A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Bithika Pal! Arindam Biswas?> Sudeshna Kolay' Pabitra Mitra! Biswajit Basu’

Abstract

Winning lottery tickets refer to sparse subgraphs
of deep neural networks which have classifica-
tion accuracy close to the original dense networks.
Resilient connectivity properties of such sparse
networks play an important role in their perfor-
mance. The attempt is to identify a sparse and yet
well-connected network to guarantee unhindered
information flow. Connectivity in a graph is best
characterized by its spectral expansion property.
Ramanujan graphs are robust expanders which
lead to sparse but highly-connected networks, and
thus aid in studying the winning tickets. A feed-
forward neural network consists of a sequence
of bipartite graphs representing its layers. We
analyze the Ramanujan graph property of such
bipartite layers in terms of their spectral character-
istics using the Cheeger’s inequality for irregular
graphs. It is empirically observed that the winning
ticket networks preserve the Ramanujan graph
property and achieve a high accuracy even when
the layers are sparse. Accuracy and robustness to
noise start declining as many of the layers lose the
property. Next we find a robust winning lottery
ticket by pruning individual layers while retaining
their respective Ramanujan graph property. This
strategy is observed to improve the performance
of existing network pruning algorithms.

1. Introduction

Neural Network (NN) and its recent advancements have
made a significant contribution to solve various machine
learning applications. The power of an over-parameterized
NN lies in its capability to learn simple patterns and mem-

“Equal contribution 'Department of Computer Science and
Engineering, Indian Institute of Technology, Kharagpur, India
*Department of Mathematical Sciences, University of Copenhagen,
Denmark 3School of Civil, Structural and Environmental Engineer-
ing, Trinity College, Dublin, Ireland. Correspondence to: Bithika
Pal <bithika.pal2014 @gmail.com>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

orize the noise in the data (Neyshabur et al., 2018). How-
ever, the training of such networks requires enormous com-
putational resources, and often the deployment onto low-
resource environments such as mobile devices, or embed-
ded systems becomes difficult. Recent trend in research to
reduce training time of deep neural networks has shifted
towards pre-training following the introduction of a re-
markable contribution, named the Lottery Ticket Hypothesis
(LTH), which hypothesize the existence of a highly sparse
subnetwork and weight initialization to reduce the training
resources as well (Frankle & Carbin, 2019). It uses a simple
iterative, magnitude-based pruning algorithm, and empiri-
cally shows that even after removing approximately 90%
of the weights, the subnetwork can preserve the original
generalization error. In the subsequent studies, the focus
goes on finding this lottery ticket for more competitive tasks
by pruning with weight rewinding(Frankle et al., 2019), fine
tuning the learning rates (Renda et al., 2020), more efficient
training (You et al., 2019; Brix et al., 2020; Girish et al.,
2021).

Various analysis for explaining the LTH have been attempted
in the past. Researchers (Evci et al., 2020b) explain empiri-
cally why the LTH works through gradient flow at different
stages of the training. Despite previous attempts to explain
why the Lottery Ticket Hypothesis works, the underlying
phenomenon associated with the hypothesis still remains
ill-understood. All of these studies related to LTH identify
that a sparse sub-network can be trained instead of a com-
plete network and the network needs to be connected from
input to output layers. However, none of them try to explain
the LTH and the properties of the pruned network through
the lens of spectral graph theory. The network connectivity
can be described from the graph expansion point of view,
where any subset of vertices of size less than or equal to half
of the number of vertices in a graph, is adjacent to at least
a fraction of the number of vertices in that set; for details,
see (Lubotzky, 2010). Graphs satisfying this property are
known as expander graphs. The Ramanujan Graph is a
special graph in a bounded degree expander family, where
the eigenbound is maximal (Nilli, 1991). This leads to a
maximum possible sparsity of a network while preserving
the connectivity.

In this paper, we initiate a study to observe the character-
istics of a pruned sub-network from the spectral properties

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

of its adjacency matrix, which, has not been reported pre-
viously. We represent a feed-forward neural network as a
series of connected bipartite graphs. Both weighted and
unweighted bi-adjacency matrices are considered. The Ra-
manujan graph properties of each of the bipartite layers are
studied. We use the results of (Hoory, 2005) on the bound
of spectral gap for the weight matrix of a pruned network. It
is empirically observed that existence of winning tickets in a
pruned network is dependent on the Ramanujan graph prop-
erties of the bipartite layers. As network sparsity increases
with more aggressive pruning, we obtain regions where test
set accuracy does not decrease much and the bipartite lay-
ers satisfy Ramanujan graph property. Subsequently we
obtain regions where the Ramanujan graph properties are
lost for all the layers and test accuracy decreases sharply.
Also, we observe that the impact of noise in the data, on test
set accuracy is more adverse when some of the layers lose
their Ramanujan graph properties. Experimental results are
presented for the Lenet architecture on the MNIST dataset
and the Conv4 architecture on the CIFAR10 dataset. Results
for other popular feed-forward network are presented in the
Appendix.

We suggest that preservation of Ramanujan graph proper-
ties may benefit existing network pruning algorithms. We
propose a modified pruning algorithm that uses the spectral
bounds. The algorithm identifies network layers that may
still be pruned further, while avoiding pruning in layers that
have already lost their Ramanujan graph property. Neu-
ral network weight score functions suggested by various
pruning algorithms are used to represent the bipartite layers
as weighted graphs. Spectral bounds for these graphs are
used to verify the Ramanujan property. For a number of
popular pruning algorithms, we experimentally demonstrate
significant improvement in accuracy for sparse networks
by using these connectivity criteria. Contributions: The
contributions of the paper are the following:

* We propose a methodology for analyzing winning lot-
tery tickets with respect to their spectral properties.

* We empirically observe that winning lottery tickets of-
ten satisfy layerwise bipartite Ramanujan graph prop-
erty representing a sparse but resiliently connected
global network. The property is checked using spectral
bounds that generalize to irregular networks. We also
notice better noise robustness when all the layers of
the pruned sparse networks preserve this property.

* Based on the above property we propose a modified
iterative network pruning algorithm that attempts to
preserve Ramanujan graph property for all the layers
even at low network densities. It identifies layers that
are still amenable to pruning while avoiding further
pruning in layers that have lost their Ramanujan graph

property.

Section 2 and 3 brief the lottery ticket hypothesis and the
expander graphs, respectively. Section 4 and 5 discuss the
proposed approach and the results, respectively. Section 6
reviews related literature and Section 7 concludes the work.

2. The Lottery Ticket Hypothesis and Network
Pruning

The lottery ticket hypothesis states that a randomly initial-
ized, dense neural network contains a subnetwork which
when trained independently using the same initialization
achieves a test accuracy close to the original network after
training for less or at most the same number of iterations
(Frankle & Carbin, 2019). These subnetworks, denoted as
‘winning tickets’, can be uncovered by network pruning al-
gorithms. Weight pruning is one such simple strategy. Let
the original dense network be represented as the function
N (z;0), where x is the input and 6 are the weights. The
weights have an initialization of 6. Weight pruning gener-
ates a mask m € {0, 1}!?! such that the pruned network can
be represented by N (z; m © 0) with initialization m © 6.

Pruning algorithms that are used to obtain the winning tick-
ets can be either one-shot or iterative. In one-shot prun-
ing the original network is trained to convergence, then
p% of weights are pruned and the surviving weights are
re-initialized to their values in 6, followed retraining/fine
tuning the subnetwork. Here, the network training and prun-
ing are not simultaneously performed and pruning occurs
only after convergence is reached. Iterative pruning repeats
one-shot pruning over several iteration. This often leads to
higher pruning percentage while retaining test set accuracy.
However, iterative pruning is more time consuming than
one-shot pruning. After pruning the surviving weights may
alternately be initialized to their values in 6;, ¢ denoting a
small iteration number, rather than their initial values in 6.
This process is effective for large networks. We adopt this
in our study. Various scoring functions are used to prioritize
the weights for pruning. They may be based on weight mag-
nitudes, gradient, information flow (Blalock et al., 2020;
Hoefler et al., 2021) or saliency (Tanaka et al., 2020). Mag-
nitude pruning provides a simple method for obtaining the
pruning mask by retaining the top p% weights w; € 6 that
have the highest values of |w;|. The role of the weights in
local computation in the network layers is not considered.
A higher pruning efficiency may be achieved by algorithms
that account for connectivity structures in the individual
layers. In the next section we describe graph parameters of
the network that determine such connectivity.

3. Expanders and Ramanujan Graphs

Expanders are highly connected, and yet sparse graphs. In
this work, we shall be considering finite, connected, undi-

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

rected, but not necessarily regular graphs. Recall that the
degree of a vertex v in a graph is the number of half edges
emanating from v.

Definition 3.1 ((n, d, €)-expander). Lete > 0. An (n,d, ¢)-
expander is a graph G = (V, E) on |V| = n vertices, having
maximal degree d, such that for every set @ # U C V
satisfying [U| < %, |§(U)| > |U| holds.

Here, §(U) denotes the vertex boundary of U. The quan-

tity |5|(UU|)| measures the rate of expansion and the infimum
|6|(g‘)‘ as U varies among the non-empty subsets of V' with

|U| < % is called the (vertex) Cheeger constant h(G) of
the graph G. The higher the value of 2 (G), the more expan-
sion property it exhibits and vice versa. Expansion and the
Cheeger constant quantifies the connectivity properties of
a graph as a high value of h(G) signifies that the graph is
strongly connected. This ensures that information can flow

freely without much bottlenecks.

Definition 3.2 (Expander family). A sequence of finite,
connected graphs {G; = (V;, E;)}i=1,2.... on V; vertices
and F; edges is called an expander family if there exists an
uniform € > 0 such that each graph in the sequence is an
(|Vil, di, €) expander for some d;’s.

The study of expansion properties of graphs is closely re-
lated to the study of the spectrum (distribution of eigen-
values) of the adjacency operator defined on them. Given
a finite r-regular graph of size |V| = n, the eigenvalues
t; of the adjacency matrix are all real and they satisfy,
—r <t, < ... <ty <t; = r. The graph is connected
iff to < t; and is bipartite iff ¢;’s are symmetric about 0
(in particular ¢,, = —r). The quantity t; — ¢ is known as
the spectral gap and it is related to the Cheeger constant
via the discrete Cheeger-Buser inequality, discovered in-
dependently by (Dodziuk, 1984) and by (Alon & Milman,
1985). In our context, we consider a stronger notion of the
spectral gap (but it is equivalent for bipartite graphs). Let
t:=max{|t;| : 1 <i < n,|t;| < t1}. Inhere, the quantity
t1 — t will denote the spectral gap.

The more connected a graph is, the larger is the spectral gap
and ideally, a graph with strong expansion properties has
a very large spectral gap. However, for a bounded degree
expander family, this spectral gap cannot be arbitrarily large.
This brings us to the notion of Ramanujan graphs.

Definition 3.3 (Ramanujan graph). Let G be a r-
regular graph on n vertices, with adjacency eigenvalues
{ti}izl,Q,.“n? satisfying —-Tr S tn S S t2 S tl =T
Let t(G) := max{|t;| : 1 <i < m,|t;] <t1}. ThenGisa
Ramanujan graph if £(G) < 2v/r — 1 = 2y/t; — 1.

The fact that in a bounded degree expander family, the
eigenvalue bound in Ramanujan graphs is maximal can be
deduced from the following result due to Alon, see (Nilli,

1991), t(G) > 2/r—1— 271;7;1 where m denotes the
diameter of the graph. As m — +o0c and r is bounded, we
obtain the result (this also follows from the Alon-Boppana

theorem).

For our applications, we shall encounter not necessarily reg-
ular graphs, thus we need a notion of irregular version of Ra-
manujan graphs. The two ways we shall exploit Definition
3.3 for irregular graphs will be to: (i) Use the average degree
dqvg in place of the regularity; (ii) For weighted graphs, use
t1, the largest eigenvalue of the adjacency matrix. Note that
a motivation for considering the above bounds comes from
the following generalisation of the definition of Ramanujan
graphs to irregular graphs. For a finite, connected graph G
(not necessarily regular) consider its universal cover G, for
details see (Hoory et al., 2006, sec. 6). A Ramanujan graph
is a graph satisfying t(G) < p(G) where p(G) denotes the
spectral radius of G. See also Marcus—Spielman—Srivastava
(Marcus et al., 2015, sec. 2.3). A result of Hoory, see
(Hoory, 2005) implies that 2,/d,,y — 1 < p(G). Thus, it
makes sense to consider t(G) < 2/duvy — 1 < p(G). The
above consideration also result in extremal families, (Hoory,
2005). Further, for irregular bipartite graphs, with minimal
degree at least two and an average degree d. 4z, On the left
and dq¢r on the right, we can further consider the sharper
estimate ¢(G) < \/davgr, — 1 + \/davgr — 1 < p(G) see
(Hoory, 2005).

Upto now, we had only discussed about unweighted graphs.
A weighted graph is a graph with a weight function w :
E — Ry attached on the edges. It can be looked upon
as a generalisation of unweighted graphs, in the sense that
in the unweighted case, the function w takes values in the
set {0, 1}. In the case of weighted one, we shall use the
absolute values of the weight functions according to the
architecture for the corresponding dataset. It also means
that in the case of weighted graphs, we need to modify the
definition of the edge set of the graph to incorporate multiple
(as well as fractional) edges. The theory of characterisation
of weighted Ramanujan graphs is not well developed. How-
ever, characterisation of weighted expanders (with positive
weights) exist, due to the Cheeger inequality for such graphs,
see (Chung, 1996, sec. 5) and we use the largest eigenvalue
of the adjacency matrix in place of the regularity. In the case
of regular graphs, it coincides with the notion of Ramanujan
graphs and even in the general case, by Cheeger inequality,
it ensures a large expansion which in turn supports free flow
of information. It forms the theoretical basis of our work.

4. Ramanujan Graph Characterization of
Neural Networks

We can represent any neural network using graphs (possibly
weighted, depending on the context) and in this article, we

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

will be dealing with a sequence of finite, bipartite graphs.
This is because if N denotes a neural network having [layers
Ny, Ny, ..., N respectively, theneach N; (1 = 1,2,...,1)
is a complete bipartite graph to start with. A pruned subnet-
work results in edge sparsification of the underlying graphs.
For that purpose, we need to approximate complete, bipar-
tite graphs by sparse, proper subgraphs. The motivation to
study pruning based on expander characteristics stems from
the fact that complete graphs can be approximated using
expanders, see (Spielman, 2018). The notion of Ramanu-
jan graphs allow us to quantify the pruning limit, and we
empirically justify our technique.

Figure 1. Examples of small feed-forward networks having same
sparsity but different connectivity properties; (a) disconnected
network, (b) partially connected (c) strongly connected. When all
of them are scaled to larger networks, (c) has large spectral gap
compared to (a) and (b) signifying a high rate of expansion.

In Figure 1, we present examples of three small feed-
forward networks with a single hidden layer and four neu-
rons in each layer. The networks consists of two bipartite
graphs corresponding to the input-hidden and hidden-output
layers. The sparsity of all the three networks, as measured
by the number of edges present, are the same. However, in
the first network none of the layer-wise bipartite graphs sat-
isfy the expander property and thus information flow from
a significant number of input nodes to output nodes are
disrupted. For the second network, the input-hidden layer
bipartite graph is an expander, while the hidden-output layer
bipartite graph is not an expander.

Here few of the flow paths from input to the output nodes are
disconnected. Both the bipartite graphs for the third network
are expanders, thus all the inputs nodes are connected to all
the output nodes. We denote the first network as a discon-
nected one, the second network as partially connected, and
the third one as fully connected. The example illustrates that
layer-wise sparse bipartite expander graphs ensures global
information flow across layers. While connected but non-
expander sparse bipartite layers do not necessarily lead to
global connectivity across layers. It is known in literature
that sparse but resiliently connected neural networks not
only have good generalization performance but also achieve
noise robustness (Liu et al., 2018).

4.1. Bipartite Graph Structure

In this work, we focus on the fully-connected layers, and
convolution layers of the feed-forward neural network only.

Since, pruning is a part of network compression, we only
consider the trainable layers here. We consider both un-
weighted and weighted representations of the bipartite
graphs. We ignore signs of the weight values and consider
only the magnitudes for the weighted graph representation.
Even though sign of the weights are important for deter-
mining the neural network functionality, we argue that for
studying their connectivity properties only the magnitudes
need to be considered.

Fully Connected Layers (FC): For a fully connected
layer N;, with n~! number of inputs and n’ number of out-
puts the weighted bi-adjacency matrix of the corresponding
graphis W, € R 7] and the corresponding pruning
mask is M; € {0, 1} <],

Convolution Layers (Conv): Here, we consider the ker-
nel size, the number of input and output channels to unfold
the layer into a complete bipartite graph. For a convolu-
tion layer N; with the kernel of size k, n~! input, and n’
output channels, the weighted bi-adjacency matrix of the
corresponding graph will be W; € Rl ™" -k-k)xn'] and the
corresponding pruning mask is M; € {0, 1}[("171"“"““”1].
An example is shown in Figure 2.

bi-partite graph

inputs at layer - i outputs at layer - i
Figure 2. An example of bipartite graph computation for a particu-
lar convolution layer with kernel size 2 x 2, 2 input channels, and
3 output channels

Spectral Bounds for the Adjacency Matrix: Now,
the bounds are analyzed for both unweighted (IM;) and
weighted (W) bipartite graphs at each layer N;. Table 1
describes different bounding constraint depending on the
type of the considered graph and bound type. We consider
the bound differences (Ag and Ag) for the eigenvalue and
average degree respectively. The differences are divided
by to to make it comparable for different sized of bipar-
tite graphs. A transition of the A values from positive to
negative denotes a violation of the bounds, and thus loss
of Ramanujan graph property of the bipartite graph for the
corresponding pair of layers in the feed-forward network.

4.2. Ramanujan Graph Property Preserving Pruning
Algorithm

In this section, we describe a modification of the iterative
pruning algorithm that preserves the Ramanujan graph prop-
erty of a pruned neural network. In iterative pruning algo-

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Table 1. Different bound criteria on the second largest eigenvalue 2 of the bi-adjacency matrices

BI-ADJACENCY EIGENVALUE (eb)

AVERAGE DEGREE (db)

Unweighted (M;) t2(M;) < 2y/t:(M;) — 1

t2(M1) S \/d(ng(Mi) -1 + \/dang(Mi) -1

difference on bound Ag = (2v/t1 — 1 — t2)/to

rithms, pruning is employed once the training is complete
(i.e. after it converged to an optimum or it reached certain
epochs). The pruned network is trained again with its initial
weight values to perform the next pruning iteration. The
magnitude of a score function 6 is used to identify the vic-
tim weights. The weights are made to zero if their score
function values lie in the bottom p percentile. In the Itera-
tive Magnitude Pruning (IMP) (Frankle & Carbin, 2019),
magnitude of the weight is used as the score function. More
sophisticated score functions are used in SynFlow (Tanaka
et al., 2020), SNIP (Lee et al., 2018).

We propose a modification to the above method. If a weight
is identified as a victim based on the above score function
based scheme; we check the Ramanujan property of the
layer N; to which this weight belongs. First, we verify the
connectivity property of the layer using the bounds on the
unweighted graph as defined in Table 1(Ag, A > 0). If
the unweighted graph bounds are not satisfied, we consider
a weighted graph with score function values as the edge
weights. The bounds using the eigenvalues of this weighted
graph is used to verify the spectral expansion property for
a particular layer. If the pruned network N'“"*” follows
the Ramanujan graph property given by the bounds, then
the algorithm simply proceeds to the next level of pruning
operation. If the bound is not satisfied for a particular layer
i, the weights are simply reset to the values before prun-
ing and the pruning percentile p is halved and search for a
better approximation of IN; is resumed. The target pruning
level k € [K] is a controlling parameter to limit the search
iteration. The proposed algorithm attempts to preserve Ra-
manujan property for as many layers as possible by using
the spectral bound criteria to determine the layers which
are still amenable to pruning. It avoids further pruning of
the layers that have lost their connectivity property. We
experimentally show that the approach is effective when
used with IMP, SNIP, SynFlow pruning algorithms with
their designated score functions.

The method is described in Algorithm 1. It takes the trained
network N, score function 6, pruning percentile p, pruning
level K as inputs and returns the pruned network N* as
output. This algorithm is called at each pruning iteration,
and continued till the stopping criterion is met, i.e., N} =
N;, Vi. As discussed in Section 3, we mainly study two
types of bounds on the second largest eigenvalue of the
bipartite graph to = t(G), i.e., (i) eb- based on the largest

AR = (\/dang -1+ \/dang -1- tQ)/tQ

Algorithm 1 Layer-wise Connectivity Based Pruning

Require: Trained Network N, Score function 6, Pruning
percentile p, pruning level K
1: N* < N {Initialize the pruned network }
2: fori < 1toldo
3 k<« 0
4: while k < K do
5 N!“"P « PRUNEBYPERCENTILE(p/2*, N;, ;)
{PRUNE USING THE SCORE FUNCTION}

6: CALCULATE dgy g1, AND dyygr OF NP

7: IF min(davgr, davgr) < 2) THEN

8: Ny + N; {TO AVOID LAYER COLLAPSE}

9: BREAK

10: CALCULATE Ag, A FOR N

11: IF max(Ag, Ar) >0 THEN

12: N? < N/ [SATISFY RAMANUJAN PROP-
ERTY ON THE UNWEIGHTED GRAPH}

13: BREAK

14: ELSE

15: CALCULATE A% FOR N'“™ USING 6,

16: IF A% > 0 AND ¢§ > 1 THEN

17: N7 + N {SATISFY EXPANSION PROP-

ERTY N; USING 6; AS WEIGHTS }
18: BREAK
19: k+—k+1

20: Return N*

eigenvalue(?;) and (ii) db- based on the average degree
(davgr and dgugr). We have considered max(Ag,Ag) to
be greater than zero to define loss of the Ramanujan graph
property (Hoory, 2005). To allow further pruning, we have
checked whether the weighted graph follows the Ramanujan
graph property using eigenvalue-bound A% and the largest
eigenvalue t{ for the network weights. In order to avoid
‘layer collapse’ we stop pruning for a layer if the bipartite
graph has a node with degree less than two.

The top-2 largest magnitude eigenvalues at layer ¢ are com-
puted from the symmetric matrix N7 N; with implicitly
restarted Arnoldi methods (Lehoucq et al., 1998) and, the
average degree is computed from the connected component
of the bipartite-graph. Hence, the computational complexity
is mainly driven by the pruning level K, the number of input
and output neurons at each layer, and the number of layers.
The additional space will be required to store the bipartite

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Table 2. Hyper-parameter settings for experimenting LTH using
iterative magnitude based pruning

Lenet/MNIST Conv4/CIFAR10
Optimizer Adam Adam
Train-Iterations 50000 25000
Batch size 60 60
Learning Rate 0.0012 0.0003
Pruning epochs 50 50
Initialization Kaiming Normal Kaiming Normal

64,64, pool

Conv Layers 128, 128, pool
FC layers 300, 100, 10 256, 256, 10

graph of a layer. For the convolutional layers the size of
the adjacency matrix is effectively same as the size of the
convolution kernel which is usually small. Also, usually the
number of fully connected layers are not very high.

5. Experimental Results

We have used the MNIST and CIFAR10 datasets in our
study. As an evaluation measure we use the classification
accuracy for both clean and noisy test sets. Noisy test sets
were generated by adding zero mean o variance Gaussian
noise to the image pixels. We report results for the Lenet,
and Conv4 network architectures following the methodology
adopted in (Frankle & Carbin, 2019). We also perform
the studies on other networks which are presented in the
Appendix. Hyper-parameter values are reported in Table 2.

5.1. Experimental Setup

We study the variation of classification accuracy with the
network density as measured by the remaining weights per-
centile 100 — p, where p is the pruning percentile. For
different layers the percentile can be different, as denoted by
py. for fully connected (FC) layers, pcono for convolution
layers, and p,,,; for output layers. We study the two cases for
the bound specific to unweighted (IM;) and weighted graph
(W,;). For each of the studies, we plot four parameters;
(i) eigenbound bound difference (Ag), (ii) average degree
bound difference (AR),(iii) network density for each layer,
and (iv) test accuracy on both clean and noisy data. The
degree and eigenbound differences are defined in Table 1.

5.2. Relationship between the Ramanujan Graph
Property and LTH

The primary goal of our study is to identify the LTH regimes,
determined by the spectral properties of the bipartite-
network layers. The existence of LTH regime is illustrated
for two representative established networks. The results
for Lenet on MNIST dataset is shown in Figure 3; and for
Conv4 on CIFARI10 is shown in Figure 4. In each of the
plots, we show the variation of classification accuracy on

clean and noisy test sets (having various noise levels (o)),
with network density. The spectral properties are charac-
terized by eigenbound difference Ag for both the weighted
and unweighted graph representations, and the degree bound
difference A g for only the unweighted graph representation.
A transition of Ag and A g from positive to negative values
denotes the loss of Ramanujan graph property of the corre-
sponding layer bipartite graph. Accordingly, the plot is di-
vided into three regimes - (i) fully Ramanujan, where all the
layers maintain the Ramanujan property i.e., A > 0, VN,,
(i1) partially Ramanujan, where some of the layers maintain
the property, and (iii) non-Ramanujan, where none of the
layers retain the property. For the Conv4 network which has
more number of layers we show results for the unweighted
graph representation only. Similar results for other networks
and different pruning settings are discussed in the Appendix.

In all the figures, we observe that the accuracy values start
dropping sharply beyond the partially Ramanujan graph
property boundary (pink shade) when all the layers loose
their Ramanujan graph property. Accuracy also starts re-
ducing slowly from the fully Ramanujan boundary (gray
shade). The accuracy on clean data falls sharply when the
layers do not satisfy the bounds for the weighted graphs.
The bounds for the unweighted graph allow only the robust
winning tickets, having high accuracy even on noisy data.
For very low network densities it is seen that the A values
become positive again. This is a boundary effect owing
to the in-applicability of Ramanujan graph bounds for dis-
connected graphs. We also add the fact that the accuracy
doesn’t drop sharply can be attributed to two reasons. (1)
The Ramanujan bound is optimal for a sequence of finite
graphs going to infinity. Thus, the larger each bipartite layer
is, the more accurately it is depicted. (2) Instead of con-
sidering the whole network as a Ramanujan graph, we are
considering each bipartite layer as one and then computing
the stopping criteria based on this. A drop in accuracy is
indeed detected from the start of the pink region (where
one layer loses the Ramanujan graph property) to the end
(where all the layers lose it). The statistical significance of
the relation between the Ramanujan Graph Property and
LTH is discussed in Appendix.

5.3. Comparison of Pruning Approaches

We show that consideration Ramanujan graph properties
benefits network pruning algorithms. We consider three
popular network pruning algorithms - (i) Iterative Mag-
nitude Pruning (IMP) (Frankle & Carbin, 2019), (ii) the
iterative verion of Single-shot Network Pruning based on
Connection Sensitivity (SNIP) (Lee et al., 2018), (iii) Synap-
tic flow based pruning SynFlow (Tanaka et al., 2020) and
show the results of test accuracy achieved with similar den-
sities with and without the bound condition. To do this
experimentation, we choose the a fix compression ratio «

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

—— clean 0=0.25 —— o=0.40 —— o=0.50 —— 0=0.60
1.0 1.2 1.0 1.2
==
3 = ek
0.9 | E&; 1.0 0.9 NN NEEmeNS ‘1.0
= ; '\\ —
o -l D L]
0.8 & 08 0.8 /W N lo.8
. © - - *, .
5 < k\\\ N
> 06 2 z AT lo.s 8
0.7 o 0.7 (N 06 9
(o] [\] " N, -
5 z 5 N £
o 04 3 o LS \ o
Jo0.6 go.6 P \ f0.a ‘@
& ' < 3 Y H
= 02 + Y N '
$0.5 g 205 & ~u 0.2 w
[—a- = o <
[S— 0.0 Sa~ \
0.4 g 0.4 > S X 0.0
—-— - * ;=
. -0.2 —a- Bs-L1 "
0.3 _.. 0.3 _a. pgL2 {-0.2
a Bg-L3 -0.4 -a- As-L3
927000 41.0 169 69 29 1.2 0.5 0.2 0.2 —04

Network Density

(a) unweighted graph representation

'©100.0 41.0 16.9 6.9 2.9 1.2 0.5 0.2
Network Density

(b) weighted graph representation

Figure 3. Results for MNIST dataset on Lenet architecture; (a) considering unweighted bi-adjacency matrices, (b) considering weighted
bi-agjacency matrices. Variation of accuracy with network density is plotted for the clean and noisy test sets with increasing noise
variances o. Error bars for the accuracy values computed over 5 runs are shown. For the layers L1, L2, and L3 the values of Ag are plotted
for both unweighted and weighted representations, and A for only the unweighted representation. As mentioned in Table 1, Ag and Agr
denote the difference in bounds of the eigenvalues and average degrees. Transition of the A values from positive to negative denote the
loss of Ramanujan graph property. The plot is divided into three regimes- fully Ramanujan (gray shade), where the Ramanujan graph
property holds for all the layers, partially Ramanujan (pink shade), where the property holds for some of the layers, and non-Ramanujan

(no shade) where none of the layers retain the property.

1.0

0.8 o

[0

-

<

> 5

[

©0.6 H

3 c

o 3

< -~
-

n 0.4 [3

8 $

@

g

-

0.2

0.0

100.0 63.4 40.7 26.4 17.1 11.2 7.3 4.8 3.1 2.1 1.3
Network Density

(a) Convolutional layers

1.0 s 1.2
i
n ‘
L + 1.0
0.8 i % o5 3
W’_HM - %’
2 P lo.6 -g
8 0.6 | M— s
s \‘-\ c
8 \\ o 0.4]
< \‘\\ ";, i
- LN 0.2
504 Ry M, 1)
= % im T \]
el d A, \ N 0.0 -
A, SR e ' 0. <u,
- -a-a
0.2 T AsTLS R) ~
- Bp—L5 Sl 0.2
—a- Ds—L6 = St M
s Mg —L6 el “Hrt 0.4
0.0 el b i

*7100.0 63.4 40.7 26.4 17.1 11.2 7.3 4.8 3.1 2.1 1.3
Network Density

(b) Fully-connected layers

Figure 4. Results for CIFAR10 dataset on Conv4 architecture considering unweighted graph. Results for the convolution layers (L2,3,4) is
shown in (a), while for the FC layers (L5,6) is shown in (b). We exclude the first and last layers in this study, due to the low cardinality of
one of the parts in the bipartite graph for these layers. These layers are usually not pruned by the pruning algorithms.

to achieve the desired density of the pruned network as
10™ x 100, and observe the difference in accuracy due
to the network connectivity. The results are presented in
Table 3 for Lenet/MNIST and Conv4/CIFAR10. For each
of the algorithm we consider three cases - (i) the network is
pruned to very low densities using existing algorithms, (ii)
network pruning is stopped when there is loss of Ramanujan
graph properties (#AlgoName-Bound), and (iii) the existing
algorithm is compared with the target density achieved by
applying case-ii (#AlgoName*). The bounds are consid-

ered as two types of bounds - first it tries to maintain the
bounds on the unweighted graph. Next, if the unweighted
graph loses the Ramanujan property it tries to preserve the
information flow by considering the spectral bounds for the
weighted graphs with score function. We use layer-wise
pruning for all the algorithms.

Here, adding the bound criteria guides the pruning algo-
rithm to stop at a density where the accuracy is comparable
with its original network. For all the algorithms at same
density(typically very low) the addition of bounding cri-

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Table 3. Results for network density versus test accuracy using
different pruning algorithms under the Ramanujan Graph prop-
erty preservation. The existing algorithms (#AlgoName-«) are
compared at low density region with « € [1.0, 1.5, 2.0] to capture
the accuracy drops. The best result after applying the bound is
reported in #AlgoName-Bound with bold font. The accuracy of
the existing algorithm at same density is reported in #AlgoName*
and highlighted in italic font.

Pruning Lenet/MNIST Conv4/CIFAR10
Algorithm Density Accuracy Density Accuracy
No Pruning 100.0 97.16 100.0 85.86
IMP-1.0 10.0 97.17 10.0 81.91
IMP-1.5 3.16 93.88 3.16 60.61
IMP-2.0 1.0 45.39 1.0 10
IMP-Bound 3.6 96.74 2.54 70.58
IMP* 3.6 95.07 2.54 28.13
SNIP-1.0 10.0 97.35 10.0 80.3
SNIP-1.5 3.16 79 3.16 72.95
SNIP-2.0 1.0 49.8 1.0 64.26
SNIP-Bound 7.64 95.41 2.24 72.06
SNIP* 7.64 95.18 2.24 68.7
SynFlow-1.0 10.0 97.22 10.0 82.5
SynFlow-1.5 3.16 95.92 3.16 77.18
SynFlow-2.0 1.0 49.11 1.0 69.2
SynFlow-Bound 1.33 93.82 1.01 69.34
SynFlow* 1.33 67.21 - -

teria improves the test accuracy. In MNIST dataset, the
improvement is highest for SynFlow algorithm. While the
usual SynFlow algorithm results in an accuracy of 67.21%
at the density of 1.33, the SynFlow-Bound algorithm has
an accuracy of 93.82%. In the case of SNIP, the proposed
algorithm stops pruning at higher density due to its under-
lying pruned network structure and the score function. For
Conv4/CIFAR10, a significant improvement is observed for
both IMP and SNIP. However, the scope of improvement
in Synflow with bound is limited, as it preserves the un-
weighted graph connectivity property for most of the layers.
By analyzing the weights, we observe that IMP does not
preserve Ramanujan property at low density whereas Syn-
Flow algorithm preserves the same (owing to the nature of
the pruning score 6) for many of the layers. As an example,
we see the result for Conv4/CIFAR10. With density of 3.16
the IMP achieves accuracy of 60.61% while SynFlow meets
77.18% accuracy. It has been found that the Ramanujan
property is lost in FC layer-1 only for SynFlow where the
same is observed in IMP for both Conv Layer-4 and FC
layer-1. The detailed result is given in Appendix. Ramanu-
jan property thus remains a decisive factor in designing new
pruning algorithms and constructing better winning ticket.

6. Related Work

Neural network pruning involves sparsification of the net-
work (LeCun et al., 1990; Blalock et al., 2020). It identifies
the weight parameters, removal of which incurs minimal

effect on the generalization error. There exists different
categories of pruning based on (i) how the pruning is per-
formed, for instance based on the weight magnitude (Han
et al., 2015; Zhu & Gupta, 2017), gradient in the backprop-
agation, hessian of the weight (Hassibi et al., 1993; Dong
etal., 2017; Lee et al., 2018), etc; (ii) whether the pruning
is global or local; (iii) how often pruning should be applied
like one-shot (Lee et al., 2018; Wang et al., 2020), iterative
(Tanaka et al., 2020). One of the primary goals in the lit-
erature has been to reduce the computational footprint at
the time of prediction, i.e., during post-training. In recent
LTH studies, the victim weights are determined by their
value at the initialization, gradient of the error, and network
topology (Lee et al., 2019; Tanaka et al., 2020). To under-
stand weight initialization, (Malach et al., 2020) show that
pruning makes a stronger hypothesis with bounded weight
distribution. The sparsity of the network is reduced from
polynomial to a logarithmic factor of the number of training
variables (Orseau et al., 2020). Recently, the deep-expander
networks and their block sparse approximations are intro-
duced for getting better sparse network (Prabhu et al., 2018;
Vooturi et al., 2021). (Mocanu et al., 2018) suggest to con-
sider the topology of the network from a network science
point of view. The pruning algorithm starts from a random
Erdds Rényi graph and returns a scale-free network of a high
sparsity factor based on the number of neurons in each layer.
The method is further evolved for CNN layers considering
both the magnitude and gradient of the weights(Evci et al.,
2020a).

7. Conclusion

In this work, we study the validity of the lottery ticket hy-
pothesis (LTH) based on structural connectivity properties
of the neural network. Ramanujan graph properties of the bi-
partite layers are studied in terms of certain spectral bounds.
As test accuracy varies with decreasing network density as
a result of pruning, three distinct regions are demarcated
using these bounds. In the first region, all the bipartite layers
are Ramanujan graphs, in the second region some of them
are, and in the third low network density regions none of the
layers are Ramanujan graphs. We empirically demonstrate
the validity of the lottery ticket hypothesis robustly in the
first region and partially in the second region. We propose
a modification of existing iterative pruning algorithms that
preserves Ramanujan graph property. Further refinement of
this approach of pruning can result in more efficient winning
ticket search, which will be the basis of future research.

Acknowledgements

A. Biswas acknowledges the support of the grant ISF
1226/19 of C. Meiri at the Technion and the ERC grant
716424-CASe of K. Adiprasito at the Univ. of Copenhagen.

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

References

Alon, N. and Milman, V. D. A, isoperimetric inequali-
ties for graphs, and superconcentrators. J. Combin. The-
ory Ser. B, 38(1):73-88, 1985. ISSN 0095-8956. doi:
10.1016/0095-8956(85)90092-9. URL https://doi.
org/10.1016/0095-8956(85) 90092-9.

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. What
is the state of neural network pruning? arXiv preprint
arXiv:2003.03033, 2020.

Brix, C., Bahar, P, and Ney, H. Successfully applying
the stabilized lottery ticket hypothesis to the transformer
architecture. arXiv preprint arXiv:2005.03454, 2020.

Chung, F. R. K. Laplacians of graphs and Cheeger’s in-
equalities. In Combinatorics, Paul Erdds is eighty, Vol. 2
(Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud.,
pp. 157-172. Janos Bolyai Math. Soc., Budapest, 1996.

Dodziuk, J. Difference equations, isoperimetric inequality
and transience of certain random walks. Trans. Amer.
Math. Soc., 284(2):787-794, 1984. ISSN 0002-9947.
doi: 10.2307/1999107. URL https://doi.org/10.
2307/1999107.

Dong, X., Chen, S., and Pan, S. J. Learning to prune deep
neural networks via layer-wise optimal brain surgeon.
arXiv preprint arXiv:1705.07565, 2017.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943—
2952. PMLR, 2020a.

Evci, U., loannou, Y. A., Keskin, C., and Dauphin, Y. Gradi-
ent flow in sparse neural networks and how lottery tickets
win. arXiv preprint arXiv:2010.03533, 2020b.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Training pruned neural networks. In International Con-
ference on Learning Representations (ICLR), 2019.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Stabilizing the lottery ticket hypothesis. arXiv preprint
arXiv:1903.01611, 2019.

Girish, S., Maiya, S. R., Gupta, K., Chen, H., Davis, L. S.,
and Shrivastava, A. The lottery ticket hypothesis for
object recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 762-771, 2021.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28:
1135-1143, 2015.

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain
surgeon and general network pruning. In IEEE interna-
tional conference on neural networks, pp. 293-299. IEEE,
1993.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks,
2021.

Hoory, S. A lower bound on the spectral radius of the
universal cover of a graph. J. Combin. Theory Ser. B, 93
(1):33-43, 2005. ISSN 0095-8956. doi: 10.1016/j.jctb.
2004.06.001. URL https://doi.org/10.1016/
3.9ctb.2004.06.001.

Hoory, S., Linial, N., and Wigderson, A. Expander graphs
and their applications. Bull. Amer. Math. Soc. (N.S.),
43(4):439-561, 2006. ISSN 0273-0979. doi: 10.1090/
S0273-0979-06-01126-8. URL https://doi.org/
10.1090/S0273-0979-06-01126-8.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598-605, 1990.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Lee, N., Ajanthan, T., Gould, S., and Torr, P. H. A signal
propagation perspective for pruning neural networks at
initialization. arXiv preprint arXiv:1906.06307, 2019.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. ARPACK
users’ guide: solution of large-scale eigenvalue problems
with implicitly restarted Arnoldi methods. STAM, 1998.

Liu, M., Liu, S., Su, H., Cao, K., and Zhu, J. Analyzing
the noise robustness of deep neural networks. CoRR,
abs/1810.03913, 2018. URL http://arxiv.org/
abs/1810.03913.

Lubotzky, A. Discrete groups, expanding graphs and in-
variant measures. Springer Science & Business Media,
2010.

Malach, E., Yehudai, G., Shalev-Shwartz, S., and Shamir,
O. Proving the lottery ticket hypothesis: Pruning is all
you need. arXiv preprint arXiv:2002.00585, 2020.

Marcus, A. W., Spielman, D. A., and Srivastava, N. Interlac-
ing families I: Bipartite Ramanujan graphs of all degrees.
Ann. of Math. (2), 182(1):307-325, 2015. ISSN 0003-
486X. doi: 10.4007/annals.2015.182.1.7. URL https:
//doi.org/10.4007/annals.2015.182.1.7.

https://doi.org/10.1016/0095-8956(85)90092-9
https://doi.org/10.1016/0095-8956(85)90092-9
https://doi.org/10.2307/1999107
https://doi.org/10.2307/1999107
https://doi.org/10.1016/j.jctb.2004.06.001
https://doi.org/10.1016/j.jctb.2004.06.001
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
http://arxiv.org/abs/1810.03913
http://arxiv.org/abs/1810.03913
https://doi.org/10.4007/annals.2015.182.1.7
https://doi.org/10.4007/annals.2015.182.1.7

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity

inspired by network science. Nature communications, 9
(1):1-12, 2018.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and
Srebro, N. Towards understanding the role of over-
parametrization in generalization of neural networks.
arXiv preprint arXiv:1805.12076, 2018.

Nilli, A. On the second eigenvalue of a graph. Discrete
Math., 91(2):207-210, 1991. ISSN 0012-365X. doi:

10.1016/0012-365X(91)90112-F. URL https://doi .

org/10.1016/0012-365X(91)90112-F.

Orseau, L., Hutter, M., and Rivasplata, O. Logarithmic
pruning is all you need. Advances in Neural Information
Processing Systems, 33, 2020.

Prabhu, A., Varma, G., and Namboodiri, A. Deep expander
networks: Efficient deep networks from graph theory. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 20-35, 2018.

Renda, A., Frankle, J., and Carbin, M. Comparing rewinding
and fine-tuning in neural network pruning. arXiv preprint
arXiv:2003.02389, 2020.

Spielman, D. A. Properties of expander graphs. http:
//www.cs.yale.edu/homes/spielman/561/
lectl17-18.pdf, 2018.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. arXiv preprint arXiv:2006.05467,
2020.

Vooturi, D. T., Varma, G., and Kothapalli, K. Ramanujan
bipartite graph products for efficient block sparse neural
networks. Concurrency and Computation: Practice and
Experience, pp. €6363, 2021.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. arXiv
preprint arXiv:2002.07376, 2020.

You, H., Li, C,, Xu, P,, Fu, Y., Wang, Y., Chen, X., Baraniuk,
R. G., Wang, Z., and Lin, Y. Drawing early-bird tickets:
Towards more efficient training of deep networks. arXiv
preprint arXiv:1909.11957, 2019.

You, J., Leskovec, J., He, K., and Xie, S. Graph structure
of neural networks. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 10881-10891. PMLR, 13-18 Jul
2020. URL https://proceedings.mlr.press/
v119/you20b.html.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1016/0012-365X(91)90112-F
http://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf
http://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf
http://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf
https://proceedings.mlr.press/v119/you20b.html
https://proceedings.mlr.press/v119/you20b.html

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

A. Appendix

We present additional results to supplement those given in the paper. We have used the code from https://github.
com/facebookresearch/open_lth to generate all the results for LTH explanation. For the experiment of com-
parison of different pruning algorithms, we have modified the code from https://github.com/ganguli-lab/
Synaptic-Flow. The results for corresponding to the LTH hypothesis is presented. Then detailed results concerning the

pruning algorithms are described.

A.1. More Results for Lenet Architecture on MNIST Dataset

Here, we study different pruning scheme of IMP to understand the Ramanujan characteristic of the bipartite graph in each
layer and its relation to the classification performance in terms of accuracy.

MNIST(lenet-Arch) with Layer-wise Pruning (Spc.)

»
«
e

—— Ll-lambda2
-+ Ll-ueig-bound
L1-udeg-bound
L2-lambda2

- L2-ueig-bound
-+ L2-udeg-bound
L3-lambda2

L3-ueig-bound
L3-udeg-bound

B
)

w
]

w
°

N
o

N
°

"
@

=
°

Eigen Factors (Unweighted)

w

°

Eigen Factors (Weighted)

MNIST(lenet-Arch) with Layer-wise Pruning (Spc.)

—— Ll-lambda2
L1-weig-bound
L1-wdeg-bound
L2-lambda2

- L2-weig-bound
- L2-wdeg-bound
L3-lambda2

L3-weig-bound
L3-wdeg-bound

95

90

85

Test Accuracy

—e— 0=0.0
—e— 0=0.4
—— 0=0.6

100.0 51.3 263 135 6.9 3.6 1.8 10 0.5
Network Density

()

%1000 513 263 13.5 69 36 L8 10 05
Network Density

(b)

100.0 51.3 26.3 135 69 3.6 1.8 10 05
Network Density

(©)

Figure 5. The results for Lenet using MNIST dataset with pruning percentile ps. = 0.2 and pou¢ = 0.1 (layer-wise-pruning); (a) eigen
factors for the unweighted graph, (b) eigen factors for the weighted graph, (c) test accuracy

MNIST(lenet-Arch) with Global Pruning (p=0.2)

—— Ll-lambda2
% -=-- Ll-ueig-bound
4 Ll-udeg-bound
—— L2-lambda2

% -+-- L2-ueig-bound
! 4 L2-udeg-bound
N kY —e— L3-lambda2

* -=-- L3-ueig-bound
L3-udeg-bound

w & a
' =) [
A
¥
-

w
°
s

N
°

-
o

A
SAh

Eigen Factors (Unweighted)
= N
o @

«

°

Eigen Factors (Weighted)

10 R -+- L1-weig-bound
‘«»\.‘ 4 Ll-wdeg-bound

N —e— L2-lambda2
8 g -+ L2-weig-bound

MNIST(lenet-Arch) with Global Pruning (p=0.2)
44 —e— Ll-lambda2

4 L2-wdeg-bound
—e— L3-lambda2

-+- L3-weig-bound
4 L3-wdeg-bound

@

IS

N

QSM

Test Accuracy

—— 0=0.0
—— 0=0.4
—— 0=0.6

1000 512 26.2 13.4 69 3.5 18 08 05
Network Density

(a)

1000 51.2 262 13.4 69 35 18 08 05
Network Density

(b)

100.0 51.2 262 134 6.9 3.5 18 0.9 0.5
Network Density

©)

Figure 6. The eigen factors for global pruning with pruning percentile p = 0.2 on MNIST dataset using Lenet architecture

MNIST(lenet-Arch) with Layer-wise Pruning (Eq.)

»
o

—— Ll-lambda2
== Ll-ueig-bound
4 Ll-udeg-bound
—— L2-lambda2

-+-- L2-ueig-bound
4 L2-udeg-bound
—— L3-lambda2

== L3-ueig-bound
4 L3-udeg-bound

Eigen Factors (Unweighted)
B R ON N oW oW B
w o b 6 » S & B

°

Eigen Factors (Weighted)

MNIST(lenet-Arch) with Layer-wise Pruning (Eq.)

Ay, —— Ll-lambda2

: == Ll-weig-bound
4 Ll-wdeg-bound
—— L2-lambda2
-+-- L2-weig-bound
4 L2-wdeg-bound
—e— L3-lambda2
-+- L3-weig-bound
L3-wdeg-bound

Y S
ARy
ll"\\

S \

4 s LTy

—— e

Test Accuracy

—e— 0=0.0
—— 0=0.4
—— 0=0.6

1000 51.2 26.2 134 6.9 35 18 09
Network Density

(a)

01000 512 262 13.4 68 35 18 09
Network Density

(b)

100.0 51.2° 26.2 134 6.9 3.5 18 0.9
Network Density

©)

Figure 7. The eigen factors for layer-wise pruning with pruning percentile p = 0.2 on MNIST dataset using Lenet architecture

https://github.com/facebookresearch/open_lth
https://github.com/facebookresearch/open_lth
https://github.com/ganguli-lab/Synaptic-Flow
https://github.com/ganguli-lab/Synaptic-Flow

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

A.2. More Results for Conv4 Architecture on CIFAR10 Dataset

48 120 E
G 4 A —e— Conv-L1-t, —e— Conv-L3-t, G i —e— FC-L5-t; %‘30_ “ —eo— FC-L6-t; —o— FC-L7-t
K] -#-- Conv-Ll-eb(:) -#-- Conv-L3-eb(:) 8 100 - FC-L5-eb(+) 1] h‘ -#- FC-L6-eb(*) -= FC-L7-eb(:)
s A~ Conv-L1-db(-) A~ Conv-L3-db(-) 5 A~ FC-L5-db(+) S 1 . - FC-L6-db(-) 4. FC-L7-db(")
o —e— Conv-L2-t, —e— Conv-L4-t, K] 80— K i
E ﬁt’" -#-- Conv-L2-eb(:) -#- Conv-L4-eb(:) E E
S5 1= Conv-L2-db(-) 4 Conv-L4-db(-) S 1 S
=24 \ & T | | ~ 607 -
w ?ﬁ. P 1 g) o
£ 16+ ‘ | | £ a0 2
v i i v o A
© 4 © 4 © AL,
w Ag, w :::Tm w
£ 8+ : T £ 20— '-...g““‘ c
s i ' ; 5 LTV L)
w o i i LR . w o w !
SRR RS RESE RARs EaRs EaRs Eany Ly pR T e e e RBSSRASSRARN AR EESERaRS ERns aRs sRRy suas!
100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3 100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3 100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3
Network Density Network Density Network Density
(@) (b) ©
T T 20 100
Conv-L1-t; —e— Conv-L3-t; 1 Ay —o— FC-L5-t; & FC-L6-db(-)
- Conv-L1-eb() -#-- Conv-L3-eb(-) ‘A‘ -#-- FC-L5-eb(-) —o— FC-L7-t;
Conv-L1-db(+) A Conv-L3-db(-) 16— "1 A FC-L5-db(-) -= FC-L7-eb(-) 80

Conv-L2-t, —e— Conv-L4-t;
Conv-L2-eb() -=#-- Conv-L4-eb(-)
Conv-L2- db() -k Conv-L4-db(-)

4 ', —*— FC-L6-t; 4 FC-L7-db(-)
FC-LG-eb(')

-\ ¥
"
8- Ay
: ‘-._.- “-.,.._.::‘A
T,) R,

Test Accuracy

Eigen Factors (Weighted)
Eigen Factors (Weighted)

4 79%¢
0 Y hak
SERNRRANREREREES R R EE R RS EERE R SEANRARERARSREEEEE RS Ea R R R A s
100.063.440.726.417.111.2 7.3 4.8 3.1 2.1 1.3 100.063.440.726.417.111.2 7.3 4. s 3.1 2.1 1.3 0100.01.050.836.536.419.113.810.17.3 5.3 3.9 2.8 2.1 1.5
Network Density Network Density Network Density

(d (e) ®

Figure 8. The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv4 architecture; (a-e) Layer-wise Pruning with
Peonv = 0.1, pre = 0.2, and poyt = 0.1, (f) test accuracy

&
-3
i
N
©

s, o —o— Conv-L2-t; Conv-L4-t;
- Conv-L4-eb(-)

- Conv-L4-db(-)

1A — conv-Llt, —e— Conv-L3-t; i —o— FC-L5-t; s & —— FC-L6-t; = FC-L7-t
40— 4 -= Conv-Ll-eb() -=- Conv-L3-eb(:) 1004 4. ~# FC-L5-eb() n -=- FC-L6-eb() -= FC-L7-eb(-)

i :\ '-‘ A Conv-L1-db(-) 4 Conv-L3-db(-) i "x, A FC-L5-db(-) 7 \R - FC-L6-db(+) 4 FC-L7-db(-)
32 23%w2 : —

-3
o
|

‘;‘ ~#-- Conv-L2-eb(-)
=y ¥ 4 conv-L2-db(+)

Eigen Factors (Unweighted)
N
L

Eigen Factors (Unweighted)
-]
o
L

Eigen Factors (Unweighted)

\‘l*b“ |
] ey]
16 E&!ﬁ.‘t‘ a0 12
[: E
i .y n‘t‘:h t% J
8 hag, S § S I3 204 6—
0 0 0 i i . R
LA L o e o T BSJNLANL B y m p IBLLE I
100.0 63.4 40.7 263 17.1 11.2 7.3 100.0 63.4 40.7 26.3 17.1 11.2 7.3 100.0 63.4 40.7 26.3 17.1 11.2 7.3
Network Density Network Density Network Density
(@) (b) (©
20 x
107 44— conv-Ll-t, —e— Conv-L3-t, ~ | A —e— FC-L5-t; e FC-L6-db(+)
g 4 ‘a -#- Conv-Ll-eb() -#-- Conv-L3-eb(:) g hA -4 ~% FC-L5-eb(:) —— FC-L7-t;
. h wy oA Conv-Ll-db(-) A Conv-L3-db() £ 167 A FCLS-db(-) -= FC-L7-eb(:) 80
o '~'+ Conv-L2-t; Conv-L4-t; D ha. —e— FC-L6-t; A FC-L7-db(-)
g 7 #a, -= Conv-L2-eb() - Conv-L4-eb() gn— w_ - FC-L6-eb(-) >
S 67 hdpy 4 Conv-L2-db(:) Conv-L4-db(-) < i W “ai ‘ g 60
[Al ¥ n — A : H
5 S g *a, o SRS i g
T a4 ke L.‘"‘l kY] Ty Feata : # 40
&) $rgaitr | & s Ty 8
c - c a4 Aha - b
2 o—3—4
§ > STassiis g M—rf::*—-;:—:fg%_‘“_. ;)
2 i ST DN 2 1 ee* aamss =T Ao BB, 0 =0.0
o o le-Seaeses s = S R —— g=0.
-y o—) Cenlialt —— 0=0.4
L NI B B B o B i S B o e e e —— 0=0.6
100.0 63.4 40.7 263 17.1 11.2 7.3 100.0 63.4 407 263 17.1 11.2 7.3 100.0 71.0 507 365 263 15.1 138 100 73
Network Density Network Density Network Density

@ (e) ()

Figure 9. The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv4 architecture; (a-e) Layer-wise Pruning with
Peonv = 0.1, pre = 0.2, and powt = 0.2, (f) test accuracy

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

A.3. Results for Convé Architecture on CIFAR10 Dataset

Conv-L1-t; —e— Conv-L3-t; 80— —e— Conv-L5-t; &- Conv-L6-db(-) 30 * —e— FC-L8-t, FC-L9-t,

Conv-Ll-eb() -=- Conv-L3-eb(-) | =~ Conv-L5-eb(-) FC-L7-t; -1 e FeLBcn(. Loen(.
- Conv-Ll-db() 4 Conv-L3-db(-) 4 Conv-L5-db(-) FC-L7-eb(-) 1A =~ FC-LA-ab(") Fc-L9-eb(:)

Conv-L2-t, —— Conv-La-t, Conv-L6-t, FC-L7-db(+) [y 4 FC-L8-db() FC-L9-db(")

Conv-L2-eb(-) -m- Conv-L4-eb(-)
Conv-L2-db(-) -4 Conv-L4-db(-)

it

Conv-L6-eb(-)

ST N

Eigen Factors (Unweighted)

Eigen Factors (Unweighted)
Eigen Factors (Unweighted)
&
L

0 0o ¢ : 0—
RS B e s o I BRERE T e T
100.0 58.4 35.4 220 14.0 9.0 5.8 100.0 58.4 35.4 22.0 14.0 9.0 5.8 100.0 58.4 35.4 22.0 14.0 9.0 5.8
Network Density Network Density Network Density
(a) (b) ()
16 1
— Convilt, —a Comvidt,

o ConviLst; FC-L7-t, & FC-L8-db(-)
& Conv-L5-eb(:)

= Conv-Ll-eb(:) -8 Conv-L3-

A Conv-Ll-db() - Conv-L3- A Conv-L5-db(-) B FC-L7-eb(:) FC-L9-t;

~e- Conv-L2:t; —e— Conv-La- —e— Conv-L6-t; FC-L7-db(-) FC-L9-eb(-)

5 Conv-Lz-eb() & Conv: = Conv-Lé-eb() 124 —o— FC-LBt; FC-L9-db(-) 80
4. Conv-L2-db(-) 4 Conv-L6-db(-)

~®»- FC-L8-eb(-)

@
°

N
)

Test Accuracy

W
i 20

doa —— 0=0.0

Eigen Factors (Weighted)
Eigen Factors (Weighted)

' 3 o ad i —— 0=0.4
e R B B e e B B R B e B A B I BEAR A g —— 0=06
100.0 58.4 35.4 22.0 14.0 9.0 5.8 100.0 58.4 35.4 22.0 140 9.0 5.8 100.0 66.6 353 314 230 156 112 80 58
Network Density Network Density Network Density

) (e) (®

Figure 10. The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv6 architecture; (a-e) Layer-wise Pruning with
Peonv = 0.1, pre = 0.2, and poyt = 0.2

Conv-L1-t; —e— Conv-L3-t;

—e— Conv-L5-t; 4. Conv-L6-db(-)

-

Conv-L1-eb(-) Conv-L3-eb(-) Conv-L5-eb(:) c 30— FC-L8-t, FC-L9-t2

onv-L1-eb(:) -=- Conv-L3-eb(- ~=- Conv-L5-eb(- FC-L7-t -\ - . L9-eb(.

. Conv-Ll-db(-) --4- Conv-L3-db(-) 4. Conv-L5-db(-) FC-L7-eb() 18 = FC-L8-eb(:) FC-L9-eb()
Conv-L2-t; —e— Conv-L4-t; —e— Conv-L6-t; FC-L7-db(")) 4 FC-L8-db(-) FC-L9-db(:)

Conv-L2-eb(:) -=- Conv-L4-eb(:)
Conv-L2-db(+) -4 Conv-L4-db(:)

N
ES
1

-®=- Conv-L6-eb()

Eigen Factors (Unweighted)
Eigen Factors (Unweighted)

Eigen Factors (Unweighted)

18—
S i 12
- LI i 4
3 | %’“’% "] ‘
i] : dadi iz] Rt
0 ; [i : 0— : -
RBESRASERARS RARERaRsRRRs RERs AR Ea R Ry RBRNRRAN RS RN SRS REESEEESEEEsRERs aRE e RBESRARERARS R RN SRR RERSEERsEER RERE
100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0 100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0 100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0
Network Density Network Density Network Density
(a) (b) ()
16
—— Conv-Ll-t; —o— Conv-L3-t; —o— Conv-L5-t; FC-L7-t, & FC-L8-db(-)
_—~ Conv-L1-eb(:) Conv-L5-eb(")
3 T amiraso T aomvisano T FC-L7-eb(:) FC-L9-ty
[- Conv-L2-t; ~&— Conv-L6-t; Q FC-L7-db(+) FC-L9-eb(-)
E = Conv-L2-eb(-) - Conv-L6-eb(-) E 12 —e— FC-L8-t; FC-L9-db(-) 8o
S 4 ConviL2-db() 4. comieant) o - FC-L8-eb(*)
- T ey
H 2 £ o
4 4 S
o o <
- -
1% g % a0
£ £ °
c c 4
[[:
o2 0 2 % 2 20 . g=0.0
] " T’“""‘;;" =0.
w o] , T e aas sar o w o NS LI 000 N e =04
SRS BRRE AR ARRS RASE RARE RRRARARS RARHRERE B RS B AR Rama Ean a AR RR —— =06
100.658.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0 100.058.535.422.014.0 9.0 5.8 3.8 2.5 1.6 1.0 100.86.645.331.433.015.611.38.0 5.8 4.2 3.0 22 1.6 1.2
Network Density Network Density Network Density

(d (e)

Figure 11. The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using Conv6 architecture; (a-e) Layer-wise Pruning with
Peonv = 0.1, pge = 0.2, and pooy = 0.1

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

A.4. Results for VGG19 on CIFAR10 Dataset

L1-t, —o— L4-t,
Ll-eb(:) -=- L4-eb(:)
. Ll-db(:) -a- L4-db()
L2-t; —e— L5-t;

L2-eb(:) -=- L5-eb(-)
L2-db(:) & L5-db(-)

‘e 7]

Eigen Factors (Unweighted)

=]
|

R e R N R R s EmEs mE
100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Density

(a)

4 4 L12-t, e L14-t,

k L12-eb(:) -=- Lld-eb(-)
L12-db(-) -4 L1l4-db(-)

e L13-t, —— L15-t,

-®- L13-eb(-) ~-m- L15-eb(:)

4o L13-db(-) --4- L15-db(-)

Eigen Factors (Unweighted)

0_
L L L e L R
100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Density
(©)
15
4 —— L1, —— L4-t,
i -=- Ll-eb(-) -=- L4-eb(-)
ke Ll-db(-) -4 La-db(-)
124 —— L2-t, —— L5t,
N ~®- L2-eb(:) -m- L5-eb(:)
Aa, & L2-db(*) --&- L5-db(-)
o Y .

Eigen Factors (Weighted)

L B B R B RS R B
100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Density
(e
12 4y L12-t; o Ll4-t;
G B Y L12-eb(:) -=- L1l4-eb(:)
910 Ek LY L12-db(-) -4 L14-db(-)
£ Ly . L13-t; —— L15-t;
o 7 'Y -®- L13-eb(:) -m- L15-eb(:)
9 g A 4. L13-db(-) --4- L15-db(:)
2] d -
<
£ 6
o |
©
© 4
w -
c
0 2
2 |
w i
0— I
SIS LS B B

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Density

(@

Figure 12. The eigen factors for the IMP pruning algorithm on CIFAR10 dataset using VGG19 architecture and Global Pruning with

p=0.2and Ir = 0.01

Eigen Factors (Unweighted)

L7-t,
L7-eb(-)
L7-db()
L8-t,

L8-eb(-)
- L8-db(-)

L9-t,

L9-eb(:)

L9-db(-)
—o— L10-t,
-®=- L10-eb(:)
A L10-db()

100

LA BN L L B L B ER LB BB
100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1

Network Density

(b)

80—

40—

Eigen Factors (Unweighted)

—— L1175,
-®- L17-eb(")
<-4 L17-db(-)
. Li8-t,
'R L18-eb(-)
%Y L18-db(")

—— L19-t,
-®- L19-eb(+)
- L19-db(-)
—— L20-t,
-®- L20-eb(-)
<-4 L20-db(-)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1

Network Density

(d)

Eigen Factors (Weighted)

]
|

—— L7-t;
~=- L7-eb(-)
A L7-db(+)
—— L8-t,
-=- L8-eb(-)
k- L8-db(+)

L9-t;

L9-eb()

L9-db(-)
—e— L10-t;
-®- L10-eb(-)
& L10-db()

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Network Density

A, —o— L17-t, —e— L19-t;

" -=- L17-eb(-) -®- L19-eb(:)

- ke L17-db(-) -k L19-db(:)
L18-t, —e— L20-t,

L18-eb(-) -®- L20-eb(-)

& L20-db(-)

Eigen Factors (Weighted)
T

L18-db(-)

100.041.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1

Network Density

()

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

100

80

60

40

Test Accuracy

20 —e— 0=0.0

—— 0=0.4
—— 0=0.6

~100.051.226.313.5 6.9 3.6 1.9 1.0 0.6 0.3 0.2 0.1
Network Density

Figure 13. Results for the test accuracy of VGG19 on different noise level

A.5. The Statistical Significance of the Relation between the Ramanujan Graph Property and LTH

We have performed statistical significance tests for the zero crossing of A values. At every pruning iteration, we compute
the A values at each layer for 10 different runs. We test the null hypothesis Hy : max(Ag, Ag) > 0 and the alternate
hypothesis H; : max(Ag, Ar) < 0. A t-test is performed with a confidence level 0.95, and the upper and lower mean
value are computed for both the architectures in Table 4 and 5, for MNIST/Lenet and CIFAR10/Conv4, respectively. As
the variance of A or Ag depends largely on the network size and the weights, the upper and lower bound of the mean
value will help in deciding the stopping point of further pruning for different layers. In Figures 3 and 4, the gray region
corresponds to the pruning iterations where for all the layers the null hypothesis Hy is significant. For the pink and the
white regions the null hypothesis is true for some and none of the layers respectively. Similarly, at every pruning iteration
we test the drop of accuracy as compared to the unpruned network. Let ag and a; be the test accuracy of the unpruned
network and the network at pruning iteration ¢ respectively. We test the null hypothesis Hy : “OT_O‘“ < k. A t-test is again
performed. We observe that for £ = 0.001 the null hypothesis is significant in the gray region, and for £ = 0.01 in the pink
region for MNIST/Lenet. We also observe that same for CIFAR/conv4 with different values of k. Here, for k¥ = 0.01 the
null hypothesis is significant in the gray region, and for k£ = 0.05 in the pink region for CIFAR/conv4. Thus the statistical
significance of the relation between Ramanujan graph property and LTH is established.

Table 4. The quantity mean-A g at the loss of Ramanujan Graph property and its upper and lower bound for confidence level 0.95 - for
MNIST/Lenet

Layer Density sample mean Upper mean Lower Mean
FC-L1 2631 -0.000868211 0.01904843 -0.020784853
FC-L2 10.82 -0.023357875 -0.010215451 -0.036500298
FC-L3 1.84 0.016654836 0.068376088 -0.035066416

Table 5. The quantity mean-A g at the loss of Ramanujan Graph property and its upper and lower bound for confidence level 0.95 - for
CIFAR10/Conv4

Layer Density sample mean Upper mean Lower Mean

Conv-L1 11.1879 -0.0163 0.0153 -0.0439
Conv-L2 10.0586 -0.0175 0.0445 -0.0467
Conv-L3 9.0443 -0.0087 0.0321 -0.0114
Conv-L4 29.3766 -0.0074 -0.0017 -0.0275
FC-L1 29.3766 -0.0059 0.0114 -0.0063
FC-L2 12.4454 -0.0184 -0.0123 -0.0295

FC-L3 8.1330 -0.0228 0.0158 -0.0371

A Study on the Ramanujan Graph Property of Winning Lottery Tickets

A.6. Importance of the Ramanujan Graph Property in Designing Pruning Algorithms

Here, we show the result in support of the importance of the Ramanujan Graph property in the sparse sub-graph of the
lottery ticket. As more number of layers starts losing this property the network is prone to observe impact in its performance.
We show the comparison of accuracy and the number of layers lose the Ramanujan Graph property (in same density) for two
pruning Algorithms, IMP, and Synflow in Figure 14. We see the result for Conv4/CIFAR10. With density of 3.16 the IMP
achieves accuracy of 60.61% while SynFlow meets 77.18% accuracy. By analyzing the detail it has been found that the
Ramanujan property is lost in FC layer-1 only for SynFlow where the same is observed in IMP for both Conv Layer-4 and
FC layer-1. Hence, we can infer that a better pruning algorithm or a winning ticket must have the maximum possible layers
in preserving the Ramanujan graph property.

©
o

-]
o
S

~N
o
w

-]
o

%]
o
N

-
o
No. of layers lost Ramanujan property

w
o
-

Test Accuracy in CIFAR10/Conv4

N
o

-=-- IMP-#layers
[-=-- Synflow-#layers

=
o

10.0 3.16 1.0
Network Density

Figure 14. Results for two pruning algorithms IMP, and Synflow on CIFAR10/Conv4

