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Abstract

Hidden Networks (Ramanujan et al., 2020)
showed the possibility of finding accurate sub-
networks within a randomly weighted neural net-
work by training a connectivity mask, referred
to as supermask. We show that the supermask
stops improving even though gradients are not
zero, thus underutilizing backpropagated infor-
mation. To address this issue, we propose a
method that extends Hidden Networks by training
an overlay of multiple hierarchical supermasks—
a Multicoated Supermask. This method shows
that using multiple supermasks for a single task
achieves higher accuracy without additional train-
ing cost. Experiments on CIFAR-10 and Im-
ageNet show that Multicoated Supermasks en-
hance the tradeoff between accuracy and model
size. A ResNet-101 using a 7-coated supermask
outperforms its Hidden Networks counterpart by
4%, matching the accuracy of a dense ResNet-50
while being an order of magnitude smaller.
Code available at: https://github.com/
yasu0001l/multicoated-supermasks

1. Introduction

Since the Lottery Ticket Hypothesis (Frankle & Carbin,
2019) showed that overparametrized dense networks contain
a subnetwork as effective as the original, multiple studies
have followed up on its analysis to deepen the understanding
of neural network connectivity pruning. One of the most sig-
nificant line of follow-up studies found that, not only could
these subnetworks be identified in the early stages of the
training phase (You et al., 2020), but even before training,
at initialization time (Lee et al., 2019; 2020; Wang et al.,
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2020a;b; Tanaka et al., 2020; Hayou et al., 2021; Frankle
et al., 2021; Sreenivasan et al., 2022b).

This line of research took a leap forward when Zhou et
al. (2019) discovered that winning tickets can be found just
by pruning, without the need of any weight training. In this
ablation study, which clarifies the role of each component
composing winning tickets, Zhou et al. demonstrate the ex-
istence of binary masks—supermasks—that, when applied
to a randomly initialized network, uncover a subnetwork
that achieves high accuracy without the need of ever updat-
ing weights. The discovery that weights do not need to be
learned, which has come to be known as the Strong Lottery
Ticket Hypothesis, broke common sense regarding neural
network training. Hidden Networks (Ramanujan et al., 2020)
further refined the idea of supermasks with an algorithm
for learning a supermask (edge-popup), thus removing
the stochasticity from the algorithm proposed by Zhou et al.
This approach achieved an inference accuracy comparable
to that of a dense network. A following series of papers pro-
vided theoretical ground to this phenomenon by analyzing
the bounds of necessary overparametrization (Malach et al.,
2020; Pensia et al., 2020; Orseau et al., 2020) in addition to
showing the robustness of these subnetworks to binarization
(Diffenderfer & Kailkhura, 2021; Sreenivasan et al., 2022a).

Supermasks have drawn attention to the intriguing fact that
winning tickets are present in randomly initialized neural
networks from the beginning. But that is not its only virtue,
as they also offer a fresh point of view for the deployment
of neural networks. The most practical feature of Hidden
Networks is that they can be reconstructed from a small
amount of information: unlearned weights are obtained from
a random number generator, and the only data that needs
to be stored are the random seed and a sparse supermask.
These features can be exploited for implementing efficient
inference accelerators on specialized hardware (Hirose et al.,
2022).

There are compression, quantization, and pruning methods
that provide similar advantages, such as pruning connections
based on importance (Han et al., 2015), Deep Compres-
sion (Han et al., 2016), and coreset-based neural network
compression (Dubey et al., 2018), but Hidden Networks are
unique in that supermasks handle quantization and pruning
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Figure 1. A fully connected layer and its notation.

simultaneously. Furthermore, Hidden Networks make pos-
sible to hot swap supermasks for applying the same model
to different tasks.

Nonetheless, Hidden Networks has room for improvement
in accuracy, task scalability, and model compression. The
original work on Hidden Networks provides no solution for
compensating the inference accuracy loss other than using
wider channels, which require models several times larger
for only a slight accuracy improvement. Using iterative
pruning with weight reinitialization (Chijiwa et al., 2021),
or ternary supermasks for learning both sign and connectiv-
ity (Koster et al., 2022), showed some promising results, but
they both increase the learning cost and require some form
of weight learning. Supermasks in Superposition (Worts-
man et al., 2020) succeeded in handling multiple tasks with
constant computation cost by using superposed multiple su-
permasks, and Hidden Fold Networks (Lopez Garcia-Arias
et al., 2021) reduced the model size of Hidden Networks by
folding them into a recurrent structure.

This paper addresses these issues by proposing Multicoated
Supermasks, which use multiple supermasks for a single
task to form a scalar mask that grants the random weights
of strong tickets with virtually the same expressive power
as trained weights. Multicoated Supermasks raise the ac-
curacy of the original Hidden Networks without additional
computational cost for training, while also offering a better
tradeoff between model size and accuracy than wide channel
models.

Additionally, we present an analysis of the score evolution
during the training of Hidden Networks that reveals an un-
derusage of backpropagated gradients, a finding that forms
the underpinning of the proposed method.

The remainder of the paper is organized as follows. Sec-
tion 2 recapitulates Hidden Networks and analyzes their
shortcomings. This serves as the mathematical basis for
Section 3, where the proposed Multicoated Supermasks are
presented before being explored and evaluated on Section 4.
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Figure 2. Structure of Hidden Networks with binary weights ran-
domly initialized to +o, where o is the standard deviation of
Kaiming normal distribution. This initialization method is referred
to as Signed Kaiming Constant by Ramanujan et al. (2020).

Finally, Section 5 concludes this paper.

2. Recapitulation of Hidden Networks

Hidden Networks is an intriguing approach that integrates
pruning and quantization into a single form by learning
connectivity instead of weights. Since our proposed method
shares the mathematical basis of Hidden Networks, we recap
its details in this section .

After reviewing the structure and notation of Hidden Net-
works in Section 2.1, Section 2.2 summarizes the mathe-
matical proof of Hidden Networks using a fully connected
(FC) layer (illustrated in Figure 1), similarly to Ramanu-
jan et al. This proof serves as basis in Section 3 for proving
the proposed method in a similar manner. Additionally, in
contrast to the original paper, which mainly focused on how
swapping edges affects the loss, we also provide an analysis
of the score transition after swapping stops, leading to the
underlying idea of the proposed method.

2.1. Structure of Hidden Networks

Figure 1 describes the structure of an FC layer and
the notation used in this paper. The outputs z(!) =

2”2, 2

N0 l]T of the [-th layer are calculated as

2z = ReLU(W W 2(-1)), (1)

where W) is the weight matrix of layer /. In Hidden
Networks, represented in Figure 2, the weight matrix w®
is obtained from two matrices: a random weight matrix and
a supermask matrix, which can be written as

l
w =Wl onsh), @)
where © is the Hadamard product operator, and W}E?ﬂ qisa
weight matrix randomly initialized by sampling uniformly
from {—o, o'}, in which o is the standard deviation of Kaim-
ing normal distribution (He et al., 2015). H is the supermask
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generating function, defined as

h(s h(s h(s
’H(S(l)) _ ( .1,2) ( 22) ( U,2) 3
n(s) hisyy) h(sy)

in which h(s,,) is a step function that determines mask
values based on the score s, and a threshold score s;:

B(5u0) = {1

>
‘Suv| = St (4)

0 otherwise

Here, s,,, is the score assigned to the corresponding weight
Wy, and sW ¢ RY*V in Eq. (2) and Eq. (3), is the matrix
formed by these scores.

The most distinct feature of Hidden Networks is that it uses
randomly initialized frozen weights and selects a subset of
them based on their scores. This makes the density of the
supermask, k%, a pivotal hyperparameter. Given k% and a
tuple of sorted scores, written as

sort(S(l)) = (8], 8,85, , Suxy) 5)
s.t. |8/1‘2|3/2|2|8é‘22|s/l]><\/‘7

the threshold score is calculated as s; = |s}|, where

t=|k%xUxV| (6)

is used to select the top-k% scores |s,,| > i, i.€., Slgt-

2.2. Edge—-Popup and Scores

In the forward pass, edge—-popup (Ramanujan et al.,
2020)—the training algorithm of Hidden Networks—only
uses the weights selected by the supermask, while in the
backward pass it applies backpropagation on the scores in-
stead of the weights (i.e., weights are never updated). The
authors of the original paper provided a simple and clear
proof of the efficacy of edge-popup, which we briefly
review to then expand it to the proposed Multicoated Super-
masks in Section 3.

Using the notation in Figure 1, the calculation of a FC layer
on Hidden Networks can be written as

Iv == Z h(51w)wu1) Zu 3 (7)

where VO = {vil), .. ,vffl)}. In the forward pass,
h(suw) = 1if sy, is one of the top-k% scores; otherwise
h(suw) = 0. In the backwards pass, backpropagation uses
straight-through estimation (STE) instead.

As mentioned above, Hidden Networks minimizes the loss
by updating scores instead of weights. From Eq. (7), the

L(T),

ﬁ(I,,) < Gradient%
oL ) )
o7 WinZi = wipZ;)

»
ﬁ(Ip) I Approximation
17 error
L (IP) WipZi — WjpZ;
Neighborhood
i, I, T
-~ )7 oL
L(Tp,) =~ LN(Lp) = L(Zp) + (wipZi — wjp2;)

Figure 3. First-order Taylor expansion of the loss on Hidden Net-

works. To keep the approximation error small, Z,, needs to be
within the neighborhood of Z,,.

differential of the loss w.r.t. the score is defined as

oL oL oI, oL
sy 0L, Dy, 0T, Vi ®

Notice that the step function A can be omitted by assuming
STE. Therefore, to decrease the loss, the score 5., can be
updated as

oL
Suv = Suv — A— Wy 2 9
uv uv al-v uv Uy ( )
where A is the learning rate, and Hidden Networks takes the
absolute value to ensure positive scores.

The remaining question is whether selecting the edges with
the top-k% scores decreases the loss or not. If edge (i, p)
replaces edge (7, p) at a gradient update, it means that s;,, <
sjp before the swap and that 3;, > 5;, after the update.
Then, the following inequality holds:

(8ip < 8jp) A (8ip > 5jp)
= gip — Sip > §jp — Sjp
oL L ..
& an—IDwi,,zi > f)\a—Ipwijj .- from (9)

54 % (wszz — wijj) < 0. (10)

As with all gradient-based optimization methods, the loss

L(Z,) can be approximated with its Taylor expansion, as
shown in Figure 3. When Z,, is within the open neighbor-

hood of Z,,, £(Z,,) can be approximated as

E(ip) = £(Ip + (ip Ip))
oL
~ L (Ip) + 871-1)(1;" - Ip)
oL
= L (Ip) + 871-1) (wlpZi — U)ijj) . (1)
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Figure 4. Evolution of loss and scores with weight decay during
training. Solid lines correspond to 10 000 scores chosen randomly
from the last convolutional layer of ResNet-18.

From Eq. (10), it is obvious that £(Z,,) < £ (Z,), proving
that edge—popup decreases the loss by swapping edges.

However, what would happen to scores if there was no
aL

swapping? If swapping stops, the score gradients Do
are constant, and therefore scores will constantly increase
or decrease until swapping occurs, as no swapping means
no change in the subnetwork nor in the loss. In practice,
however, this does not happen due to the weight decay
applied to scores. Figure 4 shows that most scores reach a
plateau after 50 epochs, after which they do not constantly
increase or decrease. But this does not mean that their
gradients are zero: it is the effect of the balance between
the score increase and the weight decay, i.e., their speeds
of increment and decay are almost equal. Although the
continuously decreasing loss reveals that the subnetwork
still undergoes slight changes, these underutilized gradients
can be exploited for further profit. The underlying idea of
the proposed method is to take advantage of these non-zero
score gradients for enhancing the performance of Hidden
Networks.

3. Multicoated Supermasks

This section proposes a method that extends Hidden Net-
works to use multiple supermasks—bundled in a Multi-
coated Supermask—instead of a single supermask. Al-
though using multiple supermasks for multiple tasks (one
mask for each task) has been proposed before by Worts-
man et al. (2020), this is the first paper, to the best of our
knowledge, discussing multiple supermasks for a single
task.

The proposed method, illustrated in Figure 5, employs N
supermasks—N coats—of descending density. That is, ad-
ditional coats select a subset of the connections selected by
the previous coat. Because of this information redundancy,
and since all supermask coats use identical scores, this
method has no additional training cost compared with Hid-

den Networks. Additionally, this redundancy is exploited to
compress the Multicoated Supermasks.

3.1. Formulation

With the proposed Multicoated Supermasks, Eq. (2) can be
rewritten as

w = Z H(S(l)vkn) © ng)nd’ (12)
kn€K

where [ is a set of IV supermask densities. Denoting the
element of matrix A at (z,y) as (A),,, the coordinates of
non-zero elements in a supermask coat can be written as

HY = {(u,v)‘k >0, (H(S(”7k)>uv ” o}. (13)

Then, the following statement holds between H, with dif-
ferent density k,,:

ki <k = HY cH, (14)

meaning that the non-zero elements of a supermask coat
with smaller k,, are a subset of those in a coat with larger
k., and so is the corresponding set of coordinates (i.e., this
method “applies several coats” of the learned supermask).
These non-zero indices of each supermask coat are all the
information necessary for constructing the desired subnet-
work, and the redundancy of the subsets can be exploited
for compressing them.

For calculating the output of a FC layer with a Multicoated
Supermask, Eq. (7) is extended to

N
Z wu'uZu Z hkn (Suv> (15)

uep-1) n=1
st. ky>ky>--->ky >0,

7, =

where NV is the number of total coats, and k,, is the density
of the n-th coat. Notice that when N = 1, Eq. (15) is
identical to Eq. (7), allowing to consider Hidden Networks
as a special case of the proposed method.

The score update rule in Eq. (9) is rewritten just by intro-
ducing NNV as

- oL
Suv = Suv — AEquvZua (16)

assuming STE over the summation of step functions in
Eq. (15). Therefore, Multicoated Supermasks can be proved
in the same manner with Hidden Networks based on Eq. (15)
and Eq. (16). We divide the proof in two possible scenarios:
the case of adding an additional coat, and the case of a swap
between two existing coats.
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Figure 5. An example of Multicoated Supermask with three coats and Signed Kaiming Constant weights.
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Each coat consists of a
, all edges in the

ks coat are included in the k2 coat, which in turn is a subset of the k1 coat.

In the case of adding a new coat, the loss L’(fp) is approxi-

mated as

£E) ~ L)+ 5T,
= L)+ g fewnZi— (e~ Dy 2)
_ g(z)+g§w1pz (17

where ¢ € {0,1,..., N} represents the number of coats

accumulated in Eq. (15), and the term %wipzi is less than
P

0 because

g'p — Sip > 0
—N\2E Nwzpz >0 - from(16)

Consequently, the updated loss E( ») becomes smaller than
the previous loss £ (Z,) by adding an additional coat.

In the case of an edge swap happening between two existing
coats, the loss £(Z,) can be written as

~ oL
L(Z,) L£(Z,) + 37(1 -1,)
oL
= L(Z,)+ oz, {ewipZi — (c = DwipZ;}
oL
+T% (c = NwjpZj — cw;pZ;}
oL
= L(Z,)+ L. {wipZi —wjpZ;}, (19)
P

which is identical to Eq. (11). As with Eq. (10), the updated

loss £(Z,) is also smaller than the loss before the update

L(Z,), as

Sip — Sip > Sjp — Sjp
oL oL

And %ILP (wipZi —wjpZ;) < 0. (20)
Therefore, in both the case of adding additional coats and the
case of a swap between coats, the Multicoated Supermask
approach works.

So far we have discussed Multicoated Supermasks for fully
connected neural networks. Due to the similarity with Hid-
den Networks, Multicoated Supermasks also extends to
convolutional neural networks in almost the same way as
Hidden Networks (Ramanujan et al., 2020, Section B.2), ex-
cept for the additional N from the STE of the step functions
used in Multicoated Supermasks.

3.2. Narrowing Down the Hyperparameter Space

Although Multicoated Supermasks can be trained with
edge—popup as well, it is necessary to determine a den-
sity k,, for each of the IV coats. To avoid the additional cost
of exploring a bigger hyperparameter space, we propose two
simple strategies for determining k,, from the total density
of the model top-k% (i.e., the density of the first coat, k1 ):
Linear and Uniform.

These two methods, portrayed in Figure 6, assume that the
magnitude of learned scores follows a folded normal dis-
tribution (although, in reality, the concentration of scores
around zero is slightly more prominent), and each uses a
different way of partitioning this probability density func-
tion to obtain the necessary k,. These two methods are
compared experimentally in Section 4.2.

Linear method (Figure 6a) partitions the score magnitude
segment [s¢, , «] at even score magnitude intervals, where
s¢, 1s the threshold score with density k7, and we define
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Figure 6. Two methods for setting the density k,, of each coat n:
(a) uses equidistant threshold scores s;,, ; (b) considers area under
the curve of a folded normal distribution. a = s¢, + 30, where
o5 18 the scores’ standard deviation.

o = 5¢; + 305 as upper bound for partitioning, in which o,
is the standard deviation of the score distribution. The range
of 30 from s;, covers most of the scores range regardless
of s¢,. Then, the threshold score s;,, for each density k,, is
calculated by

n
=S¢, +(a—st1)N, 21

St

and then, using Eq. (5) and Eq. (6),

ke = tn/UV. (22)

Uniform (Figure 6b), on the other hand, uses even portions
of area under the curve to partition the score magnitude
segment [s¢,, 00). Thus, k,, is simply defined as

n
ky = k1ﬁ- (23)

3.3. Multicoated Supermask Encoding

Since weights are random, it is only necessary to store the
supermasks and the random seed used at training for gener-
ating weights. Supermask coats with higher density contain
those with lower density (see Eq. (14)), for an additional
coat n it only necessary to store the elements located at the
coordinates of non-zero elements of the previous coat n — 1,
ie., H,(Cl)_l Therefore, the total number of bits of a unary
encoded Multicoated Supermask is

for N =1

uv,
N . 24)
(14 0o kaa ) UV, for N >1

The model sizes reported in Section 4 assume this encoding.

3.4. Single- and Multicoated Supermasks Comparison

As mentioned above, Hidden Networks can be considered
a special case of Multicoated Supermasks that only use the
first coat. Since additional coats are subsets of this first

coat, they do not modify network connectivity. However,
the scaling they provide expands the parameter search space,
leading the learning algorithm to better quality models by
exploiting the backpropagated information more effectively.
As will be discussed in Section 4, Multicoated Supermasks
achieve this by partially restoring the relationship between
a connection’s importance and its magnitude in the activa-
tion’s linear combination—which Hidden Networks broke
into score and random weight, respectively.

Since all coats are computed from the first one, multicoating
has a trivial impact on training cost. Compared with the
binary supermasks of Hidden Networks, encoding all coats
into a single Multicoated Supermask makes them scalar
supermasks. In specialized hardware, this may entail a
negligible added cost in its application to the weights, but
none in standard processors. The only significant inconve-
nience introduced by this method is the additional memory
needed for storing more coats. However, as demonstrated
in Section 4, increasing supermask size is more efficient
than increasing model size, whether it is with extra layers or
wider channels, as it results in models with similar memory
size and less computational cost but higher accuracy.

Previous work found success in reusing a single random net-
work for multiple tasks by training a supermask for each task
and hot swapping them accordingly (Wortsman et al., 2020).
Multicoated Supermasks differs in that it uses multiple su-
permasks for a single task. However, these two approaches
are compatible: one Multicoated Supermask can be trained
for each mask, raising the accuracy for each task while
retaining the capacity of hot-swapping supermasks.

4. Evaluation

This subsection evaluates the performance of Multicoated
Supermasks on image classification and compares it to Hid-
den Networks using the experimental settings described in
Section 4.1. First, a small-scale dataset is used to inves-
tigate the behaviour of the proposed method: Section 4.2
compares the different methods explained in Section 3 for
setting the density of each supermask coat, while Section 4.3
explores the relationship between total model density and
accuracy. Then, a large-scale dataset is used to evaluate the
performance of the proposed method and its size to accuracy
tradeoff by testing different supermask sizes in Section 4.4
and different model sizes in Section 4.5.

4.1. Experimental Settings

We evaluate Multicoated Supermasks for image classifi-
cation using the CIFAR-10 (Krizhevsky, 2009) and Im-
ageNet (Russakovsky et al., 2015) datasets. In both
cases residual networks (He et al., 2016) are trained for
100 epochs using stochastic gradient descent (SGD) with
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Figure 7. Comparison between the proposed methods for setting
kn, using ResNet-18 on CIFAR-10 with and a fixed k1 = 30%.
Linear produces smaller and more accurate models.

weight decay of 0.0001 and momentum of 0.9. Wide
ResNets (Zagoruyko & Komodakis, 2016) are used for
wider channel models. In CIFAR-10 experiments, the learn-
ing rate is decreased by 0.1 after 50 and 75 epochs starting
from 0.1 with a batch size of 128; in ImageNet experiments,
the learning rate is reduced using cosine annealing starting
from 0.1, with a batch size of 256. Following Ramanujan et
al. (2020), we use Signed Kaiming Constant initialization
(see Section 2.1) with a scaling factor of 1/1/k1, depending
on the sparsity k;. However, instead of non-affine batch-
norm, our experiments use affine batch normalization (i.e.,
batchnorm learnable parameters are updated). All mod-
els and experiments are implemented using MMClassifica-
tion (MMClassification Contributors, 2020), a toolbox based
on PyTorch (Paszke et al., 2019). All reported model sizes
for models using supermasks use the encoding described in
Section 3. Reported accuracy is the average of three runs
for CIFAR-10 experiments, and a single run for ImageNet
experiments.

4.2. Setting Each Coat’s Density

Figure 7 compares the two methods for setting k,, proposed
in Section 3.2 (Linear and Uniform) by testing them on
CIFAR-10 using ResNet-18 and a fixed k; = 30%. This
figure shows that the proposed method is effective: although
only slightly, both methods surpass the accuracy of the
baseline Hidden Networks, and accuracy grows with the
number of coats. Notably, the biggest gap in accuracy is
observed between the single-coated and the double-coated
supermasks.

Even though the difference in accuracy between the two
methods is narrow, Linear consistently outperforms Uni-
form. Furthermore, since Linear prefers larger additional
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Figure 8. Varying the value of density k1% while setting the rest
of ky, with the Linear method. ResNet-18 on CIFAR-10 with N-
coated supermasks.

threshold scores, it produces sparser coats, and thus sig-
nificantly smaller models. Since Linear produces both the
smallest and most accurate models, it is the method used
hereafter.

This result suggests that the additional expressive power of
Multicoated Supermasks comes from partially restoring the
linear relationship between connectivity strength—scores—
and weight magnitude of conventional weight learning. For
all practical purposes, when applied to models initialized
with Signed Kaiming Constant (see Section 2.1), a Multi-
coated Supermask extends the dynamic range of effective
weights without weight learning, functioning as a concurrent
blend of pruning and quantization.

4.3. Effect of Total Density on Accuracy

Figure 8 shows the results of investigating the relationship
between the total supermask density top-k% (i.e., the den-
sity of the first coat, k1) and the accuracy of the resulting
subnetwork. It shows that Multicoated Supermasks achieve
higher accuracy than the single-coated Hidden Networks for
practically any density value. The best results are obtained
in the range 40 < k; < 20, with a maximum at k; = 40%
of 93.54%), close to the dense model’s 94.14%.

It can also be appreciated that, although both single-coated
and multicoated supermasks degenerate critically at high
sparsity values, additional coats prevent accuracy degrada-
tion on dense supermasks (k; > 70%). This result proves
the hypothesis that Multicoated Supermasks help to mitigate
the impact of using random weights.

4.4. Supermask Size to Accuracy Tradeoff

This section evaluates how supermask size affects accuracy
and model size using ResNet-50 on ImageNet. The size of
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Figure 9. Effect of supermask size (determined by first coat density
k1% and number of coats N) on accuracy and model size using
ResNet-50 and ImageNet. HNN: Hidden Networks (i.e., N = 1).

Multicoated Supermasks depends on two hyperparameters:
the number of coats N and the total density k1. This ex-
periment probes the best ranges of NV and k; found in the
previous subsections.

Figure 9 shows that not all ways of increasing supermask
size are equal: while accuracy grows monotonically with
number of coats, there is an optimal density value around
k1 = 30%. Blending N and k; offers an almost linear
tradeoff between accuracy and model size. The highest
accuracy, obtained with k; = 30 and N = 7, overperforms
Hidden Networks by 5.65%, while only requiring a 1.67 x
bigger model size.

4.5. Model Size to Accuracy Tradeoff

Figure 10 evaluates the performance of Multicoated Su-
permasks (IV = 7, k; = 30%, Linear) when considering
different model sizes, and compares it to the the baseline
Hidden Networks (k1 = 30%) and dense models.

The enhanced expressive power granted by the additional
supermask coats delivers an outstanding tradeoff between ac-
curacy and model size. A multicoated ResNet-101 achieves
higher accuracy (76.46%) than the best performing single-
coated model, Wide ResNet-50 (73.85%), despite having
similar model size (9.0 MB vs. 8.3 MB). Even more remark-
ably, this model’s accuracy is only 0.5% lower than that
of a dense ResNet-50, while having a model size 10.78x
smaller. These results prove that Multicoated Supermasks
achieve higher accuracy for the same model size and smaller
size for the same accuracy even on a large scale dataset, with
no added training cost and negligible additional inference
cost.
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Figure 10. Comparison of Multicoated Supermasks (N = 7, k1 =
30%, Linear), Hidden Networks (k1 = 30%) and dense ResNet
models on ImageNet. WRN: Wide ResNet. The proposed method
outperforms Hidden Networks, and matches the dense model,
despite the 10 x model size reduction.

4.6. Effect of Weight Initialization

Figure 11 shows the impact on accuracy of using stan-
dard Kaiming initialization (KN, (He et al., 2015)) instead
of Signed Kaiming Constant initialization (SKC, see Sec-
tion 2.1). Similarly to Ramanujan et al. (2020), we observe
that SKC achieves a higher accuracy than KN. However, we
observe that, as the search space expands with the additional
coats, this difference disappears.

4.7. Multicoated Supermasks vs. Multiple Supermasks

To demonstrate the effectiveness of using a Multicoated
Supermask instead of multiple independent supermasks, we
experiment with using an independent score tensor for each
mask instead of shared scores. Figure 12 shows that, inde-
pendently of the number of masks, shared scores result in
higher accuracy than independent scores. Since the multiple
coats have the combined effect of scaling each weight de-
pending on its importance (i.e., its score), having multiple
scores for each weight introduces redundant scores in the
best case, and orthogonal scores in the worst case, which
eliminate the scaling effect and produce denser subnets.

4.8. Comparison with Other Approaches

Table 1 compares the inference accuracy, inference FLOPS,
and model size of the proposed method with pruning (Gale
et al.,, 2019), and with two sparsity training methods:
RigL (Evci et al., 2020) and MEST+EM&S (Yuan et al.,
2021). Model sizes of the compared literature are calculated
by considering nonzero elements as 32-bit (Zhu & Gupta,
2017). Compared with approaches with the same sparsity
and computation, Multicoated Supermasks result in models
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Table 1. Comparison on ImageNet of the proposed method with other sparsity training methods.

. Inference Model Size Top-1
Method Model Sparsity GFLOPs (MB) Acc. (%)
Dense ResNet-50 - 8.2 98 77.1
Pruning (Gale et al., 2019) ResNet-50 90 0.9 20 75.2
RigL (Evci et al., 2020) ResNet-50 90 0.9 20 75.7
MEST+EM&S (Yuan et al., 2021)  ResNet-50 90 0.9 20 76.1
Ours (N=7) ResNet-50 90 0.9 4 72.5
Ours (N=7) ResNet-50 70 2.5 5 74.3
Ours (N=7) ResNet-101 70 4.8 9 76.5
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Figure 11. Impact of weight initialization on ImageNet using
ResNet-50 (k1 = 30%, linear). SKC is signed Kaiming con-
stant initialization, and KN is Kaiming normal initialization.

5x smaller, although slightly less accurate. By increas-
ing the number of layers and density, the proposed method
outperforms other works while still keeping the model size
more than 50% smaller. These results show that Multicoated
Supermasks are an efficient option for memory-constrained
applications.

5. Conclusion

This work analyzes Hidden Networks (Ramanujan et al.,
2020), showing that their limit in performance is due to
supermask optimization stopping before score gradients
converge to the minima. This finding that edge—popup is
not uncovering the best possible connectivity pattern sug-
gests that randomly weighted neural networks may be hiding
even better performing subnetworks than previously thought,
aligning with the conclusions of Fischer & Burkholz (2021).

We address this problem by enhancing the random sub-
network’s expressive power with Multicoated Supermasks,
which use multiple supermasks to scale random weights.
This method delivers a better accuracy to model size trade-
off, showing that increasing the number of supermasks can

Number of Masks

Figure 12. Impact of learning masks with independent scores in-
stead of a shared score. ResNet-50 (k1 = 30%, Linear, SKC) on
ImageNet.

be more effective than adjusting sparsity or channel width
for compensating the accuracy loss of models with random
weights.

With a broader view, the high performance and small
size of supermasked models point to a promising trend of
lightweight neural networks combining pruning, quantiza-
tion, and random weights.
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