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Abstract
Despite the broad use of fixed-point iterations
throughout applied mathematics, the optimal con-
vergence rate of general fixed-point problems with
nonexpansive nonlinear operators has not been
established. This work presents an acceleration
mechanism for fixed-point iterations with non-
expansive operators, contractive operators, and
nonexpansive operators satisfying a Hölder-type
growth condition. We then provide matching com-
plexity lower bounds to establish the exact opti-
mality of the acceleration mechanisms in the non-
expansive and contractive setups. Finally, we pro-
vide experiments with CT imaging, optimal trans-
port, and decentralized optimization to demon-
strate the practical effectiveness of the accelera-
tion mechanism.

1. Introduction
The fixed-point iteration with 𝕋 : Rn → Rn computes

xk+1 = 𝕋xk

for k = 0, 1, . . . with some starting point x0 ∈ Rn. The
general rubric of formulating solutions of a problem at hand
as fixed points of an operator and then performing the fixed-
point iterations is ubiquitous throughout applied mathemat-
ics, science, engineering, and machine learning.

Surprisingly, however, the iteration complexity of the ab-
stract fixed-point iteration has not been thoroughly studied.
This stands in sharp contrast with the literature on con-
vex optimization algorithms, where convergence rates and
matching lower bounds are carefully studied.

In this paper, we establish the exact optimal complexity of
fixed-point iterations by providing an accelerated method
and a matching complexity lower bound. The acceleration is
based on a Halpern mechanism, which follows the footsteps
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of Lieder (2021); Kim (2021); Yoon & Ryu (2021), and is
distinct from Nesterov’s acceleration.

1.1. Preliminaries and notations

We review standard definitions and set up the notation.

Monotone and set-valued operators. We follow stan-
dard notation of Bauschke & Combettes (2017); Ryu & Yin
(2020). For the underlying space, consider Rn with standard
inner product ⟨·, ·⟩ and norm ∥ · ∥, although our results can
be extended to infinite-dimensional Hilbert spaces.

We say 𝔸 is an operator on Rn and write 𝔸 : Rn ⇒ Rn if
𝔸 maps a point in Rn to a subset of Rn. For notational sim-
plicity, also write 𝔸x = 𝔸(x). Write Gra𝔸 = {(x, u) |
u ∈ 𝔸x} for the graph of 𝔸. Write 𝕀 : Rn → Rn for the
identity operator. We say 𝔸 : Rn ⇒ Rn is monotone if

⟨𝔸x−𝔸y, x− y⟩ ≥ 0, ∀x, y ∈ Rn,

i.e., if ⟨u− v, x− y⟩ ≥ 0 for all u ∈ 𝔸x and v ∈ 𝔸y. For
µ ∈ (0,∞), say 𝔸 : Rn ⇒ Rn is µ-strongly monotone if

⟨𝔸x−𝔸y, x− y⟩ ≥ µ∥x− y∥2, ∀x, y ∈ Rn.

An operator 𝔸 is maximally monotone if there is no other
monotone 𝔹 such that Gra𝔸 ⊂ Gra𝔹 properly, and is
maximally µ-strongly monotone if there is no other µ-
strongly monotone 𝔹 such that Gra𝔸 ⊂ Gra𝔹 properly.

For L ∈ (0,∞), single-valued operator 𝕋 : Rn → Rn is
L-Lipschitz if

∥𝕋x− 𝕋y∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

𝕋 is contractive if it is L-Lipschitz with L < 1 and non-
expansive if it is 1-Lipschitz. For θ ∈ (0, 1), an operator
𝕊 : Rn → Rn is θ-averaged if 𝕊 = (1 − θ)𝕀 + θ𝕋 and a
nonexpansive operator 𝕋.

Write 𝕁𝔸 = (𝕀 +𝔸)−1 for the resolvent of 𝔸, and ℝ𝔸 =
2𝕁𝔸−𝕀 for the reflected resolvent of 𝔸. When 𝔸 is maximal
monotone, it is well known that 𝕁𝔸 is single-valued with
dom 𝕁𝔸 = Rn, ℝ𝔸 is a nonexpansive operator, and 𝕁𝔸 =
1
2𝕀+

1
2ℝ𝔸 is 1/2-averaged.

We say x⋆ ∈ Rn is a zero of 𝔸 if 0 ∈ 𝔸x⋆. We say y⋆
is a fixed-point of 𝕋 if 𝕋y⋆ = y⋆. Write Zer𝔸 for the set
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of zeros of 𝔸 and Fix𝕋 for the set of all fixed-points of
𝕋. For any x ∈ Rn such that x = 𝕁𝔸y for some y ∈ Rn,
define 𝔸̃x = y − 𝕁𝔸y as the resolvent residual of 𝔸 at x.
Note that 𝔸̃x ∈ 𝔸x. For any y ∈ Rn, define y − 𝕋y as the
fixed-point residual of 𝕋 at y.

Fixed-point iterations. There is a long and rich history
of iterative methods for finding a fixed point of an operator
𝕋 : Rn → Rn (Rhoades, 1991; Brezinski, 2000; Rhoades
& Saliga, 2001; Berinde & Takens, 2007). In this work, we
consider the following three: the Picard iteration

yk+1 = 𝕋yk,

the Krasnosel’skiı̆–Mann iteration (KM iteration)

yk+1 = λk+1yk + (1− λk+1)𝕋yk,

and the Halpern iteration

yk+1 = λk+1y0 + (1− λk+1)𝕋yk,

where y0 ∈ Rn is an initial point and {λk}k∈N ⊂ (0, 1).
Under suitable assumptions, the {yk}k∈N sequence of these
iterations converges to a fixed point of 𝕋.

1.2. Prior work

Fixed-point iterations. Picard iteration’s convergence
with a contractive operator was established by Banach’s
fixed-point theorem (Banach, 1922). What we refer to as
the Krasnosel’skiı̆–Mann iteration is a generalization of
the setups by Krasnosel’skiı̆ (1955) and Mann (1953). Its
convergence with general nonexpansive operators is due to
Martinet (1972). The iteration of Halpern (1967) converges
for the wider choice of parameter λk (including λk = 1

k+1 )
due to Wittmann (1992). Halpern iteration is later gen-
eralized to the sequential averaging method (Xu, 2004).
Ishikawa iteration (Ishikawa, 1976) is an iteration with two
sequences updated in an alternating manner. Anderson ac-
celeration (Anderson, 1965) is another acceleration scheme
for fixed-point iterations, and it has recently attracted sig-
nificant interest (Walker & Ni, 2011; Scieur et al., 2020;
Barré et al., 2020; Zhang et al., 2020; Bertrand & Massias,
2021). A number of inertial fixed-point iterations have also
been proposed to accelerate fixed-point iterations (Maingé,
2008; Dong et al., 2018; Shehu, 2018; Reich et al., 2021).
Our presented method is optimal (in the sense made precise
by the theorems) when compared these prior non-stochastic
fixed-point iterations.

Convergence rates of fixed-point iterations. The
squared fixed-point residual ∥yk − 𝕋yk∥2 is the error mea-
sure for fixed-point problems that we focus on. Its con-
vergence to 0 (without a specified rate) is referred to as
asymptotic regularity (Browder & Petryshyn, 1966), and

it has been established for KM (Ishikawa, 1976; Borwein
et al., 1992) and Halpern (Wittmann, 1992; Xu, 2002).

The convergence rate of the KM iteration in terms of
∥yk −𝕋yk∥2 was shown to exhibit O(1/k)-rate (Cominetti
et al., 2014; Liang et al., 2016; Bravo & Cominetti, 2018)
and o(1/k)-rate (Baillon & Bruck, 1992; Davis & Yin, 2016;
Matsushita, 2017) under various setups. In addition, Bor-
wein et al. (2017); Lin & Xu (2021) studied the convergence
rate of the distance to solution under additional bounded
Hölder regularity assumption.

For the convergence rate of the Halpern iteration in terms of
∥yk−𝕋yk∥2, Leustean (2007) proved aO(1/(log k)2)-rate
and later Kohlenbach (2011) improved this to a O(1/k)-
rate. Sabach & Shtern (2017) first proved the O(1/k2)-rate
of Halpern iteration, and this rate has been improved in its
constant by a factor of 16 by Lieder (2021).

Monotone inclusions and splitting methods. As we soon
establish in Section 2, monotone operators are intimately
connected to fixed-point iterations. Splitting methods
such as forward-backward splitting (FBS) (Bruck Jr, 1977;
Passty, 1979), augmented Lagrangian method (Hestenes,
1969; Powell, 1969), Douglas–Rachford splitting (DRS)
(Peaceman & Rachford, 1955; Douglas & Rachford, 1956;
Lions & Mercier, 1979), alternating direction method of
multiplier (ADMM) (Gabay & Mercier, 1976), Davis–Yin
splitting (DYS) (Davis & Yin, 2017), (PDHG) (Chambolle
& Pock, 2011), and Condat–Vũ (Condat, 2013; Vũ, 2013)
are all fixed-point iterations with respect to specific nonex-
pansive operators. Therefore, an acceleration of the abstract
fixed-point iteration is applicable to the broad range of split-
ting methods for monotone inclusions.

Acceleration. Since the seminal work by Nesterov (1983)
on accelerating gradient methods convex minimization prob-
lems, much work as been dedicated to algorithms with
faster accelerated rates. Gradient descent (Cauchy, 1847)
can be accelerated in terms of function value suboptimal-
ity for smooth convex minimization problems (Nesterov,
1983; Kim & Fessler, 2016a), smooth strongly convex mini-
mization problems (Nesterov, 2004; Van Scoy et al., 2018;
Park et al., 2021; Taylor & Drori, 2021; Salim et al., 2022),
and convex composite minimization problems (Güler, 1992;
Beck & Teboulle, 2009). Recently, accelerated methods for
reducing the squared gradient magnitude for smooth convex
minimization (Kim & Fessler, 2021; Lee et al., 2021) and
smooth convex-concave minimax optimization (Diakoniko-
las & Wang, 2021; Yoon & Ryu, 2021) were presented.

Recently, it was discovered that acceleration is also possible
in solving monotone inclusions. The accelerated proximal
point method (APPM) (Kim, 2021) provides an accelerated
O(1/k2)-rate of ∥𝔸̃xk∥2 compared to the O(1/k)-rate of
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proximal point method (PPM) (Martinet, 1970; Gu & Yang,
2020) for monotone inclusions. Maingé (2021) improved
this rate to o(1/k2) rate with another accelerated variant of
proximal point method called CRIPA-S.

Complexity lower bound. Under the information-based
complexity framework (Nemirovski, 1992), complexity
lower bound on first-order methods for convex optimiza-
tion has been thoroughly studied (Nesterov, 2004; Drori,
2017; Drori & Shamir, 2020; Carmon et al., 2020; 2021;
Drori & Taylor, 2022). When a complexity lower bound
matches an algorithms’ guarantee, it establishes optimality
of the algorithm (Nemirovski, 1992; Drori & Teboulle, 2016;
Kim & Fessler, 2016a; Taylor & Drori, 2021; Yoon & Ryu,
2021; Salim et al., 2022). In the fixed-point theory literature,
Diakonikolas (2020) provided the lower bound result for the
rate of ⟨𝔸xk, xk − x⋆⟩ for variational inequalities with Lip-
schitz, monotone operator. Colao & Marino (2021) showed
Ω
(
1/k2−

2
q

)
lower bound on ∥yk − y⋆∥2 for Halpern itera-

tions in q-uniformly smooth Banach spaces. Recently, there
has been work establishing complexity lower bounds for
the more restrictive “1-SCLI” class of algorithms (Arjevani
et al., 2016). The class of 1-SCLI fixed-point iterations
includes the KM iteration but not Halpern. Up-to-constant
optimality of the KM iteration among 1-SCLI algorithms
was proved with the Ω(1/k) lower bound by Diakonikolas
& Wang (2021).

There also has been recent work on lower bounds for the
general class of algorithms (not just 1-SCLI) for fixed-point
problems. Contreras & Cominetti (2021) established a
Ω(1/k2) lower bound on the fixed-point residual for the
general Mann iteration, which includes the KM and Halpern
iterations, in Banach spaces. Our Ω(1/k2) lower bound
of Section 4 is more general than the result of Contreras
& Cominetti (2021) as it applies to all deterministic algo-
rithms, not just Mann iterations. Diakonikolas & Wang
(2021) established a Ω(1/k2) lower bound on the squared
operator norm for algorithms finding zeros of cocoercive op-
erators, which are equivalent to methods finding fixed points
of nonexpansive operators. Our lower bound of Section 4
improves upon this result (by a constant of about 80) and
establishes exact optimality of the methods in Section 3.

Acceleration with restart. Restarting is a technique that
allows one to render a standard accelerated method to be
adaptive to the local structure (Nemirovski & Nesterov,
1985; Nesterov, 2013; Lin & Xiao, 2014; O’Donoghue &
Candes, 2015; Kim & Fessler, 2018; Fercoq & Qu, 2019;
Roulet & d’Aspremont, 2020; Ito & Fukuda, 2021). Our
method of Section 5 was inspired specifically by the restart-
ing scheme of Roulet & d’Aspremont (2020).

Performance estimation problem. The discovery of the
main algorithm of Section 3 heavily relied on the use of the
performance estimation problem (PEP) technique (Drori &
Teboulle, 2014). Loosely speaking, the PEP is a computer-
assisted methodology for finding optimal methods by nu-
merically solving semidefinite programs (Drori & Teboulle,
2014; Kim & Fessler, 2016a; Taylor et al., 2018; Drori &
Taylor, 2020; Kim & Fessler, 2021). We discuss the details
of our use of the PEP in Section C of the appendix.

1.3. Contributions

We summarize the contribution of this work as follows.
First, we present novel accelerated fixed-point iteration
(OC-Halpern) and its equivalent form (OS-PPM) for mono-
tone inclusions. Second, we present exact matching com-
plexity lower bounds and thereby establish the exact opti-
mality of our presented methods. Third, using a restarting
mechanism, we extend the acceleration to a broader setup
with operators satisfying a Hölder-type growth condition.
Finally, we demonstrate the effectiveness of the proposed
acceleration mechanism through extensive experiments.

2. Equivalence of nonexpansive operators and
monotone operators

Before presenting the main content, we quickly establish
the equivalence between the fixed-point problem

find
y∈Rn

y = 𝕋y

and the monotone inclusion

find
x∈Rn

0 ∈ 𝔸x,

where 𝕋 : Rn → Rn is 1/γ-Lipschitz with γ ≥ 1 and
𝔸 : Rn ⇒ Rn is maximal µ-strongly monotone with µ ≥ 0.

Lemma 2.1. Let 𝕋 : Rn → Rn and 𝔸 : Rn ⇒ Rn. If 𝕋 is
1/γ-Lipschitz with γ ≥ 1, then

𝔸 =

(
𝕋+

1

γ
𝕀

)−1(
1 +

1

γ

)
− 𝕀

is maximal γ−1
2 -strongly monotone. Likewise, If 𝔸 is maxi-

mal µ-strongly monotone with µ ≥ 0, then

𝕋 =

(
1 +

1

1 + 2µ

)
𝕁𝔸 −

1

1 + 2µ
𝕀

is 1
1+2µ -Lipschitz. Under these transformations, x⋆ is a

zero of 𝔸 if and only if it is a fixed point of 𝕋, i.e., Zer𝔸 =
Fix𝕋.

The equivalence in case of γ = 1 and µ = 0 is well known
in optimization literature (Bauschke & Combettes, 2017,
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Theorem 23.8) (Bauschke et al., 2012; Combettes, 2018).
This lemma generalizes the equivalence to γ ≥ 1 and µ ≥ 0.
As we see in Appendix A of the appendix, the equivalence is
straightforwardly established using the scaled relative graph
(SRG) (Ryu et al., 2021), but we also provide a classical
proof based on inequalities without using the SRG.

Remark. Since 𝕀 − 𝕋 = (1 + 1
1+2µ )(𝕀 − 𝕁𝔸), finding an

algorithm that effectively reduces ∥yN−1 − 𝕋yN−1∥2 for
fixed-point problem is equivalent to finding an algorithm
that effectively reduces ∥𝔸̃xN∥2 for monotone inclusions.

3. Exact optimal methods
We now present our methods and their accelerated rates.

For a 1/γ-contractive operator 𝕋 : Rn → Rn, the Optimal
Contractive Halpern (OC-Halpern) is

yk =

(
1− 1

φk

)
𝕋yk−1 +

1

φk
y0 (OC-Halpern)

for k = 1, 2, . . . , where φk =
∑k

i=0 γ
2i and y0 ∈ Rn is a

starting point. For a maximal µ-strongly monotone operator
𝔸 : Rn ⇒ Rn, the Optimal Strongly-monotone Proximal
Point Method (OS-PPM) is

xk = 𝕁𝔸yk−1 (OS-PPM)

yk = xk +
φk−1 − 1

φk
(xk − xk−1)−

2µφk−1

φk
(yk−1 − xk)

+
(1 + 2µ)φk−2

φk
(yk−2 − xk−1)

for k = 1, 2, . . . , where φk =
∑k

i=0(1 + 2µ)2i, φ−1 = 0,
and x0 = y0 = y−1 ∈ Rn is a starting point. These two
methods are equivalent.
Lemma 3.1. Suppose γ = 1 + 2µ. Let 𝔸 =(
𝕋+ 1

γ 𝕀

)−1 (
1 + 1

γ

)
− 𝕀 given 𝕋, or equivalently let

𝕋 =
(
1 + 1

1+2µ

)
𝕁𝔸− 1

1+2µ𝕀 given 𝔸. Then the yk-iterates
of (OC-Halpern) and (OS-PPM) are identical provided they
start from the same initial point y0 = ỹ0.

We now state the convergence rates.
Theorem 3.2. Let 𝔸 : Rn ⇒ Rn be maximal µ-strongly
monotone with µ ≥ 0. Assume 𝔸 has a zero and let x⋆ ∈
Zer𝔸. For N = 1, 2, . . . , (OS-PPM) exhibits the rate

∥𝔸̃xN∥2 ≤

(
1∑N−1

k=0 (1 + 2µ)k

)2

∥y0 − x⋆∥2.

Corollary 3.3. Let 𝕋 : R → R be γ−1-contractive with
γ ≥ 1. Assume 𝕋 has a fixed point and let y⋆ ∈ Fix𝕋. For
N = 0, 1, . . . , (OC-Halpern) exhibits the rate

∥yN − 𝕋yN∥2 ≤
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2.

When 𝔸 is strongly monotone (µ > 0), (OS-PPM) exhibits
an accelerated O(e−4µN )-rate compared to the O(e−2µN )-
rate of the proximal point method (PPM) (Rockafellar, 1976;
Bauschke & Combettes, 2017). When 𝕋 is contractive
(γ < 1), both (OC-Halpern) and the Picard iteration ex-
hibit O(γ−2N )-rates on the squared fixed-point residual. In
fact, the Picard iteration with the 𝕋 of Lemma 2.1 instead of
𝕁𝔸 is faster than the regular PPM and achieves a O(e−4µN )
rate. (OC-Halpern) is exactly optimal and is faster than Pi-
card in higher order terms hidden in the big-O notation. To
clarify, the O considers the regime µ→ 0.

When 𝔸 is not strongly monotone (µ = 0) or 𝕋 is not
contractive (γ = 1), (OS-PPM) and (OC-Halpern) respec-
tively reduces to accelerated PPM (APPM) of Kim (2021)
and Halpern iteration of Lieder (2021), sharing the same
O(1/N2)-rate. In this paper, we refer to the method of
Lieder (2021) as the optimized Halpern method (OHM).

The discovery of (OC-Halpern) and (OS-PPM) was assisted
by the performance estimation problem (Drori & Teboulle,
2014; Kim & Fessler, 2016b; Taylor et al., 2017; Drori &
Taylor, 2020; Ryu et al., 2020; Kim & Fessler, 2021; Park
& Ryu, 2021) The details are discussed in Section C of the
appendix.

3.1. Proof outline of Theorem 3.2

Here, we quickly outline the proof of Theorem 3.2 while
deferring the full proof to Section B of the appendix.

Define the Lyapunov function

V k = (1 + γ−k)

[(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2

+ 2

(
k−1∑
n=0

γn

)
⟨𝔸̃xk − µ(xk − x⋆), xk − x⋆⟩

+ γ−k

∥∥∥∥∥
(

k−1∑
n=0

γn

)
𝔸̃xk − γk(xk − x⋆) + (xk − y0)

∥∥∥∥∥
2 ]

+ (1− γ−k)∥y0 − x⋆∥2 (OS-PPM-Lyapunov)

for k = 0, 1, . . . , where γ = 1 + 2µ and 𝔸̃xk = yk−1 −
xk ∈ 𝔸xk. After some calculations (deferred to the ap-
pendix), we use µ-strong monotonicity of 𝔸 to conclude

V k+1 − V k = −2γ−2k(1 + γ)φkφk−1

⟨𝔸̃xk+1 − 𝔸̃xk − µ(xk+1 − xk), xk+1 − xk⟩
≤ 0.

Therefore,

V N ≤ V N−1 ≤ · · · ≤ V 0 = 2∥y0 − x⋆∥2
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and we conclude

∥𝔸̃xN∥2 ≤

(
1∑N−1

k=0 γk

)2

∥y0 − x⋆∥2.

4. Complexity lower bound
We now establish exact optimality of (OC-Halpern) and
(OS-PPM) through matching complexity lower bound. By
exact, we mean that the lower bound is exactly equal to
upper bounds of Theorem 3.2 and Corollary 3.3.

Theorem 4.1. For n ≥ N+1 and any initial point y0 ∈ Rn,
there exists an 1/γ-Lipschitz operator 𝕋 : Rn → Rn with a
fixed point y⋆ ∈ Fix𝕋 such that

∥yN − 𝕋yN∥2 ≥
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2

for any iterates {yk}Nk=0 satisfying

yk ∈ y0 + span{y0 −𝕋y0, y1 −𝕋y1, . . . , yk−1 −𝕋yk−1}

for k = 1, . . . , N .

The following corollary translates Theorem 4.1 to an equiv-
alent complexity lower bound for proximal point methods
in monotone inclusions.

Corollary 4.2. For n ≥ N and any initial point x0 = y0 ∈
Rn, there exists a maximal µ-strongly monotone operator
𝔸 : Rn ⇒ Rn with a zero x⋆ ∈ Zer𝔸 such that

∥𝔸̃xN∥2 ≥

(
1∑N−1

k=0 (1 + 2µ)k

)2

∥y0 − x⋆∥2

for any iterates {xk}k=0,1,... and {yk}k=0,1,... satisfying

xk = 𝕁𝔸yk−1

yk ∈ y0 + span{𝔸̃x1, 𝔸̃x2, . . . , 𝔸̃xk}

for k = 1, . . . , N , where 𝔸̃xk = yk−1 − xk.

(OC-Halpern) and (OS-PPM) satisfy the span assumptions
stated in Theorem 4.1 and Corollary 4.2, respectively. There-
fore, the rates of (OC-Halpern) and (OS-PPM) are exactly
optimal. The lower bounds in the cases where γ = 1 and
µ = 0 establish that the prior rates of OHM (Lieder, 2021)
and APPM (Kim, 2021) are exactly optimal. To clarify, the
lower bound is novel even for the case γ = 1 and µ = 0.

4.1. Construction of the worst-case operator

We now describe the construction of the worst-case operator,
while deferring the proofs to Section D of the appendix. Let
ek be the canonical basis vector with 1 at the k-th entry and
0 at remaining entries.

Lemma 4.3. 𝕋 is 1
γ -contractive if and only if 𝔾 = γ

1+γ (𝕀−
𝕋) is 1

1+γ -averaged.

By Lemma 4.3, finding the worst-case 1
γ -contractive opera-

tor 𝕋 is equivalent to finding the worst-case 1
1+γ -averaged

operator 𝔾, which we define in the following lemma.

Lemma 4.4. Let R > 0. Define ℕ,𝔾 : RN+1 → RN+1 as

ℕ(x1, x2, . . . , xN , xN+1) = (xN+1,−x1,−x2, . . . ,−xN )

− 1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1

and
𝔾 =

1

1 + γ
ℕ+

γ

1 + γ
𝕀.

That is,

𝔾x =
1

1 + γ


γ 0 · · · 0 1
−1 γ · · · 0 0

...
...

. . .
...

...
0 0 · · · γ 0
0 0 · · · −1 γ


︸ ︷︷ ︸

=:H

x

− 1

1 + γ

1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1︸ ︷︷ ︸
=:b

.

Then ℕ is nonexpansive, and 𝔾 is 1
1+γ -averaged.

Following lemma states the property of iterations {yk}Nk=0

with respect to 𝔾, that proper span condition results in grad-
ually expanding support of yk.

Lemma 4.5. Let 𝔾 : RN+1 → RN+1 be defined as in
Lemma 4.4. For any {yk}Nk=0 with y0 = 0 satisfying

yk ∈ y0 + span{𝔾y0,𝔾y1, . . . ,𝔾yk−1}, k = 1, . . . , N,

we have

yk ∈ span {e1, e2, . . . , ek}
𝔾yk ∈ span {e1, e2, . . . , ek+1} , k = 0, . . . , N.

4.2. Proof outline of Theorem 4.1

Let 𝕋0 : R
n → Rn be the worst-case 1

γ -contraction for
initial point 0. For any given y0 ∈ Rn, we show in section
D of the appendix that 𝕋 : Rn → Rn defined as 𝕋(·) =
𝕋0(· − y0) + y0 becomes the worst-case 1

γ -contraction with
initial point y0 ∈ Rn. Therefore, it suffices to consider the
case y0 = 0.

Define 𝔾, H , and b as in Lemma 4.4. By Lemma 4.3, 𝕋 =
𝕀− 1+γ

γ 𝔾 is a 1/γ-contraction. Note that H is invertible, as
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we can use Gaussian elimination on H to obtain an upper
triangular matrix with nonzero diagonals. This makes 𝔾 an
invertible affine operator with the unique zero

y⋆ =
R√

1 + γ2 + · · ·+ γ2N

[
γN γN−1 · · · γ 1

]⊺
.

So Fix𝕋 = Zer𝔾 = {y⋆} and ∥y0 − y⋆∥ = ∥y⋆∥ = R.

Let the iterates {yk}Nk=0 satisfy the span condition of Theo-
rem 4.1, which is equivalent to

yk ∈ y0 + span{𝔾y0,𝔾y1, . . . ,𝔾yk−1}, k = 1, . . . , N.

By Lemma 4.5, yN ∈ span{e1, . . . , eN}. Therefoere

𝔾yN = HyN − b ∈ span{He1, . . . ,HeN} − b.

and
∥𝔾yN∥2 ≥

∥∥∥Pspan{He1,...,HeN}⊥(b)
∥∥∥2 ,

where PV is the orthogonal projection onto the subspace V .
As span{He1, . . . ,HeN}⊥ = span{v} with

v =
[
1 γ · · · γN−1 γN

]⊺
,

we get

∥𝔾yN∥2≥
∥∥Pspan{v}(b)

∥∥2=∥∥∥∥ ⟨b, v⟩⟨v, v⟩
v

∥∥∥∥2(∗)=
(

1∑N
k=0 γ

k

)2

R2,

where (∗) is established in the Section D of the appendix.
Finally,

∥yN − 𝕋yN∥2 =

∥∥∥∥(1 + 1

γ

)
𝔾yN

∥∥∥∥2
≥
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

R2

=

(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2.

4.3. Generalized complexity lower bound result

In order to extend the lower bound results of Theorem 4.1
and Corollary 4.2 to general deterministic fixed-point itera-
tions and proximal point methods (which do not necessarily
satisfy the span condition), we use the resisting oracle tech-
nique of Nemirovski & Yudin (1983). Here, we quickly
state the result while deferring the proofs to the Section D
of the appendix.
Theorem 4.6. Let n ≥ 2N for N ∈ N. For any determin-
istic fixed-point iteration A and any initial point y0 ∈ Rn,
there exists a 1

γ -Lipschitz operator 𝕋 : Rn → Rn with a
fixed point y⋆ ∈ Fix𝕋 such that

∥yN − 𝕋yN∥2 ≥
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2

where {yt}t∈N = A[y0;𝕋].

5. Acceleration under Hölder-type growth
condition

While (OS-PPM) provides an accelerated rate when the un-
derlying operator is monotone or strongly monotone, many
operators encountered in practice have a structure lying
between these two assumptions. For (OC-Halpern), this
corresponds to a fixed-point operator that is not strictly con-
tractive but has structure stronger than nonexpansiveness.
In this section, we accelerate the proximal point method
when the underlying operator is uniformly monotone, an
assumption weaker than strong monotonicity but stronger
than monotonicity.

We say an operator 𝔸 : Rn ⇒ Rn is uniformly monotone
with parameters µ > 0 and α > 1 if it is monotone and

⟨𝔸x, x− x⋆⟩ ≥ µ∥x− x⋆∥α+1

for any x ∈ Rn and x⋆ ∈ Zer𝔸. This is a special case
of uniform monotonicity in Bauschke & Combettes (2017,
Definition 22.1). We also refer to this as a Hölder-type
growth condition, as it resembles the Hölderian error bound
condition with function-value suboptimality replaced by
⟨𝔸x, x− x⋆⟩ (Lojasiewicz, 1963; Bolte et al., 2017).

The following theorem establishes a convergence rate of the
(unaccelerated) proximal point method. This rate serves as
a baseline to improve upon with acceleration.

Theorem 5.1. Let 𝔸 : Rn ⇒ Rn be uniformly monotone
with parameters µ > 0 and α > 1. Let x⋆ ∈ Zer𝔸.
Then the iterates {xk}Nk=0 generated by the proximal point
method xk+1 = 𝕁𝔸xk starting from x0 ∈ Rn satisfy

∥𝔸̃xN∥2 ≤
2

α+3
α−1 max

{(
2

α
α−1 −2

µ

) 2
α−1

, ∥x0 − x⋆∥2
}

N
α+1
α−1

for N ∈ N where 𝔸̃xN = xN−1 − xN .

We now present an accelerated method based on (OS-PPM)
and restarting (Nesterov, 2013; Roulet & d’Aspremont,
2020). Given a uniformly monotone operator 𝔸 : Rn ⇒ Rn

with µ > 0 and α > 1, x⋆ ∈ Zer𝔸, and an initial point
x0 ∈ Rn, Restarted OS-PPM is:

x̃0 = 𝕁𝔸x0 (OS-PPMres
0 )

x̃k ← OS-PPM0(x̃k−1, tk), k = 1, . . . , R,

where OS-PPM0(x̃k−1, tk) is the execution of tk iterations
of (OS-PPM) with µ = 0 starting from x̃k−1. The following
theorem provides a restarting schedule, i.e., specified values
of t1, . . . , tR, and an accelerated rate.
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Figure 1. Fixed-point and resolvent residuals versus iteration count for the 2D toy example of Section 6.1. Here, γ = 1/0.95 = 1.0526,
µ = 0.035, θ = 15◦ and N = 101. Indeed, (OC-Halpern) and (OS-PPM) exhibit the fastest rates.
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Figure 2. Trajectories of iterates for the 2D toy example of Section 6.1. Here, γ = 1/0.95 = 1.0526, µ = 0.035, θ = 15◦ and N = 101.
A marker is placed at every iterate. Picard and PPM are slowed down by the cyclic behavior. Halpern and APPM dampens the cycling
behavior, but does so too aggressively. The fastest rate is achieved by (OC-Halpern) and (OS-PPM), which appears to be due to the
cycling behavior being optimally dampened.

Theorem 5.2. Let 𝔸 : Rn ⇒ Rn be uniformly monotone
with parameters µ > 0 and α > 1, x⋆ ∈ Zer𝔸, and N be
the total number of iterations. Define

λ =

(
e

µ

) 1
α

∥x0 − x⋆∥1−
1
α , β = 1− 1

α
.

Let R ∈ N be an integer satisfying

R∑
k=1

⌈λeβk⌉ ≤ N − 1 <

R+1∑
k=1

⌈λeβk⌉,

and let tk be defined as

tk =

{⌈
λeβk

⌉
for k = 1, . . . , R− 1

N − 1−
∑R−1

k=1 tk. for k = R.

Then (OS-PPMres
0 ) exhibits the rate

∥𝔸̃xN∥2

≤
{

eβ−1

λe2β

(
N − 2− 1

β log
(

eβ−1

λeβ
(N − 1) + 1

))
+ 1

eβ

}− 2α
α−1

× ∥x0 − x⋆∥2

= O
(
N− 2α

α−1

)
.

The proofs of Theorems 5.1 and 5.2 are presented in Sec-
tion E of the appendix. When the values of α, µ, and
∥x0−x⋆∥2 are unknown, as in the case in most practical se-
tups, one can use a grid search as in Roulet & d’Aspremont
(2020) and retain the O

(
N− 2α

α−1 (logN)2
)

-rate. Using
Lemma 4.3, (OS-PPMres

0 ) can be translated into a restarted
OC-Halpern method. The experiments of Section 6 indi-
cate that (OS-PPMres

0 ) does provide an acceleration in cases
where (OS-PPM) by itself does not.
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6. Experiments
We now present experiments with illustrative toy examples
and real-world problems in medical imaging, optimal trans-
port, and decentralized compressed sensing. Further experi-
mental details are provided in Section F of the appendix.

6.1. Illustrative 2D toy examples

Consider a 1
γ -contractive operator 𝕋θ : R

2 → R2

𝕋θ

[
x1

x2

]
=

1

γ

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
and a maximal µ-strongly monotone operator 𝕄 : R2 → R2

𝕄

[
x1

x2

]
=

(
1

N − 1

[
0 1
−1 0

]
+

[
µ 0
0 µ

])[
x1

x2

]
.

𝕋θ is a counterclockwise θ-rotation followed by 1
γ -scaling

on 2D plane, and 𝕄 is a linear combination of the worst-case
instances of the proximal point method applied to monotone
operators (Gu & Yang, 2020) and µ-strongly monotone op-
erators (Rockafellar, 1976). The results of Figure 1 indicate
that (OC-Halpern) and (OS-PPM) indeed provide accelera-
tion.

6.2. Computed tomography (CT) imaging

Consider the medical imaging application of total variation
regularized computed tomography (CT), which solves

minimize
x∈Rn

1

2
∥Ex− b∥2 + λ∥Dx∥1,

where x ∈ Rn is a vectorized image, E ∈ Rm×n is the
discrete Radon transform, b = Ex is the measurement,
and D is the finite difference operator. We use primal-dual
hybrid gradient (PDHG) (Zhu & Chan, 2008; Pock et al.,
2009; Esser et al., 2010; Chambolle & Pock, 2011), an
instance of a nonexpansive fixed-point iteration via variable
metric PPM (He & Yuan, 2012). The results of Figure 3(a)
indicate that restarted OC-Halpern (OS-PPMres

0 ) provides
an acceleration.

6.3. Earth mover’s distance

Consider the earth mover’s distance between two probability
measures, also referred to as the Wasserstein distance or the
optimal transport problem. The distance is defined through
the discretized optimization problem

minimize
mx,my

∥m∥1,1 =

n∑
i=1

n∑
j=1

|mx,ij |+ |my,ij |

subject to div(m) + ρ1 − ρ0 = 0,

where ρ0, ρ1 are probability measures on Rn×n, div is
a discrete divergence operator, and m = (mx,my) ∈

R(n−1)×n × Rn×(n−1) is the optimization variable. We
use the algorithm of Li et al. (2018), an instance of a non-
expansive fixed-point iteration via PDHG. The results of
Figure 3(b) indicate that restarted OC-Halpern (OS-PPMres

0 )
provides an acceleration.

6.4. Decentralized optimization with PG-EXTRA

Consider a decentralized optimization setting where each
agent i ∈ {1, 2, . . . , n} has access to the sensing matrix
A(i) ∈ Rmi×n and the noisy measurement b(i) ≈ A(i)x.
The goal is to recover the sparse signal x ∈ Rn by solving
the following compressed sensing problem:

minimize
x∈Rn

1

n

n∑
i=1

∥A(i)x− b(i)∥2 + λ∥x∥1.

We use PG-EXTRA (Shi et al., 2015), which is an instance
of a nonexpansive fixed-point iteration via the Condat–Vũ
(Condat, 2013; Vũ, 2013) splitting method (Wu et al., 2018).
The results of Figure 3(c) indicate that restarted OC-Halpern
(OS-PPMres

0 ) provides an acceleration.

7. Conclusion
This work presents an acceleration mechanism for fixed-
point iterations and provides an exact matching complexity
lower bound. The acceleration mechanism is an instance
of Halpern’s method, also referred to as anchoring, and the
complexity lower bound is based on an explicit construction
satisfying the zero-chain condition.

In this work, we measure the suboptimality of iterates with
the fixed-point residual. However, the fixed-point iteration is
a meta-algorithm, and almost all instances of it have further
specific structure and suboptimality measures that are better
suited for the particular problem of interest, such as function-
value suboptimality, infeasibility for constrained problems,
and primal-dual gap for minimax problems. Therefore, the
fact that our proposed method accelerates the reduction of
the fixed-point residual does not necessarily imply that it ac-
celerates the reduction of the problem-specific suboptimality
measure of practical interest.

Interestingly, the experimental results of Sections 6 and F
indicate that our proposed acceleration does indeed provide
a benefit in practice. This raises the following question:
Under what setups can we expect anchoring-based accel-
eration to theoretically provide a benefit in terms of other
suboptimality measures? Investigating this question would
be an interesting direction of future work.
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Figure 3. Reduction of fixed-point residuals. The norms are the norms under which the fixed-point operator 𝕋 is nonexpansive.
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A. Omitted proofs of Section 2
Proof of Lemma 2.1 with inequalities. Suppose 𝕋 : Rn → Rn is 1

γ -Lipschitz for γ ≥ 1. Define 𝔸 : Rn ⇒ Rn as

𝔸 =

(
𝕋+

1

γ
𝕀

)−1(
1 +

1

γ

)
− 𝕀.

For any x, y ∈ Rn, let u ∈ 𝔸x and v ∈ 𝔸y. Then

u ∈ 𝔸x =⇒ u ∈
(
𝕋+

1

γ
𝕀

)−1(
1 +

1

γ

)
x− x

⇐⇒ x+ u ∈
(
𝕋+

1

γ
𝕀

)−1(
1 +

1

γ

)
x

⇐⇒
(
𝕋+

1

γ
𝕀

)
(x+ u) = x+

1

γ
x

⇐⇒ 𝕋(x+ u) = x− 1

γ
u

Likewise,

𝕋(y + v) = y − 1

γ
v.

From the 1
γ -Lipschitzness of 𝕋,

∥𝕋(x+ u)− 𝕋(y + v)∥ ≤ 1

γ
∥(x+ u)− (y + v)∥ ⇐⇒

∥∥∥∥(x− 1

γ
u

)
−
(
y − 1

γ
v

)∥∥∥∥ ≤ 1

γ
∥(x+ u)− (y + v)∥

⇐⇒
∥∥∥∥(x− y)− 1

γ
(u− v)

∥∥∥∥2 ≤ 1

γ2
∥(x− y) + (u− v)∥2

⇐⇒
(
1− 1

γ2

)
∥x− y∥2 ≤

(
2

γ2
+

2

γ

)
⟨u− v, x− y⟩

⇐⇒ ⟨u− v, x− y⟩ ≥ γ − 1

2
∥x− y∥2.

This holds for any u ∈ 𝔸x and v ∈ 𝔸y for any x, y ∈ Rn, so 𝔸 is γ−1
2 -strongly monotone.

We can further prove that

x⋆ ∈ Zer𝔸 ⇐⇒ 0 ∈ 𝔸x⋆ =

(
𝕋+

1

γ
𝕀

)−1(
x⋆ +

1

γ
x⋆

)
− x⋆

⇐⇒ x⋆ ∈
(
𝕋+

1

γ
𝕀

)−1(
x⋆ +

1

γ
x⋆

)
⇐⇒ 𝕋x⋆ +

1

γ
x⋆ = x⋆ +

1

γ
x⋆

⇐⇒ x⋆ = 𝕋x⋆

⇐⇒ x⋆ ∈ Fix𝕋.

Suppose 𝔸 : Rn ⇒ Rn is µ-strongly monotone for µ ≥ 0. Define 𝕋 : Rn → Rn as

𝕋 =

(
1 +

1

1 + 2µ

)
𝕁𝔸 −

1

1 + 2µ
𝕀.
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For any x, y ∈ Rn, let u = 𝕋x and v = 𝕋y. Then

u = 𝕋x

⇐⇒ u =

(
1 +

1

1 + 2µ

)
𝕁𝔸x−

1

1 + 2µ
x

⇐⇒ 1

1 + 2µ
x+ u =

(
1 +

1

1 + 2µ

)
𝕁𝔸x

⇐⇒ 1 + 2µ

2 + 2µ

(
1

1 + 2µ
x+ u

)
=

1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u = 𝕁𝔸x

⇐⇒ x ∈ (𝕀+𝔸)

(
1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
⇐⇒ 1 + 2µ

2 + 2µ
(x− u) ∈ 𝔸

(
1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
.

Likewise,
1 + 2µ

2 + 2µ
(y − v) ∈ 𝔸

(
1

2 + 2µ
y +

1 + 2µ

2 + 2µ
v

)
.

From the µ-strong monotonicity of 𝔸,〈
𝔸

(
1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
−𝔸

(
1

2 + 2µ
y +

1 + 2µ

2 + 2µ
v

)
,

(
1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
−
(

1

2 + 2µ
y +

1 + 2µ

2 + 2µ
v

)〉
≥ µ

∥∥∥∥( 1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
−
(

1

2 + 2µ
y +

1 + 2µ

2 + 2µ
v

)∥∥∥∥2
=⇒

〈
1 + 2µ

2 + 2µ
(x− u)− 1 + 2µ

2 + 2µ
(y − v),

(
1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
−
(

1

2 + 2µ
y +

1 + 2µ

2 + 2µ
v

)〉
≥ µ

∥∥∥∥( 1

2 + 2µ
x+

1 + 2µ

2 + 2µ
u

)
−
(

1

2 + 2µ
y +

1 + 2µ

2 + 2µ
v

)∥∥∥∥2
⇐⇒

〈
1 + 2µ

2 + 2µ
(x− y)− 1 + 2µ

2 + 2µ
(u− v),

1

2 + 2µ
(x− y) +

1 + 2µ

2 + 2µ
(u− v)

〉
≥ µ

∥∥∥∥ 1

2 + 2µ
(x− y) +

1 + 2µ

2 + 2µ
(u− v)

∥∥∥∥2
⇐⇒ ⟨(1 + 2µ)(x− y)− (1 + 2µ)(u− v), (x− y) + (1 + 2µ)(u− v)⟩ ≥ µ∥(x− y) + (1 + 2µ)(u− v)∥2

⇐⇒ (1 + µ)∥x− y∥2 ≥ (1 + µ)(1 + 2µ)2∥u− v∥2

⇐⇒ ∥u− v∥2 ≤ 1

(1 + 2µ)2
∥x− y∥2.

This holds for any u = 𝕋x and v = 𝕋y for any x, y ∈ Rn, so 𝕋 is 1
1+2µ -Lipschitz.

Finally, we can also prove that

x⋆ ∈ Fix𝕋 ⇐⇒ x⋆ = 𝕋x⋆ =

(
1 +

1

1 + 2µ

)
𝕁𝔸x⋆ −

1

1 + 2µ
x⋆

⇐⇒ 2 + 2µ

1 + 2µ
x⋆ =

2 + 2µ

1 + 2µ
𝕁𝔸x⋆

⇐⇒ x⋆ = 𝕁𝔸x⋆ = (𝕀+𝔸)−1x⋆

⇐⇒ x⋆ ∈ x⋆ +𝔸x⋆

⇐⇒ 0 ∈ 𝔸x⋆

⇐⇒ x⋆ ∈ Zer𝔸.
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Proof of Lemma 2.1 with scaled relative graph. In this proof, we use the notations of Ryu et al. (2021) for the operator
classes, which we list below. Consider a class of operatorsMµ of µ-strongly monotone operators andL1/γ of 1

γ -contractions.
AsMµ, L1/γ are SRG-full classes, which means that the inclusion of the SRG of some operator to the SRG of an operator
class is equivalent to membership of that operator to the given operator class (Ryu et al., 2021, Section 3.3). Instead of
showing that the operators satisfy the equivalent inequality condition to the membership, we show the membership in terms
of the SRGs.

µ

(a) SRG of 𝔸

1 + µ

(b) SRG of 𝕀+𝔸

1
1+µ

(c) SRG of 𝕁𝔸

1
1+2µ− 1

1+2µ

(d) SRG of 𝕋

Figure 4. SRG changing with invertible transformation F .

Consider an invertible transformation F : C ∪ {∞} → C ∪ {∞} defined as

F (z) =

(
1 +

1

1 + 2µ

)
(1 + z)−1 − 1

1 + 2µ
.

F is a composition of only scalar addition/subtraction/multiplication and inversion, therefore preserves the SRG ofMµ and
L1/γ . SRG of F (Mµ) and L1/γ match, and the SRG of F−1(L1/γ) andMµ match.

B. Omitted proofs of Section 3
B.1. Proof of Lemma 3.1

Lemma B.1. The yk-update in algorithm (OS-PPM) is equivalent to

xk = 𝕁𝔸yk−1

yk =

(
1− 1

φk

){(
1 +

1

γ

)
xk −

1

γ
yk−1

}
+

1

φk
y0

where γ = 1 + 2µ.

Proof. It suffices to show the equivalence of yk-iterates. For k = 1, from (OS-PPM) update,

y1 = x1 +
φ0 − 1

φ1
(x1 − y0)−

(γ − 1)φ0

φ1
(y0 − x1)

= x1 −
γ − 1

γ2 + 1
(y0 − x1) (φ1 = 1 + γ2)

=

(
1− 1

φ1

){(
1 +

1

γ

)
x1 −

1

γ
y0

}
+

1

φ1
y0.
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Assume that the equivalence of the iterates holds for k = 1, 2, . . . , l. From the (OS-PPM) update,

yl+1 = xl+1 +
φl − 1

φl+1
(xl+1 − xl)−

(γ − 1)φl

φl+1
(yl − xl+1) +

γφl−1

φl+1
(yl−1 − xl)

=

{
1 +

φl − 1

φl+1
+

(γ − 1)φl

φl+1

}
xl+1 −

(
φl − 1

φl+1
+

γφl−1

φl+1

)
xl −

(γ − 1)φl

φl+1
yl +

γφl−1

φl+1
yl−1

= γ(γ + 1)
φl

φl+1
xl+1 − γ(γ + 1)

φl−1

φl+1
xl −

(γ − 1)φl

φl+1
yl +

γφl−1

φl+1
yl−1.

From the inductive hypothesis, we have

yl =

(
1− 1

φl

){(
1 +

1

γ

)
xl −

1

γ
yl−1

}
+

1

φl
y0,

or
γφl−1yl−1 = γ(γ + 1)φl−1xl − φlyl + y0.

Plugging this into the γφl−1yl−1-term in yl+1, we get

yl+1 = γ(γ + 1)
φl

φl+1
xl+1 − γ(γ + 1)

φl−1

φl+1
xl −

(γ − 1)φl

φl+1
yl +

1

φl+1
{γ(γ + 1)φl−1xl − φlyl + y0}

= γ(γ + 1)
φl

φl+1
xl+1 − γ

φl

φl+1
yl +

1

φl+1
y0

=
γ2φl

φl+1

{(
1 +

1

γ

)
xl+1 −

1

γ
yl

}
+

1

φl+1
y0

=

(
1− 1

φl+1

){(
1 +

1

γ

)
xl+1 −

1

γ
yl

}
+

1

φl+1
y0.

The same equivalence holds for yl+1, so we are done.

Proof of Lemma 3.1. Start from the same initial iterate y0 = ỹ0. Suppose yk = ỹk for some k ≥ 0. Then,

yk+1 =

(
1− 1

φk+1

){(
1 +

1

1 + 2µ

)
xk+1 −

1

1 + 2µ
yk

}
+

1

φk+1
y0 (Lemma B.1)

=

(
1− 1

φk+1

){(
1 +

1

1 + 2µ

)
𝕁𝔸 −

1

1 + 2µ
𝕀

}
yk +

1

φk+1
y0

=

(
1− 1

φk+1

)
𝕋yk +

1

φk+1
y0

=

(
1− 1

φk+1

)
𝕋ỹk +

1

φk+1
y0 = ỹk+1. (yk = ỹk by induction hypothesis)

B.2. Proof of Theorem 3.2

Recall that

V k = (1 + γ−k)

[(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2 + 2

(
k−1∑
n=0

γn

)
⟨𝔸̃xk − µ(xk − x⋆), xk − x⋆⟩

+ γ−k

∥∥∥∥∥
(

k−1∑
n=0

γn

)
𝔸̃xk − γk(xk − x⋆) + (xk − y0)

∥∥∥∥∥
2 ]

+ (1− γ−k)∥y0 − x⋆∥2. (OS-PPM-Lyapunov)
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for k = 1, 2, . . . , N and V 0 = 2∥y0 − x⋆∥2, where γ = 1 + 2µ, φk =
∑k

n=0 γ
2n and 𝔸̃xk = yk−1 − xk ∈ 𝔸xk. We will

often use the following identity.

(1 + γ)φk = (1 + γ)

k∑
n=0

γ2n = (1 + γk+1)

k∑
n=0

γn.

First, we show that V k has an alternate form as below. This form is useful in proving the monotone decreasing property of
V k in k.
Lemma B.2. V k defined in (OS-PPM-Lyapunov) can be equivalently written as

V k = γ−2k(1 + γ)2φ2
k−1∥𝔸̃xk∥2 + 2γ−2k(1 + γ)φk−1⟨𝔸̃xk − µ(xk − y0), xk − y0⟩+ 2∥y0 − x⋆∥2.

Proof. Expanding the square term,∥∥∥∥∥
(

k−1∑
n=0

γn

)
𝔸̃xk − γk(xk − x⋆) + (xk − y0)

∥∥∥∥∥
2

=

∥∥∥∥∥
(

k−1∑
n=0

γn

)
𝔸̃xk − (γk − 1)(xk − y0)− γk(y0 − x⋆)

∥∥∥∥∥
2

=

(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2 − 2

(
k−1∑
n=0

γn

)
(γk − 1)⟨𝔸̃xk, xk − y0⟩ − 2

(
k−1∑
n=0

γn

)
γk⟨𝔸̃xk, y0 − x⋆⟩

+ (γk − 1)2∥xk − y0∥2 − 2γk(γk − 1)⟨xk − y0, y0 − x⋆⟩+ γ2k∥y0 − x⋆∥2.

Also, we have

⟨𝔸̃xk − µ(xk − x⋆), xk − x⋆⟩
= ⟨𝔸̃xk − µ(xk − y0)− µ(y0 − x⋆), (xk − y0) + (y0 − x⋆)⟩
= ⟨𝔸̃xk − µ(xk − y0), xk − y0⟩+ ⟨𝔸̃xk, y0 − x⋆⟩ − 2µ⟨xk − y0, y0 − x⋆⟩.

Then V k is expressed as

V k = 2(1 + γ−k)

(
k−1∑
n=0

γn

)
⟨
{
⟨𝔸̃xk − µ(xk − y0), xk − y0⟩+ ⟨𝔸̃xk, y0 − x⋆⟩ − 2µ⟨xk − y0, y0 − x⋆⟩

}
+ (1 + γ−k)γ−k

{(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2 − 2

(
k−1∑
n=0

γn

)
(γk − 1)⟨𝔸̃xk, xk − y0⟩+ (γk − 1)2∥xk − y0∥2

− 2

(
k−1∑
n=0

γn

)
γk⟨𝔸̃xk, y0 − x⋆⟩ − 2γk(γk − 1)⟨xk − y0, y0 − x⋆⟩+ γ2k∥y0 − x⋆∥2

}

+ (1 + γ−k)

(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2 + (1− γ−k)∥y0 − x⋆∥2

= (1 + γ−k)2

(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2 + 2(1 + γ−k)

(
k−1∑
n=0

γn

)
⟨𝔸̃xk − µ(xk − y0), xk − y0⟩

− 2γ−k(1 + γ−k)(γk − 1)

(
k−1∑
n=0

γn

)
⟨𝔸̃xk, xk − y0⟩+ γ−k(1 + γ−k)(γk − 1)2∥xk − y0∥2 + 2∥y0 − x⋆∥2

= (1 + γ−k)2

(
k−1∑
n=0

γn

)2

∥𝔸̃xk∥2 + 2γ−k(1 + γ−k)

(
k−1∑
n=0

γn

)
⟨𝔸̃xk − µ(xk − y0), xk − y0⟩+ 2∥y0 − x⋆∥2.
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As

(1 + γ−k)

(
k−1∑
n=0

γn

)
=

1 + γk

γk

(
k−1∑
n=0

γn

)
=

1 + γ

γk
φk−1,

we have

V k = γ−2k(1 + γ)2φ2
k−1∥𝔸̃xk∥2 + 2γ−2k(1 + γ)φk−1⟨𝔸̃xk − µ(xk − y0), xk − y0⟩+ 2∥y0 − x⋆∥2.

Next, we prove that {V k}Nk=0 is monotonically decreasing in k.

Lemma B.3. For k = 0, 1, . . . , N with V k defined as (OS-PPM-Lyapunov), we have

V N ≤ V N−1 ≤ · · · ≤ V 1 ≤ V 0.

Proof. We use the form of V k as in Lemma B.2.

V 1 − V 0 = γ−2(1 + γ)2∥𝔸̃x1∥2 + 2γ−2(1 + γ)⟨𝔸̃x1 − µ(x1 − y0), x1 − y0⟩
= γ−2(1 + γ)

{
(1 + γ)∥𝔸̃x1∥2 + 2⟨𝔸̃x1 − µ(x1 − y0), x1 − y0⟩

}
= γ−2(1 + γ)

{
(1 + γ)∥𝔸̃x1∥2 − 2(1 + µ)∥𝔸̃x1∥2

}
(x1 − y0 = −𝔸̃x1)

= 0. (1 + γ = 2(1 + µ))

Now, consider k ≥ 1. Then,

V k+1 − V k = γ−2(k+1)(1 + γ)2φ2
k∥𝔸̃xk+1∥2 − γ−2k(1 + γ)2φ2

k−1∥𝔸̃xk∥2

+ 2γ−2(k+1)(1 + γ)φk⟨𝔸̃xk+1 − µ(xk+1 − y0), xk+1 − y0⟩
− 2γ−2k(1 + γ)φk−1⟨𝔸̃xk − µ(xk − y0), xk − y0⟩.

Now, we claim that

V k+1 − V k + 2γ−2k(1 + γ)φkφk−1⟨𝔸̃xk+1 − 𝔸̃xk − µ(xk+1 − xk), xk+1 − xk⟩ = 0.

First,

V k+1 − V k + 2γ−2k(1 + γ)φkφk−1⟨𝔸̃xk+1 − 𝔸̃xk − µ(xk+1 − xk), xk+1 − xk⟩
= V k+1 − V k + 2γ−2k(1 + γ)φkφk−1⟨𝔸̃xk+1 − µ(xk+1 − y0), xk+1 − xk⟩
− 2γ−2k(1 + γ)φkφk−1⟨𝔸̃xk − µ(xk − y0), xk+1 − xk⟩

= γ−2(k+1)(1 + γ)2⟨φk𝔸̃xk+1 − γφk−1𝔸̃xk, φk𝔸̃xk+1 + γφk−1𝔸̃xk⟩
+ 2γ−2(k+1)(1 + γ)φk⟨𝔸̃xk+1 − µ(xk+1 − y0), γ

2φk−1(xk+1 − xk) + (xk+1 − y0)⟩
− 2γ−2k(1 + γ)φk−1⟨𝔸̃xk − µ(xk − y0), φk(xk+1 − xk) + (xk − y0)⟩.

From Lemma B.1, we have

yk =

(
1− 1

φk

){(
1 +

1

γ

)
xk −

1

γ
yk−1

}
+

1

φk
y0.

Using the fact that yk−1 = xk + 𝔸̃xk, yk = xk+1 + 𝔸̃xk+1, and φk = γ2φk−1 + 1, we obtain

φk(xk+1 − y0) + φk𝔸̃xk+1 = γ2φk−1(xk − y0)− γφk−1𝔸̃xk.
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Letting Uk = φk(xk+1 − y0)− γ2φk−1(xk − y0) = −φk𝔸̃xk+1 − γφk−1𝔸̃xk, above formula is simplified as

V k+1 − V k + 2γ−2k(1 + γ)φkφk−1⟨𝔸̃xk+1 − 𝔸̃xk − µ(xk+1 − xk), xk+1 − xk⟩
= −γ−2(k+1)(1 + γ)2⟨φk𝔸̃xk+1 − γφk−1𝔸̃xk, Uk⟩
+ 2γ−2(k+1)(1 + γ)φk⟨𝔸̃xk+1 − µ(xk+1 − y0), Uk⟩
− 2γ−2k(1 + γ)φk−1⟨𝔸̃xk − µ(xk − y0), Uk⟩

= γ−2(k+1)(1 + γ)
〈
− (1 + γ)(φk𝔸̃xk+1 − γφk−1𝔸̃xk) + 2φk{𝔸̃xk+1 − µ(xk+1 − y0)}
− 2γ2φk−1{𝔸̃xk − µ(xk − y0)}, Uk

〉
= γ−2(k+1)(1 + γ)

〈
(1− γ)(φk𝔸̃xk+1 + γφk−1𝔸̃xk)− 2µ{φk(xk+1 − y0)− γ2φk−1(xk − y0)}, Uk

〉
= γ−2(k+1)(1 + γ)⟨(γ − 1)Uk − 2µUk, Uk⟩ = 0 (γ − 1 = 2µ)

We now prove Theorem 3.2.

Proof of Theorem 3.2. According to Lemma B.3, we have V N ≤ V N−1 ≤ · · · ≤ V 0 = 2∥y0 − x⋆∥2. Therefore,

2∥y0 − x⋆∥2 ≥ V N

= (1 + γ−N )

(
N−1∑
n=0

γn

)2

∥𝔸̃xN∥2 + 2(1 + γ−N )

(
N−1∑
n=0

γn

)
⟨𝔸̃xN − µ(xN − x⋆), xN − x⋆⟩

+ γ−N (1 + γ−N )

∥∥∥∥∥
(

N−1∑
n=0

γn

)
𝔸̃xN − γN (xN − x⋆) + (xN − y0)

∥∥∥∥∥
2

+ (1− γ−N )∥y0 − x⋆∥2

≥ (1 + γ−N )

(
N−1∑
n=0

γn

)2

∥𝔸̃xN∥2 + (1− γ−N )∥y0 − x⋆∥2,

which can be simplified as

(1 + γ−N )∥y0 − x⋆∥2 ≥ (1 + γ−N )

(
N−1∑
n=0

γn

)2

∥𝔸̃xN∥2,

or equivalently,

∥𝔸̃xN∥2 ≤

(
1∑N−1

n=0 γn

)2

∥y0 − x⋆∥2.

Proof of Corollary 3.3. This immediately follows from Theorem 3.2 and Lemma 3.1 by

𝔸̃xN = yN−1 − xN =

(
1 +

1

γ

)−1

(yN−1 − 𝕋yN−1) ∈ 𝔸xN .

C. Details on the formulation of performance estimation problem for (OS-PPM)

In order to obtain an estimate on the worst-case complexity of the algorithm, performance estimation problem (PEP) tech-
nique solves a certain form of semidefinite problem (SDP). This SDP holds positive semidefinite matrix as an optimization
variable, and solves the problem under constraints formulated from the interpolation condition of an operator in hand.
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When discovering (OS-PPM), we used maximal monotonicity as our interpolation condition, just as in Ryu et al. (2020);
Kim (2021). We further extended this to cover the case of maximal strongly-monotone operators, in a slightly different
way with Taylor & Drori (2021) who considered strongly convex interpolation. The optimization variable is a positive
semidefinite matrix, and this is of a Gram matrix form which stores information on the iterates of algorithms. Usual choice
of basis vectors for the gram matrix in PEP is usually ∇f(x) for convex minimization setup (Kim & Fessler, 2016b; Taylor
et al., 2018; Taylor & Drori, 2021), or 𝔸̃x for operator setup (Kim, 2021). Here, we used x-iterates to form the gram matrix
of SDP.

This basic SDP is a primal problem of the PEP (Primal-PEP), and solving this returns an estimate to the worst-case
complexity of given algorithm. If we form a dual problem (dual-PEP) and minimize the optimal value of dual-PEP over
possible choices of stepsizes as in Kim & Fessler (2016b); Taylor et al. (2018); Kim (2021); Taylor & Drori (2021),
this provides possibly the fastest rate, and solution to this minimization problem gives possibly optimal algorithms. We
considered a class of algorithms satisfying the span assumption in Corollary 4.2, and obtained (OS-PPM).

D. Omitted proofs of Section 4
D.1. Proving complexity lower bound with span condition

Proof of Lemma 4.3 with inequalities. From (Bauschke & Combettes, 2017, Proposition 4.35), 𝔾 is 1
1+γ -averaged if and

only if

∥𝔾x− 𝔾y∥2 + γ − 1

γ + 1
∥x− y∥2 ≤ 2γ

1 + γ
⟨𝔾x− 𝔾y, x− y⟩, ∀x, y ∈ Rn.

Then for any x, y ∈ Rn, we get the chain of equivalences as follows.

∥𝕋x− 𝕋y∥2 ≤ 1

γ2
∥x− y∥2 ⇐⇒ ∥γ𝕋x− γ𝕋y∥2 ≤ ∥x− y∥2

⇐⇒ ∥{(1 + γ)𝔾x− γx} − {(1 + γ)𝔾y − γy}∥2 ≤ ∥x− y∥2

⇐⇒ (1 + γ)2∥𝔾x− 𝔾y∥2 − 2γ(1 + γ)⟨𝔾x− 𝔾y, x− y⟩+ γ2∥x− y∥2 ≤ ∥x− y∥2

⇐⇒ (1 + γ)2∥𝔾x− 𝔾y∥2 + (γ2 − 1)∥x− y∥2 ≤ 2γ(1 + γ)⟨𝔾x− 𝔾y, x− y⟩

⇐⇒ ∥𝔾x− 𝔾y∥2 + γ − 1

γ + 1
∥x− y∥2 ≤ 2γ

γ + 1
⟨𝔾x− 𝔾y, x− y⟩. (∵ 1 + γ > 0)

Therefore, 𝕋 is 1
γ -contractive if and only if 𝔾 is 1

1+γ -averaged.

Proof of Lemma 4.3 with scaled relative graph. Using the notion of SRG (Ryu et al., 2021), we get the following equiva-
lence of SRGs. Here, N 1

1+γ
is a class of 1

1+γ -averaged operators. Therefore, we get the chain of equivalences

1
γ− 1

γ

SRG of 𝕋 ∈ L 1
γ

SRG of 𝕀−
(
1 + 1

γ

)
𝔾

11− 2
1+γ

SRG of γ
1+γ (𝕀− 𝕋)

SRG of 𝔾 ∈ N 1
1+γ

Figure 5. SRG of 𝕋 and 𝔾
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𝕋 ∈ L1/γ ⇐⇒ γ𝕋 ∈ L1 ⇐⇒ −γ𝕋 ∈ L1

⇐⇒ 𝔾 =
γ

1 + γ
𝕀+

1

1 + γ
(−γ𝕋) ∈ N 1

1+γ
,

and conclude that 𝕋 is 1
γ -Lipschitz if and only if 𝔾 is 1

1+γ -averaged.

Proof of Lemma 4.4. We restate the definition of ℕ : RN+1 → RN+1.

ℕx = ℕ(x1, x2, . . . , xN+1) = (xN+1,−x1, . . . ,−xN )− 1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1, x ∈ RN+1.

For any x, y ∈ RN+1 such that

x = (x1, x2, . . . , xN+1), y = (y1, y2, . . . , yN+1),

we have

∥ℕx−ℕy∥2 = ∥(xN+1,−x1, . . . ,−xN )− (yN+1,−y1, . . . ,−yN )∥2

= (xN+1 − yN+1)
2 + (x1 − y1)

2 + · · ·+ (xN − yN )2

= ∥x− y∥2.

Then ℕ is nonexpansive, and by definition, 𝔾 = 1
1+γℕ+ γ

1+γ 𝕀 is a 1
1+γ -averaged operator.

Proof of Lemma 4.5. By the definition of 𝔾 : RN+1 → RN+1, for any x ∈ RN+1,

𝔾x =
1

1 + γ
ℕx+

γ

1 + γ
x

=
1

1 + γ



γ 0 0 . . . 0 1
−1 γ 0 . . . 0 0
0 −1 γ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . γ 0
0 0 0 . . . −1 γ


︸ ︷︷ ︸

=H

x− 1

1 + γ

1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1︸ ︷︷ ︸
=b

where γ = 1 + 2µ. Observe that 𝔾ek ∈ span{e1, ek, ek+1} for k = 1, . . . , N .

We use induction on k to prove the Lemma. The claim holds for k = 0 from

𝔾y0 = 𝔾0 = − 1

1 + γ

1 + γN+1√
1 + γ2 + · · ·+ γ2N

Re1 ∈ span{e1}.

Now, suppose that the claim holds for k < N , i.e.,

yk ∈ span{e1, e2, . . . , ek}
𝔾yk ∈ span{e1, e2, . . . , ek+1}.

Then

yk+1 ∈ y0 + span{𝔾y0,𝔾y1, . . . ,𝔾yk}
⊆ span{e1, e2, . . . , ek+1}

𝔾yk+1 = Hyk+1 − b

∈ Hspan{e1, e2, . . . , ek+1} − b

⊆ span{e1, e2, . . . , ek+2}.
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Proof of Theorem 4.1. The proof outline of Theorem 4.1 in Section 4.2 is complete except for the part that the identity (∗)
holds, and that Theorem 4.1 holds for any initial point y0 ∈ Rn which is not necessarily zero.

First, we show that for any initial point y0 ∈ Rn, there exists an worst-case operator 𝕋 : Rn → Rn which cannot exhibit
better than the desired rate. Denote by 𝕋0 : R

n → Rn the worst-case operator constructed in the proof of Theorem 4.1 for
y0 = 0. Define 𝕋 : Rn → Rn as

𝕋y = 𝕋0(y − y0) + y0

given y0 ∈ Rn. Then, first of all, the fixed point of 𝕋 is y⋆ = ỹ⋆ + y0 where ỹ⋆ is the unique solution of 𝕋0. Also, if
{yk}Nk=0 satisfies the span condition

yk ∈ y0 + span {y0 − 𝕋y0, . . . , yk−1 − 𝕋yk−1} , k = 1, . . . , N,

then ỹk = yk − y0 forms a sequence satisfying

ỹk ∈ ỹ0︸︷︷︸
=0

+span {ỹ0 − 𝕋0ỹ0, . . . , ỹk−1 − 𝕋0ỹk−1} , k = 1, . . . , N,

which is the same span condition in Theorem 4.1 with respect to 𝕋0. This is true from the fact that

yk − 𝕋yk = yk − y0︸ ︷︷ ︸
=ỹk

+𝕋0(yk − y0︸ ︷︷ ︸
ỹk

) = ỹk − 𝕋0ỹk

for k = 1, . . . , N .

Now, {ỹk}Nk=0 is a sequence starting from ỹ0 = 0 satisfying the span condition for 𝕋0. This implies that,

∥yN − 𝕋yN∥2 = ∥ỹN − 𝕋0ỹN∥2

≥
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥ỹ0 − ỹ⋆∥2

=

(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2.

𝕋 is our desired worst-case 1
γ -contraction on Rn.

It remains to show that

∥𝔾yN∥2 ≥
∥∥Pspan{v}(b)

∥∥2= ∥∥∥∥ ⟨b, v⟩⟨v, v⟩
v

∥∥∥∥2 (∗)
=

(
1∑N

k=0 γ
k

)2

R2

where
v =

[
1 γ γ2 . . . γN

]⊺
,

especially the identity (∗).∥∥∥∥ ⟨b, v⟩⟨v, v⟩
v

∥∥∥∥2 =
|⟨b, v⟩|2

∥v∥2

=

(
R

1 + γ
× 1 + γN+1√

1 + γ2 + γ4 + · · ·+ γ2N

)2

× 1

1 + γ2 + γ4 + · · ·+ γ2N

=

(
R

1 + γ
× 1 + γN+1

1 + γ2 + γ4 + · · ·+ γ2N

)2

=

(
R

1 + γ + γ2 + · · ·+ γN

)2

=

(
1∑N

k=0 γ
k

)2

R2.



Exact Optimal Accelerated Complexity for Fixed-Point Iterations

Proof of Corollary 4.2. According to Lemma 2.1, 𝕋 is 1/γ-contractive if and only if 𝔸 = (𝕋+1/γ𝕀)−1−𝕀 is γ−1
2 -strongly

monotone. For any y ∈ Rn, if x = 𝕁𝔸y, then

y − 𝕋y = y −
{(

1 +
1

γ

)
𝕁𝔸y −

1

γ
y

}
=

(
1 +

1

γ

)
(y − x) =

(
1 +

1

γ

)
𝔸̃x.

This implies that

yk ∈ y0 + span{y0 − 𝕋y0, y1 − 𝕋y1, . . . , yk−1 − 𝕋yk−1}, k = 1, . . . , N,

if and only if

xk = 𝕁𝔸yk−1

yk ∈ y0 + span{𝔸̃x1, . . . , 𝔸̃xk}, k = 1, . . . , N

where xk = 𝕁𝔸yk−1. Span conditions in the statements of Theorem 4.1 and Corollary 4.2 are equivalent under the
transformation 𝔸 = (𝕋+ 1/γ𝕀)−1 − 𝕀. Therefore, the lower bound result of this corollary can be derived from the lower
bound result of Theorem 4.1.

D.2. Deterministic algorithm classes

In this section, we provide basic terminologies and necessary concepts in proving the complexity lower bound result for
general algorithms. We follow the information-based complexity framework developed by Nemirovski & Yudin (1983), and
use the resisting oracle technique to extend the results of Theorem 4.1 and Corollary 4.2 to general fixed-point iterations and
general proximal point methods. The proof itself is motivated by the works of Carmon et al. (2020; 2021), and large portion
of the definitions and notations are due to their work.

In the information-based complexity framework, every iterate {yk}k∈N is a query from an information oracle, which returns
restrictive information on a given function or operator. Then, assumptions on the algorithm, such as linear span condition,
illustrates how it uses such information. For instance, provided with a gradient oracle Of (x) = ∇f(x) of convex function
f to be minimized, usually the first-order algorithms search within the span of previous gradients to reach the next iterate.

A deterministic fixed-point iteration A is a mapping of an initial point y0 and an operator 𝕋 to a sequence of iterates {yt}t∈N

and {ȳt}t∈N, such that the output depends on 𝕋 only through the fixed-point residual oracle O𝕋(y) = y − 𝕋y. Here,
‘deterministic’ means that given the same initial point y0 and the sequence of oracle evaluations {O𝕋(yt)}t∈N, the algorithm
yields the same sequence of iterates {(yt, ȳt)}t∈N. More precisely, we define A per iteration by setting A = {At}t∈N with

(yt, ȳt) = At[y0;𝕋] = At[y0,O𝕋(y0), . . . ,O𝕋(yt−1)],

where yt is the t-th query point and ȳt is the t-th approximate solution produced by At. Here, we consider the algorithms
whose query points and approximate solutions are identical (yt = ȳt).

Even though the A is defined to produce infinitely many yt- and ȳt-iterates, the definition includes the case where algorithm
terminates at a predetermined total iteration count N , i.e., the algorithm may have a predetermined iteration count N and
the behavior may depend on the specified value of N . In such cases, yN = ȳN = yN+1 = ȳN+1 = · · · .

Similarly, a deterministic proximal point method A is a mapping of an initial point y0 and a maximal monotone operator 𝔸
to a sequence of query points {yt}t∈N and approximate solutions {ȳt}t∈N, such that the output depends on 𝔸 only through
the resolvent residual oracle O𝔸(y) = y − 𝕁𝔸y = 𝔸̃x ∈ 𝔸x where x = 𝕁𝔸y. Indeed, this method A yields the same
sequence of iterates given the same initial point y0 and oracle evaluations {O𝔸(yt)}t∈N.

D.3. Generalized complexity lower bound

As mentioned earlier, the general deterministic fixed-point iterations have no accounts for the span condition. We use the
resisting oracle technique (Nemirovski & Yudin, 1983) to prove the lower bound result for general deterministic fixed-point
iterations. Recall that Theorem 4.6 is

Theorem 4.6 (Complexity lower bound of general deterministic fixed-point iterations). Let n ≥ 2N for N ∈ N. For any
deterministic fixed-point iteration A and any initial point y0 ∈ Rn, there exists a 1

γ -Lipschitz operator 𝕋 : Rn → Rn with a
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fixed point y⋆ ∈ Fix𝕋 such that

∥yN − 𝕋yN∥2 ≥
(
1 +

1

γ

)2
(

1∑N
k=0 γ

k

)2

∥y0 − y⋆∥2

where {yt}t∈N = A[y0;𝕋].

By the equivalency of the optimization problems and algorithms stated in Lemma 2.1 and Lemma 3.1, Theorem 4.6 also
generalizes Corollary 4.2 to general proximal point methods.

Corollary D.1 (Complexity lower bound of general proximal point methods). Let n ≥ 2N − 2 for N ∈ N. For any
deterministic proximal point method A and arbitrary initial point y0 ∈ Rn, there exists a µ-strongly monotone operator
𝔸 : Rn → Rn with a zero x⋆ ∈ Zer𝔸 such that

∥𝔸̃xN∥2 ≥
(

1

1 + γ + · · ·+ γN−1

)2

∥y0 − x⋆∥2

where {yt}t∈N = A[y0;𝕋].

D.4. Proof of Theorem 4.6

In order to prove Theorem 4.6, we first extend the result of Theorem 4.1 to the zero-respecting sequences, which is a
requirement slightly more general than the span assumption. The worst-case operator of Theorem 4.1 covers the case of
zero-respecting sequences, and this result will be successfully extended to general deterministic fixed-point iterations.

We say that a sequence {zt}t∈N∪{0} ⊆ Rd is zero-respecting with respect to 𝕋 if

supp{zt} ⊆ ∪s<tsupp{zs − 𝕋zs}

for every t ∈ N ∪ {0}, where supp{z} := {i ∈ [d] | ⟨z, ei⟩ ≠ 0}. An deterministic fixed-point iteration A is called
zero-respecting if A generates a sequence {zt}t∈N∪{0} which is zero-respecting with respect to 𝕋 for any nonexpansive
𝕋 : Rd → Rd. Note that by definition, z0 = 0. And for notational simplicity, define suppV =

⋃
z∈V supp{z}.

This property serves as an important intermediate step to the generalization of Theorem 4.1, where its similar form called
‘zero-chain’ has numerously appeared on the relevant references in convex optimization (Nesterov, 2004; Drori, 2017;
Carmon et al., 2020; Drori & Taylor, 2022). The worst-case operator found in the proof of Theorem 4.1 still performs the
best among all the zero-respecting query points with respect to 𝕋, according to the following lemma.

Lemma D.2. Let 𝕋 : RN+1 → RN+1 be the worst-case operator defined in the proof of Theorem 4.1. If the iterates {zt}Nt=0

are zero-respecting with respect to 𝕋,

∥zN − 𝕋zN∥2 ≥
(
1 +

1

γ

)2(
1

1 + γ + · · ·+ γN

)2

∥z0 − z⋆∥2

for z⋆ ∈ Fix𝕋.

Proof. Let 𝔾 be defined as in the proof of Theorem 4.1. Then we have

z ∈ span{e1, e2, . . . , ek} =⇒ 𝔾z ∈ span{e1, e2, . . . , ek+1}.

We claim that any zero-respecting sequence {zk}k=0,1,...,N satisfies

zk ∈ span
{
e1, e2, . . . , ek

}
𝔾zk =

γ

1 + γ
(zk − 𝕋zk) ∈ span

{
e1, e2, . . . , ek+1

}
for k = 0, 1, . . . , N , so that the lower bound result of Theorem 4.1 is applicable.
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If k = 0, then y0 = 0 and from this, 𝔾0 ∈ span{e1}. So the case of k = 0 holds. Now, suppose that 0 < k ≤ N
and the claim holds for all n < k. Then 𝔾zn ∈ span{e1, . . . , en+1} ⊆ span{e1, . . . , ek} for 0 ≤ k < n. {zk}Nk=0 is
zero-respecting with respect to 𝕋, so

supp{zk} ⊆
⋃
n<k

supp{zn − 𝕋zn}

= supp
{
𝔾z0,𝔾z1, . . . ,𝔾zk−1

}
⊆ supp{e1, e2, . . . , ek}.

Therefore, zk ∈ span{e1, e2, . . . , ek}, and 𝔾zk ∈ span{e1, e2, . . . , ek+1}. The claim holds for k = 1, . . . , N .

According to the proof of Theorem 4.1,

∥zN − 𝕋zN∥2 ≥
(
1 +

1

γ

)2(
1

1 + γ + · · ·+ γN

)2

∥z0 − z⋆∥2

for any zero-respecting iterates {zk}Nk=0 with respect to 𝕋.

We say that a matrix U ∈ Rm×n with m ≥ n is orthogonal, if each columns {ui}ni=1 ⊆ Rm of U as in

U =

 | . . . |
u1 . . . un

| . . . |


are orthonormal to each other, or in other words, U⊺U = In. It directly follows that UU⊺ is an orthogonal projection from
Rm to the rangeR(U) of U .

Lemma D.3. For any orthogonal matrix U ∈ Rm×n with m ≥ n and any arbitrary vector y0 ∈ Rm, if 𝕋 : Rn → Rn is a
1
γ -contractive operator with γ ≥ 1, then 𝕋U : Rm → Rm defined as

𝕋U (y) := U𝕋U⊺(y − y0) + y0, ∀y ∈ Rm

is also a 1
γ -contractive operator. Furthermore, z⋆ ∈ Fix𝕋 if and only if y⋆ = y0 + Uz⋆ ∈ Fix𝕋U .

Proof. For any x, z ∈ Rm,

∥𝕋Ux− 𝕋Uz∥ = ∥U𝕋U⊺(x− y0)− U𝕋U⊺(z − y0)∥
= ∥𝕋U⊺(x− y0)− 𝕋U⊺(z − y0)∥ (U is an orthogonal matrix)

≤ 1

γ
∥U⊺(x− y0)− U⊺(z − y0)∥ (𝕋 is 1

γ -contractive)

=
1

γ
∥UU⊺(x− z)∥

≤ 1

γ
∥x− z∥. (UU⊺ is an orthogonal projection ontoR(U))

Now, suppose z⋆ is a fixed point of 𝕋. Then

𝕋U (y⋆) = U𝕋U⊺Uz⋆ + y0 = U𝕋z⋆ + y0

= Uz⋆ + y0 = y⋆

so y⋆ is a fixed point of 𝕋U . On the other hand, if y⋆ is a fixed point of 𝕋U , then z⋆ = U⊺(y⋆ − y0) satisfies

𝕋(z⋆) = 𝕋U⊺(y⋆ − y0)

= U⊺U𝕋U⊺(y⋆ − y0) (U⊺U = In)
= U⊺(𝕋Uy⋆ − y0)

= U⊺(y⋆ − y0) = z⋆ (y⋆ ∈ Fix𝕋U )

so it is a fixed point of 𝕋.
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Lemma D.4. Let A be a general deterministic fixed-point iteration, and 𝕋 : Rn → Rn be a 1/γ-contractive operator.
For m ≥ n + N − 1 and any arbitrary point y0 ∈ Rm, there exists an orthogonal matrix U ∈ Rm×n and the iterates
{yt}Nt=1 = A[y0;𝕋U ] with the following properties.

(i) Let z(t) := U⊺(yt − y0) for t = 0, 1, . . . , N . Then {z(t)}Nt=0 is zero-respecting with respect to 𝕋.

(ii) {z(t)}Nt=0 satisfies
∥z(t) − 𝕋z(t)∥ ≤ ∥yt − 𝕋Uyt∥, t = 0, . . . , N.

Proof. We first show that (i) implies (ii). From (i), we know that z(t) = U⊺(yt − y0) for t = 0, 1, . . . , N . Therefore,

∥z(t) − 𝕋z(t)∥ = ∥U⊺(yt − y0)− 𝕋U⊺(yt − y0)∥
= ∥UU⊺{(yt − y0)− U𝕋U⊺(yt − y0)}∥ (U is orthogonal)
= ∥UU⊺(yt − y0)− UU⊺U𝕋U⊺(yt − y0)∥ (U⊺U = In)
= ∥UU⊺{(yt − y0)− U𝕋U⊺(yt − y0)}∥
≤ ∥(yt − y0)− U𝕋U⊺(yt − y0)∥ (UU⊺ is an orthogonal projection)
= ∥yt − 𝕋Uyt∥. (Definition of 𝕋U )

Now we prove the existence of orthogonal U ∈ Rm×n with {yt}Nt=0 = A[y0;𝕋U ] and (i) holds. In order to show the
existence of such orthogonal matrix U as in (i), we provide the inductive scheme that finds the columns of U at each
iteration. Before describing the actual scheme, we first provide some observations useful to deriving the necessary conditions
for the columns {ui}ni=1 of U to satisfy.

Let t ∈ {1, . . . , N}, and define the set of indices St as

St = ∪s<tsupp{z(s) − 𝕋z(s)}.

For {z(t)}Nt=0 to satisfy the zero-respecting property with respect to 𝕋, z(t) is required to satisfy

supp{z(t)} ⊆ St

for t = 1, . . . , N . This requirement is fulfilled when

yt − y0 ∈ span{ui}i∈St

or equivalently,
⟨ui, yt − y0⟩ = 0

for every i /∈ St. Note that z(0) = U⊺(y0 − y0) = 0 is trivial.

We now construct U ∈ Rm×n. Note that S0 = ∅ ⊆ S1 ⊆ · · · ⊆ St. {ui}i∈St\St−1
is chosen inductively starting from

t = 1. Suppose we have already chosen {ui}i∈St−1
. Choose {ui}i∈St\St−1

from the orthogonal complement of

Wt := span
(
{y1 − y0, · · · , yt−1 − y0} ∪ {ui}i∈St−1

)
and let them be orthogonal to each other. In case of SN ̸= ∅, for i /∈ SN , choose proper vectors ui so that U becomes
an orthogonal matrix. This is possible when the dimension of W⊥

t is large enough to draw |St \ St−1|-many orthogonal
vectors, or in other words,

dimW⊥
t ≥ |St \ St−1|.

From the assumption, m− t+ 1 ≥ m−N + 1 ≥ n, so we have a guarantee that

dimW⊥
t = m− dimWt ≥ m− {(t− 1) + |St−1|} ≥ |Sc

t−1| = n− |St−1| ≥ |St \ St−1|.

The columns {ui}ni=1 of constructed U satisfies ⟨ui, yt − y0⟩ = 0 if i /∈ St, for t = 1, . . . , N . Therefore,

z(t) = U⊺(yt − y0) ∈ span{ei}i∈St

which leads to supp{z(t)} ⊆ St.
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We now prove the complexity lower bound result for general fixed-point iterations.

Proof of Theorem 4.6. For any deterministic fixed-point iteration A and initial point y0 ∈ Rn, consider a worst-case
operator 𝕋 : RN+1 → RN+1 defined in the proof of Theorem 4.1. According to Lemma D.4, there exists an orthogonal
U ∈ Rn×(N+1) with n ≥ (N + 1) + (N − 1) = 2N such that z(k) = U⊺(yk − y0) for k = 0, . . . , N ,

∥z(k) − 𝕋z(k)∥ ≤ ∥yk − 𝕋Uyk∥, k = 0, . . . , N

where the query points {yk}Nk=0 are generated from applying A to 𝕋U given initial point y0, and {z(k)}Nk=0 is a zero-
respecting sequence with respect to 𝕋. According to Lemma D.2,

∥z(N) − 𝕋z(N)∥2 ≥
(
1 +

1

γ

)2(
1

1 + γ + · · ·+ γN

)2

∥z(0) − z⋆∥2.

According to Lemma D.3, y⋆ = y0 + Uz⋆ ∈ Fix𝕋U for z⋆ ∈ Fix𝕋, so

∥y0 − y⋆∥2 = ∥U(z(0) − z⋆)∥2 = ∥z(0) − z⋆∥2

where the second identity comes from orthogonality of U . We may conclude that

∥yN − 𝕋UyN∥2 ≥
(
1 +

1

γ

)2(
1

1 + γ + · · ·+ γN

)2

∥y0 − y⋆∥2

and that 𝕋U : Rn → Rn is the desired worst-case 1
γ -contraction with n ≥ 2N .

E. Omitted proofs of Section 5
E.1. Convergence rate of proximal point method

Lemma E.1. Let {xk}k∈N be the iterates generated by applying PPM xk+1 = 𝕁𝔸xk starting from x0 ∈ Rn, given a
uniformly monotone operator 𝔸 with parameters µ > 0 and α > 1. Now let Ak := ∥xk − x⋆∥2 and Bk := ∥𝔸̃xk+1∥2.
Then for any k ∈ N ∪ {0},

Ak ≥ Ak+1

(
1 + µA

α−1
2

k+1

)2
Bk ≥ Bk+1.

Proof. Note that PPM update xk+1 = 𝕁𝔸xk is equivalent to xk = xk+1 + 𝔸̃xk+1 where 𝔸̃xk+1 ∈ 𝔸xk+1.

xk − x⋆ = (xk+1 + 𝔸̃xk+1)− x⋆ = (xk+1 − x⋆) + 𝔸̃xk+1.

Then

Ak = Ak+1 +Bk + 2⟨𝔸̃xk+1, xk+1 − x⋆⟩
≥ Ak+1 +Bk + 2µ∥xk+1 − x⋆∥α+1

= Ak+1 +Bk + 2µA
α+1
2

k+1

≥ Ak+1 + µ2Aα
k+1 + 2µA

α+1
2

k+1

≥ Ak+1

(
1 + µA

α−1
2

k+1

)2
where the second inequality follows from

∥𝔸̃xk+1∥∥xk+1 − x⋆∥ ≥ ⟨𝔸̃xk+1, xk+1 − x⋆⟩ ≥ µ∥xk+1 − x⋆∥α+1.
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Also, from

Bk −Bk+1 = ∥𝔸̃xk∥2 − ∥𝔸̃xk+1∥2

= (∥𝔸̃xk∥2 + ∥𝔸̃xk+1∥2)− 2∥𝔸̃xk+1∥2

≥ 2⟨𝔸̃xk, 𝔸̃xk+1⟩ − 2∥𝔸̃xk+1∥2 (Young’s inequality)

= −2⟨𝔸̃xk+1 − 𝔸̃xk, 𝔸̃xk+1⟩
= 2⟨𝔸̃xk+1 − 𝔸̃xk, xk+1 − xk⟩ ≥ 0, (Monotonicity of 𝔸)

we get Bk ≥ Bk+1.

Theorem E.2. If 𝔸 : Rn ⇒ Rn is a uniformly monotone operator with parameters µ > 0 and α > 1, there exists C > 0
such that the iterates {xk}k∈N generated by PPM exhibits the rate

∥xk − x⋆∥2 ≤
C

k
2

α−1

for any k ∈ N.

Proof. We use the induction on k to show the convergence rate, and find the necessary conditions for C > 0 to satisfy.

In case of k = 1, ∥x1−x⋆∥2 ≤ C must be satisfied. Lemma E.1 implies the monotonicity of Ak, so C with C ≥ ∥x0−x⋆∥2
is a suitable choice.

Now, suppose that Ak ≤ Ck−
2

α−1 and k ≥ 1. We claim that Ak+1 ≤ C(k + 1)−
2

α−1 for the same C > 0. Define
fα
µ : [0,∞)→ [0,∞) as

fα
µ (t) := t

(
1 + µt

α−1
2

)2
.

Then fα
µ (Ak+1) ≤ Ak from Lemma E.1. If fα

µ (Ak+1) ≤ fα
µ

(
C(k + 1)−

2
α−1

)
, since fα

µ is a monotonically increasing
function over [0,∞), we are done. Define

an := (n+ 1)

{(
1 +

1

n

) 1
α−1

− 1

}
,

and function g : (0,∞)→ R as

g(x) =

(
1 +

1

x

){
(1 + x)

1
α−1 − 1

}
so that an = g

(
1
n

)
for n ∈ N. Then

g′(x) = − 1

x2

{
(1 + x)

1
α−1 − 1

}
+

1

α− 1

(
1 +

1

x

)
(1 + x)

1
α−1−1

= − (1 + x)
1

α−1

x2
+

1

x2
+

1

α− 1

(1 + x)(1 + x)
1

α−1−1

x

=
−(1 + x)

1
α−1 + 1 + x

α−1 (1 + x)
1

α−1

x2

=
(1 + x)

1
α−1

x2

{
(1 + x)−

1
α−1 −

(
1− 1

α−1x
)}

.

As x 7→ (1 + x)−
1

α−1 is a convex function on [0,∞) and x 7→ 1− 1
α−1x is a first-order approximation at 0 of it, g′(x) ≥ 0

for x > 0. g is a monotonically increasing function, so g obtains its maximum in (0, 1] at x = 1, and we have

sup
n∈N

an = sup
n∈N

g

(
1

n

)
= g(1) = 2(2

1
α−1 − 1) = 2

α
α−1 − 2.
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The boundedness of an leads to the equivalency as

ak ≤ 2
α

α−1 − 2 ⇐⇒
(
1 +

1

k

) 2
α−1

≤

(
1 +

2
α

α−1 − 2

k + 1

)2

⇐⇒ C

k
2

α−1

≤ C

(k + 1)
2

α−1

1 +
2

α
α−1 − 2

C
α−1
2

(
C

(k + 1)
2

α−1

)α−1
2


2

,

for any choice of C > 0. Choosing C ≥ µ− 2
α−1 (2

α
α−1 − 2)

2
α−1 which is equivalent to

2
α

α−1 − 2

C
α−1
2

≤ µ,

we get

C

(k + 1)
2

α−1

1 +
2

α
α−1 − 2

C
α−1
2

(
C

(k + 1)
2

α−1

)α−1
2


2

≤ C

(k + 1)
2

α−1

1 + µ

(
C

(k + 1)
2

α−1

)α−1
2


2

= fα
µ

(
C

(k + 1)
2

α−1

)
.

Gathering all the inequalities above, if C ≥ µ− 2
α−1 (2

α
α−1 − 2)

2
α−1 , then

fα
µ (Ak+1) ≤ Ak ≤

C

k
2

α−1

≤ fα
µ

(
C

(k + 1)
2

α−1

)

so we get

Ak ≤
C

k
2

α−1

=⇒ Ak+1 ≤
C

(k + 1)
2

α−1

for k = 1, 2, . . . .

Therefore,

∥xk − x⋆∥2 ≤
C

k
2

α−1

=

max

{(
2

α
α−1 −2

µ

) 2
α−1

, ∥x0 − x⋆∥2
}

k
2

α−1

.

We now prove the convergence rate of PPM in terms of Bk = ∥𝔸̃xk+1∥2.

Proof of Theorem 5.1. We claim the convergence rate of Bk−1 = ∥𝔸̃xk∥2 to be as above. From the proof of Lemma E.1,
we have

Bk ≤ Ak −Ak+1 − 2µA
α+1
2

k+1 ≤ Ak −Ak+1.

If N = 1, then
B0 ≤ A0 −A1 ≤ A0 = ∥x0 − x⋆∥2.

Suppose N ≥ 2. Let n := ⌊N2 ⌋ where ⌊x⌋ is the largest integer not exceeding x. Summing up the above inequality from
k = n to k = N − 1 and using the monotonicity of Bk, we have

N

2
BN−1 ≤

N−1∑
k=n

BN−1 ≤
N−1∑
k=n

Bk ≤
N−1∑
k=n

(Ak −Ak+1) = An −AN ≤ An.
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Note that from the convergence analysis of Ak, or Theorem E.2, we have

An ≤
C

n
2

α−1

where C = max

{(
2

α
α−1 −2

µ

) 2
α−1

, ∥x0 − x⋆∥2
}

. Therefore,

N

2
BN−1 ≤

C

n
2

α−1

≤ C(
N−1
2

) 2
α−1

,

so we may conclude that, for any N ≥ 2,

BN−1 ≤
2

α+1
α−1C

(N − 1)
2

α−1N

=

2
α+1
α−1 max

{(
2

α
α−1 −2

µ

) 2
α−1

, ∥x0 − x⋆∥2
}

(N − 1)
2

α−1N

≤
2

α+3
α−1 max

{(
2

α
α−1 −2

µ

) 2
α−1

, ∥x0 − x⋆∥2
}

N
α+1
α−1

= O
(
N−α+1

α−1

)
where the second inequality follows from 2(N − 1) ≥ N . Since this bound also holds for the case of N = 1 from
B0 ≤ ∥x0 − x⋆∥2, we are done.

E.2. Convergence rate of restarted OS-PPM (OS-PPMres
0 )

Roulet & d’Aspremont (2020) showed that if the objective function f of a smooth convex minimization problem satisfies a
Hölderian error bound condition

µ

r
∥x− x⋆∥r ≤ f(x)− f⋆, ∀x ∈ K ⊂ Rn

where x⋆ ∈ K is a minimizer of f and K is a given set, then the unaccelerated base algorithm can be accelerated with a
restarting scheme. The restarting schedule uses tk iterations for each k-th outer loop recursively satisfying

f(xk)− f⋆ ≤ e−ηk(f(x0)− f⋆), k = 1, 2, . . .

for some η > 0, where xk = A(xk−1, tk) is the output of k-th outer loop, which applies tk iterations of the base algorithm
A starting from xk−1. If an objective function is strongly convex near the solution (r = 2), a constant restarting schedule
tk = λ provides a faster rate compared to an unaccelerated base algorithm (Nemirovski & Nesterov, 1985). If an objective
function satisfies a Hölderian error bound condition but it is not strongly convex (r > 2), then an exponentially-growing
schedule tk = λeβk for some λ > 0 and β > 0 results in a faster sublinear convergence rate.

As notable prior work, Kim (2021) studied APPM with a constant restarting schedule in the strongly monotone setup but
was not able to obtain a rate faster than plain PPM. We show that restarting with an exponentially increasing schedule
accelerates (OS-PPM) under uniform monotonicity, as for the case of r > 2 in Roulet & d’Aspremont (2020).

Proof of Theorem 5.2. Suppose that given an initial point x0 ∈ Rn, let x̃0 be an iterate generated by applying APPM on x0

only once. Then

x̃0 =
1

2
(2𝕁𝔸x0 − x0) +

1

2
x0 = 𝕁𝔸x0,

so we get

∥x0 − x⋆∥2 = ∥𝔸̃x̃0 + (x̃0 − x⋆)∥2

= ∥𝔸̃x̃0∥2 + 2⟨𝔸̃x̃0, x̃0 − x⋆⟩+ ∥x̃0 − x⋆∥2.
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From the monotonicity of 𝔸, ⟨𝔸̃x̃0, x̃0 − x⋆⟩ ≥ 0, so we may conclude that

∥𝔸̃x̃0∥2 ≤ ∥x0 − x⋆∥2.

Now we describe the restarting scheme of APPM. Let tk be the number of inner iterations applying APPM for the kth outer
iteration. This iteration starts from x̃k−1 and outputs x̃k after applying tk iterations of APPM. Then the kth outer iteration
results in

∥𝔸̃x̃k∥2 ≤
1

(tk + 1)2
∥x̃k−1 − x⋆∥2 ≤

1

t2k
∥x̃k−1 − x⋆∥2 ≤

1

µ2/αt2k
∥𝔸̃x̃k−1∥2/α,

where the last inequality follows from

∥𝔸̃x̃k−1∥∥x̃k−1 − x⋆∥ ≥ ⟨𝔸̃x̃k−1, x̃k−1 − x⋆⟩ ≥ µ∥x̃k−1 − x⋆∥α+1.

In order to find a possible choice of restart schedule, we will iteratively find the number tk of inner iterations for kth outer
iteration which satisfies

∥𝔸̃x̃k∥2 ≤ e−ηk∥x0 − x⋆∥2

for some η > 0. The case of k = 0 holds automatically. Suppose k ≥ 1, and t1, . . . , tk−1 are already chosen to satisfy

∥𝔸̃x̃k−1∥2 ≤ e−η(k−1)∥x0 − x⋆∥2

for k ≥ 1. Then

∥𝔸̃x̃k∥2 ≤
1

µ2/αt2k
∥𝔸̃x̃k−1∥2/α ≤

1

µ2/αt2k
e−

η(k−1)
α ∥x0 − x⋆∥

2
α ,

so that the claimed convergence rate is guaranteed if

1

µ2/αt2k
e−

η(k−1)
α ∥x0 − x⋆∥

2
α ≤ e−ηk∥x0 − x⋆∥2.

This is equivalent to

tk ≥ µ− 1
α e

η
2α ∥x0 − x⋆∥

1
α−1︸ ︷︷ ︸

:=λ

exp
{ η

2

(
1− 1

α

)
︸ ︷︷ ︸

:=β

k
}
,

so if tk ≥ λeβk for k = 1, . . . , R, then ∥𝔸̃x̃k∥2 ≤ e−ηk∥x0 − x⋆∥2 for k = 1, . . . , R.

Now we prove that the choice of

tk =

{⌈
λeβk

⌉
(k = 1, . . . , R− 1)

N − 1−
∑R−1

k=1 tk (k = R)

for integer R satisfying
R∑

k=1

⌈λeβk⌉ ≤ N − 1 <

R+1∑
k=1

⌈λeβk⌉

results in O
(
N− 2α

α−1

)
-rate of ∥𝔸̃x̂∥2 for restarted OS-PPM (OS-PPMres

0 ).

For k = 1, . . . , R− 1, tk ≥ λeβk by definition of tk. If k = R, from

N − 1 =

R−1∑
k=1

tk + tR =

R−1∑
k=1

⌈λeβk⌉+ tR,

we have

tR = N − 1−
R−1∑
k=1

⌈λeβk⌉ ≥ ⌈λeβR⌉ ≥ λeβR.
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Therefore, tk ≥ λeβk for k = 1, 2, . . . , R, and we get

∥𝔸̃x̃R∥2 ≤ e−ηR∥x0 − x⋆∥2.

To find the upper bound to ∥𝔸̃x̃R∥2 using the inequality above, we obtain a lower bound to R. From λeβk ≤ ⌈λeβk⌉ ≤
λeβk + 1 and ⌈λeβR⌉ ≤ tR < ⌈λeβR⌉+ ⌈λeβ(R+1)⌉, we have

R∑
k=1

λeβk ≤ N − 1 =

R∑
k=1

tk =

R−1∑
k=1

⌈λeβk⌉+ tR ≤
R+1∑
k=1

λeβk +R+ 1. (1)

Using the first inequality in (1), we have

λeβ
eβR − 1

eβ − 1
≤ N − 1

or equivalently,

R ≤ 1

β
log

(
N − 1

λ

eβ − 1

eβ
+ 1

)
.

Plugging this upper bound of R to the second inequality of (1), we get

N − 1 ≤ λeβ
eβ(R+1) − 1

eβ − 1
+

1

β
log

(
N − 1

λ

eβ − 1

eβ
+ 1

)
+ 1.

Simplifying this to obtain a lower bound on R, we get

e−β

{
eβ − 1

λeβ

(
N − 2− 1

β
log

(
N − 1

λ

eβ − 1

eβ
+ 1

))
+ 1

}
≤ eβR.

Therefore,

∥𝔸̃x̃R∥2 ≤ e−ηR∥x0 − x⋆∥2

≤ eη
{
eβ − 1

λeβ

(
N − 2− 1

β
log

(
N − 1

λ

eβ − 1

eβ
+ 1

))
+ 1

}− η
β

∥x0 − x⋆∥2

=

{
eβ − 1

λe2β

(
N − 2− 1

β
log

(
eβ − 1

λeβ
(N − 1) + 1

))
+

1

eβ

}− 2α
α−1

∥x0 − x⋆∥2 (Choose η = 2)

= O
(
N− 2α

α−1

)
where λ =

(
e
µ

) 1
α ∥x0 − x⋆∥−(1−

1
α ).

This is a rate faster than O(N−α+1
α−1 )-rate of PPM. Although the monotonicity parameter µ > 0 and α > 1 are unknown,

one can obtain a suboptimal restart schedule with additional cost for the grid search as in Roulet & d’Aspremont (2020),
where the total cost for the algorithm is of O

(
N− 2α

α−1 (logN)2
)

.

F. Experiment details
We now describe the experiments of Section 6 in further detail.

F.1. Experiment details of Section 6.1

In the first example, 𝕋θ is constructed with θ = 15◦ and γ = 1
0.95 , and (OC-Halpern) is applied on 𝕋θ with the same

γ = 1
0.95 . In the second example, 𝕄 is constructed with µ = 0.035, and (OS-PPM) is applied on 𝕄 with the same

µ = 0.035. For both experiments, we use N = 101 total iterations. The plots of both experiments display the position of
every iterate with markers, when methods started from initial point y0 =

[
1 0

]⊺ ∈ R2.
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F.2. Experiment details of Section 6.2

X-ray CT reconstructs the image from the received from a number of detectors. Reconstruction of the original image is
often formulated as a least-squares problem with total variation regularization

minimize
x∈Rn

1
2∥Ex− b∥2 + λ∥Dx∥1, (2)

where x ∈ Rn is a vectorized image, E ∈ Rm×n is the discrete Radon transform, b = Ex is the measurement, and D
is the finite difference operator. This regularized least-squares problem can be solved using PDHG, also known as the
Chambolle–Pock method (Chambolle & Pock, 2011). PDHG can be interpreted as an instance of variable metric PPM (He
& Yuan, 2012); it is a nonexpansive fixed-point iteration (xk+1, uk+1, vk+1) = 𝕋(xk, uk, vk) defined as

xk+1 = xk − αE⊺uk − βD⊺vk

uk+1 =
1

1 + α

(
uk + αE(2xk+1 − xk)− αb

)
vk+1 = Π[−λα/β,λα/β]

(
vk + βD(2xk+1 − xk)

)
with respect to the metric matrix

M =

 (1/α)I −E⊺ −(β/α)D⊺

−E (1/β)I 0
−(β/α)D 0 (1/β)I

 .

Therefore, we apply OHM on 𝕋 as

(xk+1, uk+1, vk+1) =

(
1− 1

k + 2

)
𝕋(xk, uk, vk) +

1

k + 2
(x0, u0, v0) (PDHG with OHM)

and use additional restarting strategy to yield a faster convergence.

In our experiment, we use the a Modified Shepp-Logan phantom image. We applied PDHG, PDHG combined with OHM,
and PDHG combined with restarted OC-Halpern (OS-PPMres

0 ), where the parameters are given as α = 0.01, β = 0.03 and
λ = 1.0. We applied restarting with the schedule illustrated in Theorem 5.2, with properly chosen λ > 0 and β > 0.

Figure 6. Images reconstructed by applying PDHG, PDHG with OHM, and PDHG with restarted OC-Halpern for 1000 iterations.
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Figure 7. Function value suboptimality f(xk)−f⋆ plot of PDHG, PDHG with OHM, and PDHG with restarted OC-Halpern (OS-PPMres
0 )

in CT image reconstruction.

Figure 6 shows the reconstructed images after 1000 iterations. Restarted OC-Halpern (OS-PPMres
0 ) can effectively recover

the original image, in a faster rate. Figure 7 shows that even without theoretical guarantee, the function value suboptimality
decreases in a faster rate for OHM and restarted OC-Halpern.

F.3. Experiment details of Section 6.3

In this section, we approximated the Wasserstein distance (or Earth mover’s distance) of two different probability distributions
by solving the following discretized problem

minimize
mx,my

∥m∥1,1 =
∑n

i=1

∑n
j=1 |mx,ij |+ |my,ij |

subject to div(m) + ρ1 − ρ0 = 0.

To solve this problem Li et al. (2018) used PDHG (Chambolle & Pock, 2011)

m̃k+1
x,ij =

1

1 + εµ
shrink1

(
m̃k

x,ij + µ(∇Φk)x,ij , µ
)

m̃k+1
y,ij =

1

1 + εµ
shrink1

(
m̃k

y,ij + µ(∇Φk)y,ij , µ
)

Φk+1
ij = Φk

ij + τ
(
(div(2mk+1 −mk))ij + ρ1ij − ρ0ij

)
(Primal-dual method for EMD-L1)

for k = 1, 2, . . . where m̃ = (m̃x, m̃y) is m = (mx,my) with zero padding on their last row and last column, respectively,
hence making m̃x, m̃y ∈ Rn×n. We denote this fixed-point iteration by 𝕋, so that (m̃k+1

x , m̃k+1
y ,Φk+1) = 𝕋(m̃k

x, m̃
k
y ,Φ

k).
Combining OHM on this fixed-point iteration yields the iteration

(m̃k+1
x , m̃k+1

y ,Φk+1) =

(
1− 1

k + 2

)
𝕋(m̃k

x, m̃
k
y ,Φ

k) +
1

k + 2
(m̃0

x, m̃
0
y,Φ

0)

for k = 1, 2, . . . , and we also combine restarting technique with exponential schedule to hope for further acceleration.

This experiment calculated an approximation of Wasserstein distance between the two probability distributions as in Figure 8.
We applied 3 different algorithms for N = 100, 000 iterations with algorithm parameters µ = 1.0 × 10−6 and ε = 1.0.
Restarting the algorithm with Halpern scheme every 10, 000 iterations provided the accelerated rate, but we chose better
exponential schedule for the plot in Figure 9.

F.4. Experiment details of Section 6.4

We follow the settings of decentralized compressed sensing experiment in section IV of (Shi et al., 2015). The underlying
network has 10 nodes and 18 edges, and these edges connect the nodes as in Figure 11.
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(a) Probabilistic distribution ρ0 (b) Probabilistic distribution of ρ1 (c) Solution of discretized problem
in Section 6.3

Figure 8. Probabilistic distribution of ρ0 and ρ1. This distribution is expressed as the colored parts in 256× 256 grid, there ρ0 contains
the part of x2 + y2 ≤ (0.3)2 and ρ1 contains 4 identical circles with radius 0.2, centered at (±1,±1).
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Figure 9. Fixed-point residual of 𝕋 versus iteration count plot for approximating Wasserstein distance.

Experiment considered the regularized least-squares problem on R50, where the sparse signal x⋆ has 10 nonzero entries.

minimize
x∈Rn

1

n

n∑
i=1

∥A(i)x− b(i)∥2 + λ∥x∥1.

Each node i maintains its local estimate xi of x ∈ Rn, and have access to sensing matrix A(i) ∈ Rmi×n, where mi is the
number of accessible sensors. Here, we assume to have mi = 3 many sensors for each node and has total m = 30 sensors.

We applied PG-EXTRA, PG-EXTRA combined with OHM, PG-EXTRA with (OC-Halpern), and PG-EXTRA with
Restarted OC-Halpern (OS-PPMres

0 ), since PG-EXTRA can be understood as a fixed-point iteration (Wu et al., 2018).
Let xk ∈ Rn×10 be a vertical stack of Rn vectors, where each i-th row vector xk

i is a local copy of x stored in node
i. The vectors in node i only interact with other vectors in close neighborhood of node i. The fixed-point iteration
(xk+1,wk+1) = 𝕋(xk,wk) is

xk+1
i = Proxαλ∥·∥1

∑
j

Wi,jx
k
j − αA⊺

(i)(A(i)x
k
i − b(i))−wk

i


wk+1 = wk +

1

2
(I −W )xk

and PG-EXTRA combined with OHM is

(xk+1,wk+1) =

(
1− 1

k + 2

)
𝕋(xk,wk) +

1

k + 2
(x0,w0) (PG-EXTRA with OHM)
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Figure 10. Absolute function-value suboptimality |f(xk)− f⋆| versus iteration count plot for approximating Wasserstein distance.

Figure 11. The network underlying the setting of Section 6.4.

for k = 0, 1, . . . . For all these methods, we chose the mixing matrix W ∈ R10×10 to be Metropolis-Hastings weight with
each (i, j)-entry Wi,j being

Wi,j =

{
1

max{deg(i),deg(j)} (i ̸= j)

1−
∑

j ̸=i Wi,j (i = j)

where deg(i) is the number of edges connected to node i. We applied each methods (PG-EXTRA, PG-EXTRA with OHM,
PG-EXTRA with OC-Halpern, and PG-EXTRA with restarted OC-Halpern (OS-PPMres

0 )) with stepsize α = 0.005 and
regularization parameter λ = 0.002 for 100 iterations.
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Figure 12. Distance to solution ∥xk − x⋆∥2F versus iteration count plot for PG-EXTRA, PG-EXTRA with OHM, PG-EXTRA with
(OC-Halpern), and PG-EXTRA with Restarted OC-Halpern (OS-PPMres

0 ).


