A6 (NORM not shown as it does not impute all NAs). While we are competitive on domains
with the smallest number of variables, we are clearly beaten by mice when the number of variables substantially increases like for dna.
Those numbers have to be read keeping in mind the number of trees involved in imputing a single fold: while we compete with 1 tree

against 40 (CART) and 4 000 (RF) on 1ed, we compete with 1 tree against 905 (CART) and 90 500 (RF) on dna.

Generative Trees: Adversarial and Copycat

Domain #1 #2 #3 #4 #5 #6 H#T #8
abalone COPY U(MAX) U(300) c(1K) ¢(300) c(10) u(10) UNIF
dna COPY U(300) U(MAX) UNIF c(10) u(10) c(1K) c(300)

house votes |COPY U(300) u(MAX) c(1K) u(10) c(10) c(300) UNIF

iris COPY C(1K) U(300) u(MAX) c(10) c(300) U(10) UNIF
led24 COPY U(300) u(MAX) c(10) u(10) c(1K) UNIF c(300)
led COPY U(300) u(MAX) c(1K) u(10) c(10) c(300) UNIF

winered COPY U(300) u(MAX) C(1K) UNIF U(10) c(300) c(10)
winewhite |COPYU(MAX) U(300) U(10) @ UNIF c(300) c(10) c(1K)
sigma—-cabs |COPY C(1K) c(300) c(10) u(MAX)U(300) UNIF U(10)

open-policing|COPYU(MAX) Cc(1K) U(300) c(300) c(10) uU(10) UNIF

Table A8. Ranking results on experiment TRAIN-GEN, showing for each domain the order (left to right: from best to worst) of the three
sizes of runs of our GTs (U(.), number in parenthesis = number of splits; MAX = up to 10 000 splits), the three runs of CTGAN with
different epoch numbers (C(.)), the COPY approach (we use the original data) and the UNIF(orm) approach (we use a random sample).
Those two last methods have their cells shaded to locate them.

COPY U(300) u(MAX)C(1K)c(10)u(10)c(300) UNIF
1 2.9 3 45 57 6 6.2 6.8

Table A9. Average rank for each approach in the TRAIN-GEN, as collected in Table A8, ordered in increasing average rank.

I1.6. *Training on generated’ experiment (TRAIN-GEN)

Objective In the context of tabular data, there can be several reasons to replace a training sample with a data generator: (i)
the storing size of the generated model, in particular for big databases and / or with substantial redundancy (Rob & Coronel,
1995), (ii) privacy (disregarding the privacy model), (iii) security (with respect to classical databases), etc. . The objective
of this experiment is the replacement of the training data by a data generator to address the supervised learning problem
related to the training data. For example, for domain i ris, the objective is the prediction of a flower’s variety among three.

Experimental setting For each domain, we carry out a 5-fold CV, leaving 20% of the data for testing and the rest for
training. We train a data generator with the training data, then generate a training sample the size of the generator’s training

c(.)
u()

10 |1/7/723/4/312/3/5
300 8/1/18/1/714/75/71
MAX B/1/18/1/1|7/2/1

10x | 300% | IKx*

Table A10. Experiment TRAIN-GEN: statistical wins / ties / statistical losses for us (U()) vs CT-GAN (C()). Statistical = significant for
p < 0.01. For example, a / b/ c means we statistically win a times, lose ¢ times and there is no statistical difference b times. Each red star
() indicates a domain for which the related technique performed statistically worse than uniform sampling (UNIF) for p = 0.05 (See
Table A8 to spot those domains).

Generative Trees: Adversarial and Copycat

Domain U(10) u(300) u(MAX)|C(10) c(300) c(1K)
abalone 23 90 193] 14 62 215
dna 2 7 38| 143 10513128
house-votes € € € 7 20 51
iris € € € 7 17 42
led24 € 1 2 6 22 62
led € 1 1 6 14 46
winered 3 8 14/ 13 24 62
winewhite 17 46 131 17 52 210
sigma-cabs 19 60 286/ 13 86 419
open-policing| 168 311 933 24 3381316

Table A11. Average training times to get the generated training sample on experiment TRAIN-GEN, in seconds, rounded to the nearest
second. ’¢’ means average < 0.5s.

Domain |GT|/|X| - 100 (%)
abalone 3.99
dna 0.26
house-votes 21.57
iris 200.13
led24 6.00
led 18.76
winered 7.82
winewhite 2.55
sigma-cabs 2.31
open-policing 041

Table A12. Experiment TRAIN-GEN: average sizes of the GT obtained using U(300) relative to the domain size (see text).

Generative Trees: Adversarial and Copycat

ground truth

U(10)

U(300)

U(MAX)

c(10)

(300)

c(1K)

ground-truth train

t_generator_ter_10

ctgan_cli_e300

ctgan_cli_e1k

dt_generator_jter_300

ctgan_cli_e10

06 o6 061 o6 06 os 06
os o5 os o5 0s
5o Bos Zoa] 1) Tos o,
5 503 H 5o 5
&03 - 03 -] 503
02 02 oaf e g 02 o
01 o1 L B i o1 o1
@2 o1 s @ o o s T2 oi o8 s 07 os a5 0s @ o o s
Longestshel Longestshell Longestsnell ongestshell Longestshel
ground-truth train dt_generator._iter_10 dt_generator_ter_300 dt_generator_ter_10k ctgan_cli_e1k
0s o N 10 N N -
0 08
0s os .
o8
o5 R
gos Zoe 00 N .
H H H os .
£, £, £ 04 E
01 02 02 02
00 00 ks 00 00
@2 s s o2 o4 06 s 2 o1 s %2 os o5 s % o) s o2 o« a5 os o2 o« o5 o8
Longestshell Longestsnell Longestshell Longestsnell ongestshel ongestshel Longestshell
ground-truth train dt_generator_iter_10 dt_generator_iter_300 dt_generator.ter_10k ctgan_ci_e10 ctgan_ci_e300 ctgan_cii_e1k
; T 30
30
23 25 25 25 25 e
=20 20 =20 =20 2 220 =
s il % 3 §20 s 5%
215 £15 £1s £ i, £1s S
210 20 210 2o 210 A% £10
05 05 o5 o5 05 05 0s
00 00 00 00 0o 0o 00
@2 os s 02 os o5 s 2 os as o2 o: s a8 g o2 s s 02 o: a5 os o2 s s s
Longestshel Longestsnel Longestshel Longestsnell ongestshel ongestshel Longestshel
ground-truth train dt_generator_iter_10 dt_generator_ter_300 dt_generator_ter_10k ctgan_cli_e1k
4
L 150 150 150
2 150
125 125 125
z10 " " 125 _
£ E100 100 E100
go8 H H o0 H
H Eons on ors Sons
Zos H H 1
M §os0 S o5 050 o
02 025 025 025 025
00 0.00 0.00 000 nas
0z os s @2 o4 ds os o o6 G oz os 5 o o2 o« as os o2 o« o5 os
Longestshel Longestshell Longestsnell Longestshell ongestshell Longestshel
ground-truth train dt_generator_iter_300 dt_generator_ter_10k ctgan_cii_e1k
—] ee 05 os
. e
it 5 05 o5
os 33 os
g £ 2o ;__ fg’ 0s gua
g o H fos : g go2
g & %02 g Fo2 Zo2
2., £ £ 2o b H
o o1 o1
0.0 00 o0 oo

o 06
Longestshell

o 06
Longestshell

Figure

16. Experiment TRAIN-GEN: 2D distribution plots for

domain abalone (warning: scales vary).

‘ground-truth train dt_generator_iter_10 dt_generator_iter_300 dt_generator_iter_10K ctgan_cii_e10 ctgan_cii_e300 ctgan _cli_elk
: 16 T e 14
150 T e 12
125 N m § 2 * 10
2 z g2 2 z1o z Zos
2100 H 210 S0 Zos H H
o o o o o M 06
Yo < sos <os <os K |
g z g z 2 H %04
E 3 Eos Zos E H E
2 0s0 B H E 204 B E
04 0.4 02
02
025 0.2 02 0.0
00
3 IS ¢ 5 Db o® on 1 i s 1 B T B LR R 25 50 75 10 15 180 1 25 50 75 180 1Bs 8o 15
e acidty fed acidty e acidy fed.acidty e acidy ed acidty
dt_generator_iter_300 dt_generator_iter_10k ctgan_cli_e300 ctgan_cli_elk
10 10 o on T W - ; o 10 o
+ w1 os o8
08 08 08 08 05 e 08
Zos Zoo Zos Zos E o e g e
J J J vy o2 2 g oo
£oa £os & Eoa B o4 q + S 02 B
]] Loudd] E o 3 £
02 02 §axt) 02 s 00 "
gt as)
00 00 sl ST 00 04 02 02
s 5 1 B T ¢ 5 Db © om 1 ¢ 5 1 B T o® ¢ 5 b B ouo® 3 o B3 EJ 25 50 75 10 15 180 15 25 50 75 180 15 B0 15
fred_acidty ed acidty fred acidty ed._acidty e acidty red_acidty ed_acidty
ground-truth train dt_generator_ter_10 dt_generator.ter_300 dt_generator_iter_10k ctgan_cli_e10 ctgan_cli_e300 ctgan_ci_elk
15 1
; : = 2
0 150
. PR wl o + 20 Iy o
25 2s 2 . Cn : R et 1 2
Y + 5 5 + 5 i i LA 5 5
) N 2100 210 ‘ Soq g + Al 2 g
) g & & oyt BRI G hde do o
T s v 5 s E I El I g] 3
H H e W R R e | || A R e HE
E so g so0 g, el Pttt B "f'r + 't E g g
i b o 4 ats N o °
P kT o)
25 25 2 wATE 2 et 0 b
% : i - L
) ¢ 5 b = 4 1 i & b B 1 b ¢ 5 b B n B 5 B B B 25 5o 7 o s 25 50 s 150 1
e acidty red acidty e acidty fed_acidty fed_acidty e acidy red acidty
‘ground-truth train dt_generator_iter_300 dt_generator_iter_10k ctgan_cli_e10 ctgan_cli_e300 ctgan_cli_elk
os 06 v 06 CI os K * n 06 08
o5 0s . os{ . . 054 © + o 06 0s . 06
» 04 o 04 +, g 04 MR FEL S g0l o P o4 9
i £] s RS T i . . fos 03 § os
Zos Eos - Fos 2, A L8 + 5 Y 4 5
2 £ . E . H - . g N 02 “ 2 o
02 02 t 02 v 02 . e g oz 5
; : + gyt . S| e A
01 01 01 i 011 % ik i, g L3 o . o S 00
roesi : s o || L -] 3
0 S i - . g g S b Y or P . o
I ¢ 5 Db ® om 1 IR RS 3 B B B 25 50 75 25 1m0 175 25 50 75 180 15 8o 15
e acidty fed acidty e acidy e acidty e acidty e acidy ed acidty
ground-truth train dt_generator_iter_10 dt_generator_iter_300 dt_generator_iter_10k ctgan_cli_e10 ctgan_cli_e300 ctgan_cli_elk
o Ty 70 N + 70 N N + 5 *
w0
o 60 o 60 o o 8
i fw fo -
S Zo 2 13w
H E ©
EE) L) H H
M o o 2 a2
920 20 g e
& & & £
10 10 °
o
o 3 -0
IR I i3 25 5o 75 10 15 180 15 25 50 0o 125 180 15
fred_acidity fed.acidty red_acidty ed acidty

Figure 17. Experiment TRAIN-GEN: 2D distribution plots for domain winered (warning: scales vary). Notice that GTs manage to
capture complex distribution shapes (such as the wavy’ 2nd row) that neural nets do not necessarily capture, and neural networks can
generate data clearly outside admissible bounds (negative values for some variables)

Generative Trees: Adversarial and Copycat

sample. This training sample is then used in lieu of the original training sample to train a model following the original
data’s task. The model is then used to predict the class of the testing fold’s examples. To alleviate the bias on the choice
of this classifier and its training algorithm, we pick two types of classifiers / training models: random forests (RFs) and
gradient boosted decision trees (GBDTs), that we thus run on each dataset. We compute the accuracy for label prediction
and root mean square error for regression problems. For each domain and each generator type, we thus obtain 10 statistics
(5 for RFs, 5 for GBDTs), to which we add the 10 running times and use them for comparisons between methods. Speaking
methods, we consider for generative trees (GTs) copycat training against a discriminator minimizing Matusita’s loss (Kearns
& Mansour, 1996). We grow generative trees with three different sizes: very small (10 splits, i.e. 21 total nodes), medium
(300 splits, i.e. 601 total nodes) and *'maximal’. In this last case, we provide a limit size of 10 000 splits (i.e. 20 001 total
nodes). Notice that this maximal size is usually not reached, in particular when a training fold contains less than 10 000
training examples. We compare our three GT training flavours to three training neural network based methods relying on the
state of the art CTGAN (Xu et al., 2019). We use CTGAN code® with default parameters and varying number of epochs,
choosing small (10), medium (300) and large (1K) training epochs. We also use two more contenders: the first is the COPY
contender, which uses the original training data as training data. The second is the UNIForm contender, which just generates
uniform data in the features domains. While we expect COPY to lead the pack of algorithms, contender UNTF is used to point
algorithms failing at learning anything ’substantial’ about the domain when it significantly beats them.

Results Table A8 provides the ranking results among all eight contenders for each domain, where the average of the metric
(accuracy or RMSE) is used to rank from best to worst. Table A9 provides a more synthetic view by computing the average
rank for each contender. There are several conclusions to draw: (i) as perhaps expected, COPY is always the best approach;
what is perhaps less expected is that (ii) UNTF is far from always being the worst, CTGAN being the most frequently beaten
contenders (albeit not necessarily statistically significantly, see below) on four out of ten domains. More importantly, (iii)
our approach largely performs the best in all non-COPY approaches unless small GTs are used (U(10)). In eight out of ten
domains, U(300) is in the top-three contenders, and top-two if we exclude COPY. An interesting observation is that U(MAX)
is also in the top-three contenders in eight out of ten domains, showing that there is reduced overfitting effect due to the
large tree size (which we attribute in part to the constraint that p ¢ {0, 1} for GT splits). Obviously, in a context where
explainability would be key, the smaller size option (U(300)) would be a preferred choice. To dig further in comparing
our method to CTGAN, we have computed the number of domains one significantly (p = 0.01) beats the other, adding to
those statistics the number of times UNIF does significantly (p = 0.05) beat some contender(s). All results are summarized
in Table A10. The results display the superiority of our GT-based approach (unless, again small trees are used), but they
also display that CTGAN are, in few cases, significantly beaten by UNIF — and this can happen for all three epoch numbers.
This aligns with the observation that dealing with tabular data with neural nets forces sophisticated choices for the design
(Xu et al., 2019) and probably has as consequence that not optimizing sufficiently hyperparameters can result in worse
performances than uniform generation. We clearly do not have this problem and believe that this is due to the fact that
the tree (graphs) used in GTs bring the same convenience for data generation as the tree (graphs) used in decision trees
have for discrimination. Figures 16 and 17 provide two examples of sets of 2D plots showing the distribution of generated
examples according to different sets of couples of real-values variables. The absence of overfitting as well as the capturing
of sophisticated features of the data’s distribution is quite apparent, also in comparison with neural nets. Last, we have
computed the average computation time to get the generated datasets for us and CTGAN — thus, inclusive of the training time
for the generator. Results are provided in Table A11. One must be cautious in comparing numbers as our implementation of
our algorithms is in Java while CTGAN’s is in Python, but at least one conclusion seems fair to draw: we are in general — and
especially for bigger models / longer training — achieving much better results than CTGAN. The dna domain, for which the
imputation experiments were already displaying our superiority in terms of training time (Section 6), is a clear example of
reduction in training time that can be of order 10x — 100x with GTs compared to neural networks.

To put our results in perspective, we have also computed the relative size of the GT learned with respect to each domain size,
for each experiment: we use as GT size |GT| the total number of vertices and arcs, which equals (1 + 5-split number) and as
domain size, |X|, the total size of the dataset used (number of examples times number of variables). Table A12 presents the
results obtained for U(300), from which it appears that the GT learned can represent a tiny proportion of a domain’s size —
at most a few percents in most cases.

*https://github.com/sdv-dev/CTGAN

https://github.com/sdv-dev/CTGAN

Generative Trees: Adversarial and Copycat

Dataset

- *

A/ v 4
Splitt | Split2 | Split3 <>=>

’ Permut roles

Train

generator & repeat

Assemble Assemble
discriminator DS discriminator DS

Train
discriminator

QU

Test on discrimination

T

Figure 18. Experiment GEN-DISCRIM: General overview of the pipeline, designed to avoid rewarding generators that would just copy
their training sample.

I1.7. ’Fake-real discrimination’ experiment (GEN-DISCRIM)

Generative Trees: Adversarial and Copycat

Domain wins vs COPY loses vs UNIF
circgauss |U(300) ©on, UMAX) 0.02) None
randgauss |U(300) ©0.00004), UMAX) ©.00002)|C(10) 0.01)
ringgauss |U(300) 0002, UMAX) ©oo1y |None
abalone None C(10) ©.0006)
dna None None
house-votes |None C(10) ©.0002)
iris None C(10) ©.007, C(300) (0.0002)
led24 None None
led None C(1K) 0.03)
winered None U(300) 0.003), UMAX) (0.001)
winewhite |None U(300) 0.006), UMAX) (0.001)
sigma cabs |None U(10) ©.001), U300) 0.001), UMAX) 0.001), C(10) 0.001), C(300) (0.003)

open-policing

None

None

Table A13. Experiment GEN-DISCRIM: for each domain, we compute the list of contenders in our method and CT-GAN statistically
winning against COPY and statistically losing against UNIF (for p < 0.05, indicated in parenthesis).

c(.)
u(.)

10 300 IK

10

71412

6/5/26/5/2

300

8/4/1

8/3/28/31/2

MAX

8/4/1

8/3/218/3/2

Table A14. Experiment GEN-DISCRIM: statistical wins / ties / statistical losses for us (U()) vs CT-GAN (c()). Statistical = significant for
p < 0.01. For example, a / b/ c means we statistically win a times, lose c times and there is no statistical difference b times. (See Table
A13 to spot those domains).

Generative Trees: Adversarial and Copycat

c()
u()
10 |6/1/3/6/2/24/11/5
300 (9/0/19/0/116/2/2
MAX 9/0/19/0/1j7/1/2

10 300 IK

Table A15. Experiment GEN-AUG: statistical wins / ties / statistical losses for us (U()) vs CT-GAN (C()). Statistical = significant for
p < 0.01. For example, a / b/ c means we statistically win a times, lose ¢ times and there is no statistical difference b times.

Objective The objective fits in a simple question: can generated examples look like real ones ?

)

Experimental setting The question is simple but its treatment non trivial: we need in particular to avoid ‘rewarding
generators that would just copy their training examples. Figure 18 provides the training pipeline we have designed, that we
ran for each domain considered. In short, we split each domain in three equal sized parts, say 81, 82 and 83. One of these
parts, say 81, is used to trained the generator, which then generates a sample 8; having the same size as 8. We then train a
discriminator for the 2-classes supervised learning problem consisting in distinguishing real from fake, using 8; and another
original part, say S9 as training samples. The discriminator is then fested on the problem consisting in distinguishing 8,
from the last original part (not yet used), S3 in this case. The smaller the final accuracy, the more ’realistic’ is considered S1.
We then permute the roles of the three samples and run the experiment again, ending up in 3! = 6 accuracies for each
domain. Considering that the discriminator is trained and tested on two different subsets of the original data as real data,
there is an incentive to not just ‘copy’ the original data but capture features about the domain that generalise well for data
generation. We have considered the same generators as in experiment *'TRAIN-GEN’: CTGAN with small (10), medium (300)
and large (1K) number of training epochs; our method with 10, 300 and MAX splits for GTs (recall that MAX = training up to
10 000 splits); we also consider the COPY and UNIForm baselines, the former giving an idea of the accuracy for the original
data and the latter giving the most ’blunt’ baseline. We consider the same discriminators as in experiment *'TRAIN-GEN’
(random forests and gradient boosted decision trees).

Results We first have a look at the extreme results, i.e. how our method and CTGAN compare to COPY and UNIF. Table
A13 presents the detailed results obtained for each domain. In this table, we only look at statistically significant results
— for example, when the accuracies on testing were statistically significantly larger than UNIF (which means that UNIF
performed better), or when the accuracies on testing were statistically significantly smaller than COPY (which means that
coprY performed worse). The picture with respect to UNIF displays that some CTGAN (disregarding the number of epochs)
get worse results on almost half of the domains (6) while some of our methods gets worse results on 3 of them. When
looking at COPY, we see that on our simulated domains, our method actually gets systematically significantly better results
than COPY when the number of splits is at least 300. This, we believe, signals the potential for GTs to be used as efficient
data generators, eventually as parts of more complex generators for more complex domains than our generated domains.
We have also drilled down in the comparison between our approach and CTGAN in the same way as we did for experiment
TRAIN-GEN. Table A14 presents the aggregated results, whose formatting follows the same rules as for Table A10. The
conclusion from this Table is that our approach does better at producing ’realistically looking’ datasets than CTGAN does.
When the GTs are big enough (at least 300 splits), the picture displays that our approach wins against all CTGAN alternatives
on a large majority of domains.

I1.8. ’Generated augmentation’ experiment (GEN-AUG)

Generative Trees: Adversarial and Copycat

1 T T 1 T ¥ T T us
o f f f ct-gan
9 0.8 | b 4 B “oony
7 0.6 L ' uniform
g * !
4 | f
g 0.4 !
el | ,
0.2t ™ “I h 'r | ; '
a8 | | 1@l n
0 1 | ¥ 1 ‘ |‘ | || 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy (higher i1s better)
iris
1 T 1 T T T T T T us
ks t i
o 0.8 | ¢ #| Ct-gan
] _copy
7 o6 L 'I: uniform
- . i i
] I il
g 0.4 - 5 " i
o ;
0.2 F1 Lt I
ae # o
0 L 'T s I 1 1 1 ! 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Accuracy (higher is better)
led
- 1 T T T II: T T T us
I] ct-gan
g 0.8 i ! r— “copy
= f f uniform
0.6 - 3 | a4
ﬁ | i '
a 0.4 i i ' bl
B l 4 ;
0.2 + ¥ (LT | " \ . R
o Bl ﬂ* / .
D 1 ‘ 1 | 111 1 . 1
0.1 0.2 0.3 0.4 0.5
Accuracy (higher is better)
open-policing
1 T T T T ¥ T L T T us
o ' | ! —
@ 0.8 | . ; g | ~ct-gan
] _copy
= ! f ! uniform
0.6 L . | -
ﬁ | || i
g 0.4 it | i
B i | | il
0.2 | A ; | l | gl H
L K I Y | m|
] 1 il | 1 o it 1 ! | 1
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Accuracy (higher is better)

sigma-cabs

Table A16. Experiment GEN-AUG: detailed results on four additional domains for which the metric is the accuracy. Conventions follow
Table 4 in the main file.

Generative Trees: Adversarial and Copycat

Objective Supplementing real data with additional faithful’ generated data could be envisioned as a way to improve the
performances of models trained from the whole data, a problem of substantial practical impact. Our objective was to test
how generative models can perform in such a scenario.

Experimental setting The setting can be summarized as the equivalent of the TRAIN-GEN experiment (Section 11.6), with
the sole modification that we train (supervised) models using generated data mixed with the training data of the generators
instead of just the generated data alone. Equivalently, we train with COPY + a generated sample. This generated sample
could be generated by CTGAN or our GTs, but we also try the COPY case (we add real examples) and the UNIForm case (we
add uniformly generated examples). We first tried the simplest experimental setting in which the size of the generated
data was the same as the size of the training data, but the experiments were largely inconclusive in terms of who wins or
loses. Hence, we have dug in this scenario, allowing a varying % of generated data to be added to the training data, for a
% of generated data that would represent 5%, 10%, 15%, ..., 100% of the training (real) data. This represents a lot more
experiments but also allows us to understand, for each generative technique, what is the effect of putting more generative
examples in the training sample. Regardless of the comparison with the COPY approach, a good generative approach
should bring improved results as the number of generated examples increases. All other parameters, generative models and
supervised classifiers considered are the same as in the TRAIN-GEN experiment.

Results Table A15 summarises the results obtained, much in the same way as Tables A10 and A14. The results display
that GTs tend to be a better fit for data augmentation than CTGAN. Training more the neural nets does not yield an
advantage over GTs, as even when comparing with GTs having a few dozen nodes, the picture is still quite balanced.
Table A16 completes Table 4 for the remains domains used. We observe that while dna is clearly the domain where
CTGAN obtained the worst results, with all accuracies (substantially) lower than any of UNIF, such bad performances
also occur in domains winewhite and winered, which could signal that the issue is not linked to the domain being
categorical (winewhite and winered are both real-valued). On iris, CTGAN have a slight edge over GTs, an edge
which much more significant on sigma-cabs where GT results basically cannot be distinguished from UNIF. We observe
that in this domain, CTGAN manage to get an improvement over +5% real data, in the same way as GTs manage to get an
improvement over +5% real data on abalone. open-policing, which is our biggest domain, displays that training for
a longer time is beneficial to both CTGAN and GTs, but ultimately GTs get the best results. Two conclusions can be drawn:
first, there is still work to do to beat adding real data, for both neural nets and generative trees, even when those latter models
seem to overall get the best and most stable results. Second, we do not observe for generative trees the apparent overfitting
pattern that follows CTGAN on dna, winewhite and winered. Apart from the fact that we prevent discarding support
in the induction of the GTs, we do not see currently any other reason for this observation to happen.

