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Abstract

Conservatism has led to significant progress in
offline reinforcement learning (RL) where an
agent learns from pre-collected datasets. How-
ever, as many real-world scenarios involve inter-
action among multiple agents, it is important to re-
solve offline RL in the multi-agent setting. Given
the recent success of transferring online RL algo-
rithms to the multi-agent setting, one may expect
that offline RL algorithms will also transfer to
multi-agent settings directly. Surprisingly, we
empirically observe that conservative offline RL
algorithms do not work well in the multi-agent
setting—the performance degrades significantly
with an increasing number of agents. Towards mit-
igating the degradation, we identify a key issue
that non-concavity of the value function makes
the policy gradient improvements prone to local
optima. Multiple agents exacerbate the problem
severely, since the suboptimal policy by any agent
can lead to uncoordinated global failure. Follow-
ing this intuition, we propose a simple yet effec-
tive method, Offline Multi-Agent RL with Actor
Rectification (OMAR), which combines the first-
order policy gradients and zeroth-order optimiza-
tion methods to better optimize the conservative
value functions over the actor parameters. Despite
the simplicity, OMAR achieves state-of-the-art re-
sults in a variety of multi-agent control tasks.

1. Introduction

Offline reinforcement learning (RL) has shown great po-
tential in advancing the deployment of RL in real-world
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tasks where interaction with the environment is prohibitive,
costly, or risky (Thomas, 2015). Since an agent has to learn
from a given pre-collected dataset in offline RL, it becomes
challenging for online off-policy RL algorithms due to ex-
trapolation error (Fujimoto et al., 2019; Lee et al., 2021).

There has been recent progress in tackling the problem
based on conservatism. Behavior regularization (Wu et al.,
2019; Kumar et al., 2019), e.g., TD3 with Behavior Cloning
(TD3+BC) (Fujimoto & Gu, 2021), compels the learning
policy to stay close to the data manifold. Yet, its perfor-
mance highly depends on the data quality. Another line
of research incorporates conservatism into the value func-
tion by critic regularization (Nachum et al., 2019; Kostrikov
etal., 2021a), e.g., Conservative Q-Learning (CQL) (Kumar
et al., 2020), which usually learns a conservative estimate
of the value function to directly address extrapolation error.

However, many practical scenarios involve multiple agents,
e.g., multi-robot control (Amato, 2018), autonomous driv-
ing (Pomerleau, 1989; Sadigh et al., 2016). Therefore, of-
fline multi-agent reinforcement learning (MARL) (Yang
et al., 2021; Jiang & Lu, 2021; Mathieu et al., 2021) is cru-
cial for solving real-world tasks. Recent results have shown
that online RL algorithms can be applied to multi-agent
scenarios through either decentralized training or a central-
ized value function without bells and whistles. For example,
PPO (Schulman et al., 2017) leads to the effective meth-
ods Independent PPO (Witt et al., 2020) and Multi-Agent
PPO (Yu et al., 2021) for the multi-agent setting. Thus, we
naturally expect that offline RL algorithms can also transfer
easily when applied to multi-agent tasks.

Surprisingly, we find that the performance of the state-of-
the-art conservatism-based CQL algorithm in offline RL
degrades dramatically with an increasing number of agents,
as shown in Figure 2(b) in our experiments. We demon-
strate that actor optimization suffers from poor local optima,
failing to leverage the global information in the conser-
vative critics well. As a result, it leads to uncoordinated
suboptimal learning behavior. The issue is exacerbated
severely with more agents and exponentially-sized joint ac-
tion space (Yang et al., 2021) in the offline setting, because
the suboptimal policy of a single agent could lead to a global
failure due to lack of coordination. For example, consider a
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basketball game where there are two competing teams each
consisting of five players. When one of the players passes
the ball among them, it is important for all the teammates
to perform their duties well in their roles to win the game.
As aresult, if one of the agents in the team fails to learn a
good policy, it can fail to cooperate with other agents for
coordinated behaviors and lose the ball.

In this paper, we propose a simple yet effective method
for offline multi-agent control, Offline MARL with Actor
Rectification (OMAR), to better leverage the conservative
value functions. Zeroth-order optimization methods, e.g.,
evolution strategies (Such et al., 2017; Conti et al., 2017;
Mania et al., 2018; Salimans et al., 2017), recently emerged
as another paradigm for solving decision making tasks that
are robust to local optima, while this is usually not the
case for first-order policy gradient methods (Nachum et al.,
2016; Ge et al., 2017; Safran & Shamir, 2017). Based on
this inspiration, we introduce a new combination of the
first-order policy gradient and the zeroth-order optimization
methods in OMAR so that we can effectively combine the
best of both worlds. Towards this goal, in addition to the
standard actor gradient update, we encourage the actor to
mimic actions from the zeroth-order optimizer that maxi-
mize Q-values. Specifically, the zeroth-order optimization
part maintains an iteratively updated and refined sampling
distribution to find better actions based on Q-values, where
we propose an effective sampling mechanism. We then rec-
tify the policy towards these discovered better actions by
adding a regularizer to the actor loss.

We conduct extensive experiments in standard continu-
ous control multi-agent particle environments, the complex
multi-agent locomotion task, and the challenging discrete
control StarCraft II micromanagement benchmark to demon-
strate its effectiveness. On all the benchmark tasks, OMAR
significantly outperforms strong baselines, including the
multi-agent version of current offline RL algorithms includ-
ing CQL and TD3+BC, as well as a recent offline MARL
algorithm MA-ICQ (Yang et al., 2021), and achieves the
state-of-the-art performance.

The main contribution of this work can be summarized
as follows. We demonstrate the critical challenge of
conservatism-based algorithms in the offline multi-agent
setting empirically. We propose OMAR, a new algorithm
to solve offline MARL tasks. In addition, we theoretically
prove that OMAR leads to safe policy improvement. Finally,
we conduct extensive experiments to investigate the effec-
tiveness of OMAR. Results show that OMAR significantly
outperforms strong baseline methods and achieves state-
of-the-art performance in standard continuous and discrete
control tasks using offline datasets with different qualities.

2. Background

Partially observable Markov games (POMG) (Littman,
1994; Hu et al., 1998) extend Markov decision processes to
the multi-agent setting. A POMG with N agents is defined
by a set of global states S, a set of actions Ay, ..., A,
and a set of observations O, ..., Oy for each agent. At
each timestep, each agent ¢ receive an observation o; and
chooses an action based on its policy 7;. The environ-
ment transits to the next state according to the state tran-
sition function P : & x A; x ... x Ay xS — [0,1].
Each agent receives a reward based on the reward function
r, + S X Ay... x Ay — R and a private observation
0; + & — O;. The goal is to find a set of optimal policies
7 = {m,..., 7N}, where each agent aims to maximize
its own discounted return >~ v'r! with v denoting the
discount factor. In the offline setting, agents learn from a
fixed dataset D generated by the behavior policy 7 g without
interaction with the environments.

2.1. Multi-Agent Actor Critic

Centralized critic. Lowe et al. (2017) propose Multi-
Agent Deep Deterministic Policy Gradients (MADDPG)
under the centralized training with decentralized execution
(CTDE) paradigm by extending the DDPG algorithm (Lil-
licrap et al., 2016) to the multi-agent setting. In CTDE,
agents are trained in a centralized way where they can
access to extra global information during training while
they need to learn decentralized policies in order to act
based only on local observations during execution. In MAD-
DPG, for an agent i, the centralized critic Q; is parame-
terized by 6;. It takes the global state action joint action
as inputs, and aims to minimize the temporal difference
error defined by £(6;) = Ep [(Q; (s, a1, ..., an) —y:)°],
where y; = r; +vQi(s',af, - - »a%)|a;:ﬁj(03) and Q; and
7; denote target networks. To reduce overestimation in
MADDPG, MATD3 (Ackermann et al., 2019) estimates the
target value based on TD3 (Fujimoto et al., 2018), where
yi = ri+yming_q1 2 Q¥(s',a}, - - ,a’n)|a;_:7—rj(09). Agents
learn decentralized policies 7; parameterized by ¢;, which
take only local observations as inputs. They are trained
by multi-agent policy gradients according to Vg, J(7;) =
ED [V¢iwi(ai|oi)VQiQi (S, aly... 7an) ai:ﬂ'i(oi)]’ where
a; is predicted from its policy while a_; is sampled from
the replay buffer.

Decentralized critic. Although centralized critics are
widely-adopted in multi-agent methods, they lack scalability
because the joint action space is exponentially large in the
number of agents (Igbal & Sha, 2019). On the other hand,
independent learning approaches train decentralized critics
that take only the local observation and action as inputs. It is
shown in Witt et al. (2020); Lyu et al. (2021) that decentral-
ized value functions can result in more robust performance
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and be beneficial in practice compared with centralized critic
approaches. Witt et al. (2020) propose Independent Proxi-
mal Policy Optimization (IPPO) based on PPO (Schulman
et al., 2017), and show that it can match or even outperform
CTDE approaches in the challenging discrete control bench-
mark tasks (Samvelyan et al., 2019). We can also obtain the
Independent TD3 (ITD3) algorithm based on decentralized
critics, which is trained to minimize the temporal difference

error defined by £L(6;) = Ep, {(Ql (0i,a;) — y;)°|, where
Yi = 1 + 7y ming—1 2 Qf (0}, Ti(0})).

2.2. Conservative Q-Learning

Conservative Q-Learning (CQL) (Kumar et al., 2020) adds a
regularizer to the critic loss to address the extrapolation error
and learns lower-bounded Q-values. It penalizes Q-values
of state-action pairs sampled from a uniform distribution or
a policy while encouraging Q-values for state-action pairs in
the dataset to be large. Specifically, when built upon decen-
tralized critic methods in MARL, the critic loss is defined
as in Eq. (1), where « is the regularization coefficient and
g, is the empirical behavior policy of agent i.

L(6;)+aEp,[log | exp(Qi(0i,a:))—Ea sy, [Qs(04,a:)]]
()

3. Proposed Method

In this section, we first provide a motivating example where
state-of-the-art offline RL methods, including CQL (Ku-
mar et al., 2020) and TD3+BC (Fujimoto & Gu, 2021),
can be inefficient in the face of the challenging multi-agent
setting. Then, we propose Offline Multi-Agent Reinforce-
ment Learning with Actor Rectification (OMAR), a simple
yet effective method for the actors to better optimize the
conservative value functions.

3.1. The Motivating Example

We design a Spread environ- agent
ment as shown in Figure 1 Y S O S
which involves n agents and 7 landmark —

n landmarks (n > 1) with 1-
dimensional action spaces to
demonstrate the problem and
reveal interesting findings. For the multi-agent setting in
the Spread task, n agents need to learn how to cooperate
to cover all the landmarks and avoid colliding with each
other or arriving at the same landmark. Therefore, it is im-
portant for agents to carefully coordinate their actions. The
experimental setup is the same as in Section 4.

Figure 1: The Spread en-
vironment.

Figure 2(a) demonstrates the performance comparison of
the multi-agent version of TD3+BC (Fujimoto & Gu, 2021),

CQL (Kumar et al., 2020), and OMAR based on ITD3 in the
medium-replay dataset from the two-agent Spread environ-
ment. As MA-TD3+BC is based on policy regularization
that compels the learned policy to stay close to the behavior
policy, its performance largely depends on the quality of
the dataset. Moreover, it can be detrimental to regularize
policies to be close to the dataset in multi-agent settings due
to decentralized training and the resulting partial observa-
tions. MA-CQL instead learns a lower-bound Q-function to
prevent overestimations with additional terms to push down
Q-values sampled from a policy while pushing up Q-values
for state-action pairs in the dataset. As shown, MA-CQL
significantly outperforms MA-TD3+BC in medium-play
with more diverse data distribution

However, despite the effectiveness of MA-CQL when ex-
posed to suboptimal trajectories, we surprisingly find that
its performance degrades significantly as there are more
agents in the cooperative game. This is shown in Figure
2(b), which demonstrates the performance improvement
percentage of MA-CQL over the behavior policy with an
increasing number of agents from one to five.
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Figure 2: Analysis of MA-TD3+BC, MA-CQL, and OMAR
in the medium-replay dataset from Spread. (a) Performance.
(b) Performance improvement percentage of MA-CQL over
the behavior policy with a varying number of agents. (c) Vi-
sualization of the Q-function landscape. The red circle rep-
resents the predicted action from the agent using MA-CQL.
The green triangle and blue square represent the predicted
action from the updated policy of MA-CQL and OMAR.

Towards mitigating the performance degradation, we iden-
tify a key issue in MA-CQL that solely regularizing the critic
is insufficient for multiple agents to learn good policies for
coordination. In Figure 2(c), we visualize the Q-function
landscape of MA-CQL during training for an agent in a
timestep, with the red circle corresponding to the predicted
action from the actor. The green triangle represents the ac-
tion predicted from the actor after the training step, where
the policy gets stuck in a bad local optimum. The first-order
policy gradient method is prone to local optima (Dauphin
et al., 2014; Ahmed et al., 2019), and we find that the agent
can fail to globally leverage the conservative value func-
tion well thus leading to suboptimal, uncoordinated learning
behavior. Note that the problem is severely exacerbated
in the offline multi-agent setting due to the exponentially
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sized joint action space in the number of agents (Yang et al.,
2021). In addition, it usually requires each of the agent to
learn a good policy for coordination to solve the task, and
the suboptimal policy by any agent could result in uncoordi-
nated global failure. Note that we also investigate MA-CQL
in a non-cooperative version of the Spread task in Appendix
A.2, whose performance does not degrade with an increas-
ing number of agents. This is because the task does not
require careful coordination among agents’ policies, which
highlights the particularly detrimental effect of this problem
in offline MARL.

Increasing the learning rate or the number of updates for
actors in MA-CQL does not resolve the problem, where
results can be found in Appendix A.l. As a result, to solve
this critical challenge, it requires a novel solution instead of
blindly tuning hyperparameters.

3.2. Offline MARL with Actor Rectification

Our key observations above identify a critical challenge in
offline MARL that policy gradient improvements are prone
to local optima given a bad value function landscape, since
the cooperative task requires careful coordination and is
sensitive to suboptimal actions.

Zeroth-order optimization methods, e.g., evolution strate-
gies (Rubinstein & Kroese, 2013; Such et al., 2017; Conti
et al., 2017; Salimans et al., 2017; Mania et al., 2018), offer
an alternative for policy optimization that is also robust to
local optima (Rubinstein & Kroese, 2013). It has shown a
welcoming avenue towards using zeroth-order methods for
policy optimization in the parameter space that improves
exploration in the online RL setting (Pourchot & Sigaud,
2019).

Based on this inspiration, we propose Offline Multi-Agent
Reinforcement Learning with Actor Rectification (OMAR),
which incorporates sampled actions based on Q-values to
rectify the actor so that it can escape from bad local optima.
For simplicity of presentation, we demonstrate our method
based on the decentralized training paradigm introduced in
Section 2.1, which can also be applied to centralized critics
as shown in Appendix C.4. Specifically, we propose the
following policy objective by introducing a regularizer:

Ep, |(1-7)Qi(0nml0) = 7 (m0) — )| @

where a; is the action provided by the zeroth-order opti-
mizer and 7 € [0, 1] denotes the coefficient. Note that
TD3+BC (Fujimoto & Gu, 2021) can be interpreted as using
the seen action in the dataset for ;. The distinction between
optimized and seen actions enables OMAR to perform well
even if the dataset quality is from mediocre to low.

We propose our sampling mechanism motivated by the cross-
entropy method (CEM) (Rubinstein & Kroese, 2013), which

Algorithm 1 Offline Multi-Agent Reinforcement Learning
with Actor Rectification (OMAR).

1: Initialize Q-networks @}, @2, policy networks ; with
random parameters 6%, 63, ¢;, and target networks with
0} < 01,02 < 02, ¢; < ¢; for each agent i € [1, N]

2: for training stept = 1to 7" do

3: foragent:=1to N do

4: Sample a random minibatch of S samples

(04, a4,7i,0;) from B

5: Sety =r; +yminj—q o (Qf(og7 7 (0] + e)))
6: Update critics 6; to minimize Eq. (1)
7: Initialize N (p;, o)
8: for iteration j = 1to J do
9: Draw a population with K individuals A; =
{af ~ N (ui i)}y
10: Estimate ()-values for K individuals in the pop-
ulation {Q} (0:, )},
11: Update y; and o; according to Eq. (3)
12: end for
13: Obtain the picked candidate action a; =
arg Max; ¢ 4. ur, (o) Qi (0, a;)
14: Update the actor ¢; to minimize Eq. (2)
15: Update target networks: ¢! < pf! + (1 — p)6?
and ¢; < po; + (1 — p)¢;
16:  end for
17: end for

has shown great potential in RL (Lim et al., 2018). How-
ever, CEM does not scale to tasks with high-dimensional
space well (Nagabandi et al., 2020). We instead propose
to sample actions in a softer way motivated by Williams
et al. (2015); Lowrey et al. (2018). Specifically, we sample
actions according to an iteratively refined Gaussian distribu-
tion V' (y;,0;). At each iteration j, we draw K candidate
actions by a] ~ N (u, o)) and evaluate all their Q-values.
The mean and standard deviation of the sampling distribu-
tion is updated and refined according to Eq. (3), which
produces a softer update and leverages more samples in
the update (Nagabandi et al., 2020). Our sampling mecha-
nism indeed outperforms CEM and random, as illustrated in
Section 4.1.2. Our method is built upon CQL, which lower-
bounds the true Q-function to largely reduce overestimation.
The resulting OMAR method is shown in Algorithm 1.

NjH _ ZkK:1 eXP(ﬁQf af
' S exp(BQ)

Next, we theoretically justify that OMAR provides a safe
policy improvement guarantee. Let J(7r;) denote the dis-
counted return of a policy ; in the empirical MDP M;
which is induced by transitions in the dataset D;, i.e.,
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M, = {(0i,ai,r;,0;) € D;}. In Theorem 3.1, we give
a lower bound on the difference between the policy perfor-
mance of OMAR over the empirical behavior policy 7, in
the empirical MDP M. The proof is in Appendix B.

Theorem 3.1. Let 7} denote the policy obtained by

(2), D(mi,7ip,)(0r) = “Fiarasidsd,
and d™i(o;) denote the marginal discounted distribu-
tion of observations of policy w;. Then, we have
that J(x}) — J(r5,) > 1B, D! ) (o)
5B, 0t o) [(} (0:) — a:)?]

~ )2
_éEDiNdirﬁi (01),ainis, [(G,Z — ai) ] .

optimizing Eq.

Remark. From Theorem 3.1, the first term on the right-
hand side is non-negative, and the difference between the
second and third terms is the difference between two ex-
pected distances. The former corresponds to the gap be-
tween the action from our zeroth-order optimizer a; and the
optimal action 7 (0;). The latter corresponds to the gap be-
tween a; and the action from the behavior policy. Since both
terms can be bounded and controlled, we find that OMAR
gives a safe policy improvement guarantee over 7g, .

It is interesting for future work to theoretically study the
identified issue about local optima in MARL. We note that
multi-agent optimization has been shown to be theoretically
much more challenging than single-agent optimization—it
is well-known that finding approximate Nash equilibrium
of general two-player games is PPAD-hard (Daskalakis,
2013). Recent works (Daskalakis et al., 2021) also showed
that finding local stationary solutions for multi-player opti-
mization is intractable. These results even hold when the
environments are given, let alone any unknown environ-
ments. Admittedly, these theoretical results are not exactly
in the same setting as ours, but we also note that a rigorous
analysis of the training dynamics is extremely challenging
because all the optimization objectives are non-convex.

3.2.1. THE EFFECT OF OMAR IN THE SPREAD TASK

Now, we investigate whether OMAR can successfully ad-
dress the identified problem using the Spread environment
as an example. We further analyze its effect in offline/online,
multi-agent/single-agent settings for a better understanding
of the potential of our method.

Can OMAR address the identified problem? In Fig-
ure 2(c), the blue square corresponds to the action from the
updated actor using OMAR according to Eq. (2). In contrast
to the policy update in MA-CQL, OMAR can better lever-
age the global information in the critic and help the actor
to escape from the bad local optimum. Figure 2(a) further
validates that OMAR significantly improves MA-CQL in
terms of both performance and efficiency. The upper part in

Figure 3 shows the performance improvement percentage
of OMAR over MA-CQL (y-axis) with a varying number
of agents (x-axis), where OMAR always outperforms MA-
CQL. We also notice that the performance improvement of
OMAR over MA-CQL is much more significant in the multi-
agent setting in Spread than in the single-agent setting. This
echoes with what is discussed above that the problem be-
comes more critical with more agents, as it requires each of
the agents to learn a good policy based on the conservative
value function for a successful joint policy for coordination.
Otherwise, it can lead to an uncoordinated global failure.

Is OMAR effective in offline/online, multi-agent/single-
agent settings? We next investigate the effectiveness of
OMAR in the following settings corresponding to differ-
ent quadrants in Figure 3: i) offline multi-agent, ii) offline
single-agent, iii) online single-agent, iv) online multi-agent.
For the online setting, we build our method upon MATD3
based on clipped double estimators with our proposed policy
objective in Eq. (2). We evaluate the performance improve-
ment percentage of our method over MATD?3. The results
for the online setting are shown in the lower part in Figure
3.

40 off

20

Single-
agent T

B Offline MARL
Offline RL

B Online RL
Online MARL

Performance improvement percentage (%)
o

40 Online

1 2 3 4 5
Number of agents

Figure 3: Performance improvement percentage of our
method over MA-CQL in the offline (upper part) setting
and MATD3 in the online setting (lower part) with a varying
number of agents in the Spreak task. The first to fourth
quadrants correspond to the offline MARL, offline RL, on-
line RL, and online MARL settings.

As shown in Figure 3, our method is generally applicable in
all the settings, with a much more significant performance
improvement in the offline setting (upper part) than the
online case (lower part). Intuitively, in the online setting, if
the actor has not well exploited the global information in
the value function, it can still explore and interact with the
environment to collect better experiences for improving the
value estimation and provides better guidance for the policy.
However, in the offline setting, it is much harder for an agent
to escape from a bad local optimum and difficult for the actor
to best leverage the global information in the conservative
critic. As expected, we find that the performance gain is the
largest in the offline multi-agent domain.
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Table 1: Averaged normalized score of OMAR and baselines in multi-agent particle environments.

MA-ICQ MA-TD3+BC  MA-CQL OMAR
g Cooperative navigation 6.3+ 3.5 9.84+4.9 24.0+9.8 344+5.3
= Predator-prey 22+26 5.7+3.5 5.0+8.2 11.1 £2.8
& World 1.0£3.2 2.8+5.5 0.6 2.0 59+5.2
g z Cooperative navigation ~ 13.6 £5.7 15.4+5.6 2000£84 3794123
% e Predator-prey 34.5+27.8 28.74+20.9 24.8+17.3 4714153
S ¥ World 12.0+£9.1 174 £8.1 29.6 +£13.8 429+19.5
g Cooperative navigation ~ 29.3 £5.5 29.3£438 341+72 4791189
S Predator-prey 63.3 +20.0 65.1+29.5 61.7+£23.1 66.7+23.2
s World 71.9 +20.0 73.44+9.3 58.6 +11.2 74.6+11.5
= Cooperative navigation  104.0 = 3.4 108.3 £3.3 98.2£5.2 1149 + 2.6
;& Predator-prey 113.0+ 144 1152+£125 93.9+14.0 116.2+£19.8
= World 109.5 +£22.8 110.3£21.3 71.94+28.1 1104+ 25.7

4. Experiments

We conduct a series of experiments to study the following
key questions:

* How does OMAR compare against state-of-the-art of-
fline RL and MARL methods?

* What is the effect of critical hyperparameters, our sam-
pling mechanism, and the size of the dataset?

* Is OMAR generally applicable to other conservatism-
based algorithms?

* Can OMAR scale to the more complex multi-agent
locomotion tasks?

* Can OMAR be applied to the challenging discrete con-
trol StarCraft II micromanagement benchmarks?

* Is OMAR compatible in single-agent tasks?

The code is publicly available at https://github.
com/ling-pan/OMAR, and videos are avail-
able at  https://sites.google.com/view/
omar—-videos.

4.1. Multi-Agent Particle Environments

We first conduct a series of experiments in the widely-
adopted multi-agent particle environments (Lowe et al.,
2017) where the agents need to cooperate to solve the task.
The cooperative navigation task includes 3 agents and 3
landmarks, where agents are rewarded based on the distance
to the landmarks and penalized for colliding with each other.
Thus, it is important for agents to cooperate to cover all land-
marks without collision. In predator-prey, 3 predators aim to
catch the prey. The predators need to cooperate to surround

and catch the prey as the predators are slower than the prey.
The world task involves 4 slower cooperating agents that
aim to catch 2 faster adversaries, where adversaries desire
to eat foods while avoiding being captured.

We construct a variety of datasets according to behavior
policies with different qualities based on adding noises to
MATD3 to increase diversity following (Fu et al., 2020).
The random dataset is generated by rolling out a randomly
initialized policy for 1 million (M) steps. We obtain the
medium-replay dataset by recording all samples in the replay
buffer during training until the policy reached the medium
level of the performance. The medium or expert datasets
consist of 1M samples by unrolling a partially-pretrained
policy with a medium performance level or a fully-trained
policy.

We compare OMAR against state-of-the-art offline RL meth-
ods including CQL (Kumar et al., 2020) and TD3+BC (Fuji-
moto & Gu, 2021). We also compare it with a recent offline
MARL algorithm MA-ICQ (Yang et al., 2021). We build
all the methods on independent TD3 based on decentralized
critics, while we also consider centralized critics based on
MATD3 with a detailed evaluation in Appendix C.4 that
achieves similar performance improvement. Each algorithm
is run for five random seeds, and we report the mean perfor-
mance with standard deviation. A detailed description of
hyperparameters and setup can be found in Appendix C.1.2.

4.1.1. PERFORMANCE COMPARISON

Table 1 summarizes the average normalized scores in differ-
ent datasets in multi-agent particle environments, where the
learning curves are shown in Appendix C.2. The normalized
score is computed as 100 X (S — Standom ) / (Sexpert — Srandom)
following Fu et al. (2020). As shown, the performance
of MA-TD3+BC highly depends on the quality of the
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dataset. MA-ICQ is based on only trusting seen state-
action pairs in the dataset. As shown, it does not perform
well in datasets with more diverse data distribution (ran-
dom and medium-replay), while generally matching the
performance of MA-TD3+BC in datasets with narrower
distribution (medium and expert). MA-CQL matches or
outperforms MA-TD3+BC in datasets with lower quality
except for the expert dataset, as it does not rely on con-
straining the learning policy to stay close to the behavior
policy. OMAR significantly outperforms all the baselines
and achieves state-of-the-art performance. We attribute the
performance gain to the actor rectification scheme that is in-
dependent of data quality and improves global optimization.
In addition, OMAR does not incur much computation cost
and only takes 4.7% more runtime on average compared
with that of MA-CQL.

4.1.2. ABLATION STUDY

We now investigate how sensitive OMAR is to key hyper-
parameters including the regularization coefficient 7 and
the effect of the sampling mechanism. We also analyze the
effect of the size of the dataset in Appendix C.3.

The effect of the regularization coefficient. Figure 4
shows the averaged normalized score of OMAR over dif-
ferent tasks with different values of the regularization co-
efficient 7 in each kind of dataset. As shown, OMAR is
sensitive to this hyperparameter, which controls the exploita-
tion level of the critic. We find the best value of 7 is neither
close to 1 nor 0, showing that it is the combination of both
policy gradients and the actor rectification that performs
well. We also notice that the optimal value of 7 is smaller
for datasets with lower quality and more diverse data distri-
bution including random and medium-replay, but larger for
medium and expert datasets. In addition, the performance
of OMAR with all values of 7 matches or outperforms that
of MA-CQL. Note that this is the only hyperparameter that
needs to be tuned in OMAR beyond MA-CQL.
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Figure 4: Ablation study on the regularization coefficient in
different types of datasets.

The effect of key hyperparameters in the sampling mech-
anism. Core hyperparameters for our sampling scheme
involve the number of iterations, the number of sampled
actions, and the initial mean and standard deviation of the

Gaussian distribution. Figure 5 shows the performance com-
parison of OMAR with different values of these hyperpa-
rameters in the cooperative navigation task, where the grey
dotted line corresponds to the normalized score of MA-CQL.
As shown, our sampling mechanism is not sensitive to these
hyperparameters, and we therefore fix them for all types of
the tasks to be the same set with the best performance.

Pboblo
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** Standard deviation

(d) Std.
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(b) Samples. (c) Mean.

Number of iterations.

(a) Iterations.

Figure 5: Ablation study on key hyperparameters in the sam-
pling mechanism averaged over different types of datasets.

The effect of the sampling mechanism. We now analyze
the effect of the zeroth-order optimizer in OMAR, and com-
pare our sampling scheme against random sampling and
the cross-entropy method (CEM) (De Boer et al., 2005) in
the cooperative navigation task. As shown in Table 2, our
sampling mechanism significantly outperforms CEM and
random sampling in all types of datasets with different qual-
ities. It enjoys a larger margin in datasets with lower quality
including random and medium-replay. This is because the
proposed sampling mechanism incorporates more samples
into the distribution in a softer way, which updates in a more
effective way.

Table 2: Ablation study of OMAR with different sampling
mechanisms in different types of datasets.

OMAR (random) OMAR (CEM) OMAR
Random 24.34+7.0 258+ 7.3 344+£5.3
Med-rep 23.5+5.3 326 £5.1 379 +5.3
Medium  41.24+11.1 45.0+13.3 479+ 189
Expert 101.0 £5.2 106.4 +13.8 1149+ 2.6

4.2. Applicability to Other Algorithms

To demonstrate that the proposed approach is generally
applicable to different algorithms, we build OMAR upon
another recent conservatism-based offline RL method,
EDAC (An et al., 2021), to study its effect. Table 3 il-
lustrates the comparison results of the multi-agent version
of EDAC (MA-EDAC) and a variant of OMAR built upon
MA-EDAC in multi-agent particle environments. As shown,
OMAR provides consistent performance improvement over
MA-EDAC, which demonstrates that our method is versa-
tile. As a result, OMAR is generally applicable to different
methods with conservative value estimates.
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Table 3: Averaged normalized score of MA-EDAC and
OMAR based on MA-EDAC in multi-agent particle envi-

ronments.

OMAR
MA-EDAC (based on MA-EDAC)
g Co-navi 29.9 4+13.3 35.74+12.2
S Pred-prey 10.1+6.5 115+1.7
S World 135453 16.5 + 4.0
o Conavi 34.1£8.2 3854 6.7
é’ © Pred-prey 31.4+8.9 58.0 £ 14.9
" World 34.5415.0 435+ 11.3
E  Conavi 39.9+14.2 51.6 +13.8
5 Pred-prey 64.4 +14.6 708 £11.1
S Word 721470 76.3 +13.0
£ Co-navi 99.6=+7.7 1147 £ 3.7
& Pred-prey 93.7+11.0 1145+ 8.1
M World 93.5+20.3 103.7 & 21.2

4.3. Multi-Agent MuJoCo

In this section, we investigate whether OMAR can scale
to the more complex continuous control multi-agent task.
We consider the multi-agent HalfCheetah task from the
multi-agent MuJoCo environment (Peng et al., 2020), which
extends the high-dimensional MuJoCo locomotion tasks
in the single-agent setting to the multi-agent case. In this
environment, agents control different parts of joints of the
robot as shown in Appendix C.1.1. These agents need to
cooperate to make the robot run forward by coordinating
their actions. Different types of datasets are constructed
following the same way as in Section 4.1.

Table 4 summarizes the average normalized scores in each
kind of dataset in multi-agent HalfCheetah. As shown,
OMAR significantly outperforms baseline methods in ran-
dom, medium-replay, and medium datasets, and matches
the performance of MA-TD3+BC in expert, demonstrating
its effectiveness to scale to more complex control tasks. It
is also worth noting that the performance of MA-TD3+BC
depends on the quality of the data, which underperforms
OMAR in other types of dataset except for expert.

Table 4: Average normalized score of different methods in
multi-agent HalfCheetah.

ICQ TD3+BC CQL OMAR

Random 7.4+00 744+£00 74£00 13.5£7.0
Med-rep 35.6 £2.7 27.1+5.5 41.2+10.1 57.7+£5.1
Medium 73.6 5.0 75.5+£3.7 50.4+10.8 80.4+10.2

Expert 110.6+3.3 1144+ 3.8 64.2+24.9 113.5+4.3

4.4. StarCraft II Micromanagement Benchmark

In this section, we further study the effectiveness of OMAR
in larger-scale tasks based on the StarCraft II micromanage-
ment benchmark (Samvelyan et al., 2019) on maps with an
increasing number of agents and difficulties including 253z,
3s5z, 1¢3s5z, and 2c_vs_64zg. We compare OMAR and the
most competitive method, MA-CQL, based on the evalua-
tion protocol in Kumar et al. (2020); Agarwal et al. (2020);
Gulcehre et al. (2020), where datasets are constructed fol-
lowing Agarwal et al. (2020); Gulcehre et al. (2020) by
recording samples observed during training. Each dataset
consists of 1M samples. We use the Gumbel-Softmax repa-
rameterization method (Jang et al., 2016) to generate dis-
crete actions for MATD3 since it requires differentiable
policies (Lowe et al., 2017; Igbal & Sha, 2019; Peng et al.,
2020). A detailed description of the tasks and implementa-
tion details can be found in Appendix C.1.

Figure 6 demonstrates the comparison results in test win
rates. As shown, OMAR significantly outperforms MA-
CQL in performance and learning efficiency. The aver-
age performance gain of OMAR compared to MA-CQL
is 76.7% in all tested maps, showing that OMAR is also
effective in the challenging discrete control StarCraft II
micromanagement tasks.

253z 3s52

A
AN\~
2, /\/\/M gos
B / g N
“1 1/ MA-CQL " MA-cQL
o0 J OMAR o0 A~ OMAR

Steps (x10%) Steps (x10°)

1c3s52 2¢_vs 64zg

e ’(\“ e
M A
g N ‘f \/ ] o

I\
/ waca | o N wacaL
OMAR . N AN AL — omar

Steps (x10%)

Steps (x10%)

Figure 6: Comparison of test win rates in StarCraft I micro-
management tasks.

4.5. Compatibility in Single-Agent D4RL Environments

Besides the single-agent setting of the Spread task we have
studied in Figure 3, we also evaluate the effectiveness of our
method in single-agent tasks in the Maze2D domain from
the D4RL benchmark (Fu et al., 2020). Table 5 shows the
comparison results of each method in an increasing order
of complexity of the maze including umaze, medium, and
large. Based on the results in Table 5 and Figure 3, we find
that OMAR also outperforms CQL, indicating that OMAR
is also compatible for single-agent control as discussed in
the previous section.
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Table 5: Averaged normalized score of OMAR and baselines
in the single-agent Maze2D domain.

umaze medium large
TD3+BC 41.1+49 75.5£27.1 103.9+314
ICQ 4.8+3.8 13.0x£79 9.2420.0

CQL 109.8+23.9 106.4+11.0 94.6 +44.6
OMAR 1247476 125.7+12.3 1577+ 12.3
5. Related Work

Offline reinforcement learning. Many recent papers
achieve improvements in offline RL (Wu et al., 2019; Kumar
et al., 2019; Yu et al., 2020; Kidambi et al., 2020; Wang
et al., 2020; Argenson & Dulac-Arnold, 2020; Kostrikov
et al., 2021a;b; Wu et al., 2021; An et al., 2021) that address
the extrapolation error. Behavior regularization typically
compels the learning policy to stay close to the behavior
policy. Yet, its performance relies heavily on the quality of
the dataset. Critic regularization approaches typically add a
regularizer to the critic loss which pushes down Q-values
for actions sampled from a given policy (Kumar et al., 2020)
for learning conservative values. An et al. (2021) propose
an ensemble method based on clipped Q-learning for uncer-
tainty penalization. As discussed above, it can be difficult
for the actor to best leverage the global information in the
conservative critic as policy gradient methods are prone to
local optima, which is important in the offline multi-agent
setting.

Multi-agent reinforcement learning. A number of multi-
agent policy gradient algorithms train agents based on cen-
tralized value functions (Lowe et al., 2017; Foerster et al.,
2018; Rashid et al., 2018; Yu et al., 2021; Pan et al., 2021)
while another line of research focuses on decentralized train-
ing (Witt et al., 2020). Yang et al. (2021) show that the
extrapolation error in offline RL can be more severe in the
multi-agent setting than the single-agent case due to the
exponentially sized joint action space w.r.t. the number of
agents. In addition, it presents a critical challenge in the
decentralized setting when the datasets for each agent only
consist of its own action instead of the joint action (Jiang
& Lu, 2021). Jiang & Lu (2021) address the challenges
based on the behavior regularization BCQ (Fujimoto et al.,
2019) algorithm while Yang et al. (2021) propose to estimate
the target value based on the next action from the dataset,
where both methods can largely depend on the quality of
the dataset. OMAR do not restrict its value estimate based
only on seen state-action pairs in the dataset, and therefore
performs well in datasets with differnt quality.

Zeroth-order optimization method. It has been recently
shown in (Such et al., 2017; Conti et al., 2017; Mania et al.,
2018) that evolutionary strategies (ES) emerge as another

paradigm for continuous control. Recent research shows
that it has the potential to combine RL with ES to reap
the best of both worlds (Khadka & Tumer, 2018; Pourchot
& Sigaud, 2019) in the high-dimensional parameter space
for the actor. Sun et al. (2020) replace the policy gradient
update via supervised learning based on sampled noises
from random shooting. Kalashnikov et al. (2018); Lim et al.
(2018); Simmons-Edler et al. (2019); Peng et al. (2020)
extend Q-learning based approaches to handle continuous
action space based on the popular cross-entropy method
(CEM) in ES.

6. Conclusion

In this paper, we study the important and challenging offline
multi-agent RL setting, where we identify that directly ex-
tending current conservatism-based RL algorithms to offline
multi-agent scenarios results in severe performance degrada-
tion along with an increasing number of agents through em-
pirical analysis. We propose a simple yet effective method,
OMAR, to tackle the problem by combining the first-order
policy gradient with the zeroth-order optimization meth-
ods. We find that OMAR successfully helps the actor es-
cape from bad local optima and consequently find better
actions. Extensive experiments show that OMAR signif-
icantly outperforms state-of-the-art baselines on a variety
of multi-agent control tasks. Interesting future directions
include theoretical study for our identified problem in the of-
fline multi-agent case with deep neural networks , utilizing
a more general class of distributions for the sampling mech-
anism, and the application of OMAR to other multi-agent
RL methods.
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A. Additional Results for Spread
A.1. Results with Larger Learning Rates and Number of Updates of Actors in MA-CQL

Table 6 shows the result of MA-CQL with larger learning rates, where we also include results for using smaller learning
rates for reference. Table 7 demonstrates the result of MA-CQL with larger numbers of updates for actors.

Table 6: Performance of MA-CQL with larger learning rate for the actor.

Learning rate 5e —4 le—3 5e — 3 le—2 5e — 2 le—1
Performance 152.3 £17.1 164.0 & 14.5 256.2 +34.2 267.9 £ 19.0 202.0 +38.9 100.1 £+ 36.4

Table 7: Performance of MA-CQL with larger number of updates for the actor.

# Updates 1 5 20
Performance 267.9 +19.0 278.6 & 14.8 263.7 4+ 23.1

A.2. The Performance of MA-CQL in a Non-Cooperative Version of the Multi-Agent Spread Task

We consider a non-cooperative version of the Spread task in Figure 1 which involves n agents and n landmarks, where each
of the agents aims to navigate to its own unique target landmark. In contrast to the Spread task that requires cooperation, the
reward function for each agent only depends on its distance to its target landmark. This is a variant of Spread that consists of
multiple independent learning agents, and the performance is measured by the average return over all agents.

0 IIIII
- 1 4 5

2 3
Number of agents
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8
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8
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N
s 3

Figure 7: Performance improvement percentage of MA-CQL over the behavior policy with a varying number of agents in a
non-cooperative version of the Spread task.

Figure 7 shows the result of the performance improvement percentage of MA-CQL over the behavior policy in the
independent Spread task. As shown, the performance of CQL does not degrade with an increasing number of agents in this
setting that does not require cooperation, unlike a dramatic performance decrease in the cooperative Spread task in Figure
2(b). The result further confirms that the issue we discovered is due to the failure of coordination.

B. Proof of Theorem 3.1

1—g, (mi(0:)]oi) and
g, (mi(o)]oi)
d™i(o;) denote the marginal discounted distribution of observations of policy m;. Then, we have that J(w}) — J(7g,) >

T3 E namt (o) [P T5) (0] + T5E, et 0 [(} (01) — @:)] = TE,, a5 (0:)sairis, [(a; — a:)?] .

Theorem 3.1.  Let 7} denote the policy obtained by optimizing Eq. (2), D(m;, 7ig,)(0;) =

Proof. For OMAR, we have the following iterative update for agent ¢:
Q?—H < arg mianﬂ,O‘]EOmNqu |:Ea¢~7~ri(ai|01) [Ql (Oia ai)] - Eai’\/ﬁ'gi (as]oq) [Qi(oia ai)]}

]' Aﬂ'i Nk . R 2
+ §E0i7ai70i/~D {(Qi(ohai) - B™Q; (01,a1)> ] )

“4)
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where 7;(a;|o;) = 1 if and only if a; = m;(0;).

Let Qf“ be the fixed point of solving Equation (4) by setting the derivative of Eq. (4) with respect to @; to be 0, then we
have that

A . R Iav:ﬂ'f [eX)
@ onai) = BT Q (01, 0) — @ <() : 1> | )

ﬁ-ﬁi (ai ‘ 0; )
where I is the indicator function.

Denote D(m;, g, )(0;) = m — 1, and we obtain the difference between the value function V;(o;) and the original

value function as:

Vi(oi) = Vi(0:) — aD(m;, 7g,)(0i), (6)

Then, the policy that minimizes the loss function defined in Eq. (2) is equivalently obtained by maximizing

1
(1= ) (T0) = @ 2By ) D500 ) = By 0 [(r00) = 7. a)

i

Therefore, we obtain that

1
1-7)|J(}) —« - D(n}, 7, ) (0 TE o 7 (0;) — a;)?
( )(( ) =0T E, 1P ) >}> o (o (7 00) = )] N
>(1—1)J (7)) —TE =, i —a;)?
2= F0) 7B, ) gy 105~ 8
Then, from Eq. (8) we obtain the result. O]

C. Experimental Details

C.1. Experimental Setup
C.1.1. TASKS.

We adopt the open-source implementations for multi-agent particle environments' from (Lowe et al., 2017), Multi-Agent
MuJoCo? from (Peng et al., 2020), and StarCraft Il Micromanagement Benchmark® from (Samvelyan et al., 2019). Figures
8(a)-(c) illustrate tasks from multi-agent particle environments. The two-agent HalfCheetah task is shown in Figure 8(d)
while Figures 8(e)-(g) illustrate the Maze2D environments from the D4RL* benchmark (Fu et al., 2020). The expert and ran-
dom scores for cooperative navigation, predator-prey, world, and two-agent HalfCheetah are {516.8, 159.8}, {185.6, —4.1},
{79.5, —6.8}, and {3568.8, —284.0}, respectively. Tested maps in StarCraft Il micromanagement benchmark are summa-
rized in Table 8.

Table 8: Specs of tested maps in the StarCraft II micromanagement benchmark.

Name Agents Enemies

253z 2 Stalkers and 3 Zealots 2 Stalkers and 3 Zealots
385z 3 Stalkers and 5 Zealots 3 Stalkers and 5 Zealots
1c3s5z 1 Colossi, 3 Stalkers and 5 Zealots 1 Colossi, 3 Stalkers and 5 Zealots
2c_vs_64zg 2 Colossi 64 Zerglings

'nttps://github.com/openai/multiagent-particle-envs
https://github.com/schroederdewitt/multiagent_mujoco
*https://github.com/oxwhirl/smac
‘nttps://github.com/rail-berkeley/d4rl
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(a) Cooperative navigation. (b) Predator-prey. (c) World. (d) Two-agent HalfCheetah.

(e) Maze2D-Umaze-Dense. (f) Maze2D-Medium-Dense. (g) Maze2D-Large-Dense.

Figure 8: Multi-agent particle environments and Multi-Agent HalfCheetah.

C.1.2. BASELINES.

All baseline methods are implemented based on an open-source implementation® from (Igbal & Sha, 2019), where we im-
plement MA-TD3+BC®, MA-CQL’, and MA-ICQ?® based on open-source implementations with fine-tuned hyperparameters.
For MA-CQL, we tune a best critic regularization coefficient from {0.1, 0.5, 1.0, 5.0} following (Kumar et al., 2020) for
each task. Specifically, we use the discount factor -y of 0.99. We sample a minibatch of 1024 samples from the dataset for
updating each agent’s actor and critic using the Adam (Kingma & Ba, 2014) optimizer with the learning rate to be 0.01. The
target networks for the actor and critic are soft updated with the update rate to be 0.01. Both the actor and critic networks
are feedforward networks consisting of two hidden layers with 64 neurons per layer using ReL.U activation. For OMAR, the
only hyperparameter that requires tuning is the regularization coefficient A, where we use a smaller value for datasets with
more diverse data distribution in random and medium-replay with a value of 0.5, while we use a larger value for datasets
with more narrow data distribution in medium and expert with values of 0.7 and 0.9 respectively. As OMAR is insensitive to
the hyperparameters of the sampling mechanism, we set them to a fixed set of values for all types of datasets in all tasks,
where the number of iterations is 3, the number of samples is 10, the mean is 0.0, and the standard deviation is 2.0. For
OMAR in the StarCraft II micromanagement benchmark, we follow the fine-tuned set of hyperparameters for MATD3 in
(Peng et al., 2020). The code will be released upon publication of the paper.

C.2. Learning Curves

Figure 9 demonstrates the learning curves of MA-ICQ, MA-TD3+BC, MA-CQL and OMAR in different types of datasets in
multi-agent particle environments, where the solid line and shaded region represent mean and standard deviation, respectively.

Shttps://github.com/sharigigbal2810/maddpg-pytorch
Shttps://github.com/sfujim/TD3_BC
"https://github.com/aviralkumar2907/CQL
dhttps://github.com/YiginYang/ICQ
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Figure 9: Learning curves of MA-ICQ, MA-TD3+BC, MA-CQL, and OMAR in multi-agent particle environments (CN, PP,
and W is abbreviated for cooperative navigation, predator-prey, and world respectively).

C.3. Additional Ablation Study on the Effect of the Size of the Dataset

In this section, we conduct an ablation study to investigate the effect of the size of the dataset following the experimental
protocol in Agarwal et al. (2020). We first generate a full replay dataset by recording all samples in the replay buffer
encountered during the training course for 1 million steps. Then, we randomly sample N'% experiences from the full replay
dataset and obtain several smaller datasets with the same data distribution, where N € {0.1, 1, 10, 20, 50, 100}.
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Figure 10: Normalized score of OMAR and MA-CQL trained using a fraction of the entire replay dataset.

Figure 10 shows that the performance of MA-CQL increases given more data points for N € {1,10,20}. However, it
does not further increase given an even larger amount of data, which performs much worse than the fully-trained online
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agents and fails to recover their performance. On the contrary, OMAR always outperforms MA-CQL by a large margin
when N > 1%, whose performance is much closer to the fully-trained online agents given more data points. Therefore, the
optimality issue still persists when dataset size becomes larger (e.g., it can take a very long time to escape from them if the
objective contains very flat regions (Ahmed et al., 2019)). In addition, the zeroth-order optimizer part in OMAR can better
guide the actor given a larger amount of data points with a more accurate value function.

C.4. Applicability on Centralized Training with Decentralized Execution
C.4.1. RESULTS BASED ON MATD3

In this section, we demonstrate the versatility of the method and show that it can also be applied and beneficial to methods
based on centralized critics under the CTDE paradigm. Specifically, all baseline methods are built upon the MATD3
algorithm (Ackermann et al., 2019) using centralized critics as detailed in Section 2.1. Note that performance comparison
and discussion of a centralized value function and a decentralized one is in Appendix C.4.2. Table 9 summarizes the
averaged normalized score of different algorithms in each kind of dataset. As shown, OMAR (centralized) also significantly
outperforms MA-ICQ (centralized) and MA-CQL (centralized), and matches the performance of MA-TD3+BC (centralized)
in the expert dataset while outperforming it in other datasets.

Table 9: The average normalized score of different methods based on MATD3 with centralized critics under the CTDE
paradigm.

Random Medium-reply Medium Expert

MA-ICQ 52£55 10.1+46 274453 96.7+4.1
MA-TD3+BC 7.9 +2.2 9.3£9.1 29.4+£3.7 108.1+3.3
MA-CQL 12.8+49 11.2+6.6 26.3+£13.3 69.5£15.7
OMAR 21.6 4.6 19.1+£9.2 33.7+14.5 1059 + 3.6

C.4.2. DISCUSSION ABOUT THE CENTRALIZED AND DECENTRALIZED CRITICS IN OFFLINE MULTI-AGENT RL

We attribute the lower performance in Table 9 (based on a centralized value function) compared to Table 1 (based on a
decentralized value function) due to the base algorithm, where Table 10 shows the performance comparison of offline
independent TD3 and offline multi-agent TD3 in different types of dataset in cooperative navigation. As shown, utilizing
centralized critics underperforms decentralized critics in the offline setting. There has also been recent research (Witt et al.,
2020; Lyu et al., 2021) showing the benefits of decentralized value functions compared to a centralized one, which leads to
more robust performance. We attribute the performance loss of CTDE in the offline setting due to a more complex and
higher-dimensional value function conditioning on all agent’s actions and the global state that is harder to learn well without
exploration.

Table 10: Averaged normalized score of ITD3 and MATD3 in cooperative navigation.

Random Medium-replay Medium Expert

ITD3 18.7+8.0 199+4.7 18.6 4.4 755+£7.9
MATD3 16.1+£5.6 12.7+6.1 12.1+14.2 1.6£2.7




