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Abstract
Compositional data analysis with a high propor-
tion of zeros has gained increasing popularity,
especially in chemometrics and human gut micro-
biomes research. Statistical analyses of this type
of data are typically carried out via a log-ratio
transformation after replacing zeros with small
positive values. We should note, however, that
this procedure is geometrically improper, as it
causes anomalous distortions through the transfor-
mation. We propose a radial transformation that
does not require zero substitutions and more im-
portantly results in essential equivalence between
domains before and after the transformation. We
show that a rich class of kernels on hyperspheres
can successfully define a kernel embedding for
compositional data based on this equivalence. To
the best of our knowledge, this is the first work
that theoretically establishes the availability of the
extensive library of kernel-based machine learn-
ing methods for compositional data. The applica-
bility of the proposed approach is demonstrated
with kernel principal component analysis.

1. Introduction
Compositional data are multivariate nonnegative data carry-
ing only relative information of components. They are often
normalized to have a constant total sum, typically one, so
that the data with d+ 1 variables reside in a compact subset
of the Euclidean space:

∆d =

{
(x1, · · · , xd+1) ∈ Rd+1

∣∣∣∣ d+1∑
i=1

xi = 1, xi ≥ 0, ∀i

}
,

called a simplex. Here, the superscript d denotes the topo-
logical dimension of the simplex.
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Data comprised of compositions are ubiquitous in many
scientific fields: geochemical composition of rocks or soils
in earth science; proportions of various micro-organisms
at different sea depths in marine science; portfolio allo-
cation in finance, just to name a few. Among them, our
primary motivating examples are microbiome data consist-
ing of relative abundance of microbes, whose analyses have
recently been spotlighted in medical research (Gloor et al.,
2017), thanks to the emerging scientific and public interests
in human gut microbiomes that are associated with many
diseases and health-related attributes of humans and ani-
mals. Notable characteristics of microbiome data are that
the number of bacterial taxa is typically much higher than
the available sample size, i.e., high dimension, low sample
size, and that a significant portion, about 50 – 80%, of data
are zeros (Greenacre, 2021). Those zeros make microbiome
data locate mainly on the boundary of a high-dimensional
simplex.

The compositional aspect of the data poses challenges to
statistical data analysis. Due to the constant sum constraint,
each component of a composition is inevitably affected
by other components. To be specific, they have spurious
negative correlations (Pearson, 1897; Chayes, 1960). This
would yield uninterpretable results if classical multivariate
methods are applied blindly to the data. An overwhelm-
ingly dominant approach to overcome this problem is to
take log-ratio transformations to compositional data, which
is proposed by Aitchison (1982). There are three types of
such transformations, additive, centered, and isometric log-
ratio transformations, all of which send compositional data
to the Euclidean space. After applying one of these trans-
formations, one may use traditional multivariate statistical
methods in the Euclidean space.

However, the log-ratio methods are not readily applicable
for data with many zeros because logarithm and ratio com-
putations in the transforms do not allow zero values. Indeed,
the log-ratio transformations are forced to deal only with
data on the open simplex:

Sd =

{
(x1, · · · , xd+1) ∈ Rd+1

∣∣∣∣ d+1∑
i=1

xi = 1, xi > 0, ∀i

}
,

and they cannot manage the boundary points essentially. In
order to apply the log-ratio methods for data on the simplex
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boundary, researchers have suggested perturbing the data
slightly so that they all fit into Sd, e.g., by substituting
zeros with small positive values and then re-normalizing
them to sum to one. There are countless ways to do this.
See Martı́n-Fernández et al. (2011; 2012) for some widely-
used substitution methods. For comparisons of various zero
replacement algorithms, see Rasmussen et al. (2020); Lubbe
et al. (2021). Nonetheless, it has been repeatedly reported
that analysis results and subsequent scientific conclusions
are often sensitive to the choice of the zero replacement
strategy. This further complicates the data analysis process
and interpretation of the results, since one must examine the
effects of the replaced zeros.

1.1. Main Contributions

We first point out in Section 2 that the underlying geometry
of the above log-ratio approaches, so-called the Aitchison
geometry (Aitchison, 1994), enlarges the dependence on
the zero replacement methods. Moreover, it will be demon-
strated that the log-ratio approach with zero replacement
distorts the intrinsic structure of the data substantially, which
implies that this approach is theoretically unjustifiable. It
motivates us to find an alternative way to manage zeros in
compositional data.

The objective of the current study is to show that kernel
methods, including classical kernel approaches (Schölkopf
et al., 1998; 2002; Steinwart & Christmann, 2008) and ker-
nel mean embedding methods (Gretton et al., 2012; Zaremba
et al., 2013; Muandet et al., 2017) can be applied to com-
positional data containing many zeros, by considering an
alternative transform of the data, which is radial transfor-
mation. It will be seen that this transformation preserves the
relative ratio information in the composition and does not
require zero substitutions, thus more appropriate than the
log-ratio approaches in handling such data.

The new domain for the transformed compositional data is
a hypersphere, where a rich class of kernels is available. We
establish a theoretical framework for kernel methods in this
new domain by proving multi-level equivalences between
domains before and after the transformation. We also give
a list of isotropic kernels with desirable properties such as
universality. Therefore, this work enables practitioners to
employ kernel-based learning tools such as kernel principal
component analysis (PCA) and maximum mean discrepancy
to compositional data in a theoretically justifiable fashion.
Also, as the computational cost of most kernel methods is
O(n2) once the gram matrix is calculated, the proposed
method effectively provides a solution to the curse of di-
mensionality in analyzing high-dimensional compositional
data.

1.2. Related Works

Works on non-substituting zero values. A number of works
have endeavored to manage zero values of compositional
data without replacing them in order to honor the true zeros
(Martı́n-Fernández et al., 2011). One popular method is
to take square-root transformation and then use the theory
of directional statistics (Stephens, 1982; Wang et al., 2007;
Scealy & Welsh, 2011). Butler & Glasbey (2008) proposed
a latent Gaussian model on the simplex, requiring no data
transformation. Zadora et al. (2010) and Bear & Billheimer
(2016) modeled the probability of zero values separately
with logratio-based distributions, and so did Tsagris & Stew-
art (2018) but with the Dirichlet distribution on the open
simplex.

Works on radial transformation. We note that the radial
transformation for compositional data has been considered
in geological literature a few decades ago in Watson &
Philip (1989), followed by an exchange of papers and letters
to the editor between Watson and Aitchison, published in
Mathematical Geology from 1989-1992. There had been
aggressive rebuttals to each other during the exchange; see
Section 3 of Scealy & Welsh (2014) and references therein
for a summary of their arguments. A main reason for Aitchi-
son’s disapproval of the transformation was that the angu-
lar distance is not subcompostionally dominant (Aitchison,
1992). However, our proposed method does not require
interpreting the distance of data but only embeds data into a
larger space where this criticism is irrelevant.

Works on isotropic kernels on hyperspheres. Kernels on
hyperspheres, especially isotropic types, have been broadly
studied in the literature (Schoenberg, 1942; Ron & Sun,
1996; Gneiting, 2013). It is known that the decay of eigen-
values of kernels is related to the performance of learning
with kernels, and much is known for dot-product kernels on
spheres; we refer to Scetbon & Harchaoui (2021) for recent
exposition.

Works on kernel mean embeddings. The kernel mean embed-
ding of distributions has attracted much attention in recent
years as they are broadly applicable in arbitrary domains
with appropriate kernels. Using the mean embedding, Gret-
ton et al. (2012) proposed a non-parametric two-sample test
based on the distance between probability measures, and
Balasubramanian et al. (2021) proposed a goodness-of-fit
test with discussions of minimax optimality. See Muandet
et al. (2017) for a comprehensive review of mean embedding
and other numerous applications. Universal or characteristic
kernels should be used for the mean embedding methods;
Micchelli et al. (2006) and Sriperumbudur et al. (2011) char-
acterized them in various cases.

Finally, we note that a key geometric motivation of this
work is shared with our previous work (Li & Ahn, 2022),
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(a) Ternary plot of pn and qn in ∆2 (b) Plot of ilr(pn) and ilr(qn) in R2. (c) Squared Aitchison distance ∥ilr(pn)−
ilr(qn)∥2R2

Figure 1. Demonstration of Aitchison geometry using two sequences pn and qn in ∆2 converging to a common point on the simplex
boundary, shown in (a). The two sequences of ilr-transformed points in R2 shown in (b) are divergent, which is also verified by that the
squared Aitchison distance between pn and qn is divergent, as shown in (c).

in which we interpret the compositional domain as a hy-
persphere modded out by a reflection group action and use
spherical harmonics theory to construct finite-dimensional
polynomial kernels. However, in this work, we propose an
intuitive radial transformation and consider a general class
of kernels, which is computationally much more attractive.

1.3. Organization of the Paper

Section 2 demonstrates that the log-ratio approaches pro-
duce geometric distortions to the data. Then, we briefly
review kernel methods and the pull-back construction of
function spaces in Section 3. In Section 4, we propose
a radial transformation with the equivalence property that
rationalizes the analysis of the compositional data on the
nonnegative part of a hypersphere. In Section 5, we briefly
review well-known dot-product kernels on the hyperspheres
with their universality. We take the example of kernel PCA
in Section 6 to showcase the benefits of the proposed idea.
We conclude the paper in Section 7 with discussions and
some future research directions.

2. Geometric Limitations
In this section, we take a deeper look at the Aitchison ge-
ometry (Aitchison, 1994) on Sd and reveal an anomalous,
counter-intuitive behavior near the boundary of the simplex.
Clearly an underlying premise of zero replacement is that
it causes negligible alteration in the data. However, in the
following we discuss how that cannot happen under the
log-ratio scheme.

The centered log-ratio (clr) transformation is defined by

clr(x) =
(
log

x1
x′
, . . . , log

xd+1

x′

)
∈ Rd+1

for all x ∈ Sd, where x′ = (x1 · · ·xd+1)
1/(d+1). It is a

homeomorphism between Sd and a hyperplane in Rd+1, so
it transfers the linear structure and the inner product of the
hyperplane to the open simplex Sd. The geometry of clr-
transformed data is called the Aitchison geometry. In this

geometry, points close to the boundary of Sd are far from
the origin (the center of the simplex) since log y diverges
to ±∞ as y → 0 or y → ∞. The problem occurs here;
if a real dataset is concentrated on a boundary point, the
Aitchison geometry views the data as diverging to infinity.

To be more specific, let us consider the following two
sequences on S2: pn = ( 23 − 1

n ,
2
n ,

1
3 − 1

n ) and qn =
( 23 − 6

n1.1 ,
7
n1.1 ,

1
3 − 1

n1.1 ), where n ≥ 9. Note that both
sequences converge to the same point (2/3, 0, 1/3), as dis-
played in the ternary plot in Figure 1(a). Thus they are
almost the same for sufficiently large n. The isometric log-
ratio (ilr) transformation, which maps S2 to R2, is applied
to the sequences and the transformed points are shown in
Figure 1(b). As the ilr transformation preserves the inner
product, the figure exactly displays the Aitchison geometry
of pn and qn. Here, the points ilr(pn) and ilr(qn) continue
to move from left to right as n increases, indicating that
both sequences diverge as n → ∞. To see their relative
distance in Aitchison geometry, we calculate the distance
∥ilr(pn)− ilr(qn)∥2R2 and plot them in Figure 1(c). We can
see that the distance between the two sequences is clearly
diverging toward infinity.

This example tells us that the Aitchison geometry tends to
amplify a tiny movement near the boundary of the simplex.
Another interpretation is that points close to the boundary
are close to infinity, and the replacement of zeros in the
Aitchison geometry is like towing points at infinity to a
finite position. Consequently, the configuration of log-ratio
transformed data are critically dependent on which zero
replacement method is used. Since there are countless ways
of replacing zeros, it may not be possible at all to find an
appropriate representation of the data in this way. Moreover,
the inconsistent interpretation of the data subject to the zero
replacement method makes the results of statistical analysis
unreliable. It is also clear that if there are more zeros or the
dimension is higher, these problems exacerbate even further.
In summary, the log-ratio approach with zero replacement
is theoretically unjustifiable due to the faulty representation
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of the data geometry.

2.1. Square-Root Transformation

The square-root transformation of compositional data have
also been considered as a way of overcoming the simplex
geometry. One sends the point x = (x1, . . . , xd+1) ∈ ∆d to
(
√
x1, . . . ,

√
xd+1) so that the transformed point lies in the

first orthant of the hypersphere Sd. Since this transformation
does not suffer from zeros in the data, it has been frequently
appeared in the literature, though less popular (Scealy &
Welsh, 2011; 2014).

We point out one crucial disadvantage of the square-root
transformation. Compositional data consist of relative ratios
contained in the corresponding radial vectors (see Section
4 for details). Thus, the most natural representation of the
composition on a sphere is where the radial vector intersects
the sphere. However, the square-root transform produces
a different point, which implies that it distorts the original
composition. Figure 2 illustrates it in the case of d = 1,
where blue dots represent the transformed points from our
radial transformation and the red dots, clearly not preserving
the ratios, are from the square-root transformation.

Figure 2. Comparison of the compositional radial vectors (dashed
lines) and the square-root transformed points (red points) on the
unit circle. The relative ratios of the red points are different from
other points.

3. Theory of Kernels and Pull-Back
Construction

Here we briefly review the general theory of kernel methods
and summarize a few important definitions. We denote by
X the sample space of observations and assume that it is
compact to avoid unnecessary theoretical remarks.

3.1. RKHS and the Associated Feature Map

By a kernel, we mean a real-valued continuous, positive
definite and symmetric function defined on X ×X through-

out the paper. Once a kernel K is given, there exists an
associated reproducing kernel Hilbert space (RKHS) HK

and a feature map ΦK : X → HK which maps x ∈ X to a
function

ΦK(x)(·) := K(x, ·)

on X (Schölkopf et al., 2002). We omit the subscripts K
if there is no confusion in notations. The Hilbert space
HK is endowed with the inner product ⟨·, ·⟩ which has the
reproducing property

⟨f,Φ(x)⟩ = f(x), ∀f ∈ HK , (1)

which in turn implies ⟨Φ(x),Φ(y)⟩ = K(x, y). The space
HK is the closed span of the image of the feature map Φ,
i.e., HK = span{Φ(x)|x ∈ X}, and also called the feature
space. Kernel-based learning means that we map the data
via Φ and then apply various learning methods in HK . Mul-
tifarious linear methods, such as PCA and support vector
machines (SVM), can be “kernelized” without explicitly
specifying Φ since both methods depend only on the inner
product of the original data.

In order to improve the performance of linear methods in
HK , it is often required that the RKHS HK is large enough
so that the transformed data are linearly analyzable. The cor-
responding notion to the largeness is universal kernels, the
kernels with the property that HK is dense in C(X ) where
C(X ) is the space of continuous functions on X . Note that
HK ⊆ C(HK) since our kernel K is continuous. Universal
kernels play several central roles in kernel methods. For
example, Steinwart (2001) proved the consistency of SVM
using universal kernels, together with examples of universal
dot-product kernels on Rd.

3.2. Kernel Mean Embedding of Probability
Distributions

Identifying each data point x ∈ X with the Dirac probability
measure δx centered on x, one can extend the domain of
the feature map ΦK : X → HK to the set of probability
measures on X . The extended map is called the kernel
mean embedding, and the mean embedding of a probability
measure P with respect to K is defined by

µP(·) :=
∫
X
K(x, ·) dP(x).

Under the aforementioned assumptions on X and K, it is
known that µP ∈ HK , and it has the generalized reproduc-
ing property

EX∼P [f(X)] = ⟨µP, f⟩ (2)

for all f ∈ HK (Smola et al., 2007).

The kernel K is said to be characteristic if the correspond-
ing mean embedding µ is injective. Characteristic kernels
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play an essential role in the theory of mean embedding be-
cause they ensure that ∥µP − µQ∥HK

= 0 if and only if
P = Q for all probability measures P,Q on X . Here, the
distance ∥µP − µQ∥HK

is called the maximum mean dis-
crepancy (MMD), whose empirical estimate can be used
for non-parametric two-sample test. Gretton et al. (2012)
showed that universal kernels are characteristic, and thus
we focus only on universal kernels in this work.

3.3. Pull-Back of RKHS

Let S be another domain of observations, and let φ : Y →
X be any (continuous) function. We consider transferring
an RKHS HK defined on the original domain X through
φ. The resulting space is called the pull-back along φ. See
Section 5.4 of Paulsen & Raghupathi (2016) for the proofs
of the following results.

Given a kernel K defined on X , let K ◦ φ : Y × Y → R,
the pull-back of K along φ, denote the function given by

K ◦ φ(s, t) = K(φ(s), φ(t)) (3)

for all s, t ∈ S. One can readily show that K ◦ φ is positive
definite and symmetric, and therefore it is a kernel on Y .
Hence the kernelK◦φ defines an RKHS HK◦φ of functions
on Y , called the pull-back of HK along φ. The following
theorem gives a full characterization of the members of
HK◦φ.

Theorem 1. The elements of the RKHS HK◦φ on Y , which
is generated by a kernel K ◦φ, are completely described as

HK◦φ = {f ◦ φ | f ∈ HK}.

Furthermore, the norm of any function g ∈ HK◦φ is associ-
ated with the original RKHS norm of HK as

∥g∥HK◦φ = min
f∈HK

{∥f∥HK
| g = f ◦ φ}.

Theorem 1 establishes a well-defined linear map φ∗ :
HK → HK◦φ given by φ∗(f) = f ◦ φ, called the pull-
back map of φ. Typically, we consider the case where Y is a
subset of X and φ is the canonical inclusion map of Y ⊆ X .
We denote by K|Y = K ◦φ in this case. Then HK|Y is just
a set of restrictions of functions in HK to S. The pull-back
construction will be instrumental in formulating theoretical
frameworks in Sections 4 and 5.

4. Radial Transformation and Equivalence of
Function Spaces

As we showed inadequacies of traditional methods for com-
positional data with zeros in Section 2, we suggest a new
alternative approach in the present section. We propose to
use RKHS embeddings of compositional domains, together

with the radial viewpoint of compositional data mentioned
briefly in Section 2.1. We first point out that there are
equivalent expressions of compositional data along the ra-
dial direction, and then prove that function-theoretic and
RKHS approaches to these expressions are, in fact, equiva-
lent. Therefore, it is natural to look for the most convenient
domain for analysis, and we claim that the hypersphere
meets these needs. Since compositional data are mostly nor-
malized onto the simplex, we define a radial transformation
sending data on the simplex to the hypersphere and proceed
with our main results.

4.1. Ratio-Preserving Radial Transformation

Recall that compositional data consist only of relative in-
formation, which is scale-invariant. This invariance implies
that the ratio information is inherent in the corresponding
radial vectors, thus the radial vectors possess the core of
compositions. Taking this viewpoint into account, we can
interpret the simplicial expression of compositional data as
the intersection of nonnegative radial vectors and a linear
manifold.

From this radial interpretation, we realize that other rep-
resentations of compositional data are possible depending
on the choice of intersection manifold. For example, we
may choose hyperspheres or hypercubes, which would yield
hyperspherical or hypercubical expression of compositional
data respectively. We already saw in Figure 2 that the blue
dots, the intersection of the circle and the radial vectors,
equivalently represent the corresponding compositional data
on the simplex ∆1. Then the following two questions natu-
rally arise:

(a) Are the data analysis results independent of the choice
of representations?

(b) If so, which representation of compositional data is
most convenient for computations and expected to give
satisfying results in general?

We show that the first question is affirmative for function-
theoretic or kernel-based analyses in the following subsec-
tions. The equivalence of RKHS embeddings on various
domains of compositional data is derived by the pull-back
construction in Section 3.3. Note that computations of pull-
back kernels are often unnecessarily complicated in practice,
and thus it is preferable to fix an appropriate domain on
which various easily computable and well-studied kernels
exist. For the second question, we claim that the hyper-
spherical expression is best for kernel learnings as there are
a plethora of easily computable kernels on hyperspheres
with desirable decay of eigenvalues (Scetbon & Harchaoui,
2021). Because understanding the decay of kernel eigenval-
ues is important for low-dimensional interpretation of the
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results from kernel learnings, we believe that the sphere is
the safest domain in this regard.

Along these lines, we define a radial transformation ψ :
∆d → Sd≥0 by

ψ(x) =
x

∥x∥2
for all x ∈ ∆d,

where Sd≥0 denotes the nonnegative part of Sd. In the fol-
lowing subsections, we prove the equivalences of two types
of function spaces that answer the question (a). The state-
ments and proofs are written in terms only of ψ, but they
can be immediately generalized to arbitrary homeomorphic
transforms along the radial direction.

4.2. Function-Theoretic Equivalence

Note that ψ is continuous, and we readily obtain the contin-
uous inverse π : Sd≥0 → ∆d of ψ, where π(y) = y/∥y∥1.
Thus, the domains ∆d and Sd≥0 are homeomorphic, i.e., they
are topologically equivalent. This equivalence leads to a
well-known identification of spaces of continuous functions,
stated as follows.

Proposition 2. The homeomorphism ψ induces an isometric
isomorphism of function spaces

C(∆d) ∼= C(Sd≥0).

Hence, function-theoretic analysis on the space C(∆d) is
equivalent to the corresponding analysis on C(Sd≥0). For
example, if one wants to find a continuous function on
∆d that interpolates the given data, it suffices to find the
corresponding one on Sd≥0 based on the equivalence.

4.3. Equivalence of RKHS Embeddings

We also verify that the radial transformation ψ induces the
equivalence between RKHS embeddings on ∆d and Sd≥0.
Let K be a kernel defined on Sd≥0 and let K ◦ ψ denote
the pull-back along ψ given by (3). The pull-back map
ψ∗ : HK → HK◦ψ defined in Section 3.3 establishes the
following equivalence.

Theorem 3. ψ∗ : HK → HK◦ψ is an isometric isomor-
phism of Hilbert spaces. Furthermore, the feature maps
associated to K and K ◦ ψ are compatible with ψ∗ in the
sense that the following diagram commutes.

∆d HK◦ψ

Sd≥0 HK

ΦK◦ψ

ψ

ΦK

ψ∗

The diagram expresses that ψ∗ΦKψ(x) = ΦK◦ψ(x) for
all x ∈ ∆d. Note that the vertical maps are invertible so

that the feature maps ΦK and ΦK◦ψ describe each other.
It implies that they are essentially equivalent and that any
method using the kernel feature map applied in either of the
two domains gives the same result via pull-back kernels.

We write the proof of Theorem 3 as follows. By the re-
producing property (1), for all f ∈ HK , for a finite linear
combination

∑
iK(xi, ·) we have〈

ψ∗(f),
∑
i

ψ∗K(xi, ·)

〉
HK◦ψ

=
∑
i

ψ∗(f)(ψ−1(xi))

=

〈
f,
∑
i

K(xi, ·)

〉
HK

.

As the finite linear combinations
∑
iK(xi, ·) are dense in

HK , it follows that ⟨f, g⟩HK
= ⟨ψ∗(f), ψ∗(g)⟩HK◦ψ for all

f, g ∈ HK , which proves ψ∗ is an isometric isomorphism.
Then the commutativity of the diagram is readily seen from
simple evaluations.

The kernel feature maps in Theorem 3 can be generalized
to kernel mean embeddings. Let P(X ) denote the space of
Borel probability measures on X . The function ψ : ∆d →
Sd≥0 extends to a function ψ∗ : P(∆d) → P(Sd≥0) of spaces
of probability measures, called the push-forward of ψ; see,
e.g., Section 3.6 of Bogachev & Ruas (2007). Then the
generalization of Theorem 3 is stated as follows.

Theorem 4. The following diagram

P(∆d) HK◦ψ

P(Sd≥0) HK

ψ∗ ψ∗

is commutative where the horizontal maps are kernel mean
embeddings.

The proof of Theorem 4 is straightforward from the def-
inition of the push-forward map ψ∗ and the generalized
reproducing property (2).

We conclude from Theorems 3 and 4 that all results obtained
by kernel methods on ∆d can be obtained by applying the
corresponding methods on Sd≥0. This will allow us to ana-
lyze compositional data using various well-studied kernels
on the hypersphere Sd. From here on, we equate ∆d and
Sd≥0 and call them compositional domains.

5. Kernels on Compositional Domains
Having discussed the equivalence between compositional
domains, here we study what kernels can be used for the
analysis of compositional data. As Sd≥0 is a subset of the
hypersphere Sd, it is natural to utilize the restriction of
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kernels on Sd. Their RKHS embeddings are expressed as
pull-backs discussed in Section 3.3. We start with reviewing
examples of kernels on hyperspheres.

5.1. Isotropic Kernels on Sd

An alternative name of the dot-product kernel is the isotropic
kernel. To be specific, a kernel K : Sd × Sd → R is said to
be isotropic if there exists a function k : [0, π] → R such
that

K(x, y) = k(arccos ⟨x, y⟩) ∀x, y ∈ Sd,

where ⟨·, ·⟩ denotes the usual dot product in Rd+1. Hence,
the values of isotropic kernels on Sd depend only on the
geodesic distance, or equivalently, on the angle of two input
variables. Gneiting (2013) provides an extensive survey of
these kernels.

Isotropic kernels on spheres have been studied for a long
time since Schoenberg (1942), and they are broadly used in
directional data analysis. For a recent example, see Balasub-
ramanian et al. (2021) for goodness-of-fit tests on Sd with
the Gaussian kernel. Note that the Gaussian kernel fits to
the definition of the isotropic kernel.

5.2. Universal and Characteristic Kernels

As mentioned in Section 3.2, the universality or characteris-
ticity of kernels is required to apply kernel mean embedding
methods properly. Micchelli et al. (2006) provide a com-
plete characterization of isotropic universal kernels on Sd
that have strictly positive coefficients in the Gegenbauer
expansions. It is proved that various broadly-used kernels
on spheres are universal, and thus it suffices to check the
following theorem to utilize them on the compositional do-
main.

Theorem 5. Let K be a kernel on Sd.

(i) If K is universal, then the restriction K|Sd≥0
is univer-

sal.

(ii) If K is characteristic, then the restriction K|Sd≥0
is

characteristic.

The proof of Theorem 5(i) can be found in, for example,
Lemma 4.55 of Steinwart & Christmann (2008). We state
the characteristicity in Theorem 5(ii) for completeness, al-
though universality is sufficient in practice. Since it is read-
ily proved from the generalized reproducing property (2),
the proof is omitted here.

We summarize some well-known and easily computable
isotropic kernels on Sd in Table 1. Their universality prop-
erties are also marked for their use in mean embedding
methods.

Table 1. A parametric family of isotropic kernels on Sd and their
universality. The parameters γ and β are positive real numbers,
and p is a positive integer. For Matérn kernels, θ stands for ⟨x, y⟩,
and Kν is the modified Bessel function of the second kind of order
ν ∈ (0, 1

2
].

KERNELS K(x, y) UNIVERSAL

LINEAR ⟨x, y⟩ ×
POLYNOMIAL (γ⟨x, y⟩+ 1)p ×
GAUSSIAN exp (−γ∥x− y∥22) ◦
VON-MISES exp (γ⟨x, y⟩) ◦
MATÉRN 21−ν

Γ(ν)

(
θ
γ

)
Kν

(
θ
γ

)
◦

RATIONAL QUADRATIC (∥x− y∥22 + γ2)−β ◦

6. Empirical Examples
6.1. Illustrative Examples

First, we generate simulated compositional data with many
zeros to illustrate the effectiveness of the proposed method.
Data with sample size 1000 are generated using random
samples from d-dimensional multivariate normal distribu-
tion with zero mean vector and identity covariance matrix,
and then normalized to have a radius of one. After that,
four different radius values are multiplied to create four
subgroups. The size of each subgroup is proportional to
the radius and Gaussian noise with variance inversely pro-
portional to the radius is added. Then we make the data
compositional by applying a linear transformation and pro-
jecting the points outside of the simplex to the boundary.
The detailed description of the data generation process is in
Appendix section A. The simulated data have about 40% of
zero values. For illustration, Figure 3 displays the simulated
data for d = 2 on a ternary plot. In the actual analysis, we
use d = 100 and d = 15.

Figure 3. Ternary plot of the simulated data with d = 2.

In order to see the difference in the geometries of the pro-
posed transformation and the log-ratio method, we imple-
ment kernel PCA to the simulated data with d = 100. Note
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that in this case all data points are on the boundary of the
simplex. Figure 4 shows projection plots from kernel PCA
using Gaussian kernel with two different values of the pa-
rameter γ, for both the radial transformed data and the clr
transformed data. For the clr transformation, we replace the
zeros with (1/2)xmin where xmin is the minimum positive
value of each composition. It can be clearly seen that the
radial transform preserves the separation of the four groups,
and particularly in (b) we see that the variance information
of the groups is well retained in the embedded space. On
the other hand, all meaningful characteristics in the original
compositional data disappear in the clr transformed data, as
seen in (c) and (d). It is well known that the geometry of the
embedded space heavily depends on the kernel parameter
even within the same kernel (Ahn, 2010). In this regard,
we should point out that the results from the clr transform
never become like (a) or (b), regardless of the parameter.
It should be also noted that polynomial kernel with p = 3,
γ = .1 and von-Mises kernel with γ = 10 on the radial
transformed data yield a similar result to Figure 4(b). We
refer to Appendix section B for use of other kernels and
parameters.

(a) radial transform
(γ = 150)

(b) radial transform
(γ = 60)

(c) clr transform
(γ = 0.001)

(d) clr transform
(γ = 0.005)

Figure 4. Projection plots from kernel PCA with Gaussian kernel
using the radial transformed data in (a) and (b), and the clr trans-
formed data in (c) and (d). Each color corresponds to the label of
the data shown in Figure 3. Here, γ indicates the parameter for
Gaussian kernel.

We also examine how different zero replacement meth-
ods can produce different Aitchison geometry. We imple-
ment three methods for the clr transformation, which are
lrDA, lrEM, and simple replacement of (1/2)xmin, and
compared them with the radial transformed data in Figure
5. The results of lrDA and lrEM are produced by the R
package zCompositions (Palarea-Albaladejo & Martin-
Fernandez, 2015). Due to the computational limitation of
the R package, we use the simulated data with d = 15 for
this figure. Note that in our simulation setting, the lower

the dimension is, the more overlap the subgroups have. We
can see from Figures 5(b)-(d) that kernel PCA with any
of the three zero replacement methods fails to distinguish
the subgroups, and that the overall shapes of the projected
data are quite different from one another. On the contrary,
kernel PCA with the radial transformed data in (a) is able to
distinguish the subgroups much better.

(a) radial transform
(γ = 50)

(b) lrDA-clr
(γ = 0.001)

(c) lrEM-clr
(γ = 0.001)

(d) (1/2)xmin-clr
(γ = 0.001)

Figure 5. Demonstration on how different zero replacement meth-
ods can yield vastly different results. For simulated compositional
data with d = 15, kernel PCA with Gaussian kernel is imple-
mented for radial transformed data in (a) and for clr transformed
data in (b)–(d) based on three different zero replacement methods.

6.2. Quantitative Evaluation of the Proposed Method

We then provide a quantitative assessment of kPCA on new
synthetic data and real-world data examples. The eigenval-
ues of the Gram matrix, denoted by λ1, . . . , λn, are used to
measure the effectiveness of kPCA. Note that as in linear
PCA, eigenvalues of the Gram matrix can be interpreted as
the amount of information that each PC holds. Thus the
number of PCs that are necessary to account for, say 90%
of the variability in the data, is calculated as the smallest m
such that

∑m
i=1 λi/

∑n
i=1 λi ≥ .9. The smaller this number

is, the more efficient dimension reduction we can achieve by
kPCA. We implement kPCA with the Gaussian kernel after
the radial and the clr transformation, where we replace zeros
with (1/2)xmin before the clr transformation as in Section
6.1.

6.2.1. SYNTHETIC DATA

We simulate high-dimensional compositional data following
Te Beest et al. (2021) with slight modifications to reflect a
much higher percentage of zeros in real-world microbiome
datasets. The data are generated as a matrix of counts X ,
whose (i, j)-entry is drawn from a negative binomial distri-
bution with mean µij and variance µij + µ2

ij , where each
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Figure 6. Number of PCs needed to capture the variability in syn-
thetic data. The sample size is fixed at n = 100 for the left panel
and the dimension is p = 500 on the right panel.

µij is modeled by a log-linear model

logµij = ai + tj + bjxi,

i = 1, . . . , n, j = 1, . . . , p where n is the number of sam-
ples and p is the number of taxa. The term ai reflects the size
of total counts and is drawn from N(−1.5, 1), tj reflects
the abundance of taxon j and is drawn from N(−0.5, 2),
and xi is a binary 0-1 variable representing two different
treatment groups of equal size with the effect size bj on
taxon j. Twenty percent of p taxa are made differentially
abundant at random with equal probability, being either up-
or down-regulated by setting bj to be log 3 or − log 3. After
data generation, taxa present in less than five samples are
considered meaningless and removed.

Typically, the simulated data have about 69.5 ± 1.5% of
zeros which is more or less similar to real data examples in
Table 2. Figure 6 displays the means and standard errors of
the number of PCs needed to explain 50% and 90% of the
total variance based on 100 replications. It can be seen that
the radial transformation shows far better performance than
the clr transformation in all cases. From the perspective
of Section 2, the result indicates that zero-replacements
in Aitchison geometry disperse data erratically. This also
underpins the poor projection plots of clr transformed data
in Section 6.1.

6.2.2. REAL DATA EXAMPLES

We also analyze real-world microbiome datasets, whose
availability is listed in Appendix section D. Their attributes
such as n, p, and the percentage of zeros are presented in
Table 2, with the number of PCs needed to explain 50%, and
90% of the total variation of the data using the radial or clr
transformation, respectively. From Table 2, it is evidenced
that the radial transform (r50 or r90) shows better perfor-
mance than the clr transform (c50 or c90) with respect to
the efficiency of dimension reduction.

Table 2. Number of PCs needed for real data examples.
Dataset n p % 0 r50 r90 c50 c90
Hayden et al. (2020) 1279 643 93 5 35 22 128
Gimblet et al. (2017) 632 1860 95 1 8 8 142
Arumugam et al. (2011) 280 553 67 1 8 1 18
Carrieri et al. (2021)1 1200 186 58 4 15 24 111
Carrieri et al. (2021)1 278 186 69 4 16 19 82
Charlson et al. (2010) 60 856 89 4 17 9 39
Schiffer et al. (2019) 381 780 76 3 17 3 52
1 The article provides two datasets, one from the Canada cohort (first) and the other

from the UK cohort (second).

7. Discussion and Future Works
In this work we showed that it is possible to use kernel-based
learning for compositional data via radial transformation and
pointed out that the traditional log-ratio approaches might
lose their justification when applied to the compositional
data with high proportion of zeros. We also provided an
appropriate mathematical framework for theoretical justifi-
cation and demonstrated the idea with examples. We believe
that many scientific questions regarding compositional data
will be answered by newly enabled statistical inference and
analysis using kernels, such as graphical models, hypothesis
testing, and regression models.

A unique feature of microbiome data is that each variable
in the composition, namely bacterial taxon, corresponds
to a node in the phylogenetic tree. One of the most com-
mon ways to define a distance between two microbiome
compositions is to measure the β-diversity based on the
tree (Lozupone et al., 2011), which is called the UniFrac
distance. Principal coordinates analysis, equivalently multi-
dimensional scaling, is then used to obtain the leading
eigenspace to find the best low-dimensional representation
of the data. It is straightforward to see that the UniFrac
distance matrix essentially plays the same role as the kernel
matrix in kernel PCA. Then it is natural to wonder about
the properties of this “UniFrac kernel”, which can be an
interesting direction for future research.
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Appendix

A. Simulated data generation process
This section covers the detailed description for the generation of simulated data in Section 6.1.

The experimental data are generated on the d-dimensional simplex ∆d with a hyperspherical shape and four clusters with
different radii. Each cluster is generated through an identical procedure but with a different radii.

We describe the detailed steps as follows:

Step 1 (Spherical generation). Let r denote the primary radius assigned to each cluster. Initially, r is set as 1, 2, 3, 4,
and we generate, for each cluster, 100 × r random samples drawn from the multivariate normal distribution N(0d, Id),
labeled differently by their cluster. Then, we normalize them onto the hyperspheres Sd and add Gaussian noises with
N(0d, (0.01/r)Id) respectively. Hence, each cluster’s sample size is proportional to the radius, whereas the Gaussian noise
is inversely proportional to the radius.

Step 2 (Scaling and shifting). The scale parameter
r

10
√
d/4 + 0.5

is multiplied to each cluster. Then, we linearly shift the

data by adding the d-dimensional vector [0.15/(d− 1), · · · , 0.15/(d− 1), 0.04/(d− 1)].

Step 3 (Projection to the simplex ∆d). Among the whole data, we replace the component values below zero by zero; i.e.,
they are projected to the boundary of ∆d. Until now, the generated data live in Rd. Finally, we project the resulting data to
∆d ⊂ Rd+1 by creating the last coordinate have the value of 1− (sum of the other components). Note that the last sum
never exceeds 1 due to our appropriately chosen scale parameters and the variance of the Gaussian noise.

B. Kernel PCA with various kernel and parameters using radial transformed and clr
transformed data

In this section, we present additional results from kernel PCA with various kernels and parameters regarding Figure 4 in the
paper. We use the same radial transformed and clr transformed data. For kernels, Gaussian, polynomial, and von-Mises
kernels are used. For the polynomial kernel, the degree p = 3 is used. The parameter γ ranges from 1 to 100 for the radial
transformed data, and from 0.0001 to 0.01 for the clr transformed data. The difference in ranges is due to the different
magnitudes in the transformed data.

B.1. Gaussian kernel

(a) radial transform
(γ = 1)

(b) radial transform
(γ = 10)

(c) radial transform
(γ = 50)

(d) radial transform
(γ = 100)

Figure 7. Projection plots from kernel PCA with Gaussian kernel using the radial transformed data by various values of parameter.

(a) clr transform
(γ = 0.0001)

(b) clr transform
(γ = 0.0005)

(c) clr transform
(γ = 0.001)

(d) clr transform
(γ = 0.01)

Figure 8. Projection plots from kernel PCA with Gaussian kernel using the clr transformed data by various values of parameter.
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B.2. Polynomial kernel

(a) radial transform
(γ = 1)

(b) radial transform
(γ = 10)

(c) radial transform
(γ = 50)

(d) radial transform
(γ = 100)

Figure 9. Projection plots from kernel PCA with polynomial kernel using the radial transformed data by various values of parameter.

(a) clr transform
(γ = 0.0001)

(b) clr transform
(γ = 0.0005)

(c) clr transform
(γ = 0.001)

(d) clr transform
(γ = 0.01)

Figure 10. Projection plots from kernel PCA with polynomial kernel using the clr transformed data by various values of parameter.

B.3. von-Mises kernel

(a) radial transform
(γ = 1)

(b) radial transform
(γ = 10)

(c) radial transform
(γ = 50)

(d) radial transform
(γ = 100)

Figure 11. Projection plots from kernel PCA with von-Mises kernel using the radial transformed data by various values of parameter.

(a) clr transform
(γ = 0.0001)

(b) clr transform
(γ = 0.0005)

(c) clr transform
(γ = 0.001)

(d) clr transform
(γ = 0.01)

Figure 12. Projection plots from kernel PCA with von-Mises kernel using the clr transformed data by various values of parameter.

C. Kernel PCA with various kernels and parameters using lrDA and lrEM zero replacement
method

In this section, we present additional results from kernel PCA with various kernels and parameters regarding to Figure 5 in
the paper. We use the same lrDA-clr and lrEM-clr transformed data. Again, the degree is p = 3 for the polynomial kernel.
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C.1. Gaussian kernel

(a) lrDA-clr
(γ = 0.0001)

(b) lrDA-clr
(γ = 0.0005)

(c) lrDA-clr
(γ = 0.001)

(d) lrDA-clr
(γ = 0.01)

Figure 13. Projection plots from kernel PCA with Gaussian kernel using the lrDA-clr transformed data by various values of parameter.

(a) lrEM-clr
(γ = 0.0001)

(b) lrEM-clr
(γ = 0.0005)

(c) lrEM-clr
(γ = 0.001)

(d) lrEM-clr
(γ = 0.01)

Figure 14. Projection plots from kernel PCA with Gaussian kernel using the lrEM-clr transformed data by various values of parameter.

C.2. Polynomial kernel

(a) lrDA-clr
(γ = 0.0001)

(b) lrDA-clr
(γ = 0.0005)

(c) lrDA-clr
(γ = 0.001)

(d) lrDA-clr
(γ = 0.01)

Figure 15. Projection plots from kernel PCA with polynomial kernel using the lrDA-clr transformed data by various values of parameter.

(a) lrEM-clr
(γ = 0.0001)

(b) lrEM-clr
(γ = 0.0005)

(c) lrEM-clr
(γ = 0.001)

(d) lrEM-clr
(γ = 0.01)

Figure 16. Projection plots from kernel PCA with polynomial kernel using the lrEM-clr transformed data by various values of parameter.
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C.3. von-Mises kernel

(a) lrDA-clr
(γ = 0.0001)

(b) lrDA-clr
(γ = 0.0005)

(c) lrDA-clr
(γ = 0.001)

(d) lrDA-clr
(γ = 0.01)

Figure 17. Projection plots from kernel PCA with von-Mises kernel using the lrDA-clr transformed data by various values of parameter.

(a) lrEM-clr
(γ = 0.0001)

(b) lrEM-clr
(γ = 0.0005)

(c) lrEM-clr
(γ = 0.001)

(d) lrEM-clr
(γ = 0.01)

Figure 18. Projection plots from kernel PCA with von-Mises kernel using the lrEM-clr transformed data by various values of parameter.

D. Data availability
In this section, we present specific data availability for real data examples in section 6.2.2.

Table 3. Data availability for real data examples.
Dataset Data Source
Hayden et al. (2020) ‘BONUS-CF (WGS)’ dataset from MicrobiomeDB.org
Gimblet et al. (2017) ‘Experimental cutaneous leishmaniasis’ dataset from MicrobiomeDB.org
Arumugam et al. (2011) ‘enterotype’ dataset in R package phyloseq
Carrieri et al. (2021) Supplementary material of the referenced article
Charlson et al. (2010) ‘throat.otu.tab’ dataset in R package GUniFrac
Schiffer et al. (2019) ‘vaginal.otu.tab’ dataset in R package GUniFrac


